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ABSTRACT

Knowledge editing and machine unlearning are two popular approaches for large
language models (LLMs) to stay up-to-date. However, the knowledge updating
mechanism of LLMs remains largely unexplored due to insufficient, isolated, and
small-scale evaluation. For instance, are LLMs similar to humans in modifying
certain knowledge? What differs editing and unlearning as training data increases?
This paper proposes KnowledgeSmith, a unified framework to systematically un-
derstand the updating mechanism of LLMs. We first cast editing and unlearning
as instances of one constrained optimization problem. Then, we propose an au-
tomatic dataset generator that provides structured interventions across multiple
graph levels and data scales, enabling controlled studies of how different mod-
ification strategies propagate through model knowledge. Extensive experiments
demonstrate nuanced insights over knowledge propagation, plasticity scaling, con-
sistency, and robustness. For instance, our results show that LLMs do not exhibit
similar updating as humans for different levels of knowledge, and there exists
consistency-capacity trade-off. We hope our findings can offer suggestions to the
design of more reliable and scalable strategies.

1 INTRODUCTION

Human knowledge is not stored as isolated facts but as a vast, interconnected web (Liu et al.|[2024).
From early encyclopedias to modern knowledge graphs, we represent knowledge as structured re-
lations (Yang et al., 2025)): concepts (nodes) linked by semantic or causal connections (edges).
This networked organization enables humans to reason flexibly (Mark et al.| [2020), update beliefs
(Paulheim| 2016) when new evidence arises, and propagate changes across related domains (Flouris
et al., 2008). For instance, when scientists revised the classification of Pluto from a planet to a
dwarf planet, the update did not merely alter one fact but cascaded through textbooks, curricula, and
related scientific explanations.

Do Large language models (LLMs) exhibit similar properties? [Zhang et al.| (2024) showed that they
store and retrieve information at scale, generating answers that span diverse domains; Yet, unlike
human knowledge graphs, the internal structure of LLM knowledge remains opaque (Zhang et al.,
2023)). Fine-tuning can overwrite large swaths of parameters but is resource-intensive and imprecise
(Balne et al.| 2024} |Gekhman et al., 2024)), often introducing instability or hallucinations (Khan
et al., 2025 (Ovadia et al., 2024). Researchers have recently shifted attention toward knowledge
editing (Wei et al., [2024; Markowitz et al., [2025 |[Wang et al., |2024) and unlearning (Yao et al.,
2024; |Pawelczyk et al.l [2024; Hong et al.l |2024), where editing offers targeted modifications and
unlearning aims to broadly remove specific information. Both are valuable, yet they are typically
studied in isolation and without grounding in structured knowledge representations.

How to understand the knowledge updating mechanism in LLMs? Recent efforts show that editing
techniques can be adapted for forgetting by redirecting or suppressing knowledge representations
(L1 et al., [2025b}, Jung et al., [2025), while unlearning methods sometimes resemble coarse-grained
editing at the dataset level (Guo et al.| [2019). Other works investigate continual or compositional
settings, where localized edits may interfere with broader forgetting objectives or vice versa (Gupta
et al.| 2024} [Chen et al.,[2024). A parallel strand examines the tension between specificity and gen-
eralization: editing often prioritizes precision but risks side effects, whereas unlearning emphasizes
removal but may fail to incorporate new or corrected knowledge (Yao et al., 2023a).
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Figure 1: KnowledgeSmith pipeline. Starting from static KG, we generate dynamic probes at root,
intermediate, and leaf levels, enabling evaluation of direct and propagated effects.

Despite recent progress, there are still three critical challenges. First, most evaluations target isolated
facts, neglecting the structured and interconnected nature of real-world knowledge (Thede et al.,
2025). For example, if we update the fact that “Lyon is the capital of France” instead of Paris,
a coherent system should also adjust related knowledge such as “the Eiffel Tower is located in
France’s capital,” which otherwise becomes inconsistent. Second, the role of data scale in editing
vs. unlearning remains unclear, with small data often sufficing for edits but not for forgetting(Zhong
et al.l 2023} [Meng et al.| |2022a). Third, there is no unified framework to jointly understand editing
and unlearning, leaving their trade-offs in propagation, stability, and generalization unclear.

In this paper, we introduce KnowledgeSmith (Figure (1), a unified framework to understand the
knowledge updating mechanisms in LLMs Theoretically, our framework casts editing and un-
learning as complementary forms of constrained optimization. Empirically, building on the intuition
that human knowledge is naturally structured as knowledge graphs (KGs), our framework can au-
tomatically transform any existing KG-related dataset into a benchmark for knowledge intervention
evaluation, enabling systematic and scalable assessment without the need for hand-crafted test sets.
For instance, more insights can be gained through interventions across hierarchical levels (root, in-
termediate, leaf) and data scales (from single instances to millions). Then, we conduct an extensive
evaluation of editing and unlearning on different LLM families to explore knowledge propagation,
scaling laws, representation shifts, and robustness under stress tests. Our key findings are:

1. Propagation Asymmetry and Plasticity Limits: Editing can over-spread(unintentionally
altering related nodes), especially at higher nodes, while unlearning mostly under-
spreads(forgetting failing to propagate beyond the target node). Hierarchical branch structure
imposes intrinsic ceilings on update effectiveness, with higher or more central nodes limiting

achievable knowledge modifications(§5.2.11§5.2.2).

2. Consistency—Capacity Tradeoff and Subject-Dependent Update: Increasing data can trig-
ger consistency collapse, where local updates contradict other knowledge; editing prioritizes
local enforcement, unlearning preserves broader consistency. Some domains, like history, resist
updates more than others, highlighting the need for subject-aware evaluation (§5.2.3]§5.2.4).

3. Model Robustness: Editing improves in-domain accuracy but harms OOD and adversarial
stability, while unlearning preserves global robustness at the cost of weaker local gains(§5.3).

4. Method-level Trade-offs: Editing balances integration and preservation with strong low-data
efficiency, unlearning is conservative but stable, while LoRA fine-tuning is unstable and prone
to drift, making it unreliable for continual updates (§5.4).

! Other approaches can also update knowledge in LLMs; we focus on editing and unlearning in this paper.
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5. Unified Failure Modes and Stress Testing: By observing model behavior on open-ended
questions, we identify six main failure modes and find that unlearning preserves general task
integrity better, whereas editing is more aggressive but effective in low-data regimes (§5.5).

Contributions. (1) We introduce KnowledgeSmith as a unified framework to understand knowledge
updating in LLMs with editing and unlearning. (2) We present automatic data generation pipeline
for LLM evaluation with scalable KG-structured interventions. (3) Our experiments demonstrate
several insightful findings towards LLM knowledge updating that could inspire future research.

2 RELATED WORK

Other than fine-tuning which is expensive and requires large amount of training data, knowledge
editing and machine unlearning are two popular and effective approaches to update LLMs’ knowl-
edge. Knowledge editing modifies LLMs’ internal parameters to update its predictions on specific
factual associations while ideally preserving unrelated knowledge (Yao et al.l 2023b; |Cao et al.,
2021} |Sinitsin et al.l [2020). Existing approaches include gradient-based fine-tuning (Sinitsin et al.,
2020;Zhu et al.,[2020), localized weight modifications such as ROME (Meng et al.,|2022a), MEMIT
(Meng et al.l 2022b), and SERAC (Mitchell et al., |2021), and memory-augmented methods that
externalize edits (Mitchell et al.| [2022). However, most prior evaluations are restricted to small
benchmarks (Levy et al.l | 2017; Meng et al.,2022a) and do not examine how edits propagate through
structured knowledge dependencies.

On the other hand, motivated by ethical, legal, or safety considerations, machine unlearning seeks
to selectively erase information linked to a dataset, (Izzo et al., 2021} Thudi et al., [2022} | Xu et al.,
2025)). Methods include retraining-based approaches (Ginart et al., [2019), negative-gradient fine-
tuning (Thudi et al.,2022), regularization-based constraints (Golatkar et al.,[2020), and approximate
removal via influence functions or Fisher-weighted updates (Guo et al., 2019; Baumhauer et al.,
2022). Yet, unlearning has largely been studied in isolation from editing, without systematic com-
parisons or evaluation in structured knowledge contexts.

In short, existing research highlights strong methodological advances but leaves two key gaps: (1)
editing and unlearning are often treated as disjoint problems despite their conceptual overlap, and
(2) evaluations rely on narrow datasets that fail to capture scaling behavior or structured propagation
effects. Our work tries to establish a unified view of them and present an extensive analysis towards
understanding LLM knowledge updating.

3 KNOWLEDGESMITH

In this section, we propose KnowledgeSmith, a unified framework to view editing and unlearning
as complementary interventions.

3.1 PROBLEM DEFINITION

Let fy denote a language model parameterized by 6, defining a conditional distribution py(y | )
over output y given input x. We study targeted interventions that modify or remove specific knowl-
edge while preserving the model’s general behavior.

An update request is given by an item e (e.g., a factual triple, a prompt-response pair, or a small
dataset), optionally accompanied by a scope c that defines locality or related probes. For example,
if e is the fact “Paris is the capital of France”, ¢ could include all prompts asking about European
capitals such as “What is the capital of France?” or “Name the capital of European countries” while
excluding unrelated prompts like “Who is the president of the United States?”, ensuring that only
related knowledge is affected while leaving unrelated knowledge untouched. Applying an update
operator T (e.g., editing or unlearning) yields updated parameters:

0 =T (6;e,c), A=0¢ -0, (1)
where A is the parameter update.

The objective is therefore to update the targeted knowledge while preserving unrelated knowledge.
To facilitate analysis, we define two probe sets: (1) Positive probes Q7 are inputs where the model’s
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predictions should change; and (2) Preservation probes Q~ are inputs where predictions should
remain unchanged. Formally, for an input x, denote py (- | ) and pg/ (- | ) as the output distribution
of the model before and after KnowledgeSmith intervention, respectively, we have:

d(pe (- | ), qureer (- | 2)) < pt, Vz e QF,
d(pg’(' | x)7p9(' ‘ 37)) < g, Vo € Q_a
where d(-, -) is a divergence or distance measure between distributions (e.g., KL divergence, cross-
entropy, or /o distance over logits), qmget(- | 2) is the desired post-intervention distribution on
positive probes, the constant * specifies a tolerance threshold for successful edits, reflecting that

editing algorithms may only approximate the target distribution rather than match it exactly, and ¢
is a stability threshold controlling how much drift is allowed on Q™.

2

3.2 A UNIFIED FRAMEWORK FOR ANALYZING EDITING AND UNLEARNING

While Equation formalizes the objectives using tolerance thresholds ™+ and ¢, in practice we
implement these constraints by relaxing them into loss terms over probes. Specifically, Ly (6'; Q)
penalizes deviations from the target distribution on Q, Epres(ﬁ’ ; Q7)) penalizes drift on Q~, and
R(#',0) regularizes the overall update. Thus, both model editing and unlearning can be cast as a
constrained optimization over model parameters:

0 = arg min £task(6/§ Q+) + )\pres [/pres(Q/; Q_) + /\reg R(9/7 9)7 3)
9/

where L, enforces the desired behavior on O, Lores penalizes drift on Q~, and R(¢’, 6) regular-
izes the update (e.g., || A3 (Ng, 2004), Fisher norm (Gu et al.,[2012), or others (Hu et al.,[2022)).

Editing as targeted alignment. Knowledge editing can be viewed as minimizing L toward a
distribution gy, that encodes corrected knowledge. For example, ROME (Meng et al., [2022a)) and
MEMIT (Meng et al., [2022b)) locate and modify specific MLP weights to enforce new facts, while
MEND (Mitchell et al., 2021)) trains an auxiliary retriever—classifier to redirect predictions on edited
queries. Other approaches apply gradient-based updates on Q+ while regularizing drift, such as
GRACE (Hartvigsen et al., 2023). Even parameter-efficient methods like LoRA-based editing (Hu
et al.,2022; Zheng et al., 2023 fit this form, with R(6’, ) enforcing low-rank adaptation.

Unlearning as neutral alignment. Unlearning corresponds to the same objective but with
rarget Chosen as a neutral distribution Gneura that suppresses unwanted associations. This cap-
tures approaches that erase knowledge through gradient descent (Thudi et al., |2022), influence-
function—based forgetting (Golatkar et al. 20205 (Guo et al., 2019)), or certified removal in convex
models (Ginart et al.l [2019). Recent work on unlearning in deep networks (Jagielski et al.| [2022)
also fits: their objectives penalize predictive alignment with sensitive data while constraining per-
formance on Q~, exactly corresponding to the Ly and R(¢’, 0) terms above.

A unifying lens. In this view, the distinction between editing and unlearning reduces to the choice
Of Garger: Editing: Guarger €ncodes a factual correction (e.g., “Paris is the capital of Germany™). Un-
learning: Grarge: 1S neutral, erasing prior associations (e.g., “Paris is the capital of [MASK]”). This
framework subsumes methods across the spectrum: localized weight modifications (Meng et al.,
2022bza), memory-based editors (Mitchell et al.l [2021), parameter-efficient adaptations (Hu et al.,
2022; Zheng et al} [2023), influence-based forgetting (Golatkar et al., 2020)), and certified removal
(Ginart et al., 2019). Despite methodological differences, all can be interpreted as solving the same
constrained optimization problem with different instantiations of Lk, Lpres, and R(6',6).

Our formulation provides a principled and generalized lens for analyzing parameter modifications in
LLMs, enabling fair comparison of editing and unlearning on their trade-offs in plasticity, stability,
and generalization. However, to rigorously measure these effects in practice, we need benchmarks
that capture hierarchical dependencies, e.g., local versus global changes, and multilevel propaga-
tion of updates, which are largely missing from existing datasets. This motivates our automated
benchmark construction in the following.

4 CONSTRUCTING EVALUATION BENCHMARK

Existing benchmarks (Meng et al.l 2022a} [Levy et al. 2017) for knowledge intervention evaluation
suffer from two major limitations. First, they are largely static, testing only isolated facts without
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accounting for how updates might affect related knowledge. Second, they fail to capture dependen-
cies across facts, which are crucial for understanding how changes propagate through the model and
for revealing trade-offs between editing and unlearning.

We leverage knowledge graphs (KGs) to address these gaps, which dynamically encode hierarchical
and relational dependencies among facts. Anchoring probes in a curated KG enables us to gener-
ate both local edits and their downstream consequences, transforming a single KG into a dynamic
benchmark. Specifically, by targeting root, intermediate, and leaf nodes, our framework systemat-
ically tests how interventions propagate across multiple levels of dependency, thus providing a rig-
orous way to evaluate whether models can coherently update, forget, or preserve knowledge while
maintaining global consistency. Concretely speaking, our data generation method can automatically
transform any existing knowledge-related benchmarks such as MMLU (Hendrycks et al.,|2021) into
new ones, providing domain coverage and a standardized multiple-choice QA format for easy eval-
uation. Our pipeline consists of three stages (Figure[I]), ensuring both quality and flexibility:

1. Entity-Relation Selection: We begin by prompting GPT-40 to generate a KG where enti-
ties and relations are organized hierarchically. The model is then asked to categorize nodes
into three levels: root (broad, domain-level concepts), intermediate (mid-level categories or
subtopics), and leaf (specific entities or instances). Sampling nodes from all three categories
preserves the KG’s hierarchical structure, ensuring evaluation goes beyond isolated facts to
capture how edits or deletions propagate across different levels of related knowledge.

2. Template-Based Question Generation: Multiple question forms are generated for each triple,
varying in directness and context. All templates are manually verified for grammaticality and
factual alignment, preserving unambiguous mapping back to the KG. Six categories of probes
are constructed (direct, reverse, conflict, multi-hop, comparison and contextual), each tied to a
different aspect of model behavior under intervention.

3. Multiple-Choice Construction: Each probe is cast as a four-choice QA item, consistent with
the MMLU-inspired format, ensuring that evaluation reflects true knowledge states rather than
guesswork. Entity substitution and paraphrasing yield over one million samples across do-
mains. All items are validated against the KG, with manual spot checks for quality assurance.

Connection to KG-Based Evaluation. Our generation pipeline is organized around two comple-
mentary families of probes: (1) Positive probes QF, which directly test the edited or redirected
knowledge, including its hierarchical propagation across root, intermediate, and leaf nodes. (2)
Preservation probes Q~, which ensure that unrelated or out-of-scope knowledge remains intact,
guarding against collateral damage.

To operationalize these two families, we instantiate six probe types. Direct probes (Q™) test whether
the target fact itself is recalled or updated at different hierarchical levels. Reverse probes (Q7) ex-
amine whether knowledge updates preserve relation directionality. Conflict probes (QT/Q™) expose
residual beliefs and adversarial robustness by checking for contradictions after intervention. Multi-
hop probes (Q) evaluate whether interventions correctly propagate through chained relations in the
KG. Comparison probes (Q™) assess whether the updated knowledge is consistently preferred when
contrasted with alternatives or distractors. Finally, Contextual probes (Q~) test whether unrelated
in-domain or OOD knowledge remains preserved in naturalistic settings. This design aligns directly
with our experimental analyses: By explicitly embedding these probe types into the KG’s hierar-
chical structure, the benchmark enables analyses that go beyond isolated fact checking, revealing
whether interventions cascade consistently across levels of related knowledge.

Generated Benchmark Dataset. Our method allows flexible data generation across domains. In
this paper, we instantiate the benchmark in four domains: economics, physics, history, and biology.
We restricted our evaluation to four domains to balance diversity and feasibilityE] Each domain
yields paired pre-edit and post-edit datasets that preserve entities but differ in factual content. Probes
span root, intermediate, and leaf nodes, with conflict, propagation, comparative, and reverse variants,
and include multiple paraphrased realizations. For each branch within every domain, we generate
10, 000 samples each for editing and unlearning, plus 100 evaluation probe sets, leading to 360, 000
training samples in total. This design creates a benchmark that is both large-scale and structurally
sensitive, allowing systematic evaluation of edits and unlearning not just at the point of intervention
but throughout the knowledge hierarchy. Dataset examples are in Appendix [A]

These subjects span both STEM and humanities, offering a representative testbed. Our pipeline is directly
extensible to other domains such as law and medicine.
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5 EXPERIMENTS

5.1 SETUP

Models. Our evaluation covers 6 families of LLMs with 1B to 123B parameters, leading to a total of
13 models: LLaMA-3 (1B, 3B, 8B, 70B) (Metal [2024), Qwen-3 (1.7B, 14B, 32B) (Team), 2025b),
QwQ-32B (Teaml [2025a), Mistral (24B, 123B) (Jiang et al.,|2023)), Gemma (2B, 7B) (Team, |[2024),
and DeepSeek-R1-0528-Qwen3-8B (DeepSeek-All 2025). This broad coverage enables us to study
whether scaling behaviors and editing/unlearning performance generalize across architectures.

Implementation Details. We adopted AlphaEdit (Fang et al.,2025) and ReLearn (Xu et al., 2025)@
AlphaEdit is a state-of-the-art editor that has been shown to outperform prior methods such as
MEMIT(Meng et al.,|2022b) and ROME(Meng et al.,|2022a) in editing tasks, while ReLearn repre-
sents a leading approach to unlearning. Importantly, our framework is method-agnostic and directly
extensible to other baselines, making it straightforward to integrate additional methods. Unlike tra-
ditional unlearning approaches where the retain set corresponds to the original knowledge, in our
redirection-based setup the retain set is defined as the post-updated knowledge, ensuring that the
model preserves the rewritten fact rather than reverting to its prior belief. This redirection-based
formulation aligns better with real-world scenarios where knowledge is updated rather than erased.
Editing and unlearning were applied separately to leaf, intermediate, and root nodes of the knowl-
edge graph, with training data sizes ranging from 1 to 10,000 samples. This setup allowed us to
systematically analyze the effect of both hierarchy depth and data scale on the success of editing
and unlearning. For evaluation, since each knowledge probing question is multiple-choice, we re-
port accuracy as the proportion of questions for which the model selects the correct choice. This
metric directly reflects the model’s correctness in retrieving or updating the intended knowledge.

5.2 COMPARATIVE ANALYSIS OF EDITING AND UNLEARNING

5.2.1 PROPAGATION ASYMMETRY: OVER- VS. UNDER-SPREADING

Human learners expect hierarchical consis- 28 A 4| et y
tency: updating a root concept should cas- 2 / &0

cade to its descendants, while modifying a leaf = g \
. . . . Q 76
should remain localized. We evaluate this in 9, c
LLMs by applying editing or unlearning at e - N\
three hierarchy levels (root, intermediate, leaf) Wi i e 1 I o i 1o 1
i Number of training examples Number of training examples
and measuring performance on both targeted root (Editing)  —=— intermediate (Editing) leat (Editing)
and Structurally related nodes We quantify root (Unlearning) -o0- intermediate (Unlearning) leaf (Unlearning)
these effects using direct vs. multi-hop accu- Figure 2: Propagation asymmetry metrics.

racy (Figure [2) as a proxy for propagation metrics: the Collateral Change Ratio (CCR) captures
over-spreading for editing, and the Residual Retention (RR) captures under-spreading for unlearning
(For the complete definitions of CCR and RR, see Appendix [B)).

Our results reveal a clear asymmetry: editing tends to over-spread, unintentionally altering related
nodes, especially in lower hierarchy levels, whereas unlearning often under-spreads, failing to
propagate forgetting beyond the target. These simple, interpretable metrics allow us to visualize
propagation behavior across hierarchical branches.

5.2.2 PLASTICITY SCALING AND BRANCH-DEPENDENT LIMITS

Plasticity captures how readily a model can update knowledge in response to limited training data,
balancing the optimization of L, on positive probes Q1 against preservation constraints Lopres ON
Q™. We extend this notion to plasticity scaling, examining systematically how model size, data
scale, and hierarchical branch jointly influence the effectiveness of editing and unlearning.

Our main observations are as follows. First, as shown in Figures and smaller models exhibit
higher immediate plasticity, rapidly adapting to few-shot interventions and achieving strong in-
domain performance on Q, but their changes are often unstable, leading to degraded preservation
on Q™. Larger models require more data to register updates, reflecting lower short-term plas-
ticity, yet once modified they maintain stronger out-of-domain consistency, indicating more reliable
preservation. Second, branch-dependent upper bounds. As shown in Figure different hier-

3We also conduct experiments on some other methods, which show similar performance. Reported at
Appendix [E}
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Figure 3: Plasticity scaling of the LLaMA3 family under (a) editing and (b) unlearning. (c) Propa-
gation limits across three branches. (d) Consistency capacity tradeoff.

archical branches exhibit distinct ceilings for achievable accuracy. Root-level edits/unlearning face
a lower ceiling due to structural complexity and the need for coherent propagation across descen-
dants. Intermediate-level branches achieve moderate ceilings. Leaf-level edits/unlearning can reach
near-perfect in-domain accuracy with fewer examples, reflecting minimal propagation constraints.
This reveals the effectiveness of updates is not uniform across the hierarchy: higher or more central
nodes constrain achievable plasticity, while lower nodes allow maximal update with limited data.

5.2.3 CONSISTENCY-CAPACITY TRADE-OFF

Most prior work (Zhong et al., 2023} |[Park et al., 2025} [Shi et al.| 2024} L1 et al., [2025a) primarily
assess whether the target fact is updated successfully, without probing inverse relations. To our
knowledge, no prior work explicitly quantifies this type of cross-relation or hierarchical consistency.
In this work, we define consistency as the model’s ability to maintain logical coherence across related
knowledge after an intervention. Specifically, we test consistency by probing both the direct relation
(e.g., “Paris is the capital of France”) and the inverse or complementary relation (e.g., “France has
capital Paris”), as well as across hierarchical or semantically related branches. A consistent update
should correctly modify the target knowledge while preserving these related facts.

We uncover a new phenomenon: consistency collapses once data scale surpasses the model ca-
pacity. We term this the consistency—capacity trade-off, observed both in relation—inverse relation
pairs (e.g., capital-of vs. has-capital) and across hierarchical branches. As shown in Figure[3d] di-
rect probes initially respond to interventions but plateau or degrade as training scale grows, whereas
reverse probes remain stably high, indicating preservation of contradictory knowledge. The diver-
gence defines a consistency collapse point, occuring earlier in lower branches (intermediate, leaf)
than root. Editing typically achieves stronger local updates but triggers earlier global inconsistency;
unlearning preserves broader consistency but rarely removes the targeted knowledge completely.

Representation and Efficiency. Table[I|shows the analy- Table 1: Similarity scores for each
sis of internal representations via Centered Kernel Align- model are independently normalized via
ment (CKA) (Kornblith et al,[2019), KL divergence, L2 a log-min—max transformation: a small
distance and Fisher score (Zhang et al][2022)). The results  positive offset € is added, log;, is ap-
show that unlearning exhibits abrupt phase transitions be- plied, and the resulting values are lin-
yond a critical data scale, while editing induces smoother, early scaled to the [0, 1] range.
localized adjustments (details in Appendix . Computa-  “Metric Setting 1 10 100 1000 10000

tionally, unlearning is faster (e.g., ~0.2h vs ~6h foredit- |, Unleam 0014 0392 0805 0838 0.383
. . . Edit 0.140  0.522  0.606 0.647 0.652
ing on 1,000 samples on an NVIDIA H100), reflecting its 5 Colm— T 0% 0 67— 07560948
focus on stability over precise enforcement. Edit 0054 0368 0507 0628 0.633
Fisher Un_learn 0.014 0352 0.781 0.847 0919

. . . . Edit 0.101 0438 0.552 0.641 0.647
Consistency collapse is not only evident in output accu-  ~_ "= Unleam 0917 086 0566 0576 0692
Edit 0958 0.852 0.801 0.714 0.714

racy but also mirrored in representation dynamics and
computational cost: editing maximizes factual enforcement at the expense of broader consistency
and resources, whereas unlearning prioritizes stability and efficiency.

5.2.4 SUBJECT-DEPENDENT KNOWLEDGE UPDATE

At the subject level, Figure 4a reveal that knowledge updating is strongly subject-dependent.
Among the four subjects (biology, economics, history, and physics), history consistently exhibits
the lowest update accuracy, sometimes remaining nearly unchanged even with large numbers of
training examples. Other subjects update, in contrast, propagate more efficiently. This highlights
a critical insight: evaluation benchmarks must account for subject-specific difficulty. Standard
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Figure 4: Robustness evaluation under multiple stress tests. (a) Out-of-distribution (OOD) vs. in-
domain accuracy. (b) Adversarial robustness relative to original accuracy. (c) Instruction-following
accuracy in free generation, judged by an LLM. (d) Hallucination tendency across interventions.

datasets (e.g., CounterFact (Meng et al., |2022a), ZsRE (Levy et al.l 2017)) treat all domains equiv-
alently, but our results indicate that certain knowledge domains, such as history, are significantly
more resistant to modification. Consequently, subject-aware evaluation is essential for accurately
assessing editing and unlearning performance in LLMs.

5.2.5 CONTRADICTIONS AND CONFLICT RATE

While residual belief (Elidan et al., |2012)) is commonly used to evaluate whether interventions suc-
ceed in suppressing prior knowledge, it does not capture a critical failure mode: the emergence of
contradictions. We therefore introduce a complementary metric, conflict rate, which measures the
proportion of queries where the model simultaneously supports mutually inconsistent statements af-
ter intervention. For instance, a model may assert both “Paris is the capital of Germany” and “Paris
is the capital of France” under different contexts. Figure #b]shows this metric exposes patterns that
residual belief alone cannot: editing often leads to higher conflict in related branches (over-
spreading), whereas unlearning tends to leave contradictions unresolved in upstream nodes
(under-spreading). By explicitly quantifying such inconsistencies, conflict rate provides a fuller
view of hidden instabilities and unintended side effects.

5.3 ANALYSIS ON ROBUSTNESS

OOD robustness is tested using MMLU (Hendrycks et al., [2021). In the unified framework, in-
domain probes Q" consist of questions from the same subject (e.g., updating facts about geography
using geography questions), reflecting alignment with ggger. In contrast, out-of-domain (OOD)
probes @~ are drawn from unrelated subjects (e.g., updating geography facts but measuring perfor-
mance on economics, history, or law), testing the model’s ability to preserve unrelated knowledge
after the intervention. As shown in Figure these objectives often conflict. Unlearning pre-
serves strong OOD accuracy (63-82%) but yields modest in-domain gains (<30%), while editing
substantially boosts in-domain accuracy (up to 50-60% in economics) at the cost of OOD stability,
especially in mid-sized models. Larger models reduce but do not eliminate this trade-off. Increasing
training examples improves in-domain performance until gains plateau, and disciplines vary, with
economics generalizing better and history proving more resistant. This trade-off reflects the bal-
ance between L,g and Ly stronger enforcement on Q7 tends to destabilize preservation on Q~,
highlighting the challenge of achieving both local fidelity and global robustness together.

We then measure adversarial robustness by exposing the model to misleading or deceptive inputs,
such as probes combining unrelated concepts (Figure [d). This assesses whether the optimization
constraints maintain stability on preservation probes Q= under stress (details in Appendix [D.1I).

5.4 ANALYSIS ON FINE-TUNING

We further compare editing and unlearning with 2 o sl
LoRA fine-tuning on Llama3-8B-Instruct to iso- Edting | o

late method-level tradeoffs. Figure [6a] shows §1: / g; .

LoRA yields unstable ID accuracy, sometimes = [T
dropping to 12.5% at k = 1000. Scarce datalead [ 7 | O e /|
to poor enforcement of target updates (Q*1) while " Number of raining examples “Number of training examples.
undermining preservation (Q 7). Figureshows (a) ID (b) 0OD

OOD accuracy declining from 63.0% (k = 1) to

61.6% (k — 1000), indicating drift risks. Un- | gure 6: LoRA, Editing and Unlearning.
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(a) Editing (b) Unlearning
Figure 7: SVD-based geometric analysis of interventions. (a) Editing adjusts knowledge by gently
rotating and slightly rescaling the representation space, preserving overall geometry while redi-
recting specific directions. (b) Unlearning, in contrast, acts by shrinking certain dimensions more
aggressively, reducing the model’s capacity in those directions rather than rotating them.

learning remains stable around 63%, preserving prior knowledge but limiting target success. Edit-
ing combines stability with low-data efficiency, boosting ID accuracy to 25% at k = 10 compared
to 16.7% for LoRA and unlearning. In summary, editing balances new knowledge integration and
preservation, LoRA risks drift, and unlearning is conservative but stable, explaining why we prefer
editing/unlearning for continual updates.

5.5 FAILURE MODE AND STRESS TESTING

Existing studies describe errors such as incomplete for- Table 2: Percentage (%) of observed
getting or knowledge pollution in a fragmented way, with- failures in editing and unlearning.

out systematically characterizing the underlying mecha-  “ajiure Mode Editing Unlearning
nisms. Through our experiments on open-ended ques- ~(j qeforgetting (RR) 20 35
tion answering, we observed that models fail for differ-  Over-spreading (CCR) 35 15
ent reasons under editing and unlearning interventions, ~ Gonict emergence 30 12

g g nte 18- Knowledge drift 18 10
To capture these patterns, we propose a Unified Fail-  Instruction-following drop 22 18

5 4

ure Mode Taxonomy that organizes observed errors into ~_Hallucination increase
six categories (examples of each type in Appendix [D.2):

under-forgetting (RR), over-spreading (CCR), conflict emergence (contradictions between updated
and related knowledge), knowledge drift (performance degradation on unrelated tasks), instruction-
following drop (reduced ability to follow complex instructions), and hallucination increase.

Stress-testing evaluates the failure modes with open generation tasks, making the model show prac-
tical robustness and use gpt-4o to evaluate. Our results show that hallucination (evaluated on Truth-
fulQA (Lin et al.}[2022)) remains stable, instruction-following (open generation) drops moderately,
and CoT reasoning can improve edit generalization but may increase residual knowledge, compli-
cating unlearning (details in Appendix[C). Sequential update experiments, reported in Appendix [F
further illustrate how multiple consecutive edits affect these behaviors and highlight potential cumu-
lative effects on residual knowledge.

5.6 THEORETICAL ANALYSIS

Our theoretical perspective connects the observed behaviors of editing and unlearning to their geo-
metric effects on model representations. Let W € R™*" denote a parameter matrix (e.g., attention
or MLP projection), with singular value decomposition W = UXV ", An intervention updates W
to W' = U'S'V'T. The difference between 1/ and W' can be decomposed into two interpretable
components:

* Scaling effects. Changes in singular values >’ /Y indicate amplification or attenuation of certain
representational directions.

* Rotational effects. Differences in subspaces span(U, V') vs. span(U’, V') reflect reorientation of
features while preserving their magnitude.

Editing as local rotation with mild rescaling. As shown in Figure [7a] editing primarily induces
moderate rescaling of singular values while maintaining high orthogonal similarity between (U, V)
and (U’, V') across layers. This implies that editing preserves most of the representational geometry,
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redirecting specific factual directions through controlled rotations. Consequently, editing behaves
like a rotation-plus-scaling operator: it reallocates emphasis toward new factual associations while
retaining global coherence. This explains why editing achieves strong local enforcement but often
over-spreads changes to nearby branches (high CCR in Section[5.2).

Unlearning as anisotropic scaling. By contrast, Figure|/b|shows that unlearning produces sharper
downscaling of singular values, with less stable alignment of U, V" across layers. This indicates sup-
pression of capacity in certain subspaces rather than a simple rotation. Thus, unlearning resembles
an attenuation operator: it removes the ability to encode certain directions but does not reliably ro-
tate them into new ones. This mechanism aligns with the observed under-spreading behavior (high
RR in Section [5.2), where forgetting remains localized and fails to propagate fully across related
nodes.

Hierarchy-dependent dynamics. Leaf-level interventions concentrate changes in later layers, sup-
porting near-perfect local adaptation. Root-level interventions require distributed rotations and scal-
ings across the network, introducing stricter ceilings on achievable accuracy. Intermediate nodes
combine aspects of both. These theoretical patterns mirror our empirical findings on branch-
dependent plasticity limits (Section[5.2.2).

5.7 DISCUSSION

Our findings offer several potential directions for future research. (1) Model updating: Updates
should employ dynamic, hierarchical control such as level- and relation-aware algorithms. Branch-
specific strategies can also improve effectiveness: for leaf nodes, updates can use more data for
higher accuracy, while root nodes may require less data. Data size should be carefully calibrated for
global consistency. Moreover, models exhibit subject-dependent sensitivity, hence, update methods
should account for differences across domains. (2) Evaluation metrics: The conflict rate offers
a more nuanced assessment of models, capturing hidden inconsistencies and ensuring that updates
improve the model more holistically rather than just for specific tasks. This mirrors human reasoning
in the sense that humans also monitor for contradictions and coherence, but the analogy is descriptive
rather than mechanistic. (3) Foundation models: Future models could be designed with layer-wise or
tensor-wise modularity, enabling finer-grained control when applying updates. By building update-
friendly architectures, such models would allow interventions to target specific branches or layers
more effectively, improving both efficiency and consistency of knowledge updates.

Our work has several limitations. First, our experiments are based on four domains due to limited
compute budget and could be expanded to more domains and multimodal models. Second, our
unified framework does not give theoretical bound for propagation and consistency remains open.
Third, the analysis is based on recent editing and unlearning approaches, which could be extended
to other algorithms to gain more insights.

6 CONCLUSION

We introduced KnowledgeSmith to understand the knowledge updating mechanism in LLMs by
unifying editing and unlearning. Our experiments highlight fundamental trade-offs, e.g., unlearning
prioritizes stability and efficiency but yields modest enforcement, while editing enforces knowledge
updates more effectively at the risk of destabilization and higher computational cost. We hope our
benchmark and analysis can shed light on future research on LLM knowledge updating.

Future research will investigate hybrid datasets that combine information across all knowledge graph
levels and domains to better guide LLM updates. We also aim to develop adaptive and hybrid
strategies that leverage internal model representations to dynamically determine when and how to
apply editing or unlearning.

ETHICAL AND REPRODUCIBILITY STATEMENT

ETHICS STATEMENT

This work investigates knowledge editing and unlearning in large language models with the goal of
improving our understanding of how models update and forget factual information. Our experiments

10



Under review as a conference paper at ICLR 2026

are restricted to controlled benchmarks, including publicly available datasets and synthetic data
that we release. We do not use sensitive, private, or personally identifiable information. While
the methods studied could, in principle, be misused to manipulate model knowledge for harmful
purposes, our intention is purely scientific, and we have limited our scope to safe, non-sensitive
settings. All pretrained models used in this study are publicly available and used in accordance with
their licenses. We believe our work contributes to safer, more transparent, and more responsible
approaches to model editing and unlearning.

REPRODUCIBILITY STATEMENT

‘We have made every effort to ensure the reproducibility of our results. All datasets used are publicly
available or synthetically generated; details of dataset construction, splits, and preprocessing are
provided in Appendix[A] Model architectures, and evaluation metrics are fully described. Our imple-
mentation builds on open-source frameworks (e.g., PyTorch, HuggingFace Transformers, vVLLM),
and we will release the configuration files and synthetic benchmark data upon publication.
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A DATA GENERATION EXAMPLE AND PIPELINE

To make our pipeline transparent, we provide an end-to-end example showing how a single knowl-
edge point expands into a large set of evaluation items, emphasizing hierarchical structure and con-
trolled fact editing.

A.1 KNOWLEDGE POINT AND KNOWLEDGE GRAPH (KG)

We illustrate how a knowledge point can be represented as a triple and anchored at different levels
of the knowledge graph. Table|3|shows one example from each domain.

Table 3: Examples of knowledge triples and anchoring across different levels of the KG hierarchy.

Domain Example Triple KG (Root — Intermediate — Leaf)

Biology (DNA double helix, discovered_in, 1953) Root: concept of DNA structure — role in molecular biology and genetics — link to
genetics/medicine/biotech applications

Economics  (Phillips curve, describes, inflation— Root: economic trade-offs — macroeconomic models of inflation and unemployment

unemployment relationship) — policy debates on stagflation and monetary policy

History (Declaration of Independence, signed_in, Root: revolutions and independence movements — American Revolutionary era —
1776) specific events such as the Continental Congress or early U.S. governance

Physics (Theory of General Relativity, pub- Root: fundamental physics theories — spacetime and gravitation framework — appli-
lished_in, 1915) cations such as black holes, gravitational waves, or GPS corrections

This fact is anchored at three levels of the knowledge graph:

* Root: broad, domain-level understanding.
* Intermediate: contextual understanding, including its role and implications.

* Leaf: fine-grained, specific questions.

A.2 TEMPLATE GENERATION

For the selected fact, we generate multiple question templates per KG level, capturing different
aspects of the fact (definition, role, context, and application).

* Root-level templates: Broad factual or conceptual questions.

 Intermediate-level templates: Questions about domain implications, causal relationships,
and contextual applications.

» Leaf-level templates: Specific, field-dependent scenarios where the fact influences out-
comes or knowledge in that domain.

An example of generated templates is shown in Table[d where leaf-level templates are instantiated
with different fields (e.g., genetics, medicine).

A.3 PROMPTING GPT FOR QUESTION GENERATION
Our pipeline for generating evaluation questions follows these steps:

1. Knowledge Graph Generation: GPT is prompted to generate a structured KG for the target
domain. Nodes represent root, intermediate, and leaf-level knowledge.

2. Fact Selection: From the KG, a single fact is selected (e.g., (DNA double helix,
discovered_in, 1953)) to anchor all subsequent questions.

3. Template Generation: GPT is prompted to produce multiple templated question forms sur-
rounding the fact. Templates vary in phrasing, style, and emphasis, covering definition, context,
role, and applications.

4. Level-Specific Question Generation: Each template is input to GPT with instructions speci-
fying the desired KG level (root, intermediate, leaf). Example prompts:
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Table 4: QA templates for four knowledge points across Biology, Economics, History, and Physics.

Level

Biology: DNA double helix

Economics: Phillips curve

History: Declaration of In-
dependence (1776)

Physics: General Relativity
(1915)

Root-level

‘What is the DNA double he-
lix?

Who discovered the DNA
double helix?

‘When was the DNA double
helix discovered?

What does the DNA double
helix describe?

‘Why is the DNA double he-
lix important in biology?
What shape is the DNA
double helix?

What was learned from the
DNA double helix?

‘Which scientists worked on
the DNA double helix?

What is the Phillips curve?
What relationship does the
Phillips curve describe?
Who proposed the Phillips
curve?

When was the Phillips
curve introduced?

Why is the Phillips curve
important in economics?
How is the Phillips curve
used in macroeconomics?
What does the Phillips
curve imply about inflation
and unemployment?

Which  countries  have
applied the Phillips curve
concept?

What is the Declaration of
Independence?

When was the Declaration
of Independence signed?
Who signed the Declaration
of Independence?

Why was the Declaration of
Independence created?
What does the Declaration
of Independence proclaim?
Which country declared in-
dependence in 1776?

What historical context led
to the Declaration of Inde-
pendence?

Why is the Declaration of
Independence important in
history?

What is the Theory of
General Relativity?

Who proposed the Theory
of General Relativity?
When was the Theory of
General Relativity pub-
lished?

Why is the Theory of Gen-
eral Relativity important?
What does the Theory
of General Relativity de-
scribe?

How does General Relativ-
ity differ from Newtonian
physics?

What are the key concepts
in General Relativity?
Which experiments con-
firmed General Relativity?

Intermediate

How did the DNA double
helix change molecular bi-
ology?

What discoveries followed
the DNA double helix?
What role did the DNA dou-
ble helix play in genetics?
How did the DNA double
helix influence medical re-
search?

‘What techniques confirmed
the DNA double helix?
How is the DNA double he-
lix taught in schools?

What reaction did scientists
have to the DNA double he-
lix?

How did the DNA double
helix affect other fields of
science?

How does the Phillips curve
affect monetary policy?
What criticisms exist for the
Phillips curve?

How did the Phillips curve
shape economic thought?
How does the Phillips curve
relate to inflation targeting?
What data supports or con-
tradicts the Phillips curve?
How do economists inter-
pret the Phillips curve over
time?

How does the Phillips curve
influence labor market poli-
cies?

How is the Phillips curve
taught in universities?

How did the Declaration of
Independence influence the
American Revolution?
What ideas from the En-
lightenment are in the
Declaration?

How did other countries
react to the Declaration?
What role did the Decla-
ration play in forming the
U.S. government?

How was the Declaration
received by the British
crown?

What debates occurred
during the drafting of the
Declaration?

How did the Declaration
impact colonial society?
How is the Declaration
taught in schools?

How did General Relativity
influence modern physics?
What role does General Rel-
ativity play in cosmology?
How does General Relativ-
ity explain gravity?

How was General Relativ-
ity received by the scientific
community?

How does General Relativ-
ity relate to black holes?
How is General Relativity
taught in universities?
What mathematical tools
are used in General Relativ-
ity?

How does General Relativ-
ity affect GPS technology?

Leaf-level

How did the DNA double
helix influence research in
genetics?

What impact did the
DNA double helix have in
medicine?

How was forensic science
affected by the DNA double
helix?

In evolutionary biology,
what role did the DNA
double helix play?

Why did biotechnology
change after the DNA
double helix?

What does public health
owe to the DNA double
helix?

How did the DNA double
helix influence research in
anthropology?

What impact did the DNA
double helix have in bioin-
formatics?

How was drug development
affected by the DNA double
helix?

In agriculture, what role did
the DNA double helix play?

How does the Phillips curve
explain stagflation in the
1970s?

How did the Phillips curve
influence central bank deci-
sions?

How is unemployment mea-
sured in relation to the
Phillips curve?

What role did the Phillips
curve play in New Keyne-
sian economics?

How do different coun-
tries” experiences validate
the Phillips curve?

What empirical models are
used to test the Phillips
curve?

How does the Phillips curve
relate to wage inflation?
How did the Phillips curve
inform fiscal policy during
recessions?

How is the Phillips curve
applied in modern macroe-
conomic forecasting?

How does the Phillips curve
interact with supply shocks?

Which founding fathers
were key authors of the
Declaration?

How did the Declaration
affect slavery debates in the
U.S.?

What role did the Declara-
tion play in the Revolution-
ary War?

How were the colonies
mobilized after the Declara-
tion?

How did newspapers and
pamphlets spread the Dec-
laration?

What influence did the
Declaration have on other
independence movements?
How did international law
view the Declaration at the
time?

How did the Declaration
inspire  subsequent U.S.
legislation?

How did the Declaration
affect Native American
relations?

How did the Declaration
shape early U.S. political
parties?

How did General Relativity
predict the bending of light?
How was General Relativity
confirmed during the 1919
solar eclipse?

How does General Rela-
tivity influence gravitational
wave research?

How did General Relativity
impact quantum theory?
How does General Relativ-
ity affect modern cosmolog-
ical models?

How do black hole studies
rely on General Relativity?
How does General Rela-
tivity explain time dilation
near massive objects?

How did General Relativ-
ity change our understand-
ing of space-time?

How does General Relativ-
ity relate to the expansion of
the universe?

How are relativistic effects
measured in particle accel-
erators?
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Root-level Prompt

Knowledge fact: “DNA double helix is a fundamental concept in molecular biology.”

Generate 3 multiple-choice questions targeting broad, domain-level understanding
(root-level). Each question should have 4 answer options (A, B, C, D), one correct
answer, and 3 plausible distractors.

Intermediate-level Prompt

Knowledge fact: “DNA double helix discovery influenced the field of genetics.”

Generate 3 multiple-choice questions targeting intermediate-level understanding us-
ing the same format.

Leaf-level Prompt

Knowledge fact: “DNA double helix was discovered in 1953 by Watson and Crick.”

Generate 3 multiple-choice questions targeting leaf-level understanding (specific
facts). Ensure 4 answer options, one correct answer, and 3 plausible distractors.

A.4 PROBE TYPES

From each generated question template, we derive six probe types to evaluate different aspects of
model behavior:

¢ Direct Probe: Queries the target fact in its canonical direction.

* Reverse Probe: Queries the fact in the inverted relation to test bidirectional consistency.

* Multi-hop Probe: Tests knowledge propagation by asking indirectly via intermediate nodes.
* Contextual Probe: Embeds the fact in a rich or distractor-laden context.

* Conflict Probe: Presents contradictory or competing information to assess resolution.

» Comparison Probe: Forces a choice between multiple candidates to evaluate selective updat-
ing.

Example prompts for the four subjects are shown in Table[3}

Table 5: Example probes across four subject domains, illustrating six probe types.

Subject Example Probes

Biology Direct: When was the DNA double helix discovered?

(DNA double Reverse: Which molecule’s structure was determined in 1953 as a double helix?

helix) Multi-hop: Who were the key scientists whose discovery of the DNA structure influenced modern genetics?

Contextual: The DNA double helix discovery transformed molecular biology. In which year was this break-
through made?

Conflict: Some sources claim 1952, others 1953. Which year is correct?

Comparison: Was the DNA double helix discovered in 1953 or 1955?

Economics Direct: What relationship does the Phillips curve describe?
(Phillips Reverse: Which economic principle captures the link between inflation and unemployment?
curve) Multi-hop: Which macroeconomic models rely on understanding the inflation-unemployment trade-off?

Contextual: The Phillips curve has shaped monetary policy debates. What relationship does it represent?
Conflict: Some argue it holds only short-term, others claim long-term relevance. Which is correct?
Comparison: Does the Phillips curve describe inflation-unemployment or wage-productivity trade-offs?

History (Dec- Direct: In what year was the Declaration of Independence signed?

laration of In-  Reverse: Which historical document was signed in 1776?

dependence) Multi-hop: Which events or congresses led to the signing of the Declaration?
Contextual: Amid the Revolutionary era, the Declaration was signed. Which year did this occur?
Conflict: Some accounts state July 2, others July 4. Which is correct?
Comparison: Was the Declaration signed in 1776 or 17777

Physics Direct: In what year did Einstein publish the theory of General Relativity?
(General Reverse: Which scientist published General Relativity in 1915?
Relativity) Multi-hop: Which subsequent physics phenomena were explained following Einstein’s publication?

Contextual: General Relativity transformed our understanding of space-time. When was it published?
Conflict: Some sources claim 1915, others 1916. Which is correct?
Comparison: Did Einstein publish General Relativity in 1915 or 1920?
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A.5 MULTIPLE-CHOICE FORMATTING AND DATA RECORDS

All probes are formatted as four-choice QA items consistent with MMLU. Distractors are created
via entity substitution and paraphrasing. An example for the four subjects is shown in Table [¢]

Table 6: Compact multiple-choice probes across four subjects. Correct answers indicated.

Subject Example Multiple Choice

Biology (DNA double helix) Q: When was the DNA double helix discovered?
A. 1953 (Correct) B. 1955 C.1962 D. 1947

Economics (Phillips curve)  Q: What relationship does the Phillips curve describe?
A. Inflation vs. unemployment (Correct) B. Wage vs. productivity C. Interest
rate vs. investment ~ D. Savings vs. consumption

History (Declaration of In- Q: In what year was the Declaration of Independence signed?
dependence) A. 1776 (Correct) B. 1775 C.1777 D. 1781

Physics (General Relativity)  Q: In what year did Einstein publish the theory of General Relativity?
A. 1915 (Correct) B. 1920 C. 1912 D. 1918

A.6 QUALITY CONTROL
Items undergo:

1. Format validation (4 options, 1 correct answer)
2. Factual validation against the KG
3. Distractor validation (plausible yet incorrect)

Manual spot checks ensure grammaticality and factual correctness; GPT-generated distractors are
cross-checked with encyclopedic sources.

A.7 DOMAIN AND SAMPLE GRANULARITY

Domains include Biology, History, Physics, and Economics, each curated into a structured KG.
Our study focuses on modifying one fact at a time; all QA items are anchored on this fact. Multiple
templates per node level, probe types, paraphrases, and varying data scales (1, 10, 100, 1,000,
10,000) allow a single fact to generate up to millions of QA items for large-scale evaluation.

B PROPAGATION ASYMMETRY METRICS AND ALGORITHM

To quantify over- vs. under-spreading rigorously, we define:

Z d(pe (- | z),pe(- | z)), 4)

T € Qrelated

3 1[de (@) = ye(2)), 5)

€ Qrelated

Collateral Change Ratio (CCR) = W
related

Residual Retention (RR) = W
related

where Qpelaeq denotes structurally related probes, py and pgs are predictions before and after inter-
vention, and d(-, -) is a distance metric (KL, label change, etc.).

Propagation Evaluation Algorithm:

Select a target node at hierarchy level L.
Apply editing or unlearning to the node.
Measure direct accuracy on target node (Accgirect)-
Measure multi-hop accuracy on related nodes (Accmuti-hop)-
Compute CCR and RR metrics:
* Editing: 1 — Accmuii-nop as proxy for over-spreading.
* Unlearning: Accmuli-hop @s proxy for under-spreading.

A e

6. Repeat for all hierarchy levels and average over domains.
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Figure 8: Stress testing.

We evaluate instruction-following ability (Figure[8b) and hallucination on the Truthful QA (Lin et al.|
2022) dataset (Figure [8c), testing whether the parameter update § — ¢’ preserves desired behavior
when executing complex tasks. These evaluations provide a comprehensive view of how the unified
framework constrains model updates, ensuring both local alignment with target distributions and
global reliability across diverse scenarios.

For hallucination, the average accuracy across data scales for unlearning is 76.0%, and for editing is
76.1%, with standard deviations of 0.87 and 0.91 respectively. This indicates that both editing and
unlearning maintain stable performance under hallucination tests, with no significant increase in
spurious behavior.

For instruction-following, when measured using an LLM as a judge, editing accuracy drops from
63.0% (original) to 48.6% on average, while unlearning drops from 62.9% to 49.1%. Although
the absolute difference is small, editing shows slightly larger variability (standard deviation 0.12%)
compared to unlearning (0.10%). This suggests that editing is more aggressive in updating targeted
knowledge but may slightly perturb complex reasoning tasks, whereas unlearning better preserves
general instruction-following ability.

D ROBUSTNESS AND FAILURE MODE

D.1 ADVERSARIAL ROBUSTNESS ANALYSIS

To complement our main text results, we provide a detailed analysis of adversarial robustness for
editing and unlearning interventions. Adversarial robustness is evaluated by exposing the model to
deliberately misleading or deceptive probes, which combine unrelated or conflicting concepts. This
stresses the model’s ability to maintain prior knowledge (Q~) while incorporating updates.

Experimental Setup We vary the number of training examples used for each intervention: 1, 10,
100, 1000, and 10,000. For each data scale, we measure two complementary performance metrics:

* Original Accuracy: The model’s performance on standard in-domain probes (QV), reflect-
ing whether the intended knowledge update was successfully incorporated without disrupting
unrelated facts.

* Adversarial Accuracy: The model’s performance on conflict probes, which contain contra-
dictory or misleading information. These probes test the model’s robustness against adversar-
ial perturbations, i.e., whether it can resist adopting incorrect or conflicting knowledge while
maintaining its updated and preserved facts.

By comparing original and adversarial accuracy across training scales and intervention types (editing
vs. unlearning), we assess:

* The sensitivity of each method to misleading inputs.
* How stability and resistance to conflicts evolve as more examples are provided.

* Differences in trade-offs between aggressive updates (editing) and conservative updates (un-
learning).
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This setup allows us to systematically quantify the adversarial robustness of interventions, linking
conflict probe performance directly to practical model reliability under deceptive or contradictory
inputs.

Observations Our observations are:

» Editing exhibits strong local updates but high adversarial sensitivity: Original accuracy
remains stable around 63% across all data scales. However, adversarial accuracy drops sharply
from 36.7% at 1 example to 31.7% at 10,000 examples. This indicates that while editing
successfully enforces target updates, it leaves models vulnerable to misleading inputs, with
adversarial failure increasing slightly as data scale grows.

* Unlearning maintains more stable adversarial performance: Original accuracy is similar
to editing. Adversarial accuracy remains relatively constant around 33-35%, showing that un-
learning prioritizes preservation over aggressive enforcement, making the model less sensitive
to adversarially constructed probes.

¢ Trade-off between update intensity and robustness: Comparing the two interventions, edit-
ing maximizes immediate factual incorporation at the cost of susceptibility to adversarial
probes, whereas unlearning provides conservative updates that better preserve prior knowledge,
yielding higher adversarial robustness.

» Data scale effects: Increasing the number of examples slightly improves adversarial robustness
for unlearning (e.g., from 33.3% at 1 example to 34.8% at 1,000 examples), but the trend is less
pronounced for editing. This suggests that adding more training data does not fully mitigate
adversarial vulnerability for aggressive editing strategies.

Summary These results reinforce the broader trade-offs observed in our main text. Editing
achieves stronger local adaptation and in-domain gains, but adversarial robustness is compromised.
Unlearning is more conservative, achieving lower immediate gains but maintaining stability under
adversarial stress. Together, these findings highlight the importance of considering both factual

enforcement and robustness when designing knowledge update strategies in LLMs.

D.2 FAILURE MODE EXAMPLES

We provide examples of failure mode for each subject as shown in Table

Table 7: Representative examples of each failure mode for the four studied subjects. Each subject is
listed in a separate row for readability.

Subject

Failure Mode

Example

Biology (DNA)

Under-forgetting (RR)
Over-spreading (CCR)
Conflict Emergence
Knowledge Drift
Instruction-Following Drop
Hallucination Increase

DNA year remains 1953 after update to 1955
DNA update changes RNA discovery year
DNA reported as 1953 and 1955

DNA update causes cell structure errors
Fails to explain multi-step DNA replication
Invents molecule “X-DNA”

Economics (Phillips curve)

Under-forgetting (RR)
Over-spreading (CCR)
Conflict Emergence
Knowledge Drift
Instruction-Following Drop
Hallucination Increase

Phillips curve still inflation-unemployment after update
Phillips curve update alters Laffer curve

Links both inflation-unemployment and wages-productivity
Update mispredicts supply-demand

Misapplies multi-step economic policy reasoning
Fabricates fictional “Y-Index”

History (Declaration)

Under-forgetting (RR)
Over-spreading (CCR)
Conflict Emergence
Knowledge Drift
Instruction-Following Drop
Hallucination Increase

Declaration year still 1776 after update to 1777
Declaration update changes Constitution year
Declaration signed 1776 and 1777

Update affects French Revolution facts

Struggles with chronological sequencing of events
Claims fake historical figure influenced Declaration

Physics (General Relativity)

Under-forgetting (RR)
Over-spreading (CCR)
Conflict Emergence
Knowledge Drift
Instruction-Following Drop
Hallucination Increase

GR year remains 1915 after update to 1920

GR update changes Special Relativity year

GR dated 1915 and 1920

Update reduces quantum mechanics accuracy

Cannot solve multi-step relativity problems

Reports spurious physics law “Relativistic Thermodynamics Law”
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E ADDITIONAL METHODS

To further validate the generality of the propagation asymmetry phenomena reported in the main
paper, we conducted an additional suite of experiments using multiple independent intervention
algorithms, spanning both editing and unlearning paradigms. These experiments were performed
on the same four subject domains (biology, economic, physics, history), and evaluated at root-,
intermediate-, and leaf-level nodes in our conceptual hierarchies.

E.1 UNLEARNING

We applied the gradient ascent method base on Tofu (Maini et al.| [2024) framework with varying
numbers of updates across four subjects and multiple training set sizes. The results shown in Table[§]
replicate the core findings presented in the main paper:

e propagation remains asymmetric across hierarchy levels,
* leaf nodes experience weaker upward transfer,
* root-level deletions continue to exhibit stronger downward effects.
Importantly, these consistency patterns persist regardless of the number of training examples and

irrespective of subject domain, suggesting that the structural behaviors we identified are not artifacts
of a particular unlearning implementation.

Subject Train Size Root Intermediate Leaf

biology 1 16.67 16.67 16.67
biology 10 16.67 16.67 16.67
biology 100 25.00 25.00 25.00
biology 1000 29.17 25.00 16.67
biology 10000 16.67 29.17 25.00
economic 1 29.17 29.17 29.17
economic 10 29.17 29.17 33.33
economic 100 20.83 16.67 25.00
economic 1000 37.50 37.50 29.17
economic 10000 37.50 20.83 25.00
physics 1 25.00 25.00 25.00
physics 10 25.00 25.00 25.00
physics 100 16.67 20.83 20.83
physics 1000 12.50 16.67 20.83
physics 10000 8.33 16.67 12.50
history 1 16.67 16.67 16.67
history 10 16.67 16.67 16.67
history 100 12.50 16.67 12.50
history 1000 4.17 8.33 0.00
history 10000 0.00 12.50 0.00

Table 8: Unlearning experiments using Tofu across domains and hierarchy levels.

E.2 EDITING

We also evaluated the MEND editing method (Mitchell et al.,|2021)) on the same corpus of subjects,
hierarchy depths, and training sizes. The results shown in Table []demonstrate that:

e editing accuracy follows the same hierarchy-dependent plasticity structure observed in the
main paper,

* root-level edits continue to propagate downward more strongly than bottom-up corrections,

* leaf nodes remain the easiest to modify reliably.
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These findings reinforce that the asymmetry patterns we report are algorithm-agnostic, emerging
from the structure of the knowledge graph itself rather than any specific intervention technique.

Dataset Train Size Root Intermediate Leaf

biology 1 35.2 32.7 42.1
biology 10 36.1 33.2 433
biology 100 37.6 34.4 44.7
biology 1000 38.9 35.1 46.2
biology 10000 20.3 18.7 40.5
economic 1 453 42.6 50.7
economic 10 46.2 43.3 49.4
economic 100 47.7 44.6 52.9
economic 1000 41.3 45.7 54.1
economic 10000 30.2 28.3 53.2
physics 1 25.3 22.7 30.2
physics 10 26.1 23.1 31.3
physics 100 27.4 24.6 32.6
physics 1000 28.7 254 27.7
physics 10000 15.2 13.4 30.3
history 1 10.3 9.7 12.4
history 10 11.2 10.3 13.3
history 100 11.1 11.4 14.1
history 1000 12.6 12.8 15.3
history 10000 6.1 5.7 14.8

Table 9: Editing experiments using MEND across domains and hierarchy levels.

F SEQUENTIAL UPDATE

To further validate our claim that editing and unlearning behave fundamentally differently, we
additionally conducted multi-step sequential updates on multiple facts using Qwen3-14B, LLaMA3-
8B, and Gemma-7B. This section reports the results to illustrate the phenomenon clearly.

SEQUENTIAL EDITING BEHAVIOR

Across multiple sequential edits, the model retains previously edited knowledge with only minor
drift. Even after five cumulative edits, the performance on earlier edited facts remains largely stable.
This supports our claim that editing operations are robust and localized, even under sequential
updates.

Acc 1 1&2 1&2&3 1&2&3&4 1&2&3&4&5
Edit Fact1 55.0% 54.5% 54.0% 53.8% 53.5%
Edit Fact 2 — 48.0% 47.5% 47.0% 46.5%
Edit Fact 3 — — 62.0% 61.5% 61.0%
Edit Fact 4 — — — 50.0% 49.5%
Edit Fact 5 — — — — 57.0%

Table 10: Sequential editing performance.

SEQUENTIAL UNLEARNING BEHAVIOR

In contrast, unlearning shows clear cumulative degradation. When more facts are removed se-
quentially, the model’s performance on earlier unlearned facts, as well as related queries, drops
sharply. This supports our central claim: Unlearning is inherently more disruptive than editing,
because removing information often affects interconnected knowledge.
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Acc 1 1&2 1&2&3 1&2&3&4 1&2&3&4&5
Unlearn Fact 1  54.2% 37.7% 40.5% 34.3% 27.2%
Unlearn Fact 2 — 45.1% 37.8% 31.5% 25.2%
Unlearn Fact 3 — — 43.2% 36.0% 28.8%
Unlearn Fact 4 — — — 40.5% 31.5%
Unlearn Fact 5 — — — — 34.2%

Table 11: Sequential unlearning performance.

G ACCURACY RESULT

Editing accuracy for the 13 model across llama3, qwen3, qwq, mistral, gemma and deepseek families
are lists below in Table Unlearning accuracy for the 13 model across llama3, qwen3, qwq,
mistral, gemma and deepseek families are lists below in Table

H MODEL SIMILARITY RESULT

Representation Similarity Analysis Our unified framework models editing and unlearning as op-
timizing Ly against Lpres. While probe-based evaluation measures outcomes on QF and Q™ it
does not reveal how the internal representations change during this optimization. To capture these
hidden dynamics, we analyze representational shifts from the original (pre-KnowledgeSmith) state
to the post-KnowledgeSmith state using Centered Kernel Alignment (CKA) (Kornblith et al.,|2019),
KL divergence, L2 distance and Fisher score (Zhang et al., 2022).

For unlearning, these metrics expose a sharp phase transition around 1000 samples: below this point,
representations remain close to baseline, but beyond it they reorganize abruptly, suggesting a capac-
ity breakpoint where L is overwhelmed by repeated optimization on Q. Editing, in contrast,
produces smoother trajectories. KL divergence and Fisher scores increase steadily with training
size, indicating progressive local updates to representations rather than wholesale restructuring. For
example, biology edits on DeepSeek-8B show KL and Fisher growing from (KL~20, Fisher~9.7)
with a single sample to (KL~172, Fisher~93.7) at 1000 samples, after which growth plateaus as
the optimization stabilizes.

These results demonstrate that unlearning triggers abrupt phase transitions in representation
space once data scale crosses a threshold, while editing produces gradual, localized adjustments,
underscoring the need for representation level analysis beyond probe accuracy.

Computationally Efficiency. For the same model on a target dataset of 10,000 examples, un-
learning typically completes in about 1.5 hours on an NVIDIA H100. Knowledge editing is more
resource-intensive (roughly 6 hours). This additional cost highlights the heavier computational de-
mands of precise factual editing.

In summary, unlearning prioritizes stability and low computational cost, while editing max-
imizes factual enforcement but risks destabilizing other knowledge and requires more re-
sources. The choice between the two depends on whether minimizing collateral effects or maxi-
mizing certainty of change is the primary goal.

Model similarity for llama3, qwen3, qwq, mistral, gemma and deepseek 6 families are lists below

in Tables 14l to

I LLM USAGE

We use large language models (LLMs) only for grammar checking and correction.
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Table 12: Editing Accuracy

Ilama3.2-1b-instruct

Ilama3-8b-instruct

Branch Train Size ~ Test Set ‘ Biology History Economic Physics ‘ Biology History Economic Physics
| ID | 45.83 25 375 20.83 | 20.83 4.17 29.17 12.5
00D | 44.05 44.07 4411 44.05 | 63.08 63.13  63.22 63.05
10 ID | 20.83 25 50 3333 |25 12.5 25 20.83
Intermediate 00D | 44.04 44.06  44.02 4206 | 63.07 63.04  63.1 63
100 ID | 45.83 25 45.83 0 | 20.83 12.5 20.83 41.67
00D | 2335 4399  44.08 26.88 | 63.05 63.13  63.12 24.72
1000 ID | 417 25 45.83 0 | 20.83 125 20.83 12.5
00D | 2522 4398 4417 2685 | 63.06 63.03  63.09 243
10000 ID | 417 25 45.83 0 | 20.83 12.5 20.83 12.5
00D | 2522 4398  44.17 2685 | 63.06 63.03  63.09 243
1 ID | 41.67 25 41.67 29.17 | 16.67 4.17 33.33 16.67
00D | 44.17 4416 4399 44.15 | 63.04 62.91 63.1 63.05
10 ID | 29.17 25 45.83 29.17 | 125 4.17 33.33 25
Root 00D | 44.1 4428 4412 44.07 | 63.01 62.9 63.12 63.1
100 ID | 29.17 25 4.17 2083 | 125 4.17 33.33 25
00D | 44.12 4422 2624 442 |63 62.97  63.15 63
1000 ID | 29.17 25 0 25 | 125 4.17 33.33 16.67
00D | 44.15 4426 254 4409 | 62.98 6298  63.11 63.11
10000 ID | 29.17 25 0 25 | 125 4.17 33.33 16.67
00D | 44.15 4426 254 44.09 | 62.98 62.98  63.11 63.11
1 ID | 41.67 25 3333 25 | 16.67 4.17 37.5 16.67
00D | 44.13 44.11 44.08 4402 | 63.1 63.07  63.09 63.1
10 ID | 25 25 62.5 2083 | 16.67 4.17 375 25
Leaf 00D | 44.19 44.41 43.74 4318 | 63.12 62.96  63.06 62.75
100 ID | 417 4.17 4.17 0 | 16.67 12.5 25 4.17
00D | 2545 40.55 2553 26.88 | 62.78 6247  62.6 25.41
1000 ID | 25 4583 0 833 | 16.67 4.17 25 16.67
00D | 2578 2344 26.63 24.84 | 6277 59.56  62.59 24.25
10000 ID | 25 4583 0 833 | 16.67 4.17 25 16.67
00D | 2578 2344 26.63 24.84 | 62.77 59.56  62.59 24.25
| llama3.2-3b-instruct | llama3.3-70b-instruct
1 ID | 25 12.5 41.67 16.67 | 20.83 8.33 20.83 25
00D | 59.17 59.24 5936 5922 | 8144 8142 81.39 81.42
10 ID | 125 0 375 375 | 2083 62.5 41.67 29.17
Intermediate 00D | 56.38 56.84  58.63 5839 | 8138 81.38 8143 81.48
100 ID | 29.17 20.83  54.17 125 2083 5833 50 29.17
00D | 2347 269 23.32 25.84 | 8146 81.26  81.33 81.39
1000 ID | 417 4583  41.67 0 | 25 5833 50 29.17
00D | 2545 2512 2531 25.08 | 8139 81.35  81.38 81.31
10000 ID | 417 4583  41.67 0 | 25 58.33 50 29.17
00D | 2545 2512 2531 25.08 | 81.39 81.35  81.38 81.31
| ID | 25 4.17 29.17 125 2083 4.17 20.83 25
00D | 592 59.28  59.24 5934 | 8141 8146  81.46 81.43
10 ID | 41.67 29.17 16.67 417 | 5833 4583 375 33.33
Root 00D | 5876 5873 5837 5872 | 8141 8146  81.39 81.51
100 ID | 375 0 41.67 29.17 | 5833 25 41.67 33.33
00D | 233 26.86 244 2534 | 8139 81.41 81.4 81.42
1000 ID | 417 0 20.83 25 | 58.33 20.83  41.67 33.33
00D | 2557 2648  25.06 252 | 8142 8146  81.48 81.44
10000 ID | 417 0 20.83 25 | 58.33 20.83  41.67 33.33
00D | 2557 2648  25.06 252 | 8142 8146 8148 81.44
) ID | 20.83 833 33.33 20.83 | 20.83 833 20.83 25
00D | 59.23 5925 593 59.24 | 8143 81.37 8143 81.45
10 ID | 375 833 45.83 29.17 |25 25 58.33 20.83
Leaf 00D | 59.13 59.26 5835 5696 | 81.43 8138 8141 81.34
100 ID | 833 4.17 54.17 2083 |25 20.83 5833 20.83
00D | 2449 2552 2321 2455 | 8141 8144 8133 81.5
1000 ID | 20.83 4.17 54.17 417 |25 25 62.5 20.83
00D | 2723 2624 23.19 2542 | 8143 8137  81.29 81.44
10000 ID | 20.83 4.17 54.17 417 |25 25 62.5 20.83
00D | 2723 2624 23.19 2542 | 8143 81.37  81.29 81.44
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| qwen3-1.7b | qwen3-32b
Branch Train Size  Test Set ‘ Biology History Economic Physics ‘ Biology History Economic Physics
| ID | 20.83 12.5 3333 2917 | 125 0 25 125
00D |53 5399  54.05 54.08 | 75.07 7511 7519 75.09
10 ID | 25 12.5 3333 29.17 | 2083 0 20.83 8.33
Intermediate 00D | 5355 5395  54.05 5408 | 7507 7502 7508 75.02
100 ID ‘ 20.83 125 3333 375 ‘ 20.83 0 29.17 8.33
00D ‘ 53 54 53.82 53.02 ‘ 75.17 75.15 74.97 75.1
1000 ID ‘ 25 125 3333 375 ‘ 20.83 0 29.17 8.33
00D ‘ 53.04 53.99 53.87 53.07 ‘ 752 75.15 74.86 75.03
10000 ID | 25 125 3333 375 | 2083 0 29.17 8.33
00D | 53.04 5399 5387 5307 | 752 75.15  74.86 75.03
1 ID ‘ 375 45.83 25 125 ‘ 20.83 16.67 45.83 8.33
00D ‘ 53.81 53.8 53.7 54 ‘ 75.2 75.12 75.21 75
10 ID ‘ 3333 45.83 16.67 125 ‘ 16.67 25 3333 16.67
Root 00D ‘ 53.78 5378 53.87 54 ‘ 75.05 7517 75.02 75.07
100 ID ‘ 29.17 45.83 25 20.83 ‘ 20.83 125 125 16.67
00D | 5374 538 537 53.65 | 75.02 75.15 7498 75.04
1000 ID | 29.17 4583 25 20.83 | 20.83 16.67  12.5 16.67
00D | 53.79 5382 5375 5375 | 751 75.1 75 75.06
10000 ID | 29.17 4583 25 20.83 | 20.83 16.67  12.5 16.67
00D | 53.79 5382 5375 5375 | 751 75.1 75 75.06
| ID | 16.67 375 375 25 | 20.83 0 25 8.33
00D | 5397 53.19 5328 51.66 | 75.15 75.1 75.07 75.07
10 ID | 16.67 20.17 833 16.67 | 20.83 25 29.17 4.17
Leaf 00D | 53.87 5386  53.76 5392 | 749 7505 7515 75.17
100 ID | 16.67 3333 2917 25 | 29.17 16.67  54.17 4.17
00D | 542 532 5333 51.66 | 75.1 7512 74.88 75.13
1000 ID | 16.67 375 375 3333 |25 4.17 41.67 4.17
00D | 53.69 53.19 5328 3971 | 75.16 74.18  74.69 75.15
10000 ID ‘ 16.67 37.5 375 33.33 ‘ 25 417 41.67 4.17
00D ‘ 53.69 53.19 53.28 39.71 ‘ 75.16 74.18 74.69 75.15
| qwen3-14b | qwg-32b
1 ID ‘ 20.83 833 16.67 25 ‘ 16.67 4.17 70.83 12.5
00D ‘ 73.84 73.86 73.89 73.94 ‘ 714 7145 7142 77.45
10 ID | 20.83 0 4.17 2083 | 125 4.17 3333 12.5
Intermediate 00D | 7378 7354 7342 7362 | 7136 7139 7742 71.35
100 ID | 25 4.17 4.17 16.67 | 16.67 0 375 12.5
00D | 7376 7345 7336 73.56 | 77.28 7743 7741 71.39
1000 ID | 25 4.17 4.17 16.67 | 16.67 0 375 125
00D | 7373 7342 7333 73.56 | 71.33 7743 7741 714
10000 ID ‘ 25 4.17 4.17 16.67 ‘ 16.67 0 375 12.5
00D ‘ 73.73 7342 7333 73.56 ‘ 7133 7143 7741 774
1 ID | 41.67 2083 3333 25 | 125 2083 20.83 12.5
00D | 73.86 73.9 73.86 7379 | 774 7147 7137 7142
10 ID | 20.83 8.33 3333 16.67 | 20.83 12.5 16.67 125
Root 00D ‘ 73.81 7371 73.87 73.85 ‘ 71.35 71.53 7147 71.38
100 ID ‘ 16.67 125 375 16.67 ‘ 16.67 12.5 16.67 12.5
00D ‘ 73.71 73.68 73.81 73.58 ‘ 7143 71.39 7143 713
1000 ID ‘ 16.67 125 41.67 16.67 ‘ 16.67 1255 16.67 12.5
00D ‘ 73.73 73.64 73.84 73.55 ‘ 77.44 7139 77.45 71.35
10000 ID ‘ 16.67 125 41.67 16.67 ‘ 16.67 12,5 16.67 12.5
00D ‘ 73.73 73.64 73.84 73.55 ‘ 77.44 77.39 77.45 71.35
1 D | 25 0 16.67 2083 | 16.67 0 3333 125
00D | 73.89 73.89  73.87 73.88 | 77.48 7139 774 77.48
10 ID ‘ 20.83 4.17 3333 1255 ‘ 25 0 41.67 12.5
Leaf 00D ‘ 73.91 73.63 73.63 73.69 ‘ 715 71.37 7133 77.42
100 ID ‘ 20.83 0 29.17 16.67 ‘ 29.17 0 29.17 12.5
00D ‘ 73.66 73.39 73.42 73.6 ‘ 774 71.52 7733 774
1000 ID ‘ 20.83 0 833 16.67 ‘ 20.83 0 41.67 12.5
00D ‘ 65.94 73.39 39.3 73.5 ‘ 7127 71.52 68.74 7128
10000 ID | 20.83 0 8.33 16.67 | 20.83 0 41.67 12.5
00D | 65.94 7339 393 35| 1127 7152 68.74 77.28
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| mistral-Small-24B-Instruct-2501 | gemma-2b
Branch Train Size  Test Set ‘ Biology History Economic Physics ‘ Biology History Economic Physics
| ID | 16.67 50 12.5 2083 | 833 4.17 12.5 125
00D | 734 7334 7324 73.39 | 3046 30.63 3049 30.53
10 ID | 50 4583 16.67 0 | 20.83 12.5 29.17 4.17
Intermediate 00D | 2447 2299 252 2551 | 294 3037 29.06 30.29
100 ID ‘ 29.17 45.83 54.17 5833 ‘ 16.67 45.83 375 29.17
00D ‘ 2422 22.95 24.16 23 ‘ 25.81 24.08 26.16 26.54
1000 ID ‘ 45.83 45.83 54.17 5833 ‘ 16.67 45.83 54.17 58.33
00D ‘ 22.87 22.95 24.16 23 ‘ 2581 2295 2295 2295
10000 ID | 45.83 4583 5417 5833 | 16.67 4583 54.17 58.33
00D ‘ 22.87 22.95 24.16 23 ‘ 2581 2295 2295 2295
1 ID ‘ 3333 20.83 16.67 45.83 ‘ 4.17 0.0 16.67 4.17
00D ‘ 73.42 73.42 73.16 73.39 ‘ 30.54 30.59 30.64 30.54
10 ID ‘ 45.83 54.17 4.17 5833 ‘ 8.33 8.33 125 3333
Root 00D ‘ 22.95 252 2527 23.14 ‘ 30.34 27.18 30.55 25.79
100 ID ‘ 45.83 37.5 54.17 58.33 ‘ 4.17 50.0 25.0 54.17
00D ‘ 22.83 24.4 23.32 22.99 ‘ 29.3 24.51 29.13 23.74
1000 ID | 45.83 375 41.67 375 | 4583 4583 54.17 58.33
00D | 23.14 244 24.76 2512 | 2295 2295 2295 22.95
10000 ID | 45.83 375 41.67 375 | 4583 4583 54.17 58.33
00D | 23.14 244 2476 2512 | 2295 2295 2295 22.95
| ID | 50 4167  83.33 417 833 3333 250 0.0
00D | 73.32 7324 7314 7342 | 30.25 2898  30.64 30.44
10 ID | 417 4583 417 4167 | 125 3333 2083 4.17
Leaf 00D | 2547 2295 2554 2519 | 277 24.6 25.28 29.08
100 ID | 833 4583 54.17 833 | 250 375 375 41.67
00D | 26.63 2296 22.95 2461 | 2494 2419 249 24.07
1000 ID | 41.67 4583 54.17 833 | 4583 4583 54.17 58.33
00D | 23.54 2296 2295 24.61 | 22.83 2295 2295 22.95
10000 D | 41.67 4583 54.17 833 | 4583 4583 54.17 58.33
00D ‘ 23.54 22.96 22.95 24.61 ‘ 22.83 22.95 22.95 2295
| mistral-Large-Instruct-2411 | gemma-7b
1 ID ‘ 25.0 62.5 25.0 12.5 ‘ 45.83 37.5 41.67 45.83
00D | 82.13 8242 8222 8237 | 59.22 5896  56.69 57.78
10 ID | 0.0 4583 41.67 375 | 4583 4583 54.17 50.0
Intermediate 00D | 26.89 2297 2453 247 | 2295 2295 2295 23.25
100 ID | 16.67 62.5 25.0 500 | 250 4583 50.0 41.67
00D | 23.89 2584 250 2305 | 242 2295 2311 23.11
1000 ID | 16.67 62.5 25.0 500 | 2917 5417 833 66.67
00D | 23.89 2584 250 2305 | 249 2559 2522 24.68
10000 ID | 16.67 62.5 25.0 500 ] 2917 5417 833 66.67
00D | 23.89 2584 250 2305 | 249 2559 2522 24.68
1 ID | 250 12.5 45.83 625 | 3715 41.67  50.0 16.67
00D | 8225 8222 8224 8225 | 597 59.56  57.63 59.74
10 ID | 0.0 0.0 4.17 5833 | 45.83 41.67 3333 58.33
Root 00D | 26.19 2689 2541 2295 | 2843 2297 2924 2297
100 ID | 8.33 4583 375 5833 | 45.83 4583 4583 50.0
00D | 26.86 2295 2464 230 | 2295 2307 2295 24.13
1000 ID ‘ 8.33 45.83 375 5833 ‘ 3333 45.83 20.83 54.17
00D ‘ 26.86 22.95 24.64 23.0 ‘ 23.98 23.07 23.24 23.34
10000 ID ‘ 8.33 45.83 375 5833 ‘ 3333 45.83 20.83 54.17
00D ‘ 26.86 22.95 24.64 23.0 ‘ 23.98 23.07 23.24 23.34
1 D | 54.17 29.17 4167 375 | 4583 4583 54.17 3333
00D | 82.19 8225  82.07 82.08 | 22.82 2297 2295 59.29
10 ID ‘ 417 0.0 54.17 5833 ‘ 45.83 45.83 45.83 58.33
Leaf 00D ‘ 2547 2551 22.95 23.07 ‘ 2295 23.07 2333 22.87
100 ID ‘ 50.0 0.0 45.83 54.17 ‘ 375 41.67 41.67 58.33
00D ‘ 23.05 24.6 24.69 25.55 ‘ 23.96 23.78 23.38 22.94
1000 ID ‘ 50.0 0.0 45.83 54.17 ‘ 4.17 54.17 4.17 4.17
00D ‘ 23.05 24.6 24.69 25.55 ‘ 2548 24.49 25.52 25.54
10000 ID | 50.0 0.0 45.83 5417 | 417 5417 417 4.17

00D | 23.05 24.6 24.69 2555 | 2548 2449 2552 25.54
27




Under review as a conference paper at ICLR 2026

\ DeepSeek-R1-0528-Qwen3-8B

Branch Train Size  Test Set ‘ Biology History Economic Physics
1 ID | 833 0.0 20.83 25.0
00D | 65.99 66.09 66.0 66.02
10 ID | 25.0 0.0 33.33 29.17
Intermediate 00D | 65.94 65.93 66.01 65.95
100 ID | 16.67 0.0 33.33 33.33
00D | 65.95 65.94 66.07 65.89
1000 ID | 16.67 0.0 33.33 375
00D | 659 65.94 66.07 66.02
10000 ID | 16.67 0.0 33.33 375
00D | 659 65.94 66.07 66.02
1 ID | 125 8.33 0.0 45.83
00D | 66.07 65.96 28.17 65.94
10 ID | 125 8.33 16.67 45.83
Root 00D | 66.02 65.99 65.98 65.93
100 ID | 125 4.17 8.33 45.83
00D | 65.97 66.1 66.02 66.0
1000 ID | 125 4.17 8.33 45.83
00D | 65.92 66.02 65.99 65.92
10000 ID | 125 4.17 8.33 45.83
00D | 65.92 66.02 65.99 65.92
1 ID | 16.67 0.0 20.83 25.0
O0D | 659 65.96 66.09 65.92
10 ID | 20.83 8.33 375 25.0
Leaf 00D | 65.83 65.84 65.92 65.92
100 ID | 16.67 4.17 29.17 25.0
00D | 65.95 65.717 65.92 65.76
1000 ID | 16.67 4.17 25.0 20.83
00D | 66.02 65.77 64.29 65.8
10000 ID | 16.67 4.17 25.0 20.83
00D | 66.02 65.77 64.29 65.8
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Table 13: Unlearning Accuracy

Ilama3.2-1b-instruct

Ilama3-8b-instruct

Branch Train Size ~ Test Set ‘ Biology History Economic Physics ‘ Biology History Economic Physics
| ID | 25.0 20.83 3333 125 | 16.67 4.17 29.17 12.5
00D | 32.69 3269  32.69 3269 | 63.01 63.01 63.01 63.01
10 ID | 20.83 20.83 3333 16.67 | 16.67 4.17 29.17 12.5
Intermediate 00D | 3275 3274 3274 326 | 63.01 63.0 63.0 62.98
100 ID | 29.17 20.83 3333 16.67 | 16.67 4.17 375 12.5
00D | 3255 3293 3276 3277 | 62.85 62.8 62.84 62.75
1000 ID | 33.33 4.17 37.5 16.67 | 16.67 4.17 33.33 12.5
00D | 32.67 33.91 32.72 3251 | 6293 62.82 6291 62.85
10000 ID | 33.33 4.17 375 16.67 | 16.67 4.17 33.33 12.5
00D | 32.67 33.91 32.72 3251 | 6293 62.82 6291 62.85
1 ID | 25.0 20.83 3333 125 | 16.67 4.17 29.17 12.5
00D | 32.69 3269  32.69 3269 | 63.01 63.01 63.01 63.01
10 ID | 20.83 20.83  33.33 16.67 | 16.67 4.17 29.17 12.5
Root 00D | 32.63 32.61 32.55 3269 | 63.0 63.0 63.02 63.0
100 ID | 29.17 16.67  33.33 315 | 16.67 4.17 33.33 12.5
00D | 3297 3274 32.84 3294 | 6291 62.98  62.87 62.89
1000 ID | 16.67 8.33 375 417 | 16.67 4.17 33.33 12.5
00D | 32.66 3286  33.11 3326 | 63.01 62.99  62.81 62.89
10000 ID | 16.67 8.33 375 417 | 16.67 4.17 33.33 12.5
00D | 32.66 32.86  33.11 3326 | 63.01 62.99  62.81 62.89
1 ID | 25.0 20.83 3333 125 | 16.67 4.17 29.17 125
00D | 32.69 3269  32.69 3269 | 63.01 63.01 63.01 63.01
10 ID | 250 2083 375 125 | 16.67 4.17 29.17 12.5
Leaf 00D | 32.69 3258 32.69 3274 | 6298 63.02  62.99 62.98
100 ID | 25.0 20.83  25.0 16.67 | 16.67 4.17 33.33 12.5
00D | 3257 3285 3273 3273 | 6275 62.75  63.02 62.75
1000 ID | 20.83 12.5 20.83 2083 | 16.67 4.17 33.33 12.5
00D | 32.68 33.08 3227 3168 | 62.68 62.53  62.98 62.69
10000 ID | 20.83 12.5 20.83 2083 | 16.67 4.17 33.33 12.5
00D | 32.68 33.08 3227 31.68 | 62.68 62.53  62.98 62.69
| llama3.2-3b-instruct | llama3.3-70b-instruct
1 ID | 20.83 4.17 41.67 16.67 | 20.83 8.33 20.83 20.83
00D | 5933 59.33 5933 59.37 | 8133 8133  81.33 81.33
10 ID | 20.83 4.17 41.67 16.67 | 20.83 8.33 20.83 20.83
Intermediate 00D | 59.17 59.29  59.27 59.24 | 8133 81.33  81.33 81.33
100 ID | 250 4.17 41.67 16.67 | 20.83 833 20.83 20.83
00D | 59.07 59.05 5951 59.06 | 8135 81.36  81.35 81.35
1000 ID | 16.67 4.17 41.67 125 2083 833 29.17 29.72
00D | 59.14 5922 59.13 593 | 8138 8147 8141 81.37
10000 ID | 16.67 4.17 41.67 125 ]2083 833 29.17 29.72
00D | 59.14 5922 59.13 593 | 8138 8147 8141 81.37
| ID | 20.83 4.17 41.67 16.67 | 20.83 8.33 20.83 20.83
00D | 5933 59.33 5933 5937 | 8133 8133 8133 81.33
10 ID | 20.83 4.17 41.67 16.67 | 20.83 833 20.83 20.83
Root 00D | 59.29 59.3 59.34 592 | 8133 81.33 8133 81.33
100 ID | 25.0 4.17 375 16.67 | 20.83 833 20.83 20.83
00D | 58.94 5898  59.51 59.07 | 8138 81.35  81.37 81.35
1000 ID | 16.67 4.17 41.67 125 2083 833 25.0 23.33
00D | 58.96 5899 5941 59.12 | 81.39 81.33 8141 81.33
10000 ID | 16.67 4.17 41.67 125 2083 8.33 25.0 23.33
00D | 58.96 58.99 5941 59.12 | 81.39 81.33 814l 81.33
) ID | 20.83 4.17 41.67 16.67 | 20.83 833 20.83 20.83
00D | 5933 5933 59.33 59.37 | 8133 81.33 8133 81.33
10 ID | 20.83 4.17 41.67 16.67 | 20.83 833 20.83 20.83
Leaf 00D | 59.29 59.27  59.16 59.26 | 8133 8133 81.33 81.33
100 ID | 20.83 4.17 41.67 16.67 | 20.83 8.33 20.83 20.83
00D | 59.12 59.09  59.46 59.08 | 81.37 81.37  81.35 81.39
1000 ID | 125 4.17 45.83 16.67 | 20.83 8.33 25.0 20.33
00D | 58.99 58.94 5931 58.87 | 81.32 8137  81.44 81.32
10000 ID | 125 4.17 45.83 16.67 | 20.83 8.33 25.0 20.33
00D | 58.99 58.94 5931 58.87 | 81.32 81.37 8144 81.32
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| qwen3-1.7b | qwen3-32b
Branch Train Size  Test Set ‘ Biology History Economic Physics ‘ Biology History Economic Physics
| ID | 16.67 16.67  33.33 16.67 | 16.67 0.0 16.67 125
00D | 539 5392 5392 5393 | 75.13 7513 7513 75.13
10 ID | 16.67 16.67  33.33 16.67 | 16.67 0.0 16.67 12,5
Intermediate 00D | 5392 5397  54.09 5395 | 7513 7513 7513 75.13
100 ID ‘ 8.33 16.67 20.83 8.33 ‘ 16.67 0.0 16.67 12.5
00D ‘ 53.25 53.51 54.42 53.25 ‘ 75.07 75.07 75.14 75.07
1000 ID ‘ 25.0 20.83 25.0 25.0 ‘ 16.67 0.0 25.0 12.5
00D ‘ 52.66 5236 53.6 52.64 ‘ 75.21 75.07 75.26 74.98
10000 ID | 25.0 2083 250 250 | 16.67 0.0 25.0 125
00D | 52.66 5236 536 53.64 | 7521 7507 7526 74.98
1 ID ‘ 125 16.67 3333 15.33 ‘ 16.67 0.0 16.67 12.5
00D ‘ 53.92 53.92 53.92 53.92 ‘ 75.13 75.13 75.13 75.13
10 ID ‘ 16.67 16.67 3333 16.67 ‘ 16.67 0.0 16.67 12.5
Root 00D ‘ 53.99 53.85 53.83 53.89 ‘ 75.13 75.13 75.13 75.13
100 D | 833 16.67  20.83 16.67 | 16.67 0.0 16.67 125
00D | 5355 53.0 54.01 5335 | 75.18 7516 7512 75.15
1000 ID | 33.33 2917 375 2933 | 16.67 0.0 25.0 12.5
00D | 52.67 5183 53.65 53.67 | 7533 7516 75.05 75.23
10000 ID | 33.33 2917 375 3333 | 16.67 0.0 25.0 125
00D | 52.67 51.83  53.65 5267 | 7533 7516  75.05 75.23
1 ID ‘ 16.67 16.67 33.33 16.67 ‘ 16.67 0.0 16.67 12.5
00D | 539 539 53.92 539 | 7513 7513 7513 75.09
10 ID | 16.67 16.67  33.33 16.67 | 16.67 0.0 16.67 12.5
Leaf 00D | 540 5402 540 5405 | 75.13 7513 7513 75.13
100 ID | 16.67 16.67 250 16.67 | 16.67 0.0 20.83 125
00D | 53.82 53.68 5456 53.88 | 75.07 75.1 75.05 75.14
1000 ID | 25.0 29.17 250 250 | 16.67 0.0 25.0 125
00D | 52.81 53.16 5346 5381 | 7511 75.1 75.25 7471
10000 D | 25.0 29.17 250 250 | 16.67 0.0 25.0 125
00D ‘ 52.81 53.16 53.46 53.73 ‘ 75.11 75.1 75.25 74.71
| qwen3-14b | qwg-32b
1 ID ‘ 20.83 4.17 25.0 12.5 ‘ 12.5 0.0 29.17 12.5
00D ‘ 73.86 73.86 73.86 73.86 ‘ 7142 7142 77.42 77.42
10 ID ‘ 20.83 4.17 25.0 125 ‘ 12.5 0.0 29.17 12.5
Intermediate 00D | 73.84 73.86  73.86 7386 | 77.38 7745 7744 714
100 ID | 20.83 0.0 25.0 125|125 0.0 29.17 12.5
00D | 73.61 73.63  73.89 7394 | 774 7137 7728 7137
1000 ID | 20.83 4.17 20.83 1667 | 125 0.0 29.17 125
00D | 73.15 7323 73.83 7359 | 71.35 7137 7127 7142
10000 ID | 20.83 4.17 20.83 1667 | 125 0.0 29.17 12,5
00D ‘ 73.15 73.23 73.83 73.59 ‘ 7135 71.37 7127 7142
1 ID | 20.83 4.17 25.0 125|125 0.0 29.17 12.5
00D | 73.86 73.86  73.86 73.86 | 77.42 7742 7742 7142
10 ID | 20.83 4.17 25.0 125|125 0.0 29.17 125
Root 00D | 73.88 73.86  73.86 7385 | 7745 7147 7744 7748
100 ID | 20.83 0.0 25.0 125 | 125 0.0 29.17 12,5
00D | 73.84 73.66  73.86 7362 | 71.35 713 77.38 7145
1000 ID ‘ 20.83 4.17 25.0 1255 ‘ 125 0.0 29.17 125
00D ‘ 73.54 73.48 73.5 73.26 ‘ 71.55 713 77.38 71.55
10000 ID ‘ 20.83 4.17 25.0 125 ‘ 12.5 0.0 29.17 12.5
00D ‘ 73.54 73.48 73.5 73.26 ‘ 717.55 773 77.38 71.55
1 D | 20.83 4.17 25.0 125 | 125 0.0 29.17 125
00D | 73.86 73.86  73.86 73.86 | 77.42 7742 7142 7142
10 ID ‘ 20.83 4.17 25.0 1255 ‘ 125 0.0 29.17 12.5
Leaf 00D ‘ 73.86 73.86 73.86 73.86 ‘ 77.42 7747 7743 77.45
100 ID ‘ 20.83 0.0 25.0 12,5 ‘ 12.5 0.0 29.17 12.5
00D ‘ 73.64 73.91 73.84 73.83 ‘ 77.39 774 77.38 77.26
1000 ID ‘ 20.83 0.0 25.0 16.67 ‘ 12.5 0.0 29.17 12.5
00D ‘ 72.99 7391 73.64 73.51 ‘ 713 714 7147 71.35
10000 ID | 20.83 0.0 25.0 1667 | 125 0.0 29.17 12.5
00D | 72.99 7391 73.64 7351 | 713 774 7747 71.35
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| mistral-Small-24B-Instruct-2501 | gemma-2b
Branch Train Size  Test Set ‘ Biology History Economic Physics ‘ Biology History Economic Physics
| ID | 16.67 50 12.5 2083 | 833 4.17 12.5 125
00D | 734 7334 7324 73.39 | 3046 30.63 3049 30.53
10 ID | 50 4583 16.67 0 | 20.83 12.5 29.17 4.17
Intermediate 00D | 2447 2299 252 2551 | 294 3037 29.06 30.29
100 ID ‘ 29.17 45.83 54.17 5833 ‘ 16.67 45.83 375 29.17
00D ‘ 2422 22.95 24.16 23 ‘ 25.81 24.08 26.16 26.54
1000 ID ‘ 45.83 45.83 54.17 5833 ‘ 45.83 45.83 54.17 58.33
00D ‘ 22.87 22.95 24.16 23 ‘ 2295 2295 2295 2295
10000 ID | 45.83 4583 5417 5833 | 45.83 4583 54.17 58.33
00D ‘ 22.87 22.95 24.16 23 ‘ 2295 2295 2295 2295
1 ID ‘ 3333 20.83 16.67 45.83 ‘ 4.17 0.0 16.67 4.17
00D ‘ 73.42 73.42 73.16 73.39 ‘ 30.54 30.59 30.64 30.54
10 ID ‘ 45.83 54.17 4.17 5833 ‘ 8.33 8.33 125 3333
Root 00D ‘ 22.95 252 2527 23.14 ‘ 30.34 27.18 30.55 25.79
100 ID ‘ 45.83 37.5 54.17 58.33 ‘ 4.17 50.0 25.0 54.17
00D ‘ 22.83 24.4 23.32 22.99 ‘ 29.3 24.51 29.13 23.74
1000 ID | 45.83 375 41.67 375 | 4583 4583 54.17 58.33
00D | 23.14 244 24.76 2512 | 2295 2295 2295 22.95
10000 ID | 45.83 375 41.67 375 | 4583 4583 54.17 58.33
00D | 23.14 244 2476 2512 | 2295 2295 2295 22.95
| ID | 50 4167  83.33 417 833 3333 250 0.0
00D | 73.32 7324 7314 7342 | 30.25 2898  30.64 30.44
10 ID | 417 4583 417 4167 | 125 3333 2083 4.17
Leaf 00D | 2547 2295 2554 2519 | 277 24.6 25.28 29.08
100 ID | 833 4583 54.17 833 | 250 375 375 41.67
00D | 26.63 2296 22.95 2461 | 2494 2419 249 24.07
1000 ID | 41.67 4583 54.17 833 | 4583 4583 54.17 58.33
00D | 23.54 2296 2295 24.61 | 22.83 2295 2295 22.95
10000 D | 41.67 4583 54.17 833 | 4583 4583 54.17 58.33
00D ‘ 23.54 22.96 22.95 24.61 ‘ 22.83 22.95 22.95 2295
| mistral-Large-Instruct-2411 | gemma-7b
1 ID ‘ 25.0 62.5 25.0 12.5 ‘ 45.83 37.5 41.67 45.83
00D | 82.13 8242 8222 8237 | 59.22 5896  56.69 57.78
10 ID | 0.0 4583 41.67 375 | 4583 4583 54.17 50.0
Intermediate 00D | 26.89 2297 2453 247 | 2295 2295 2295 23.25
100 ID | 16.67 62.5 25.0 500 | 250 4583 50.0 41.67
00D | 23.89 2584 250 2305 | 242 2295 2311 23.11
1000 ID | 16.67 62.5 25.0 500 | 2917 5417 833 66.67
00D | 23.89 2584 250 2305 | 249 2559 2522 24.68
10000 ID | 16.67 62.5 25.0 500 ] 2917 5417 833 66.67
00D | 23.89 2584 250 2305 | 249 2559 2522 24.68
1 ID | 250 12.5 45.83 625 | 3715 41.67  50.0 16.67
00D | 8225 8222 8224 8225 | 597 59.56  57.63 59.74
10 ID | 0.0 0.0 4.17 5833 | 45.83 41.67 3333 58.33
Root 00D | 26.19 2689 2541 2295 | 2843 2297 2924 2297
100 ID | 8.33 4583 375 5833 | 45.83 4583 4583 50.0
00D | 26.86 2295 2464 230 | 2295 2307 2295 24.13
1000 ID ‘ 8.33 45.83 375 5833 ‘ 3333 45.83 20.83 54.17
00D ‘ 26.86 22.95 24.64 23.0 ‘ 23.98 23.07 23.24 23.34
10000 ID ‘ 8.33 45.83 375 5833 ‘ 3333 45.83 20.83 54.17
00D ‘ 26.86 22.95 24.64 23.0 ‘ 23.98 23.07 23.24 23.34
1 D | 54.17 29.17 4167 375 | 4583 4583 54.17 3333
00D | 82.19 8225  82.07 82.08 | 22.82 2297 2295 59.29
10 ID ‘ 417 0.0 54.17 5833 ‘ 45.83 45.83 45.83 58.33
Leaf 00D ‘ 2547 2551 22.95 23.07 ‘ 2295 23.07 2333 22.87
100 ID ‘ 50.0 0.0 45.83 54.17 ‘ 375 41.67 41.67 58.33
00D ‘ 23.05 24.6 24.69 25.55 ‘ 23.96 23.78 23.38 22.94
1000 ID ‘ 50.0 0.0 45.83 54.17 ‘ 4.17 54.17 4.17 4.17
00D ‘ 23.05 24.6 24.69 25.55 ‘ 2548 24.49 25.52 25.54
10000 ID | 50.0 0.0 45.83 5417 | 417 5417 417 4.17

00D | 23.05 24.6 24.69 2555 | 2548 2449 2552 25.54
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\ DeepSeek-R1-0528-Qwen3-8B

Branch Train Size  Test Set ‘ Biology History Economic Physics
1 ID | 125 0.0 12,5 25.0
00D | 65.99 65.99 65.99 65.96
10 ID | 125 0.0 12,5 25.0
Intermediate 00D | 65.96 65.93 66.0 65.95
100 ID | 125 0.0 12.5 25.0
00D | 65.85 65.7 66.07 65.84
1000 ID | 125 0.0 16.67 25.0
00D | 66.39 65.7 66.24 65.89
10000 ID | 125 0.0 16.67 25.0
00D | 66.39 65.7 66.24 65.89
1 ID | 125 0.0 12,5 25.0
00D | 65.99 65.99 65.99 65.96
10 ID | 125 0.0 12,5 25.0
Root 00D | 65.97 65.98 65.99 65.99
100 ID | 125 0.0 12,5 25.0
00D | 65.82 65.95 65.97 65.73
1000 ID | 125 0.0 16.67 25.0
00D | 66.14 65.95 66.13 66.16
10000 ID | 125 0.0 16.67 25.0
00D | 66.14 65.95 66.13 66.16
1 ID | 125 0.0 12,5 25.0
00D | 65.99 65.99 65.99 65.96
10 ID | 125 0.0 12.5 25.0
Leaf 00D | 65.99 66.04 66.0 65.92
100 ID | 125 0.0 12,5 25.0
00D | 65.66 65.78 66.07 65.9
1000 ID | 125 0.0 16.67 25.0
00D | 65.68 65.78 66.03 66.01
10000 ID | 125 0.0 16.67 25.0
OOD | 65.68 65.78 66.03 66.01
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Table 14: Normalized model similarity scores for Llama3

| Editing | Unlearning
Subject Branch Train Size | CKA  Fisher ~ KL L2 | CKA Fisher KL L2
1 | 0999 0000 0.017 0.006 | 1.000 0.000 0.000 0.000
oot 10 0999 0150 0.129 0.137 | 0.993 0392 0368 0.304
100 0999 0.50 0129 0.137 | 0.001 0949 0984 0.741
1000|0999 0.150 0.129 0.137 | 0.623 0.895 0811 0.770
10000 | 0.999 0.150 0.129 0.137 | 0.825 0958 0.874 0.977
biology 1 [ 0999 0012 0.080 0.014 | 1.000 0.000 0.000 0.000
termediate 10 0999 0087 0.I19 0091 | 0.994 0390 0355 0302
100 | 0999 0.147 0.142 0.142 | 0277 0919 0944 0.727
1000 | 0.999 0.147 0142 0.142 | 0612 0921 0909 0.795
10000 | 0.999 0.147 0.142 0.142 | 0.784 0.988 0.896 0.982
1 [ 0999 0010 0079 0.017 | 1.000 0.000 0.000 0.000
eat 10 0999 0216 0263 0229 | 0.994 0371 0358 0.285
100 | 0999 0479 0.695 0494 | 0277 0917 0948 0.729
1000 | 0379 0982 0997 0992|0687 0877 0920 0.803
10000 | 0.379 0982 0997 0992 | 0.909 0.903 0.876 0.989
1 | 0999 0018 0.087 0.003 | 1.000 0.000 0.000 0.000
oot 10 0999 0018 0087 0003|099 0388 0329 0306
100 0999 0018 0.087 0.003 | 0.000 0948 0983 0.741
1000 | 0.999 0.018 0.087 0.003 | 0.623 0.893 0805 0.767
10000 | 0.999 0.018 0.087 0.003 | 0.801 1.000 0.820 0.921
economics 1 | 0999 0020 0.052 0.004 | 1.000 0.000 0.000 0.000
ntermediate 10 0999 0194 059 0.199 | 0.997 0378 0334 0298
100 0999 0316 0269 0322|0502 0.940 0950 0.747
1000|0999 0316 0269 0322|0686 0895 0828 0.788
10000 | 0.999 0316 0269 0322 | 0.807 0.909 0.825 0.966
1 [ 0999 0022 0048 0.018 | 1.000 0.000 0.000 0.000
eat 10 0999 0323 0338 0326|0998 0366 0284 0.289
100 | 0999 0363 0362 0371|0394 0912 0915 0.724
1000|0999 0371 0365 0380 | 0.666 0.891 0818 0.787
10000 | 0.999 0371 0365 0380 | 0.851 0.891 0815 0.942
1 | 0999 0006 0.038 0.003 | 1.000 0.000 0.000 0.000
oot 10 0999 0124 052 0.134 | 0994 0390 0365 0298
100 0999 0.124 0152 0.134] 0282 0950 0954 0.730
1000|0999 0.124 0.152 0.134 | 0.687 0917 0920 0.774
10000 | 0.999 0.124 0.152 0.134 | 0.895 0957 0878 0.981
history 1 | 0999 0011 0.067 0.004 | 1.000 0.000 0.000 0.000
ntermediate 10 0999 0138 0161 0.154 | 0995 0391 0354 0300
100 0999 0.38 0161 0.154 0230 0925 0970 0.723
1000|0999 0.138 0.161 0.154 | 0.738 0.868 0.850 0.770
10000 | 0.999 0.138 0.161 0.154 | 0.888 0991 0.842 0.973
1 | 1 0.001 0.070 0.000 | 1.000 0.000 0.000 0.000
eat 10 0999 0217 0235 0230 | 0.994 0361 0370 0.269
100 | 0999 0439 0523 0454|0243 0919 1.000 0.722
1000 | 0.232 0963 0985 0965 | 0.673 0.900 0.988 0.805
10000 | 0.232 0963 0985 0965 | 0.895 0.899 0.942 1.000
1 | 0999 0011 0000 0.010 | 1.000 0.000 0.000 0.000
oot 10 10999 0158 0.127 0162|0994 0396 0359 0309
100 0999 0158 0.127 0.162] 0437 0920 0940 0.723
1000 | 0999 0.158 0127 0.162 ] 0.749 089 0.892 0.774
10000 | 0.999 0.158 0127 0.162 | 0.909 0932 0.847 0978
physics 1 | 0999 0008 0.027 0.007 | 1.000 0.000 0.000 0.000
ntermediate 10 0999 0214 0192 0223 | 0997 0381 0337 0300
100 | 0425 0751 1000 0755 | 0469 0.945 0980 0.745
1000 |0 1000 0.990 1.000 | 0.701 0911 0.869 0.801
10000 | 0 1000 0990 1.000 | 0910 0904 0.831 0910
1 | 0999 0023 0.043 0.020 | 1.000 0.000 0.000 0.000
eaf 10 0999 0249 0240 0255 | 0.994 0379 0360 0.283
100|045 0743 0987 0741 | 0959 0497 0483 0.504
1000 | 0.154 0976 0985 0985 | 0.934 0710 0.692 0.748
10000 | 0.154 0976 0985 0985 | 0.907 0.899 0.879 0.986
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Table 15: Normalized model similarity scores for DeepSeek

| Editing | Unlearning
Subject Branch Train Size | CKA  Fisher ~ KL L2 | CKA Fisher KL L2
1 ‘ 1.000  0.150 0.199 0.054 ‘ 1.000  0.000 0.000 0.000

10 ] 0998 0315 0247 02380975 0302 0261 0276
100 0997 0366 0417 0275 | 0457 0739 0895 0.745
1000 | 0997 0366 0426 0275|0481 0752 0914 0827
10000 | 0997 0366 0426 0275|0674 0777 0713 0995
biology 1 0999 0144 0.115 0061 | 1.000 0.000 0.000 0.000
10 ] 099 0405 0389 0271|0988 0292 0298 0271

root

intermediate
100 0994 0461 0468 0352|0649 0733 0.693 0.747
1000 | 0.994 0461 0470 0352|0579 0781 0769 0.829
10000 | 0.994 0461 0470 0352|0727 0775 0792 0916
1 [0.999 0.131 0011 0.033 | 1.000 0.000 0.000 0.000
leaf 10 [ 0991 0523 0.682 0.385| 098 0250 0501 0.248

100 0966 0738 0.828 0.608 | 0.772 0.635 0.824 0.731
1000 | 0960 0.758 0.877 0.638 | 0.641 0.708 0.777 0.856
10000 | 0.960 0.758 0.877 0.638 | 0.781 0.764 0.756 0.972

1 [ 0995 0.000 0.000 0.000 | 1.000 0.000 0.000 0.000
10 [ 0993 0219 0.18 0.194 | 0968 0.320 0334 0276
1000992 0261 0216 0246 | 0.543 0733 0.645 0.744
1000 | 0992 0261 0221 0246 | 0408 0.819 0730 0.819
10000 | 0992 0261 0221 0.246 | 0.000 0.980 1.000 0.880
economics 1 [0.992 0.102 0250 0.053 | 1.000 0.000 0.000 0.000
10 | 0976 0480 0.615 0.387 | 0.988 0.308 0264 0.265

root

intermediate
100 0972 0500 0.634 0412|0675 0746 0857 0.754
1000 | 0972 0.500 0.634 0412 | 0.646 0.787 0.877 0.836
10000 | 0972 0.500 0.634 0412 | 0.645 0.869 0919 0917
1 [ 0996 0.028 0.045 0.030 | 1.000 0.000 0.000 0.000
leaf 10 [ 0982 0378 0399 0320|0976 0264 0500 0.251

100 0953 0546 0561 0505|0716 0711 0910 0.733
1000 | 0.000 1.000 1.000 1.000 | 0.582 0.744 0.805 0.847
10000 | 0.000 1.000 1.000 1.000 | 0.460 1.000 0.890 0.897

1 [ 0999 0.164 0.199 0.073 | 1.000 0.000 0.000 0.000
10 [ 0997 0299 0394 0.197 | 0980 0315 0370 0276
100 | 0993 0427 0.682 0357 | 0594 0692 0659 0.734
1000 | 0993 0427 0679 0357 | 0.686 0.731 0.898 0.814
10000 | 0993 0427 0.679 0357 | 0.550 0.798 0.965 1.000
history 1 [ 0998 0.127 0.085 0.054 | 1.000 0.000 0.000 0.000
10 [ 0998 0224 0.138 0.158 | 0979 0309 0575 0273

root

intermediate
100 0998 0247 0.164 0.195] 0418 0730 0969 0.741
1000 | 0998 0.247 0.168 0.195 | 0.732 0724 0.762 0.811
10000 | 0.998 0.247 0.168 0.195 | 0.702  0.775 0.949 0.992
1 [ 0999 0.146 0.101 0.075 | 1.000 0.000 0.000 0.000
leaf 10 [ 0987 0515 0620 0395|0983 0.267 0484 0232

100 | 0971 0644 0.691 0571 | 0.698 0.671 0835 0.722
1000 | 0.968 0.658 0.699 0590 | 0.106 0.739 0.833 0.868
10000 | 0.968 0.658 0.699 0590 | 0.610 0.743 0853 0.991

1 [ 0999 0.182 0.087 0.076 | 1.000 0.000 0.000 0.000
10 [ 0998 0287 0231 0.157 [ 0980 0300 0320 0.250
100 | 0998 0287 0232 0.157 | 0.600 0.700 0.800 0.750
1000 | 0.998 0287 0239 0.157 | 0.650 0.740 0.850 0.820
10000 | 0.998 0287 0239 0.157 | 0550 0.800 0.950 0.950
physics 1 [0.999 0172 0.174 0.031 | 1.000 0.000 0.000 0.000
10 [ 0986 0451 0480 0323|0970 0.280 0300 0.250
100 | 0984 0498 0485 0.368 | 0.680 0.720 0.780 0.760
1000 | 0.983 0498 0482 0368 | 0.630 0.750 0.820 0.830
10000 | 0.983 0498 0.482 0.368 | 0.600 0.770 0.850 0.900

1 [ 0998 0221 0.144 0.076 | 1.000 0.000 0.000 0.000
10 [ 0989 0447 0441 0360 | 0980 0.250 0450 0.250
100 | 0969 0.604 0.669 0542|0700 0.670 0.820 0.720
1000 | 0.965 0.625 0.660 0567 | 0.650 0.720 0.850 0.850
10000 | 0965 0.625 0.660 0.567 | 0.600 0.740 0.870 0.920
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Table 16: Normalized model similarity scores for Qwen3

| Editing | Unlearning
Subject Branch Train Size | CKA  Fisher ~ KL L2 | CKA Fisher KL L2
1| 0999 0002 0060 0085|1000 0.000 0.000 0.000
oot 10099 0461 0331 04240995 0347 0280 0278
100 | 0996 0482 0341 0442|0773 0882 0744 0745
1000 | 0.996 0482 0341 0442 [ 0626 0941 0905 0.861
10000 | 0996 0482 0341 0442 | 0836 0999 0931 0990
biology 1 ]0999 0057 0015 0052|1000 0000 0.000 0.000
termediate 1010999 0313 0171 0274|0992 0340 0285 0276
100 [ 0999 0379 0227 0311 ] 0546 0910 0774 0.766
1000|0999 0379 0227 0311|0304 0949 0854 0864
10000 | 0999 0379 0227 0311 | 0.742 0934 0866 0933
110999 0092 0061 0.I11]1000 0000 0000 0.000
eat 10 0998 0422 0308 0419] 0994 0330 0290 0256
100 0996 0527 0364 0516 | 0.561 0900 0792 0755
1000 | 0.843 0888 0759 0.889 | 0.386 0962 0.895 0.883
10000 | 0.843 0.888 0.759 0.889 [ 0.719 0982 0902 0986
1] 0999 0002 0072 0000|1000 0.000 0.000 0.000
oot 100998 0292 0236 0268|0995 0342 0280 0283
100 | 0998 0311 0245 0290 | 0.754 0.894 0743 0755
1000 | 0998 0311 0246 0290 | 0542 0924 0796 0.840
10000 | 0998 0311 0246 0290 | 0.667 0946 0820 0936
economics 1| 0999 0048 0101 0019 1.000 0.000 0.000 0.000
ntermediate 10099 0428 0311 0389 ] 0993 0341 0290 0267
100 099 0454 0326 0417 | 0.720 0904 0785 0772
1000 | 0996 0454 0326 0417 | 0.668 0943 0825 0.864
10000 | 0996 0454 0326 0417 | 0741 0945 0844 0946
110999 0038 0078 0012|1000 0000 0000 0.000
eat 100998 0376 0273 0340 ] 0993 0334 0277 0260
100|098 0635 0461 0620|0798 0879 0721 0746
1000 | 0000 1.000 1.000 1.000 | 0.677 0960 0858 0.871
10000 | 0.000 1.000 1.000 1.000 | 0.748 0.979 0858 0.968
1 0999 0037 0094 0015 |1.000 0000 0.000 0.000
oot 10 ] 0998 0415 0345 0393|0987 0337 0291 0271
100 | 0998 0423 0347 0401 | 0.656 0.890 0765 0.754
1000 | 0.998 0423 0347 0401 | 0.608 0900 0773 0832
10000 | 0998 0423 0347 0401 | 0731 0979 0827 0954
history 10999 0014 0098 0002|1000 0000 0.000 0.000
ntermediate 100997 0445 0368 0419|0991 0341 0281 0272
100 ]099% 0500 0389 04820301 0910 0765 0.764
1000 | 0.996 0500 0390 0482|0000 0924 0797 0841
10000 | 0.996 0.500 0390 0482 | 0.691 0979 0.847 0971
I | 1000 0041 0122 0049 | 1.000 0.000 0.000 0.000
eat 100999 0401 0325 0406 | 0987 0323 0299 0238
100 0997 0510 0386 0515 | 0.655 088 0819 0732
1000 | 0997 0510 038 0515] 0036 099 1000 0.897
10000 | 0.997 0510 038 0515 | 0520 0982 0980 1.000
1 0997 0083 0045 0063 | 1.000 0.000 0.000 0.000
oot 100997 0407 0280 0363|0987 0335 0290 0278
100 | 0996 0462 0329 0428 | 0.688 0.887 0767 0.751
1000 | 0996 0462 0329 0428|0517 0921 0858 0.848
10000 | 099 0462 0329 0428 | 0764 0993 0871 0938
physics 1| 0999 0000 0000 0003|1000 0000 0.000 0.000
ntermediate 10 099 0424 0310 0407 | 0986 0339 0310 0269
100 0993 0493 0363 0485|0733 0897 0803 0.755
1000 | 0993 0493 0363 0485|0583 0975 0853 0872
10000 | 0993 0493 0363 0485|0723 0891 0827 0906
10999 0051 0053 0048|1000 0.000 0.000 0.000
eaf 10 099 0402 0325 0375]0995 0335 0289 0259
100 0992 0509 0384 0493|0740 0892 0787 0.739
1000|0992 0509 0384 0493|0526 0966 0904 0.889
10000 | 0992 0509 0.384 0493 | 0.642 1000 0853 0984
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Table 17: Normalized model similarity scores for QwQ

| Editing | Unlearning
Subject ~ Branch Train Size | CKA  Fisher KL L2 | CKA Fisher KL L2
1| 0741 0208 0000 0.000 | 0493 0.000 0.000 0.000
oot 10 0736 0550 0492 0414|0440 0321 0348 0.286
100 | 0997 0613 0521 0478 | 0490 0799 0826 0.737
1000 | 0.760 0.613 0521 0478 | 0433 0788 0.887 0.803
10000 | 0.760 0.613 0521 0478 | 0491 0934 0977 0989
biology 1 0766 0111 0048 0.022 | 0493 0.000 0.000 0.000
termediate 10 ] 1.000 0543 0433 0408 | 0440 0308 0356 0275
100 | 0561 0547 0434 0415 | 0489 0790 0850 0744
1000 | 0739 0.547 0435 0415 | 0.000 0845 0829 0810
10000 | 0.739 0.547 0435 0415 | 0437 0889 0.887 0943
I | 0741 0103 0019 0021 | 0493 0000 0.000 0.000
ea 10 0764 0555 0435 0437 | 0440 0300 0342 0249
100 | 0760 0675 0551 0583|0438 0789 0797 0733
1000 | 0976 0803 0699 0758 | 0.050 0886 0964 0.846
10000 | 0976 0.803 0.699 0758 | 0435 1.000 0932 0.983
10741 0063 0097 0066 | 0493 0.000 0.000 0.000
oot 100765 0303 0305 0274|0493 0310 0348 0297
100 | 0765 0329 0320 02920490 0810 0823 0.733
1000|0996 0329 0320 0292|0433 0883 0869 0.808
10000 | 0996 0329 0320 0292|0487 0844 0865 0844
economics 1| 0741 0079 0089 0.100 | 0.440 0.000 0.000 0.000
ntermediate 10 0763 0403 0391 0370 | 0440 0301 0351 0.266
100 0735 0532 0502 0500 | 0490 0797 0895 0.753
1000 | 0.766 0.000 0.032 0016 | 0430 0862 0937 0832
10000 | 0.738 0427 0402 0389 | 0435 0878 0914 0917
10766 0000 0032 0016|0440 0.000 0.000 0.000
eat 10 0738 0427 0402 0389 | 0493 0288 0346 0253
100 0755 0610 0576 0576 | 0438 0788 0787 0722
1000 | 0.000 1.000 1.000 1.000 | 0487 0.886 0962 0.834
10000 | 0.000 1.000 1.000 1.000 | 0434 0981 0951 0932
1 ]0766 0194 0195 0.148 | 0434 0793 0848 0728
oot 10 0739 0508 0451 0386|0487 0805 0877 0.793
100 | 0736 0604 0535 0478 | 0434 0793 0848 0.728
1000 | 0761 0.604 0535 0478 | 0487 0805 0877 0.793
10000 | 0761 0.604 0535 0478 | 0490 0982 0925 0935
history 10563 0210 0205 0.140 | 0493 0.000 0.000 0.000
ntermediate 100999 0500 0473 0406 | 0493 0315 0345 0279
100 | 0762 0569 0527 0474 | 0491 0789 0791 0.740
1000 | 0992 0569 0527 0474 | 0490 0802 0839 0.797
10000 | 0.992 0.569 0527 0474 | 0492 0852 0901 0930
10766 0235 0244 0.183 | 0493 0000 0.000 0.000
eaf 1010994 0568 0501 0462|0493 0290 0347 0239
100 | 0748 0740 0.666 0.658 | 1.000 0765 0829 0.723
1000 | 0.717 0782 0706 0713 | 0486 0.854 1.000 0.842
10000 | 0.717 0782 0706 0.713 | 0488 0.878 0955 1.000
1 | 0998 0092 0044 0050 | 1.000 0.000 0.000 0.000
oot 10 0998 0284 0213 0227 | 0987 0344 0323 0279
100 0998 0302 0229 0249|0575 0836 0836 0741
1000 | 0998 0302 0232 0249 | 0.639 0852 0867 0814
10000 | 0998 0302 0232 0249 | 0741 0908 0889 0.955
physics 1099 0060 0067 0014 | 1.000 0000 0.000 0.000
ntermediate 100994 0363 0327 03180984 0333 0316 0273
100 | 0736 0548 0525 0522|0627 0854 0854 0753
1000 | 0761 0548 0525 0522|0638 0879 0847 0834
10000 | 0761 0548 0525 0522|0744 0855 0836 0905
1099 0098 0080 0048 | 1.000 0.000 0.000 0.000
eaf 100995 0366 0335 0330 ] 0990 0321 0366 0264
100 | 0.804 0619 0.680 0592|0800 0686 0.697 0654
1000 | 0704 0703 0676 0682|0703 0799 0815 0.829
10000 | 0.704 0703 0.676 0.682 | 0.716 0.880 0.867 0.963
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Table 18: Normalized model similarity scores for Mistral

| Editing | Unlearning
Subject Branch Train Size | CKA  Fisher ~ KL L2 | CKA Fisher KL L2
1 | 0999 0023 0000 0.022 | 1.000 0.000 0.000 0.000
oot 10 | 0480 0547 0977 0532 ] 0988 0347 0376 0.000
100 | 0351 0757 0958 0.749 | 0410 0.857 1.000 0.000
1000 | 0.313 0955 0963 0958 | 0.577 0.863 0.856 0.410
10000 | 0.313 0955 0963 0958 | 0.778 0911 0.837 0978
biology 1 | 0986 0.028 0010 0.023 | 1.000 0.000 0.000 0.000
termediate 10 0232 0575 0966 0564 | 0991 0341 0366 0.000
100 | 0249 0758 0977 0754 | 0491 0.854 0.908 0.000
1000 | 0.385 0972 0994 0972 | 0498 0.884 0.820 0.319
10000 | 0.385 0972 0994 0972 | 0751 0.899 0.800 1.000
1 | LO00 0026 0.030 0.022 | 1000 0.000 0.000 0.000
eat 10 0479 0560 0958 0.549 | 0.991 0317 0396 0.000
100 | 0.683 0762 0957 0739 | 0.537 0.817 0932 0.000
1000 | 0578 0952 0963 0953|0571 0849 0873 0327
10000 | 0.578 0952 0963 0953 | 0.803 0.883 0967 0.988
1 | 0986 0012 0.139 0013 | 1.000 0.000 0.000 0.000
oot 10 0351 0543 1000 0526|0986 0350 0314 0288
100 | 0.147 0736 0982 0719 | 0432 0858 0790 0.747
1000 | 0.197 0.898 0966 0.894 | 0.524 0879 0.777 0.809
10000 | 0.197 0.898 0966 0.894 | 0489 0975 0.880 0.912
economics 1 | 0999 0027 0.087 0.017 | 1.000 0.000 0.000 0.000
ntermediate 10 0242 0552 0981 0541|0993 0342 0425 0.000
100 ] 0.199 0754 0981 0744|0632 0863 0938 0.000
1000 | 0.143 0971 0995 0973 | 0.667 0875 0.774 0.329
10000 | 0.143 0971 0995 0973 | 0.731 0908 0.762 0.951
1 | 0986 0015 0124 0012 | 1.000 0.000 0.000 0.000
eat 10 0523 0569 0949 0.556 | 0.989 0321 0354 0267
100 | 0373 0788 0964 0773 | 0.636 0.834 0.849 0.734
1000 | 0.324 0989 0974 0991 | 0.642 0865 0827 0.835
10000 | 0.324 0989 0974 0991 | 0.686 0957 0.854 0.936
1 | 0999 0044 0214 0.019 | 1.000 0.000 0.000 0.000
oot 10 0285 0560 0960 0.546 | 0.987 0347 0342 0282
100 ] 0163 0767 0969 0760 | 0511 0844 0.793 0.739
1000 | 0.185 0929 0959 0930 | 0.660 0.849 0.864 0.807
10000 | 0.185 0929 0959 0930 | 0.725 0911 0.890 0.978
history 1 | 0999 0035 0238 0.021 | .00 0.000 0.000 0.000
ntermediate 10 | 0448 0568 0956 0551 | 0.988 0347 0403 0.282
100 | 0136 0751 0957 0743 | 0316 0855 0901 0.743
1000 | 0.000 1.000 0963 1.000 | 0490 0.839 0.803 0.807
10000 | 0.000 1.000 0963 1.000 | 0.760 0915 0.879 0.979
1 | 0986 0051 0211 0.034 | .000 0.000 0.000 0.000
eat 10 | 0626 0552 0954 0537 | 0988 0317 0384 0246
100 | 0560 0776 0957 0757 | 0.532 0825 0885 0.725
1000 | 0.575 0960 0954 0959 | 0272 0.878 0.940 0.857
10000 | 0.575 0960 0954 0959 | 0.675 0875 0925 0.997
1 | 0999 0000 0.018 0.000 | 1.000 0.000 0.000 0.000
oot 10 0376 0566 0960 0551|0987 0344 0323 0279
100 ] 0234 0775 0969 0763 | 0575 0836 0.836 0.741
1000 | 0.117 0971 0971 0975 | 0.639 0852 0.867 0814
10000 | 0.117 0971 0971 0975|0741 0908 0.889 0955
physics 1 | 0999 0029 0042 0.024 | 1.000 0.000 0.000 0.000
ntermediate 10 | 0443 0591 0964 0573 | 0.984 0333 0316 0273
100 0349 0788 0962 0780 | 0.627 0854 0854 0753
1000 | 0211 0985 0970 0983 | 0.638 0.879 0.847 0.834
10000 | 0211 0985 0970 0.983 | 0.744 0855 0.836 0905
1 | 0986 0.065 0.048 0.025 | 1.000 0.000 0.000 0.000
eaf 10 0333 0566 0967 0548 | 0990 0321 0366 0.264
100 | 0647 0775 0967 0764 | 0.800 0.686 0.697 0.654
1000 | 0.285 0974 0965 0977 | 0.703 0799 0815 0.829
10000 | 0.285 0974 0965 0977 | 0.716 0.880 0.867 0.963
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Table 19: Normalized model similarity scores for Gemma

| edit | Unlearning
Subject Branch Train Size | CKA  Fisher ~ KL L2 | CKA Fisher KL L2
1 | 1000 0152 0.000 0000|0791 0000 0013 0.052
oot 10 0961 0377 0652 0299 | 0.805 0461 0561 0394
100 | 0962 0462 0787 0575 | 0949 0651 0645 0452
1000 | 0.653 0.692 0954 0813 | 0.875 0757 0725 0.547
10000 | 0.653 0.692 0954 0813 | 0904 0947 0889 0876
biology 1 | 1000 0000 0.197 0.040 | 1.000 0.000 0.000 0.000
i termediate 10 0225 0686 0944 0452|0588 0370 0550 0354
100 | 0.183 0809 0981 0673|059 0542 0642 0462
1000 | 0.196 0730 0999 0925 | 0.859 0.837 0.741 0.530
10000 | 0.196 0730 0.999 0.925 | 0.888 1.000 0905 0.859
1 0544 0673 0932 0446 | 0853 0.000 0.000 0.000
eaf 10 0169 0795 0959 0586 | 0.544 0466 0.610 0435
100 | 0.115 0877 0954 0699 | 0.508 0561 0.666 0511
1000 | 0.158 0.859 1.000 0.936 | 0.710 0807 0.761 0.590
10000 | 0.158 0.859 1.000 0936 | 0.739 0997 0925 0.920
1 0994 0273 0548 0.041 | 0.870 0.000 0.000 0.000
oot 10 0943 0378 0753 0330 | 0.874 0441 0545 0347
100 0703 0504 0813 0595|0889 0.645 0639 0438
1000 | 0152 0726 0964 0.897 | 0.822 0828 0737 0534
10000 | 0.152 0726 0964 0.897 | 0851 1.000 0901 0.863
economics 10999 0191 0324 0.009 | 0.886 0.000 0.000 0.000
intermediate 10 0283 0661 0873 0435|0578 0397 0562 0382
100 | 0174 0798 0970 0.638 | 0.580 0515 0.630 0451
1000 | 0.238 0.886 0969 0931 | 0.671 0.809 0.775 0.626
10000 | 0.238 0.886 0969 0931 | 0.699 1.000 0939 0.956
1 0300 0635 0944 0440 | 0.866 0.000 0.000 0.000
eaf 10 ] 0154 0700 0967 0544 | 0.631 0449 0578 0370
100 0254 0887 0955 0.664 | 0495 0521 0660 0518
1000 | 0.000 1.000 0979 1.000 | 0552 0.839 0.804 0.673
10000 | 0.000 1.000 0979 1.000 | 0.581 1.000 0.968 1.000
1 | 1.000 0061 0074 0036|0878 0189 0.182 0173
oot 10 0149 0762 0924 0489 | 0.501 0394 0577 0405
100 | 0.108 0.657 0974 0639|0738 0559 0.606 0375
1000 | 0.106 0.870 0970 0925 | 0.668 0.807 0.764 0.603
10000 | 0.106 0.870 0970 0925 | 0.696 0998 0928 0933
history 10999 0057 0317 0063 | 1.000 0.000 0.000 0.000
intermediate 10 0511 0759 0931 0474|0550 0376 0585 0432
100 | 0354 0883 0964 0.687 | 0533 0541 0670 0.528
1000 | 0401 0.869 0955 0942 | 0713 0.833 0.788 0.646
10000 | 0401 0869 0955 0942 | 0.742 1.000 0952 0976
1 0325 0753 0942 0463 | 0745 0.000 0.000 0.000
leaf 10 ] 0424 0759 0934 0499 | 0.555 0400 0.590 0429
100 0317 0863 0974 0625|0518 0479 0.639 0490
1000 | 0276 0.863 0989 0.874 | 0.678 0.747 0.746 0.590
10000 | 0.276 0.863 0.989 0.874 | 0.707 0938 0910 0.920
1 | 1.000 0094 0106 0.025|1.000 0.000 0.000 0.000
oot 10 0135 0847 0946 0535|0440 0403 0.600 0447
100 0120 0880 0950 0711|0511 0574 0672 0519
1000 | 0059 0880 0959 0907 | 0632 0791 0759 0.603
10000 | 0.059 0.880 0959 0.907 | 0.661 0982 0923 0933
physics 1 ]0998 0087 0342 0.063 | 1.000 0.000 0.000 0.000
itermediate 10 0759 0414 0787 0363 | 0.844 0446 0545 0337
100 ] 0562 0429 0851 0.600 | 0.980 0.655 0.614 0369
1000 | 0.159 0.675 0995 0.846 | 0.867 0.775 0.702 0477
10000 | 0.159 0675 0995 0846 | 0.896 0966 0.866 0.806
1 | 1.000 0185 0220 0.036 | 0860 0.000 0.000 0.000
leaf 10 0258 0837 0922 0498 | 0433 0381 059 0456
100 ] 0267 0701 0964 0649 | 0.710 0560 0.626 0421
1000 | 0.142 0882 0976 0.908 | 0.651 0.783 0.759 0.604
10000 | 0.142 0.882 0976 0908 | 0.680 0973 0923 0933
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