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ABSTRACT

Knowledge editing and machine unlearning are two popular approaches for large
language models (LLMs) to stay up-to-date. However, the knowledge updating
mechanism of LLMs remains largely unexplored due to insufficient, isolated, and
small-scale evaluation. For instance, are LLMs similar to humans in modifying
certain knowledge? What differs editing and unlearning as training data increases?
This paper proposes KnowledgeSmith, a unified framework to systematically un-
derstand the updating mechanism of LLMs. We first cast editing and unlearning
as instances of one constrained optimization problem. Then, we propose an au-
tomatic dataset generator that provides structured interventions across multiple
graph levels and data scales, enabling controlled studies of how different mod-
ification strategies propagate through model knowledge. Extensive experiments
demonstrate nuanced insights over knowledge propagation, plasticity scaling, con-
sistency, and robustness. For instance, our results show that LLMs do not exhibit
similar updating as humans for different levels of knowledge, and there exists
consistency-capacity trade-off. We hope our findings can offer suggestions to the
design of more reliable and scalable strategies.

1 INTRODUCTION

Human knowledge is not stored as isolated facts but as a vast, interconnected web (Liu et al., 2024).
From early encyclopedias to modern knowledge graphs, we represent knowledge as structured re-
lations (Yang et al., 2025): concepts (nodes) linked by semantic or causal connections (edges).
This networked organization enables humans to reason flexibly (Mark et al., 2020), update beliefs
(Paulheim, 2016) when new evidence arises, and propagate changes across related domains (Flouris
et al., 2008). For instance, when scientists revised the classification of Pluto from a planet to a
dwarf planet, the update did not merely alter one fact but cascaded through textbooks, curricula, and
related scientific explanations.

Do Large language models (LLMs) exhibit similar properties? Zhang et al. (2024) showed that they
store and retrieve information at scale, generating answers that span diverse domains; Yet, unlike
human knowledge graphs, the internal structure of LLM knowledge remains opaque (Zhang et al.,
2023). Fine-tuning can overwrite large swaths of parameters but is resource-intensive and imprecise
(Balne et al., 2024; Gekhman et al., 2024), often introducing instability or hallucinations (Khan
et al., 2025; Ovadia et al., 2024). Researchers have recently shifted attention toward knowledge
editing (Wei et al., 2024; Markowitz et al., 2025; Wang et al., 2024) and unlearning (Yao et al.,
2024; Pawelczyk et al., 2024; Hong et al., 2024), where editing offers targeted modifications and
unlearning aims to broadly remove specific information. Both are valuable, yet they are typically
studied in isolation and without grounding in structured knowledge representations.

How to understand the knowledge updating mechanism in LLMs? Recent efforts show that editing
techniques can be adapted for forgetting by redirecting or suppressing knowledge representations
(Li et al., 2025b; Jung et al., 2025), while unlearning methods sometimes resemble coarse-grained
editing at the dataset level (Guo et al., 2019). Other works investigate continual or compositional
settings, where localized edits may interfere with broader forgetting objectives or vice versa (Gupta
et al., 2024; Chen et al., 2024). A parallel strand examines the tension between specificity and gen-
eralization: editing often prioritizes precision but risks side effects, whereas unlearning emphasizes
removal but may fail to incorporate new or corrected knowledge (Yao et al., 2023a).
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Figure 1: KnowledgeSmith pipeline. Starting from static KG, we generate dynamic probes at root,
intermediate, and leaf levels, enabling evaluation of direct and propagated effects.

Despite recent progress, there are still three critical challenges. First, most evaluations target isolated
facts, neglecting the structured and interconnected nature of real-world knowledge (Thede et al.,
2025). For example, if we update the fact that “Lyon is the capital of France” instead of Paris,
a coherent system should also adjust related knowledge such as “the Eiffel Tower is located in
France’s capital,” which otherwise becomes inconsistent. Second, the role of data scale in editing
vs. unlearning remains unclear, with small data often sufficing for edits but not for forgetting(Zhong
et al., 2023; Meng et al., 2022a). Third, there is no unified framework to jointly understand editing
and unlearning, leaving their trade-offs in propagation, stability, and generalization unclear.

In this paper, we introduce KnowledgeSmith (Figure 1), a unified framework to understand the
knowledge updating mechanisms in LLMs.1 Theoretically, our framework casts editing and un-
learning as complementary forms of constrained optimization. Empirically, building on the intuition
that human knowledge is naturally structured as knowledge graphs (KGs), our framework can au-
tomatically transform any existing KG-related dataset into a benchmark for knowledge intervention
evaluation, enabling systematic and scalable assessment without the need for hand-crafted test sets.
For instance, more insights can be gained through interventions across hierarchical levels (root, in-
termediate, leaf) and data scales (from single instances to millions). Then, we conduct an extensive
evaluation of editing and unlearning on different LLM families to explore knowledge propagation,
scaling laws, representation shifts, and robustness under stress tests. Our key findings are:

1. Propagation Asymmetry and Plasticity Limits: Editing can over-spread(unintentionally
altering related nodes), especially at higher nodes, while unlearning mostly under-
spreads(forgetting failing to propagate beyond the target node). Hierarchical branch structure
imposes intrinsic ceilings on update effectiveness, with higher or more central nodes limiting
achievable knowledge modifications(§5.2.1,§5.2.2).

2. Consistency–Capacity Tradeoff and Subject-Dependent Update: Increasing data can trig-
ger consistency collapse, where local updates contradict other knowledge; editing prioritizes
local enforcement, unlearning preserves broader consistency. Some domains, like history, resist
updates more than others, highlighting the need for subject-aware evaluation (§5.2.3,§5.2.4).

3. Model Robustness: Editing improves in-domain accuracy but harms OOD and adversarial
stability, while unlearning preserves global robustness at the cost of weaker local gains(§5.3).

4. Method-level Trade-offs: Editing balances integration and preservation with strong low-data
efficiency, unlearning is conservative but stable, while LoRA fine-tuning is unstable and prone
to drift, making it unreliable for continual updates (§5.4).

1Other approaches can also update knowledge in LLMs; we focus on editing and unlearning in this paper.
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5. Unified Failure Modes and Stress Testing: By observing model behavior on open-ended
questions, we identify six main failure modes and find that unlearning preserves general task
integrity better, whereas editing is more aggressive but effective in low-data regimes (§5.5).

Contributions. (1) We introduce KnowledgeSmith as a unified framework to understand knowledge
updating in LLMs with editing and unlearning. (2) We present automatic data generation pipeline
for LLM evaluation with scalable KG-structured interventions. (3) Our experiments demonstrate
several insightful findings towards LLM knowledge updating that could inspire future research.

2 RELATED WORK

Other than fine-tuning which is expensive and requires large amount of training data, knowledge
editing and machine unlearning are two popular and effective approaches to update LLMs’ knowl-
edge. Knowledge editing modifies LLMs’ internal parameters to update its predictions on specific
factual associations while ideally preserving unrelated knowledge (Yao et al., 2023b; Cao et al.,
2021; Sinitsin et al., 2020). Existing approaches include gradient-based fine-tuning (Sinitsin et al.,
2020; Zhu et al., 2020), localized weight modifications such as ROME (Meng et al., 2022a), MEMIT
(Meng et al., 2022b), and SERAC (Mitchell et al., 2021), and memory-augmented methods that
externalize edits (Mitchell et al., 2022). However, most prior evaluations are restricted to small
benchmarks (Levy et al., 2017; Meng et al., 2022a) and do not examine how edits propagate through
structured knowledge dependencies.

On the other hand, motivated by ethical, legal, or safety considerations, machine unlearning seeks
to selectively erase information linked to a dataset, (Izzo et al., 2021; Thudi et al., 2022; Xu et al.,
2025). Methods include retraining-based approaches (Ginart et al., 2019), negative-gradient fine-
tuning (Thudi et al., 2022), regularization-based constraints (Golatkar et al., 2020), and approximate
removal via influence functions or Fisher-weighted updates (Guo et al., 2019; Baumhauer et al.,
2022). Yet, unlearning has largely been studied in isolation from editing, without systematic com-
parisons or evaluation in structured knowledge contexts.

In short, existing research highlights strong methodological advances but leaves two key gaps: (1)
editing and unlearning are often treated as disjoint problems despite their conceptual overlap, and
(2) evaluations rely on narrow datasets that fail to capture scaling behavior or structured propagation
effects. Our work tries to establish a unified view of them and present an extensive analysis towards
understanding LLM knowledge updating.

3 KNOWLEDGESMITH

In this section, we propose KnowledgeSmith, a unified framework to view editing and unlearning
as complementary interventions.

3.1 PROBLEM DEFINITION

Let fθ denote a language model parameterized by θ, defining a conditional distribution pθ(y | x)
over output y given input x. We study targeted interventions that modify or remove specific knowl-
edge while preserving the model’s general behavior.

An update request is given by an item e (e.g., a factual triple, a prompt–response pair, or a small
dataset), optionally accompanied by a scope c that defines locality or related probes. For example,
if e is the fact “Paris is the capital of France”, c could include all prompts asking about European
capitals such as “What is the capital of France?” or “Name the capital of European countries” while
excluding unrelated prompts like “Who is the president of the United States?”, ensuring that only
related knowledge is affected while leaving unrelated knowledge untouched. Applying an update
operator T (e.g., editing or unlearning) yields updated parameters:

θ′ = T (θ; e, c), ∆ = θ′ − θ, (1)

where ∆ is the parameter update.

The objective is therefore to update the targeted knowledge while preserving unrelated knowledge.
To facilitate analysis, we define two probe sets: (1) Positive probes Q+ are inputs where the model’s
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predictions should change; and (2) Preservation probes Q− are inputs where predictions should
remain unchanged. Formally, for an input x, denote pθ(· | x) and pθ′(· | x) as the output distribution
of the model before and after KnowledgeSmith intervention, respectively, we have:

d
(
pθ′(· | x), qtarget(· | x)

)
≤ η+, ∀x ∈ Q+,

d
(
pθ′(· | x), pθ(· | x)

)
≤ ε, ∀x ∈ Q−,

(2)

where d(·, ·) is a divergence or distance measure between distributions (e.g., KL divergence, cross-
entropy, or ℓ2 distance over logits), qtarget(· | x) is the desired post-intervention distribution on
positive probes, the constant η+ specifies a tolerance threshold for successful edits, reflecting that
editing algorithms may only approximate the target distribution rather than match it exactly, and ε
is a stability threshold controlling how much drift is allowed on Q−.

3.2 A UNIFIED FRAMEWORK FOR ANALYZING EDITING AND UNLEARNING

While Equation (2) formalizes the objectives using tolerance thresholds η+ and ε, in practice we
implement these constraints by relaxing them into loss terms over probes. Specifically, Ltask(θ

′;Q+)
penalizes deviations from the target distribution on Q+, Lpres(θ

′;Q−) penalizes drift on Q−, and
R(θ′, θ) regularizes the overall update. Thus, both model editing and unlearning can be cast as a
constrained optimization over model parameters:

θ′ = argmin
θ′

Ltask(θ
′;Q+) + λpres Lpres(θ

′;Q−) + λreg R(θ′, θ), (3)

where Ltask enforces the desired behavior on Q+, Lpres penalizes drift on Q−, and R(θ′, θ) regular-
izes the update (e.g., ∥∆∥22 (Ng, 2004), Fisher norm (Gu et al., 2012), or others (Hu et al., 2022)).

Editing as targeted alignment. Knowledge editing can be viewed as minimizing Ltask toward a
distribution qtarget that encodes corrected knowledge. For example, ROME (Meng et al., 2022a) and
MEMIT (Meng et al., 2022b) locate and modify specific MLP weights to enforce new facts, while
MEND (Mitchell et al., 2021) trains an auxiliary retriever–classifier to redirect predictions on edited
queries. Other approaches apply gradient-based updates on Q+ while regularizing drift, such as
GRACE (Hartvigsen et al., 2023). Even parameter-efficient methods like LoRA-based editing (Hu
et al., 2022; Zheng et al., 2023) fit this form, with R(θ′, θ) enforcing low-rank adaptation.

Unlearning as neutral alignment. Unlearning corresponds to the same objective but with
qtarget chosen as a neutral distribution qneutral that suppresses unwanted associations. This cap-
tures approaches that erase knowledge through gradient descent (Thudi et al., 2022), influence-
function–based forgetting (Golatkar et al., 2020; Guo et al., 2019), or certified removal in convex
models (Ginart et al., 2019). Recent work on unlearning in deep networks (Jagielski et al., 2022)
also fits: their objectives penalize predictive alignment with sensitive data while constraining per-
formance on Q−, exactly corresponding to the Lpres and R(θ′, θ) terms above.

A unifying lens. In this view, the distinction between editing and unlearning reduces to the choice
of qtarget: Editing: qtarget encodes a factual correction (e.g., “Paris is the capital of Germany”). Un-
learning: qtarget is neutral, erasing prior associations (e.g., “Paris is the capital of [MASK]”). This
framework subsumes methods across the spectrum: localized weight modifications (Meng et al.,
2022b;a), memory-based editors (Mitchell et al., 2021), parameter-efficient adaptations (Hu et al.,
2022; Zheng et al., 2023), influence-based forgetting (Golatkar et al., 2020), and certified removal
(Ginart et al., 2019). Despite methodological differences, all can be interpreted as solving the same
constrained optimization problem with different instantiations of Ltask, Lpres, and R(θ′, θ).

Our formulation provides a principled and generalized lens for analyzing parameter modifications in
LLMs, enabling fair comparison of editing and unlearning on their trade-offs in plasticity, stability,
and generalization. However, to rigorously measure these effects in practice, we need benchmarks
that capture hierarchical dependencies, e.g., local versus global changes, and multilevel propaga-
tion of updates, which are largely missing from existing datasets. This motivates our automated
benchmark construction in the following.

4 CONSTRUCTING EVALUATION BENCHMARK

Existing benchmarks (Meng et al., 2022a; Levy et al., 2017) for knowledge intervention evaluation
suffer from two major limitations. First, they are largely static, testing only isolated facts without
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accounting for how updates might affect related knowledge. Second, they fail to capture dependen-
cies across facts, which are crucial for understanding how changes propagate through the model and
for revealing trade-offs between editing and unlearning.

We leverage knowledge graphs (KGs) to address these gaps, which dynamically encode hierarchical
and relational dependencies among facts. Anchoring probes in a curated KG enables us to gener-
ate both local edits and their downstream consequences, transforming a single KG into a dynamic
benchmark. Specifically, by targeting root, intermediate, and leaf nodes, our framework systemat-
ically tests how interventions propagate across multiple levels of dependency, thus providing a rig-
orous way to evaluate whether models can coherently update, forget, or preserve knowledge while
maintaining global consistency. Concretely speaking, our data generation method can automatically
transform any existing knowledge-related benchmarks such as MMLU (Hendrycks et al., 2021) into
new ones, providing domain coverage and a standardized multiple-choice QA format for easy eval-
uation. Our pipeline consists of three stages (Figure 1), ensuring both quality and flexibility:

1. Entity–Relation Selection: We begin by prompting GPT-4o to generate a KG where enti-
ties and relations are organized hierarchically. The model is then asked to categorize nodes
into three levels: root (broad, domain-level concepts), intermediate (mid-level categories or
subtopics), and leaf (specific entities or instances). Sampling nodes from all three categories
preserves the KG’s hierarchical structure, ensuring evaluation goes beyond isolated facts to
capture how edits or deletions propagate across different levels of related knowledge.

2. Template-Based Question Generation: Multiple question forms are generated for each triple,
varying in directness and context. All templates are manually verified for grammaticality and
factual alignment, preserving unambiguous mapping back to the KG. Six categories of probes
are constructed (direct, reverse, conflict, multi-hop, comparison and contextual), each tied to a
different aspect of model behavior under intervention.

3. Multiple-Choice Construction: Each probe is cast as a four-choice QA item, consistent with
the MMLU-inspired format, ensuring that evaluation reflects true knowledge states rather than
guesswork. Entity substitution and paraphrasing yield over one million samples across do-
mains. All items are validated against the KG, with manual spot checks for quality assurance.

Connection to KG-Based Evaluation. Our generation pipeline is organized around two comple-
mentary families of probes: (1) Positive probes Q+, which directly test the edited or redirected
knowledge, including its hierarchical propagation across root, intermediate, and leaf nodes. (2)
Preservation probes Q−, which ensure that unrelated or out-of-scope knowledge remains intact,
guarding against collateral damage.

To operationalize these two families, we instantiate six probe types. Direct probes (Q+) test whether
the target fact itself is recalled or updated at different hierarchical levels. Reverse probes (Q+) ex-
amine whether knowledge updates preserve relation directionality. Conflict probes (Q+/Q−) expose
residual beliefs and adversarial robustness by checking for contradictions after intervention. Multi-
hop probes (Q+) evaluate whether interventions correctly propagate through chained relations in the
KG. Comparison probes (Q+) assess whether the updated knowledge is consistently preferred when
contrasted with alternatives or distractors. Finally, Contextual probes (Q−) test whether unrelated
in-domain or OOD knowledge remains preserved in naturalistic settings. This design aligns directly
with our experimental analyses: By explicitly embedding these probe types into the KG’s hierar-
chical structure, the benchmark enables analyses that go beyond isolated fact checking, revealing
whether interventions cascade consistently across levels of related knowledge.

Generated Benchmark Dataset. Our method allows flexible data generation across domains. In
this paper, we instantiate the benchmark in four domains: economics, physics, history, and biology.
We restricted our evaluation to four domains to balance diversity and feasibility.2 Each domain
yields paired pre-edit and post-edit datasets that preserve entities but differ in factual content. Probes
span root, intermediate, and leaf nodes, with conflict, propagation, comparative, and reverse variants,
and include multiple paraphrased realizations. For each branch within every domain, we generate
10, 000 samples each for editing and unlearning, plus 100 evaluation probe sets, leading to 360, 000
training samples in total. This design creates a benchmark that is both large-scale and structurally
sensitive, allowing systematic evaluation of edits and unlearning not just at the point of intervention
but throughout the knowledge hierarchy. Dataset examples are in Appendix A.

2These subjects span both STEM and humanities, offering a representative testbed. Our pipeline is directly
extensible to other domains such as law and medicine.
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5 EXPERIMENTS

5.1 SETUP

Models. Our evaluation covers 6 families of LLMs with 1B to 123B parameters, leading to a total of
13 models: LLaMA-3 (1B, 3B, 8B, 70B) (Meta, 2024), Qwen-3 (1.7B, 14B, 32B) (Team, 2025b),
QwQ-32B (Team, 2025a), Mistral (24B, 123B) (Jiang et al., 2023), Gemma (2B, 7B) (Team, 2024),
and DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI, 2025). This broad coverage enables us to study
whether scaling behaviors and editing/unlearning performance generalize across architectures.

Implementation Details. We adopted AlphaEdit (Fang et al., 2025) and ReLearn (Xu et al., 2025).3
AlphaEdit is a state-of-the-art editor that has been shown to outperform prior methods such as
MEMIT(Meng et al., 2022b) and ROME(Meng et al., 2022a) in editing tasks, while ReLearn repre-
sents a leading approach to unlearning. Importantly, our framework is method-agnostic and directly
extensible to other baselines, making it straightforward to integrate additional methods. Unlike tra-
ditional unlearning approaches where the retain set corresponds to the original knowledge, in our
redirection-based setup the retain set is defined as the post-updated knowledge, ensuring that the
model preserves the rewritten fact rather than reverting to its prior belief. This redirection-based
formulation aligns better with real-world scenarios where knowledge is updated rather than erased.
Editing and unlearning were applied separately to leaf, intermediate, and root nodes of the knowl-
edge graph, with training data sizes ranging from 1 to 10, 000 samples. This setup allowed us to
systematically analyze the effect of both hierarchy depth and data scale on the success of editing
and unlearning. For evaluation, since each knowledge probing question is multiple-choice, we re-
port accuracy as the proportion of questions for which the model selects the correct choice. This
metric directly reflects the model’s correctness in retrieving or updating the intended knowledge.

5.2 COMPARATIVE ANALYSIS OF EDITING AND UNLEARNING

5.2.1 PROPAGATION ASYMMETRY: OVER- VS. UNDER-SPREADING
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Figure 2: Propagation asymmetry metrics.

Human learners expect hierarchical consis-
tency: updating a root concept should cas-
cade to its descendants, while modifying a leaf
should remain localized. We evaluate this in
LLMs by applying editing or unlearning at
three hierarchy levels (root, intermediate, leaf)
and measuring performance on both targeted
and structurally related nodes. We quantify
these effects using direct vs. multi-hop accu-
racy (Figure 2) as a proxy for propagation metrics: the Collateral Change Ratio (CCR) captures
over-spreading for editing, and the Residual Retention (RR) captures under-spreading for unlearning
(For the complete definitions of CCR and RR, see Appendix B).

Our results reveal a clear asymmetry: editing tends to over-spread, unintentionally altering related
nodes, especially in lower hierarchy levels, whereas unlearning often under-spreads, failing to
propagate forgetting beyond the target. These simple, interpretable metrics allow us to visualize
propagation behavior across hierarchical branches.

5.2.2 PLASTICITY SCALING AND BRANCH-DEPENDENT LIMITS

Plasticity captures how readily a model can update knowledge in response to limited training data,
balancing the optimization of Ltask on positive probes Q+ against preservation constraints Lpres on
Q−. We extend this notion to plasticity scaling, examining systematically how model size, data
scale, and hierarchical branch jointly influence the effectiveness of editing and unlearning.

Our main observations are as follows. First, as shown in Figures 3a and 3b, smaller models exhibit
higher immediate plasticity, rapidly adapting to few-shot interventions and achieving strong in-
domain performance on Q+, but their changes are often unstable, leading to degraded preservation
on Q−. Larger models require more data to register updates, reflecting lower short-term plas-
ticity, yet once modified they maintain stronger out-of-domain consistency, indicating more reliable
preservation. Second, branch-dependent upper bounds. As shown in Figure 3c, different hier-

3We also conduct experiments on some other methods, which show similar performance. Reported at
Appendix E.
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Figure 3: Plasticity scaling of the LLaMA3 family under (a) editing and (b) unlearning. (c) Propa-
gation limits across three branches. (d) Consistency capacity tradeoff.

archical branches exhibit distinct ceilings for achievable accuracy. Root-level edits/unlearning face
a lower ceiling due to structural complexity and the need for coherent propagation across descen-
dants. Intermediate-level branches achieve moderate ceilings. Leaf-level edits/unlearning can reach
near-perfect in-domain accuracy with fewer examples, reflecting minimal propagation constraints.
This reveals the effectiveness of updates is not uniform across the hierarchy: higher or more central
nodes constrain achievable plasticity, while lower nodes allow maximal update with limited data.

5.2.3 CONSISTENCY–CAPACITY TRADE-OFF

Most prior work (Zhong et al., 2023; Park et al., 2025; Shi et al., 2024; Li et al., 2025a) primarily
assess whether the target fact is updated successfully, without probing inverse relations. To our
knowledge, no prior work explicitly quantifies this type of cross-relation or hierarchical consistency.
In this work, we define consistency as the model’s ability to maintain logical coherence across related
knowledge after an intervention. Specifically, we test consistency by probing both the direct relation
(e.g., “Paris is the capital of France”) and the inverse or complementary relation (e.g., “France has
capital Paris”), as well as across hierarchical or semantically related branches. A consistent update
should correctly modify the target knowledge while preserving these related facts.

We uncover a new phenomenon: consistency collapses once data scale surpasses the model ca-
pacity. We term this the consistency–capacity trade-off, observed both in relation–inverse relation
pairs (e.g., capital-of vs. has-capital) and across hierarchical branches. As shown in Figure 3d, di-
rect probes initially respond to interventions but plateau or degrade as training scale grows, whereas
reverse probes remain stably high, indicating preservation of contradictory knowledge. The diver-
gence defines a consistency collapse point, occuring earlier in lower branches (intermediate, leaf)
than root. Editing typically achieves stronger local updates but triggers earlier global inconsistency;
unlearning preserves broader consistency but rarely removes the targeted knowledge completely.

Table 1: Similarity scores for each
model are independently normalized via
a log–min–max transformation: a small
positive offset ϵ is added, log10 is ap-
plied, and the resulting values are lin-
early scaled to the [0, 1] range.

Metric Setting 1 10 100 1000 10000

KL Unlearn 0.014 0.392 0.805 0.838 0.883
Edit 0.140 0.522 0.606 0.647 0.652

L2 Unlearn 0.013 0.286 0.647 0.758 0.948
Edit 0.054 0.368 0.507 0.628 0.633

Fisher Unlearn 0.014 0.352 0.781 0.847 0.919
Edit 0.101 0.438 0.552 0.641 0.647

CKA Unlearn 0.917 0.861 0.566 0.576 0.692
Edit 0.958 0.852 0.801 0.714 0.714

Representation and Efficiency. Table 1 shows the analy-
sis of internal representations via Centered Kernel Align-
ment (CKA) (Kornblith et al., 2019), KL divergence, L2
distance and Fisher score (Zhang et al., 2022). The results
show that unlearning exhibits abrupt phase transitions be-
yond a critical data scale, while editing induces smoother,
localized adjustments (details in Appendix H). Computa-
tionally, unlearning is faster (e.g., ∼0.2h vs ∼6h for edit-
ing on 1,000 samples on an NVIDIA H100), reflecting its
focus on stability over precise enforcement.

Consistency collapse is not only evident in output accu-
racy but also mirrored in representation dynamics and
computational cost: editing maximizes factual enforcement at the expense of broader consistency
and resources, whereas unlearning prioritizes stability and efficiency.

5.2.4 SUBJECT-DEPENDENT KNOWLEDGE UPDATE

At the subject level, Figure 4a reveal that knowledge updating is strongly subject-dependent.
Among the four subjects (biology, economics, history, and physics), history consistently exhibits
the lowest update accuracy, sometimes remaining nearly unchanged even with large numbers of
training examples. Other subjects update, in contrast, propagate more efficiently. This highlights
a critical insight: evaluation benchmarks must account for subject-specific difficulty. Standard
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Figure 4: Robustness evaluation under multiple stress tests. (a) Out-of-distribution (OOD) vs. in-
domain accuracy. (b) Adversarial robustness relative to original accuracy. (c) Instruction-following
accuracy in free generation, judged by an LLM. (d) Hallucination tendency across interventions.

datasets (e.g., CounterFact (Meng et al., 2022a), ZsRE (Levy et al., 2017)) treat all domains equiv-
alently, but our results indicate that certain knowledge domains, such as history, are significantly
more resistant to modification. Consequently, subject-aware evaluation is essential for accurately
assessing editing and unlearning performance in LLMs.

5.2.5 CONTRADICTIONS AND CONFLICT RATE

While residual belief (Elidan et al., 2012) is commonly used to evaluate whether interventions suc-
ceed in suppressing prior knowledge, it does not capture a critical failure mode: the emergence of
contradictions. We therefore introduce a complementary metric, conflict rate, which measures the
proportion of queries where the model simultaneously supports mutually inconsistent statements af-
ter intervention. For instance, a model may assert both “Paris is the capital of Germany” and “Paris
is the capital of France” under different contexts. Figure 4b shows this metric exposes patterns that
residual belief alone cannot: editing often leads to higher conflict in related branches (over-
spreading), whereas unlearning tends to leave contradictions unresolved in upstream nodes
(under-spreading). By explicitly quantifying such inconsistencies, conflict rate provides a fuller
view of hidden instabilities and unintended side effects.

5.3 ANALYSIS ON ROBUSTNESS

OOD robustness is tested using MMLU (Hendrycks et al., 2021). In the unified framework, in-
domain probes Q+ consist of questions from the same subject (e.g., updating facts about geography
using geography questions), reflecting alignment with qtarget. In contrast, out-of-domain (OOD)
probes Q− are drawn from unrelated subjects (e.g., updating geography facts but measuring perfor-
mance on economics, history, or law), testing the model’s ability to preserve unrelated knowledge
after the intervention. As shown in Figure 4c, these objectives often conflict. Unlearning pre-
serves strong OOD accuracy (63–82%) but yields modest in-domain gains (≤30%), while editing
substantially boosts in-domain accuracy (up to 50–60% in economics) at the cost of OOD stability,
especially in mid-sized models. Larger models reduce but do not eliminate this trade-off. Increasing
training examples improves in-domain performance until gains plateau, and disciplines vary, with
economics generalizing better and history proving more resistant. This trade-off reflects the bal-
ance between Ltask and Lpres: stronger enforcement on Q+ tends to destabilize preservation on Q−,
highlighting the challenge of achieving both local fidelity and global robustness together.

We then measure adversarial robustness by exposing the model to misleading or deceptive inputs,
such as probes combining unrelated concepts (Figure 4d). This assesses whether the optimization
constraints maintain stability on preservation probes Q− under stress (details in Appendix D.1).

5.4 ANALYSIS ON FINE-TUNING
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Figure 6: LoRA, Editing and Unlearning.

We further compare editing and unlearning with
LoRA fine-tuning on Llama3-8B-Instruct to iso-
late method-level tradeoffs. Figure 6a shows
LoRA yields unstable ID accuracy, sometimes
dropping to 12.5% at k = 1000. Scarce data lead
to poor enforcement of target updates (Q+) while
undermining preservation (Q−). Figure 6b shows
OOD accuracy declining from 63.0% (k = 1) to
61.6% (k = 1000), indicating drift risks. Un-
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(b) Unlearning
Figure 7: SVD-based geometric analysis of interventions. (a) Editing adjusts knowledge by gently
rotating and slightly rescaling the representation space, preserving overall geometry while redi-
recting specific directions. (b) Unlearning, in contrast, acts by shrinking certain dimensions more
aggressively, reducing the model’s capacity in those directions rather than rotating them.

learning remains stable around 63%, preserving prior knowledge but limiting target success. Edit-
ing combines stability with low-data efficiency, boosting ID accuracy to 25% at k = 10 compared
to 16.7% for LoRA and unlearning. In summary, editing balances new knowledge integration and
preservation, LoRA risks drift, and unlearning is conservative but stable, explaining why we prefer
editing/unlearning for continual updates.

5.5 FAILURE MODE AND STRESS TESTING

Table 2: Percentage (%) of observed
failures in editing and unlearning.

Failure Mode Editing Unlearning
Under-forgetting (RR) 20 35
Over-spreading (CCR) 35 15
Conflict emergence 30 12
Knowledge drift 18 10
Instruction-following drop 22 18
Hallucination increase 5 4

Existing studies describe errors such as incomplete for-
getting or knowledge pollution in a fragmented way, with-
out systematically characterizing the underlying mecha-
nisms. Through our experiments on open-ended ques-
tion answering, we observed that models fail for differ-
ent reasons under editing and unlearning interventions.
To capture these patterns, we propose a Unified Fail-
ure Mode Taxonomy that organizes observed errors into
six categories (examples of each type in Appendix D.2):
under-forgetting (RR), over-spreading (CCR), conflict emergence (contradictions between updated
and related knowledge), knowledge drift (performance degradation on unrelated tasks), instruction-
following drop (reduced ability to follow complex instructions), and hallucination increase.

Stress-testing evaluates the failure modes with open generation tasks, making the model show prac-
tical robustness and use gpt-4o to evaluate. Our results show that hallucination (evaluated on Truth-
fulQA (Lin et al., 2022)) remains stable, instruction-following (open generation) drops moderately,
and CoT reasoning can improve edit generalization but may increase residual knowledge, compli-
cating unlearning (details in Appendix C). Sequential update experiments, reported in Appendix F,
further illustrate how multiple consecutive edits affect these behaviors and highlight potential cumu-
lative effects on residual knowledge.

5.6 THEORETICAL ANALYSIS

Our theoretical perspective connects the observed behaviors of editing and unlearning to their geo-
metric effects on model representations. Let W ∈ Rm×n denote a parameter matrix (e.g., attention
or MLP projection), with singular value decomposition W = UΣV ⊤. An intervention updates W
to W ′ = U ′Σ′V ′⊤. The difference between W and W ′ can be decomposed into two interpretable
components:

• Scaling effects. Changes in singular values Σ′/Σ indicate amplification or attenuation of certain
representational directions.

• Rotational effects. Differences in subspaces span(U, V ) vs. span(U ′, V ′) reflect reorientation of
features while preserving their magnitude.

Editing as local rotation with mild rescaling. As shown in Figure 7a, editing primarily induces
moderate rescaling of singular values while maintaining high orthogonal similarity between (U, V )
and (U ′, V ′) across layers. This implies that editing preserves most of the representational geometry,
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redirecting specific factual directions through controlled rotations. Consequently, editing behaves
like a rotation-plus-scaling operator: it reallocates emphasis toward new factual associations while
retaining global coherence. This explains why editing achieves strong local enforcement but often
over-spreads changes to nearby branches (high CCR in Section 5.2).

Unlearning as anisotropic scaling. By contrast, Figure 7b shows that unlearning produces sharper
downscaling of singular values, with less stable alignment of U, V across layers. This indicates sup-
pression of capacity in certain subspaces rather than a simple rotation. Thus, unlearning resembles
an attenuation operator: it removes the ability to encode certain directions but does not reliably ro-
tate them into new ones. This mechanism aligns with the observed under-spreading behavior (high
RR in Section 5.2), where forgetting remains localized and fails to propagate fully across related
nodes.

Hierarchy-dependent dynamics. Leaf-level interventions concentrate changes in later layers, sup-
porting near-perfect local adaptation. Root-level interventions require distributed rotations and scal-
ings across the network, introducing stricter ceilings on achievable accuracy. Intermediate nodes
combine aspects of both. These theoretical patterns mirror our empirical findings on branch-
dependent plasticity limits (Section 5.2.2).

5.7 DISCUSSION

Our findings offer several potential directions for future research. (1) Model updating: Updates
should employ dynamic, hierarchical control such as level- and relation-aware algorithms. Branch-
specific strategies can also improve effectiveness: for leaf nodes, updates can use more data for
higher accuracy, while root nodes may require less data. Data size should be carefully calibrated for
global consistency. Moreover, models exhibit subject-dependent sensitivity, hence, update methods
should account for differences across domains. (2) Evaluation metrics: The conflict rate offers
a more nuanced assessment of models, capturing hidden inconsistencies and ensuring that updates
improve the model more holistically rather than just for specific tasks. This mirrors human reasoning
in the sense that humans also monitor for contradictions and coherence, but the analogy is descriptive
rather than mechanistic. (3) Foundation models: Future models could be designed with layer-wise or
tensor-wise modularity, enabling finer-grained control when applying updates. By building update-
friendly architectures, such models would allow interventions to target specific branches or layers
more effectively, improving both efficiency and consistency of knowledge updates.

Our work has several limitations. First, our experiments are based on four domains due to limited
compute budget and could be expanded to more domains and multimodal models. Second, our
unified framework does not give theoretical bound for propagation and consistency remains open.
Third, the analysis is based on recent editing and unlearning approaches, which could be extended
to other algorithms to gain more insights.

6 CONCLUSION

We introduced KnowledgeSmith to understand the knowledge updating mechanism in LLMs by
unifying editing and unlearning. Our experiments highlight fundamental trade-offs, e.g., unlearning
prioritizes stability and efficiency but yields modest enforcement, while editing enforces knowledge
updates more effectively at the risk of destabilization and higher computational cost. We hope our
benchmark and analysis can shed light on future research on LLM knowledge updating.

Future research will investigate hybrid datasets that combine information across all knowledge graph
levels and domains to better guide LLM updates. We also aim to develop adaptive and hybrid
strategies that leverage internal model representations to dynamically determine when and how to
apply editing or unlearning.

ETHICAL AND REPRODUCIBILITY STATEMENT

ETHICS STATEMENT

This work investigates knowledge editing and unlearning in large language models with the goal of
improving our understanding of how models update and forget factual information. Our experiments
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are restricted to controlled benchmarks, including publicly available datasets and synthetic data
that we release. We do not use sensitive, private, or personally identifiable information. While
the methods studied could, in principle, be misused to manipulate model knowledge for harmful
purposes, our intention is purely scientific, and we have limited our scope to safe, non-sensitive
settings. All pretrained models used in this study are publicly available and used in accordance with
their licenses. We believe our work contributes to safer, more transparent, and more responsible
approaches to model editing and unlearning.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All datasets used are publicly
available or synthetically generated; details of dataset construction, splits, and preprocessing are
provided in Appendix A. Model architectures, and evaluation metrics are fully described. Our imple-
mentation builds on open-source frameworks (e.g., PyTorch, HuggingFace Transformers, vLLM),
and we will release the configuration files and synthetic benchmark data upon publication.
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A DATA GENERATION EXAMPLE AND PIPELINE

To make our pipeline transparent, we provide an end-to-end example showing how a single knowl-
edge point expands into a large set of evaluation items, emphasizing hierarchical structure and con-
trolled fact editing.

A.1 KNOWLEDGE POINT AND KNOWLEDGE GRAPH (KG)

We illustrate how a knowledge point can be represented as a triple and anchored at different levels
of the knowledge graph. Table 3 shows one example from each domain.

Table 3: Examples of knowledge triples and anchoring across different levels of the KG hierarchy.

Domain Example Triple KG (Root → Intermediate → Leaf)
Biology (DNA double helix, discovered in, 1953) Root: concept of DNA structure → role in molecular biology and genetics → link to

genetics/medicine/biotech applications

Economics (Phillips curve, describes, inflation–
unemployment relationship)

Root: economic trade-offs → macroeconomic models of inflation and unemployment
→ policy debates on stagflation and monetary policy

History (Declaration of Independence, signed in,
1776)

Root: revolutions and independence movements → American Revolutionary era →
specific events such as the Continental Congress or early U.S. governance

Physics (Theory of General Relativity, pub-
lished in, 1915)

Root: fundamental physics theories → spacetime and gravitation framework → appli-
cations such as black holes, gravitational waves, or GPS corrections

This fact is anchored at three levels of the knowledge graph:

• Root: broad, domain-level understanding.

• Intermediate: contextual understanding, including its role and implications.

• Leaf: fine-grained, specific questions.

A.2 TEMPLATE GENERATION

For the selected fact, we generate multiple question templates per KG level, capturing different
aspects of the fact (definition, role, context, and application).

• Root-level templates: Broad factual or conceptual questions.

• Intermediate-level templates: Questions about domain implications, causal relationships,
and contextual applications.

• Leaf-level templates: Specific, field-dependent scenarios where the fact influences out-
comes or knowledge in that domain.

An example of generated templates is shown in Table 4, where leaf-level templates are instantiated
with different fields (e.g., genetics, medicine).

A.3 PROMPTING GPT FOR QUESTION GENERATION

Our pipeline for generating evaluation questions follows these steps:

1. Knowledge Graph Generation: GPT is prompted to generate a structured KG for the target
domain. Nodes represent root, intermediate, and leaf-level knowledge.

2. Fact Selection: From the KG, a single fact is selected (e.g., (DNA double helix,
discovered in, 1953)) to anchor all subsequent questions.

3. Template Generation: GPT is prompted to produce multiple templated question forms sur-
rounding the fact. Templates vary in phrasing, style, and emphasis, covering definition, context,
role, and applications.

4. Level-Specific Question Generation: Each template is input to GPT with instructions speci-
fying the desired KG level (root, intermediate, leaf). Example prompts:
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Table 4: QA templates for four knowledge points across Biology, Economics, History, and Physics.

Level Biology: DNA double helix Economics: Phillips curve History: Declaration of In-
dependence (1776)

Physics: General Relativity
(1915)

R
oo

t-
le

ve
l

What is the DNA double he-
lix?
Who discovered the DNA
double helix?
When was the DNA double
helix discovered?
What does the DNA double
helix describe?
Why is the DNA double he-
lix important in biology?
What shape is the DNA
double helix?
What was learned from the
DNA double helix?
Which scientists worked on
the DNA double helix?

What is the Phillips curve?
What relationship does the
Phillips curve describe?
Who proposed the Phillips
curve?
When was the Phillips
curve introduced?
Why is the Phillips curve
important in economics?
How is the Phillips curve
used in macroeconomics?
What does the Phillips
curve imply about inflation
and unemployment?
Which countries have
applied the Phillips curve
concept?

What is the Declaration of
Independence?
When was the Declaration
of Independence signed?
Who signed the Declaration
of Independence?
Why was the Declaration of
Independence created?
What does the Declaration
of Independence proclaim?
Which country declared in-
dependence in 1776?
What historical context led
to the Declaration of Inde-
pendence?
Why is the Declaration of
Independence important in
history?

What is the Theory of
General Relativity?
Who proposed the Theory
of General Relativity?
When was the Theory of
General Relativity pub-
lished?
Why is the Theory of Gen-
eral Relativity important?
What does the Theory
of General Relativity de-
scribe?
How does General Relativ-
ity differ from Newtonian
physics?
What are the key concepts
in General Relativity?
Which experiments con-
firmed General Relativity?

In
te

rm
ed

ia
te

How did the DNA double
helix change molecular bi-
ology?
What discoveries followed
the DNA double helix?
What role did the DNA dou-
ble helix play in genetics?
How did the DNA double
helix influence medical re-
search?
What techniques confirmed
the DNA double helix?
How is the DNA double he-
lix taught in schools?
What reaction did scientists
have to the DNA double he-
lix?
How did the DNA double
helix affect other fields of
science?

How does the Phillips curve
affect monetary policy?
What criticisms exist for the
Phillips curve?
How did the Phillips curve
shape economic thought?
How does the Phillips curve
relate to inflation targeting?
What data supports or con-
tradicts the Phillips curve?
How do economists inter-
pret the Phillips curve over
time?
How does the Phillips curve
influence labor market poli-
cies?
How is the Phillips curve
taught in universities?

How did the Declaration of
Independence influence the
American Revolution?
What ideas from the En-
lightenment are in the
Declaration?
How did other countries
react to the Declaration?
What role did the Decla-
ration play in forming the
U.S. government?
How was the Declaration
received by the British
crown?
What debates occurred
during the drafting of the
Declaration?
How did the Declaration
impact colonial society?
How is the Declaration
taught in schools?

How did General Relativity
influence modern physics?
What role does General Rel-
ativity play in cosmology?
How does General Relativ-
ity explain gravity?
How was General Relativ-
ity received by the scientific
community?
How does General Relativ-
ity relate to black holes?
How is General Relativity
taught in universities?
What mathematical tools
are used in General Relativ-
ity?
How does General Relativ-
ity affect GPS technology?

L
ea

f-
le

ve
l

How did the DNA double
helix influence research in
genetics?
What impact did the
DNA double helix have in
medicine?
How was forensic science
affected by the DNA double
helix?
In evolutionary biology,
what role did the DNA
double helix play?
Why did biotechnology
change after the DNA
double helix?
What does public health
owe to the DNA double
helix?
How did the DNA double
helix influence research in
anthropology?
What impact did the DNA
double helix have in bioin-
formatics?
How was drug development
affected by the DNA double
helix?
In agriculture, what role did
the DNA double helix play?

How does the Phillips curve
explain stagflation in the
1970s?
How did the Phillips curve
influence central bank deci-
sions?
How is unemployment mea-
sured in relation to the
Phillips curve?
What role did the Phillips
curve play in New Keyne-
sian economics?
How do different coun-
tries’ experiences validate
the Phillips curve?
What empirical models are
used to test the Phillips
curve?
How does the Phillips curve
relate to wage inflation?
How did the Phillips curve
inform fiscal policy during
recessions?
How is the Phillips curve
applied in modern macroe-
conomic forecasting?
How does the Phillips curve
interact with supply shocks?

Which founding fathers
were key authors of the
Declaration?
How did the Declaration
affect slavery debates in the
U.S.?
What role did the Declara-
tion play in the Revolution-
ary War?
How were the colonies
mobilized after the Declara-
tion?
How did newspapers and
pamphlets spread the Dec-
laration?
What influence did the
Declaration have on other
independence movements?
How did international law
view the Declaration at the
time?
How did the Declaration
inspire subsequent U.S.
legislation?
How did the Declaration
affect Native American
relations?
How did the Declaration
shape early U.S. political
parties?

How did General Relativity
predict the bending of light?
How was General Relativity
confirmed during the 1919
solar eclipse?
How does General Rela-
tivity influence gravitational
wave research?
How did General Relativity
impact quantum theory?
How does General Relativ-
ity affect modern cosmolog-
ical models?
How do black hole studies
rely on General Relativity?
How does General Rela-
tivity explain time dilation
near massive objects?
How did General Relativ-
ity change our understand-
ing of space-time?
How does General Relativ-
ity relate to the expansion of
the universe?
How are relativistic effects
measured in particle accel-
erators?
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Root-level Prompt

Knowledge fact: “DNA double helix is a fundamental concept in molecular biology.”
Generate 3 multiple-choice questions targeting broad, domain-level understanding
(root-level). Each question should have 4 answer options (A, B, C, D), one correct
answer, and 3 plausible distractors.

Intermediate-level Prompt

Knowledge fact: “DNA double helix discovery influenced the field of genetics.”
Generate 3 multiple-choice questions targeting intermediate-level understanding us-
ing the same format.

Leaf-level Prompt

Knowledge fact: “DNA double helix was discovered in 1953 by Watson and Crick.”
Generate 3 multiple-choice questions targeting leaf-level understanding (specific
facts). Ensure 4 answer options, one correct answer, and 3 plausible distractors.

A.4 PROBE TYPES

From each generated question template, we derive six probe types to evaluate different aspects of
model behavior:

• Direct Probe: Queries the target fact in its canonical direction.
• Reverse Probe: Queries the fact in the inverted relation to test bidirectional consistency.
• Multi-hop Probe: Tests knowledge propagation by asking indirectly via intermediate nodes.
• Contextual Probe: Embeds the fact in a rich or distractor-laden context.
• Conflict Probe: Presents contradictory or competing information to assess resolution.
• Comparison Probe: Forces a choice between multiple candidates to evaluate selective updat-

ing.

Example prompts for the four subjects are shown in Table 5.

Table 5: Example probes across four subject domains, illustrating six probe types.

Subject Example Probes
Biology
(DNA double
helix)

Direct: When was the DNA double helix discovered?
Reverse: Which molecule’s structure was determined in 1953 as a double helix?
Multi-hop: Who were the key scientists whose discovery of the DNA structure influenced modern genetics?
Contextual: The DNA double helix discovery transformed molecular biology. In which year was this break-
through made?
Conflict: Some sources claim 1952, others 1953. Which year is correct?
Comparison: Was the DNA double helix discovered in 1953 or 1955?

Economics
(Phillips
curve)

Direct: What relationship does the Phillips curve describe?
Reverse: Which economic principle captures the link between inflation and unemployment?
Multi-hop: Which macroeconomic models rely on understanding the inflation-unemployment trade-off?
Contextual: The Phillips curve has shaped monetary policy debates. What relationship does it represent?
Conflict: Some argue it holds only short-term, others claim long-term relevance. Which is correct?
Comparison: Does the Phillips curve describe inflation-unemployment or wage-productivity trade-offs?

History (Dec-
laration of In-
dependence)

Direct: In what year was the Declaration of Independence signed?
Reverse: Which historical document was signed in 1776?
Multi-hop: Which events or congresses led to the signing of the Declaration?
Contextual: Amid the Revolutionary era, the Declaration was signed. Which year did this occur?
Conflict: Some accounts state July 2, others July 4. Which is correct?
Comparison: Was the Declaration signed in 1776 or 1777?

Physics
(General
Relativity)

Direct: In what year did Einstein publish the theory of General Relativity?
Reverse: Which scientist published General Relativity in 1915?
Multi-hop: Which subsequent physics phenomena were explained following Einstein’s publication?
Contextual: General Relativity transformed our understanding of space-time. When was it published?
Conflict: Some sources claim 1915, others 1916. Which is correct?
Comparison: Did Einstein publish General Relativity in 1915 or 1920?
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A.5 MULTIPLE-CHOICE FORMATTING AND DATA RECORDS

All probes are formatted as four-choice QA items consistent with MMLU. Distractors are created
via entity substitution and paraphrasing. An example for the four subjects is shown in Table 6

Table 6: Compact multiple-choice probes across four subjects. Correct answers indicated.

Subject Example Multiple Choice
Biology (DNA double helix) Q: When was the DNA double helix discovered?

A. 1953 (Correct) B. 1955 C. 1962 D. 1947

Economics (Phillips curve) Q: What relationship does the Phillips curve describe?
A. Inflation vs. unemployment (Correct) B. Wage vs. productivity C. Interest
rate vs. investment D. Savings vs. consumption

History (Declaration of In-
dependence)

Q: In what year was the Declaration of Independence signed?
A. 1776 (Correct) B. 1775 C. 1777 D. 1781

Physics (General Relativity) Q: In what year did Einstein publish the theory of General Relativity?
A. 1915 (Correct) B. 1920 C. 1912 D. 1918

A.6 QUALITY CONTROL

Items undergo:

1. Format validation (4 options, 1 correct answer)
2. Factual validation against the KG
3. Distractor validation (plausible yet incorrect)

Manual spot checks ensure grammaticality and factual correctness; GPT-generated distractors are
cross-checked with encyclopedic sources.

A.7 DOMAIN AND SAMPLE GRANULARITY

Domains include Biology, History, Physics, and Economics, each curated into a structured KG.
Our study focuses on modifying one fact at a time; all QA items are anchored on this fact. Multiple
templates per node level, probe types, paraphrases, and varying data scales (1, 10, 100, 1,000,
10,000) allow a single fact to generate up to millions of QA items for large-scale evaluation.

B PROPAGATION ASYMMETRY METRICS AND ALGORITHM

To quantify over- vs. under-spreading rigorously, we define:

Collateral Change Ratio (CCR) =
1

|Qrelated|
∑

x∈Qrelated

d
(
pθ′(· | x), pθ(· | x)

)
, (4)

Residual Retention (RR) =
1

|Qrelated|
∑

x∈Qrelated

1
[
ŷθ′(x) = yθ(x)

]
, (5)

where Qrelated denotes structurally related probes, pθ and pθ′ are predictions before and after inter-
vention, and d(·, ·) is a distance metric (KL, label change, etc.).

Propagation Evaluation Algorithm:

1. Select a target node at hierarchy level L.
2. Apply editing or unlearning to the node.
3. Measure direct accuracy on target node (Accdirect).
4. Measure multi-hop accuracy on related nodes (Accmulti-hop).
5. Compute CCR and RR metrics:

• Editing: 1−Accmulti-hop as proxy for over-spreading.
• Unlearning: Accmulti-hop as proxy for under-spreading.

6. Repeat for all hierarchy levels and average over domains.
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C STRESS TESTING
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(b) LLM as a judge
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Figure 8: Stress testing.

We evaluate instruction-following ability (Figure 8b) and hallucination on the TruthfulQA (Lin et al.,
2022) dataset (Figure 8c), testing whether the parameter update θ → θ′ preserves desired behavior
when executing complex tasks. These evaluations provide a comprehensive view of how the unified
framework constrains model updates, ensuring both local alignment with target distributions and
global reliability across diverse scenarios.

For hallucination, the average accuracy across data scales for unlearning is 76.0%, and for editing is
76.1%, with standard deviations of 0.87 and 0.91 respectively. This indicates that both editing and
unlearning maintain stable performance under hallucination tests, with no significant increase in
spurious behavior.

For instruction-following, when measured using an LLM as a judge, editing accuracy drops from
63.0% (original) to 48.6% on average, while unlearning drops from 62.9% to 49.1%. Although
the absolute difference is small, editing shows slightly larger variability (standard deviation 0.12%)
compared to unlearning (0.10%). This suggests that editing is more aggressive in updating targeted
knowledge but may slightly perturb complex reasoning tasks, whereas unlearning better preserves
general instruction-following ability.

D ROBUSTNESS AND FAILURE MODE

D.1 ADVERSARIAL ROBUSTNESS ANALYSIS

To complement our main text results, we provide a detailed analysis of adversarial robustness for
editing and unlearning interventions. Adversarial robustness is evaluated by exposing the model to
deliberately misleading or deceptive probes, which combine unrelated or conflicting concepts. This
stresses the model’s ability to maintain prior knowledge (Q−) while incorporating updates.

Experimental Setup We vary the number of training examples used for each intervention: 1, 10,
100, 1000, and 10,000. For each data scale, we measure two complementary performance metrics:

• Original Accuracy: The model’s performance on standard in-domain probes (Q+), reflect-
ing whether the intended knowledge update was successfully incorporated without disrupting
unrelated facts.

• Adversarial Accuracy: The model’s performance on conflict probes, which contain contra-
dictory or misleading information. These probes test the model’s robustness against adversar-
ial perturbations, i.e., whether it can resist adopting incorrect or conflicting knowledge while
maintaining its updated and preserved facts.

By comparing original and adversarial accuracy across training scales and intervention types (editing
vs. unlearning), we assess:

• The sensitivity of each method to misleading inputs.
• How stability and resistance to conflicts evolve as more examples are provided.
• Differences in trade-offs between aggressive updates (editing) and conservative updates (un-

learning).
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This setup allows us to systematically quantify the adversarial robustness of interventions, linking
conflict probe performance directly to practical model reliability under deceptive or contradictory
inputs.

Observations Our observations are:

• Editing exhibits strong local updates but high adversarial sensitivity: Original accuracy
remains stable around 63% across all data scales. However, adversarial accuracy drops sharply
from 36.7% at 1 example to 31.7% at 10,000 examples. This indicates that while editing
successfully enforces target updates, it leaves models vulnerable to misleading inputs, with
adversarial failure increasing slightly as data scale grows.

• Unlearning maintains more stable adversarial performance: Original accuracy is similar
to editing. Adversarial accuracy remains relatively constant around 33–35%, showing that un-
learning prioritizes preservation over aggressive enforcement, making the model less sensitive
to adversarially constructed probes.

• Trade-off between update intensity and robustness: Comparing the two interventions, edit-
ing maximizes immediate factual incorporation at the cost of susceptibility to adversarial
probes, whereas unlearning provides conservative updates that better preserve prior knowledge,
yielding higher adversarial robustness.

• Data scale effects: Increasing the number of examples slightly improves adversarial robustness
for unlearning (e.g., from 33.3% at 1 example to 34.8% at 1,000 examples), but the trend is less
pronounced for editing. This suggests that adding more training data does not fully mitigate
adversarial vulnerability for aggressive editing strategies.

Summary These results reinforce the broader trade-offs observed in our main text. Editing
achieves stronger local adaptation and in-domain gains, but adversarial robustness is compromised.
Unlearning is more conservative, achieving lower immediate gains but maintaining stability under
adversarial stress. Together, these findings highlight the importance of considering both factual
enforcement and robustness when designing knowledge update strategies in LLMs.

D.2 FAILURE MODE EXAMPLES

We provide examples of failure mode for each subject as shown in Table 7.

Table 7: Representative examples of each failure mode for the four studied subjects. Each subject is
listed in a separate row for readability.

Subject Failure Mode Example
Biology (DNA) Under-forgetting (RR) DNA year remains 1953 after update to 1955

Over-spreading (CCR) DNA update changes RNA discovery year
Conflict Emergence DNA reported as 1953 and 1955
Knowledge Drift DNA update causes cell structure errors
Instruction-Following Drop Fails to explain multi-step DNA replication
Hallucination Increase Invents molecule “X-DNA”

Economics (Phillips curve) Under-forgetting (RR) Phillips curve still inflation-unemployment after update
Over-spreading (CCR) Phillips curve update alters Laffer curve
Conflict Emergence Links both inflation-unemployment and wages-productivity
Knowledge Drift Update mispredicts supply-demand
Instruction-Following Drop Misapplies multi-step economic policy reasoning
Hallucination Increase Fabricates fictional “Y-Index”

History (Declaration) Under-forgetting (RR) Declaration year still 1776 after update to 1777
Over-spreading (CCR) Declaration update changes Constitution year
Conflict Emergence Declaration signed 1776 and 1777
Knowledge Drift Update affects French Revolution facts
Instruction-Following Drop Struggles with chronological sequencing of events
Hallucination Increase Claims fake historical figure influenced Declaration

Physics (General Relativity) Under-forgetting (RR) GR year remains 1915 after update to 1920
Over-spreading (CCR) GR update changes Special Relativity year
Conflict Emergence GR dated 1915 and 1920
Knowledge Drift Update reduces quantum mechanics accuracy
Instruction-Following Drop Cannot solve multi-step relativity problems
Hallucination Increase Reports spurious physics law “Relativistic Thermodynamics Law”
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E ADDITIONAL METHODS

To further validate the generality of the propagation asymmetry phenomena reported in the main
paper, we conducted an additional suite of experiments using multiple independent intervention
algorithms, spanning both editing and unlearning paradigms. These experiments were performed
on the same four subject domains (biology, economic, physics, history), and evaluated at root-,
intermediate-, and leaf-level nodes in our conceptual hierarchies.

E.1 UNLEARNING

We applied the gradient ascent method base on Tofu (Maini et al., 2024) framework with varying
numbers of updates across four subjects and multiple training set sizes. The results shown in Table 8
replicate the core findings presented in the main paper:

• propagation remains asymmetric across hierarchy levels,

• leaf nodes experience weaker upward transfer,

• root-level deletions continue to exhibit stronger downward effects.

Importantly, these consistency patterns persist regardless of the number of training examples and
irrespective of subject domain, suggesting that the structural behaviors we identified are not artifacts
of a particular unlearning implementation.

Subject Train Size Root Intermediate Leaf
biology 1 16.67 16.67 16.67
biology 10 16.67 16.67 16.67
biology 100 25.00 25.00 25.00
biology 1000 29.17 25.00 16.67
biology 10000 16.67 29.17 25.00
economic 1 29.17 29.17 29.17
economic 10 29.17 29.17 33.33
economic 100 20.83 16.67 25.00
economic 1000 37.50 37.50 29.17
economic 10000 37.50 20.83 25.00
physics 1 25.00 25.00 25.00
physics 10 25.00 25.00 25.00
physics 100 16.67 20.83 20.83
physics 1000 12.50 16.67 20.83
physics 10000 8.33 16.67 12.50
history 1 16.67 16.67 16.67
history 10 16.67 16.67 16.67
history 100 12.50 16.67 12.50
history 1000 4.17 8.33 0.00
history 10000 0.00 12.50 0.00

Table 8: Unlearning experiments using Tofu across domains and hierarchy levels.

E.2 EDITING

We also evaluated the MEND editing method (Mitchell et al., 2021) on the same corpus of subjects,
hierarchy depths, and training sizes. The results shown in Table 9 demonstrate that:

• editing accuracy follows the same hierarchy-dependent plasticity structure observed in the
main paper,

• root-level edits continue to propagate downward more strongly than bottom-up corrections,

• leaf nodes remain the easiest to modify reliably.
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These findings reinforce that the asymmetry patterns we report are algorithm-agnostic, emerging
from the structure of the knowledge graph itself rather than any specific intervention technique.

Dataset Train Size Root Intermediate Leaf
biology 1 35.2 32.7 42.1
biology 10 36.1 33.2 43.3
biology 100 37.6 34.4 44.7
biology 1000 38.9 35.1 46.2
biology 10000 20.3 18.7 40.5
economic 1 45.3 42.6 50.7
economic 10 46.2 43.3 49.4
economic 100 47.7 44.6 52.9
economic 1000 41.3 45.7 54.1
economic 10000 30.2 28.3 53.2
physics 1 25.3 22.7 30.2
physics 10 26.1 23.1 31.3
physics 100 27.4 24.6 32.6
physics 1000 28.7 25.4 27.7
physics 10000 15.2 13.4 30.3
history 1 10.3 9.7 12.4
history 10 11.2 10.3 13.3
history 100 11.1 11.4 14.1
history 1000 12.6 12.8 15.3
history 10000 6.1 5.7 14.8

Table 9: Editing experiments using MEND across domains and hierarchy levels.

F SEQUENTIAL UPDATE

To further validate our claim that editing and unlearning behave fundamentally differently, we
additionally conducted multi-step sequential updates on multiple facts using Qwen3-14B, LLaMA3-
8B, and Gemma-7B. This section reports the results to illustrate the phenomenon clearly.

SEQUENTIAL EDITING BEHAVIOR

Across multiple sequential edits, the model retains previously edited knowledge with only minor
drift. Even after five cumulative edits, the performance on earlier edited facts remains largely stable.
This supports our claim that editing operations are robust and localized, even under sequential
updates.

Acc 1 1 & 2 1 & 2 & 3 1 & 2 & 3 & 4 1 & 2 & 3 & 4 & 5
Edit Fact 1 55.0% 54.5% 54.0% 53.8% 53.5%
Edit Fact 2 — 48.0% 47.5% 47.0% 46.5%
Edit Fact 3 — — 62.0% 61.5% 61.0%
Edit Fact 4 — — — 50.0% 49.5%
Edit Fact 5 — — — — 57.0%

Table 10: Sequential editing performance.

SEQUENTIAL UNLEARNING BEHAVIOR

In contrast, unlearning shows clear cumulative degradation. When more facts are removed se-
quentially, the model’s performance on earlier unlearned facts, as well as related queries, drops
sharply. This supports our central claim: Unlearning is inherently more disruptive than editing,
because removing information often affects interconnected knowledge.
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Acc 1 1 & 2 1 & 2 & 3 1 & 2 & 3 & 4 1 & 2 & 3 & 4 & 5
Unlearn Fact 1 54.2% 37.7% 40.5% 34.3% 27.2%
Unlearn Fact 2 — 45.1% 37.8% 31.5% 25.2%
Unlearn Fact 3 — — 43.2% 36.0% 28.8%
Unlearn Fact 4 — — — 40.5% 31.5%
Unlearn Fact 5 — — — — 34.2%

Table 11: Sequential unlearning performance.

G ACCURACY RESULT

Editing accuracy for the 13 model across llama3, qwen3, qwq, mistral, gemma and deepseek families
are lists below in Table 12. Unlearning accuracy for the 13 model across llama3, qwen3, qwq,
mistral, gemma and deepseek families are lists below in Table 13.

H MODEL SIMILARITY RESULT

Representation Similarity Analysis Our unified framework models editing and unlearning as op-
timizing Ltask against Lpres. While probe-based evaluation measures outcomes on Q+ and Q−, it
does not reveal how the internal representations change during this optimization. To capture these
hidden dynamics, we analyze representational shifts from the original (pre-KnowledgeSmith) state
to the post-KnowledgeSmith state using Centered Kernel Alignment (CKA) (Kornblith et al., 2019),
KL divergence, L2 distance and Fisher score (Zhang et al., 2022).

For unlearning, these metrics expose a sharp phase transition around 1000 samples: below this point,
representations remain close to baseline, but beyond it they reorganize abruptly, suggesting a capac-
ity breakpoint where Lpres is overwhelmed by repeated optimization on Q+. Editing, in contrast,
produces smoother trajectories. KL divergence and Fisher scores increase steadily with training
size, indicating progressive local updates to representations rather than wholesale restructuring. For
example, biology edits on DeepSeek-8B show KL and Fisher growing from (KL≈20,Fisher≈9.7)
with a single sample to (KL≈172,Fisher≈93.7) at 1000 samples, after which growth plateaus as
the optimization stabilizes.

These results demonstrate that unlearning triggers abrupt phase transitions in representation
space once data scale crosses a threshold, while editing produces gradual, localized adjustments,
underscoring the need for representation level analysis beyond probe accuracy.

Computationally Efficiency. For the same model on a target dataset of 10, 000 examples, un-
learning typically completes in about 1.5 hours on an NVIDIA H100. Knowledge editing is more
resource-intensive (roughly 6 hours). This additional cost highlights the heavier computational de-
mands of precise factual editing.

In summary, unlearning prioritizes stability and low computational cost, while editing max-
imizes factual enforcement but risks destabilizing other knowledge and requires more re-
sources. The choice between the two depends on whether minimizing collateral effects or maxi-
mizing certainty of change is the primary goal.

Model similarity for llama3, qwen3, qwq, mistral, gemma and deepseek 6 families are lists below
in Tables 14 to 19

I LLM USAGE

We use large language models (LLMs) only for grammar checking and correction.
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Table 12: Editing Accuracy

llama3.2-1b-instruct llama3-8b-instruct

Branch Train Size Test Set Biology History Economic Physics Biology History Economic Physics

Intermediate

1 ID 45.83 25 37.5 20.83 20.83 4.17 29.17 12.5

OOD 44.05 44.07 44.11 44.05 63.08 63.13 63.22 63.05

10 ID 20.83 25 50 33.33 25 12.5 25 20.83

OOD 44.04 44.06 44.02 42.06 63.07 63.04 63.1 63

100 ID 45.83 25 45.83 0 20.83 12.5 20.83 41.67

OOD 23.35 43.99 44.08 26.88 63.05 63.13 63.12 24.72

1000 ID 4.17 25 45.83 0 20.83 12.5 20.83 12.5

OOD 25.22 43.98 44.17 26.85 63.06 63.03 63.09 24.3

10000 ID 4.17 25 45.83 0 20.83 12.5 20.83 12.5

OOD 25.22 43.98 44.17 26.85 63.06 63.03 63.09 24.3

Root

1 ID 41.67 25 41.67 29.17 16.67 4.17 33.33 16.67

OOD 44.17 44.16 43.99 44.15 63.04 62.91 63.1 63.05

10 ID 29.17 25 45.83 29.17 12.5 4.17 33.33 25

OOD 44.1 44.28 44.12 44.07 63.01 62.9 63.12 63.1

100 ID 29.17 25 4.17 20.83 12.5 4.17 33.33 25

OOD 44.12 44.22 26.24 44.2 63 62.97 63.15 63

1000 ID 29.17 25 0 25 12.5 4.17 33.33 16.67

OOD 44.15 44.26 25.4 44.09 62.98 62.98 63.11 63.11

10000 ID 29.17 25 0 25 12.5 4.17 33.33 16.67

OOD 44.15 44.26 25.4 44.09 62.98 62.98 63.11 63.11

Leaf

1 ID 41.67 25 33.33 25 16.67 4.17 37.5 16.67

OOD 44.13 44.11 44.08 44.02 63.1 63.07 63.09 63.1

10 ID 25 25 62.5 20.83 16.67 4.17 37.5 25

OOD 44.19 44.41 43.74 43.18 63.12 62.96 63.06 62.75

100 ID 4.17 4.17 4.17 0 16.67 12.5 25 4.17

OOD 25.45 40.55 25.53 26.88 62.78 62.47 62.6 25.41

1000 ID 25 45.83 0 8.33 16.67 4.17 25 16.67

OOD 25.78 23.44 26.63 24.84 62.77 59.56 62.59 24.25

10000 ID 25 45.83 0 8.33 16.67 4.17 25 16.67

OOD 25.78 23.44 26.63 24.84 62.77 59.56 62.59 24.25

llama3.2-3b-instruct llama3.3-70b-instruct

Intermediate

1 ID 25 12.5 41.67 16.67 20.83 8.33 20.83 25

OOD 59.17 59.24 59.36 59.22 81.44 81.42 81.39 81.42

10 ID 12.5 0 37.5 37.5 20.83 62.5 41.67 29.17

OOD 56.38 56.84 58.63 58.39 81.38 81.38 81.43 81.48

100 ID 29.17 20.83 54.17 12.5 20.83 58.33 50 29.17

OOD 23.47 26.9 23.32 25.84 81.46 81.26 81.33 81.39

1000 ID 4.17 45.83 41.67 0 25 58.33 50 29.17

OOD 25.45 25.12 25.31 25.08 81.39 81.35 81.38 81.31

10000 ID 4.17 45.83 41.67 0 25 58.33 50 29.17

OOD 25.45 25.12 25.31 25.08 81.39 81.35 81.38 81.31

Root

1 ID 25 4.17 29.17 12.5 20.83 4.17 20.83 25

OOD 59.2 59.28 59.24 59.34 81.41 81.46 81.46 81.43

10 ID 41.67 29.17 16.67 4.17 58.33 45.83 37.5 33.33

OOD 58.76 58.73 58.37 58.72 81.41 81.46 81.39 81.51

100 ID 37.5 0 41.67 29.17 58.33 25 41.67 33.33

OOD 23.3 26.86 24.4 25.34 81.39 81.41 81.4 81.42

1000 ID 4.17 0 20.83 25 58.33 20.83 41.67 33.33

OOD 25.57 26.48 25.06 25.2 81.42 81.46 81.48 81.44

10000 ID 4.17 0 20.83 25 58.33 20.83 41.67 33.33

OOD 25.57 26.48 25.06 25.2 81.42 81.46 81.48 81.44

Leaf

1 ID 20.83 8.33 33.33 20.83 20.83 8.33 20.83 25

OOD 59.23 59.25 59.3 59.24 81.43 81.37 81.43 81.45

10 ID 37.5 8.33 45.83 29.17 25 25 58.33 20.83

OOD 59.13 59.26 58.35 56.96 81.43 81.38 81.41 81.34

100 ID 8.33 4.17 54.17 20.83 25 20.83 58.33 20.83

OOD 24.49 25.52 23.21 24.55 81.41 81.44 81.33 81.5

1000 ID 20.83 4.17 54.17 4.17 25 25 62.5 20.83

OOD 27.23 26.24 23.19 25.42 81.43 81.37 81.29 81.44

10000 ID 20.83 4.17 54.17 4.17 25 25 62.5 20.83

OOD 27.23 26.24 23.19 25.42 81.43 81.37 81.29 81.44
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qwen3-1.7b qwen3-32b

Branch Train Size Test Set Biology History Economic Physics Biology History Economic Physics

Intermediate

1 ID 20.83 12.5 33.33 29.17 12.5 0 25 12.5

OOD 53 53.99 54.05 54.08 75.07 75.11 75.19 75.09

10 ID 25 12.5 33.33 29.17 20.83 0 20.83 8.33

OOD 53.55 53.95 54.05 54.08 75.07 75.02 75.08 75.02

100 ID 20.83 12.5 33.33 37.5 20.83 0 29.17 8.33

OOD 53 54 53.82 53.02 75.17 75.15 74.97 75.1

1000 ID 25 12.5 33.33 37.5 20.83 0 29.17 8.33

OOD 53.04 53.99 53.87 53.07 75.2 75.15 74.86 75.03

10000 ID 25 12.5 33.33 37.5 20.83 0 29.17 8.33

OOD 53.04 53.99 53.87 53.07 75.2 75.15 74.86 75.03

Root

1 ID 37.5 45.83 25 12.5 20.83 16.67 45.83 8.33

OOD 53.81 53.8 53.7 54 75.2 75.12 75.21 75

10 ID 33.33 45.83 16.67 12.5 16.67 25 33.33 16.67

OOD 53.78 53.78 53.87 54 75.05 75.17 75.02 75.07

100 ID 29.17 45.83 25 20.83 20.83 12.5 12.5 16.67

OOD 53.74 53.8 53.7 53.65 75.02 75.15 74.98 75.04

1000 ID 29.17 45.83 25 20.83 20.83 16.67 12.5 16.67

OOD 53.79 53.82 53.75 53.75 75.1 75.1 75 75.06

10000 ID 29.17 45.83 25 20.83 20.83 16.67 12.5 16.67

OOD 53.79 53.82 53.75 53.75 75.1 75.1 75 75.06

Leaf

1 ID 16.67 37.5 37.5 25 20.83 0 25 8.33

OOD 53.97 53.19 53.28 51.66 75.15 75.1 75.07 75.07

10 ID 16.67 29.17 8.33 16.67 20.83 25 29.17 4.17

OOD 53.87 53.86 53.76 53.92 74.9 75.05 75.15 75.17

100 ID 16.67 33.33 29.17 25 29.17 16.67 54.17 4.17

OOD 54.2 53.2 53.33 51.66 75.1 75.12 74.88 75.13

1000 ID 16.67 37.5 37.5 33.33 25 4.17 41.67 4.17

OOD 53.69 53.19 53.28 39.71 75.16 74.18 74.69 75.15

10000 ID 16.67 37.5 37.5 33.33 25 4.17 41.67 4.17

OOD 53.69 53.19 53.28 39.71 75.16 74.18 74.69 75.15

qwen3-14b qwq-32b

Intermediate

1 ID 20.83 8.33 16.67 25 16.67 4.17 70.83 12.5

OOD 73.84 73.86 73.89 73.94 77.4 77.45 77.42 77.45

10 ID 20.83 0 4.17 20.83 12.5 4.17 33.33 12.5

OOD 73.78 73.54 73.42 73.62 77.36 77.39 77.42 77.35

100 ID 25 4.17 4.17 16.67 16.67 0 37.5 12.5

OOD 73.76 73.45 73.36 73.56 77.28 77.43 77.41 77.39

1000 ID 25 4.17 4.17 16.67 16.67 0 37.5 12.5

OOD 73.73 73.42 73.33 73.56 77.33 77.43 77.41 77.4

10000 ID 25 4.17 4.17 16.67 16.67 0 37.5 12.5

OOD 73.73 73.42 73.33 73.56 77.33 77.43 77.41 77.4

Root

1 ID 41.67 20.83 33.33 25 12.5 20.83 20.83 12.5

OOD 73.86 73.9 73.86 73.79 77.4 77.47 77.37 77.42

10 ID 20.83 8.33 33.33 16.67 20.83 12.5 16.67 12.5

OOD 73.81 73.71 73.87 73.85 77.35 77.53 77.47 77.38

100 ID 16.67 12.5 37.5 16.67 16.67 12.5 16.67 12.5

OOD 73.71 73.68 73.81 73.58 77.43 77.39 77.43 77.3

1000 ID 16.67 12.5 41.67 16.67 16.67 12.5 16.67 12.5

OOD 73.73 73.64 73.84 73.55 77.44 77.39 77.45 77.35

10000 ID 16.67 12.5 41.67 16.67 16.67 12.5 16.67 12.5

OOD 73.73 73.64 73.84 73.55 77.44 77.39 77.45 77.35

Leaf

1 ID 25 0 16.67 20.83 16.67 0 33.33 12.5

OOD 73.89 73.89 73.87 73.88 77.48 77.39 77.4 77.48

10 ID 20.83 4.17 33.33 12.5 25 0 41.67 12.5

OOD 73.91 73.63 73.63 73.69 77.5 77.37 77.33 77.42

100 ID 20.83 0 29.17 16.67 29.17 0 29.17 12.5

OOD 73.66 73.39 73.42 73.6 77.4 77.52 77.33 77.4

1000 ID 20.83 0 8.33 16.67 20.83 0 41.67 12.5

OOD 65.94 73.39 39.3 73.5 77.27 77.52 68.74 77.28

10000 ID 20.83 0 8.33 16.67 20.83 0 41.67 12.5

OOD 65.94 73.39 39.3 73.5 77.27 77.52 68.74 77.28
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mistral-Small-24B-Instruct-2501 gemma-2b

Branch Train Size Test Set Biology History Economic Physics Biology History Economic Physics

Intermediate

1 ID 16.67 50 12.5 20.83 8.33 4.17 12.5 12.5

OOD 73.4 73.34 73.24 73.39 30.46 30.63 30.49 30.53

10 ID 50 45.83 16.67 0 20.83 12.5 29.17 4.17

OOD 24.47 22.99 25.2 25.51 29.4 30.37 29.06 30.29

100 ID 29.17 45.83 54.17 58.33 16.67 45.83 37.5 29.17

OOD 24.22 22.95 24.16 23 25.81 24.08 26.16 26.54

1000 ID 45.83 45.83 54.17 58.33 16.67 45.83 54.17 58.33

OOD 22.87 22.95 24.16 23 25.81 22.95 22.95 22.95

10000 ID 45.83 45.83 54.17 58.33 16.67 45.83 54.17 58.33

OOD 22.87 22.95 24.16 23 25.81 22.95 22.95 22.95

Root

1 ID 33.33 20.83 16.67 45.83 4.17 0.0 16.67 4.17

OOD 73.42 73.42 73.16 73.39 30.54 30.59 30.64 30.54

10 ID 45.83 54.17 4.17 58.33 8.33 8.33 12.5 33.33

OOD 22.95 25.2 25.27 23.14 30.34 27.18 30.55 25.79

100 ID 45.83 37.5 54.17 58.33 4.17 50.0 25.0 54.17

OOD 22.83 24.4 23.32 22.99 29.3 24.51 29.13 23.74

1000 ID 45.83 37.5 41.67 37.5 45.83 45.83 54.17 58.33

OOD 23.14 24.4 24.76 25.12 22.95 22.95 22.95 22.95

10000 ID 45.83 37.5 41.67 37.5 45.83 45.83 54.17 58.33

OOD 23.14 24.4 24.76 25.12 22.95 22.95 22.95 22.95

Leaf

1 ID 50 41.67 83.33 4.17 8.33 33.33 25.0 0.0

OOD 73.32 73.24 73.14 73.42 30.25 28.98 30.64 30.44

10 ID 4.17 45.83 4.17 41.67 12.5 33.33 20.83 4.17

OOD 25.47 22.95 25.54 25.19 27.7 24.6 25.28 29.08

100 ID 8.33 45.83 54.17 8.33 25.0 37.5 37.5 41.67

OOD 26.63 22.96 22.95 24.61 24.94 24.19 24.9 24.07

1000 ID 41.67 45.83 54.17 8.33 45.83 45.83 54.17 58.33

OOD 23.54 22.96 22.95 24.61 22.83 22.95 22.95 22.95

10000 ID 41.67 45.83 54.17 8.33 45.83 45.83 54.17 58.33

OOD 23.54 22.96 22.95 24.61 22.83 22.95 22.95 22.95

mistral-Large-Instruct-2411 gemma-7b

Intermediate

1 ID 25.0 62.5 25.0 12.5 45.83 37.5 41.67 45.83

OOD 82.13 82.42 82.22 82.37 59.22 58.96 56.69 57.78

10 ID 0.0 45.83 41.67 37.5 45.83 45.83 54.17 50.0

OOD 26.89 22.97 24.53 24.7 22.95 22.95 22.95 23.25

100 ID 16.67 62.5 25.0 50.0 25.0 45.83 50.0 41.67

OOD 23.89 25.84 25.0 23.05 24.2 22.95 23.11 23.11

1000 ID 16.67 62.5 25.0 50.0 29.17 54.17 8.33 66.67

OOD 23.89 25.84 25.0 23.05 24.9 25.59 25.22 24.68

10000 ID 16.67 62.5 25.0 50.0 29.17 54.17 8.33 66.67

OOD 23.89 25.84 25.0 23.05 24.9 25.59 25.22 24.68

Root

1 ID 25.0 12.5 45.83 62.5 37.5 41.67 50.0 16.67

OOD 82.25 82.22 82.24 82.25 59.7 59.56 57.63 59.74

10 ID 0.0 0.0 4.17 58.33 45.83 41.67 33.33 58.33

OOD 26.19 26.89 25.41 22.95 28.43 22.97 29.24 22.97

100 ID 8.33 45.83 37.5 58.33 45.83 45.83 45.83 50.0

OOD 26.86 22.95 24.64 23.0 22.95 23.07 22.95 24.13

1000 ID 8.33 45.83 37.5 58.33 33.33 45.83 20.83 54.17

OOD 26.86 22.95 24.64 23.0 23.98 23.07 23.24 23.34

10000 ID 8.33 45.83 37.5 58.33 33.33 45.83 20.83 54.17

OOD 26.86 22.95 24.64 23.0 23.98 23.07 23.24 23.34

Leaf

1 ID 54.17 29.17 41.67 37.5 45.83 45.83 54.17 33.33

OOD 82.19 82.25 82.07 82.08 22.82 22.97 22.95 59.29

10 ID 4.17 0.0 54.17 58.33 45.83 45.83 45.83 58.33

OOD 25.47 25.51 22.95 23.07 22.95 23.07 23.33 22.87

100 ID 50.0 0.0 45.83 54.17 37.5 41.67 41.67 58.33

OOD 23.05 24.6 24.69 25.55 23.96 23.78 23.38 22.94

1000 ID 50.0 0.0 45.83 54.17 4.17 54.17 4.17 4.17

OOD 23.05 24.6 24.69 25.55 25.48 24.49 25.52 25.54

10000 ID 50.0 0.0 45.83 54.17 4.17 54.17 4.17 4.17

OOD 23.05 24.6 24.69 25.55 25.48 24.49 25.52 25.54
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DeepSeek-R1-0528-Qwen3-8B

Branch Train Size Test Set Biology History Economic Physics

Intermediate

1 ID 8.33 0.0 20.83 25.0

OOD 65.99 66.09 66.0 66.02

10 ID 25.0 0.0 33.33 29.17

OOD 65.94 65.93 66.01 65.95

100 ID 16.67 0.0 33.33 33.33

OOD 65.95 65.94 66.07 65.89

1000 ID 16.67 0.0 33.33 37.5

OOD 65.9 65.94 66.07 66.02

10000 ID 16.67 0.0 33.33 37.5

OOD 65.9 65.94 66.07 66.02

Root

1 ID 12.5 8.33 0.0 45.83

OOD 66.07 65.96 28.17 65.94

10 ID 12.5 8.33 16.67 45.83

OOD 66.02 65.99 65.98 65.93

100 ID 12.5 4.17 8.33 45.83

OOD 65.97 66.1 66.02 66.0

1000 ID 12.5 4.17 8.33 45.83

OOD 65.92 66.02 65.99 65.92

10000 ID 12.5 4.17 8.33 45.83

OOD 65.92 66.02 65.99 65.92

Leaf

1 ID 16.67 0.0 20.83 25.0

OOD 65.9 65.96 66.09 65.92

10 ID 20.83 8.33 37.5 25.0

OOD 65.83 65.84 65.92 65.92

100 ID 16.67 4.17 29.17 25.0

OOD 65.95 65.77 65.92 65.76

1000 ID 16.67 4.17 25.0 20.83

OOD 66.02 65.77 64.29 65.8

10000 ID 16.67 4.17 25.0 20.83

OOD 66.02 65.77 64.29 65.8
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Table 13: Unlearning Accuracy

llama3.2-1b-instruct llama3-8b-instruct

Branch Train Size Test Set Biology History Economic Physics Biology History Economic Physics

Intermediate

1 ID 25.0 20.83 33.33 12.5 16.67 4.17 29.17 12.5

OOD 32.69 32.69 32.69 32.69 63.01 63.01 63.01 63.01

10 ID 20.83 20.83 33.33 16.67 16.67 4.17 29.17 12.5

OOD 32.75 32.74 32.74 32.6 63.01 63.0 63.0 62.98

100 ID 29.17 20.83 33.33 16.67 16.67 4.17 37.5 12.5

OOD 32.55 32.93 32.76 32.77 62.85 62.8 62.84 62.75

1000 ID 33.33 4.17 37.5 16.67 16.67 4.17 33.33 12.5

OOD 32.67 33.91 32.72 32.51 62.93 62.82 62.91 62.85

10000 ID 33.33 4.17 37.5 16.67 16.67 4.17 33.33 12.5

OOD 32.67 33.91 32.72 32.51 62.93 62.82 62.91 62.85

Root

1 ID 25.0 20.83 33.33 12.5 16.67 4.17 29.17 12.5

OOD 32.69 32.69 32.69 32.69 63.01 63.01 63.01 63.01

10 ID 20.83 20.83 33.33 16.67 16.67 4.17 29.17 12.5

OOD 32.63 32.61 32.55 32.69 63.0 63.0 63.02 63.0

100 ID 29.17 16.67 33.33 37.5 16.67 4.17 33.33 12.5

OOD 32.97 32.74 32.84 32.94 62.91 62.98 62.87 62.89

1000 ID 16.67 8.33 37.5 4.17 16.67 4.17 33.33 12.5

OOD 32.66 32.86 33.11 33.26 63.01 62.99 62.81 62.89

10000 ID 16.67 8.33 37.5 4.17 16.67 4.17 33.33 12.5

OOD 32.66 32.86 33.11 33.26 63.01 62.99 62.81 62.89

Leaf

1 ID 25.0 20.83 33.33 12.5 16.67 4.17 29.17 12.5

OOD 32.69 32.69 32.69 32.69 63.01 63.01 63.01 63.01

10 ID 25.0 20.83 37.5 12.5 16.67 4.17 29.17 12.5

OOD 32.69 32.58 32.69 32.74 62.98 63.02 62.99 62.98

100 ID 25.0 20.83 25.0 16.67 16.67 4.17 33.33 12.5

OOD 32.57 32.85 32.73 32.73 62.75 62.75 63.02 62.75

1000 ID 20.83 12.5 20.83 20.83 16.67 4.17 33.33 12.5

OOD 32.68 33.08 32.27 31.68 62.68 62.53 62.98 62.69

10000 ID 20.83 12.5 20.83 20.83 16.67 4.17 33.33 12.5

OOD 32.68 33.08 32.27 31.68 62.68 62.53 62.98 62.69

llama3.2-3b-instruct llama3.3-70b-instruct

Intermediate

1 ID 20.83 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.33 59.33 59.33 59.37 81.33 81.33 81.33 81.33

10 ID 20.83 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.17 59.29 59.27 59.24 81.33 81.33 81.33 81.33

100 ID 25.0 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.07 59.05 59.51 59.06 81.35 81.36 81.35 81.35

1000 ID 16.67 4.17 41.67 12.5 20.83 8.33 29.17 29.72

OOD 59.14 59.22 59.13 59.3 81.38 81.47 81.41 81.37

10000 ID 16.67 4.17 41.67 12.5 20.83 8.33 29.17 29.72

OOD 59.14 59.22 59.13 59.3 81.38 81.47 81.41 81.37

Root

1 ID 20.83 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.33 59.33 59.33 59.37 81.33 81.33 81.33 81.33

10 ID 20.83 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.29 59.3 59.34 59.2 81.33 81.33 81.33 81.33

100 ID 25.0 4.17 37.5 16.67 20.83 8.33 20.83 20.83

OOD 58.94 58.98 59.51 59.07 81.38 81.35 81.37 81.35

1000 ID 16.67 4.17 41.67 12.5 20.83 8.33 25.0 23.33

OOD 58.96 58.99 59.41 59.12 81.39 81.33 81.41 81.33

10000 ID 16.67 4.17 41.67 12.5 20.83 8.33 25.0 23.33

OOD 58.96 58.99 59.41 59.12 81.39 81.33 81.41 81.33

Leaf

1 ID 20.83 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.33 59.33 59.33 59.37 81.33 81.33 81.33 81.33

10 ID 20.83 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.29 59.27 59.16 59.26 81.33 81.33 81.33 81.33

100 ID 20.83 4.17 41.67 16.67 20.83 8.33 20.83 20.83

OOD 59.12 59.09 59.46 59.08 81.37 81.37 81.35 81.39

1000 ID 12.5 4.17 45.83 16.67 20.83 8.33 25.0 20.33

OOD 58.99 58.94 59.31 58.87 81.32 81.37 81.44 81.32

10000 ID 12.5 4.17 45.83 16.67 20.83 8.33 25.0 20.33

OOD 58.99 58.94 59.31 58.87 81.32 81.37 81.44 81.32
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qwen3-1.7b qwen3-32b

Branch Train Size Test Set Biology History Economic Physics Biology History Economic Physics

Intermediate

1 ID 16.67 16.67 33.33 16.67 16.67 0.0 16.67 12.5

OOD 53.9 53.92 53.92 53.93 75.13 75.13 75.13 75.13

10 ID 16.67 16.67 33.33 16.67 16.67 0.0 16.67 12.5

OOD 53.92 53.97 54.09 53.95 75.13 75.13 75.13 75.13

100 ID 8.33 16.67 20.83 8.33 16.67 0.0 16.67 12.5

OOD 53.25 53.51 54.42 53.25 75.07 75.07 75.14 75.07

1000 ID 25.0 20.83 25.0 25.0 16.67 0.0 25.0 12.5

OOD 52.66 52.36 53.6 52.64 75.21 75.07 75.26 74.98

10000 ID 25.0 20.83 25.0 25.0 16.67 0.0 25.0 12.5

OOD 52.66 52.36 53.6 53.64 75.21 75.07 75.26 74.98

Root

1 ID 12.5 16.67 33.33 15.33 16.67 0.0 16.67 12.5

OOD 53.92 53.92 53.92 53.92 75.13 75.13 75.13 75.13

10 ID 16.67 16.67 33.33 16.67 16.67 0.0 16.67 12.5

OOD 53.99 53.85 53.83 53.89 75.13 75.13 75.13 75.13

100 ID 8.33 16.67 20.83 16.67 16.67 0.0 16.67 12.5

OOD 53.55 53.0 54.01 53.35 75.18 75.16 75.12 75.15

1000 ID 33.33 29.17 37.5 29.33 16.67 0.0 25.0 12.5

OOD 52.67 51.83 53.65 53.67 75.33 75.16 75.05 75.23

10000 ID 33.33 29.17 37.5 33.33 16.67 0.0 25.0 12.5

OOD 52.67 51.83 53.65 52.67 75.33 75.16 75.05 75.23

Leaf

1 ID 16.67 16.67 33.33 16.67 16.67 0.0 16.67 12.5

OOD 53.9 53.9 53.92 53.9 75.13 75.13 75.13 75.09

10 ID 16.67 16.67 33.33 16.67 16.67 0.0 16.67 12.5

OOD 54.0 54.02 54.0 54.05 75.13 75.13 75.13 75.13

100 ID 16.67 16.67 25.0 16.67 16.67 0.0 20.83 12.5

OOD 53.82 53.68 54.56 53.88 75.07 75.1 75.05 75.14

1000 ID 25.0 29.17 25.0 25.0 16.67 0.0 25.0 12.5

OOD 52.81 53.16 53.46 53.81 75.11 75.1 75.25 74.71

10000 ID 25.0 29.17 25.0 25.0 16.67 0.0 25.0 12.5

OOD 52.81 53.16 53.46 53.73 75.11 75.1 75.25 74.71

qwen3-14b qwq-32b

Intermediate

1 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.86 73.86 73.86 73.86 77.42 77.42 77.42 77.42

10 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.84 73.86 73.86 73.86 77.38 77.45 77.44 77.4

100 ID 20.83 0.0 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.61 73.63 73.89 73.94 77.4 77.37 77.28 77.37

1000 ID 20.83 4.17 20.83 16.67 12.5 0.0 29.17 12.5

OOD 73.15 73.23 73.83 73.59 77.35 77.37 77.27 77.42

10000 ID 20.83 4.17 20.83 16.67 12.5 0.0 29.17 12.5

OOD 73.15 73.23 73.83 73.59 77.35 77.37 77.27 77.42

Root

1 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.86 73.86 73.86 73.86 77.42 77.42 77.42 77.42

10 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.88 73.86 73.86 73.85 77.45 77.47 77.44 77.48

100 ID 20.83 0.0 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.84 73.66 73.86 73.62 77.35 77.3 77.38 77.45

1000 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.54 73.48 73.5 73.26 77.55 77.3 77.38 77.55

10000 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.54 73.48 73.5 73.26 77.55 77.3 77.38 77.55

Leaf

1 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.86 73.86 73.86 73.86 77.42 77.42 77.42 77.42

10 ID 20.83 4.17 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.86 73.86 73.86 73.86 77.42 77.47 77.43 77.45

100 ID 20.83 0.0 25.0 12.5 12.5 0.0 29.17 12.5

OOD 73.64 73.91 73.84 73.83 77.39 77.4 77.38 77.26

1000 ID 20.83 0.0 25.0 16.67 12.5 0.0 29.17 12.5

OOD 72.99 73.91 73.64 73.51 77.3 77.4 77.47 77.35

10000 ID 20.83 0.0 25.0 16.67 12.5 0.0 29.17 12.5

OOD 72.99 73.91 73.64 73.51 77.3 77.4 77.47 77.35
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mistral-Small-24B-Instruct-2501 gemma-2b

Branch Train Size Test Set Biology History Economic Physics Biology History Economic Physics

Intermediate

1 ID 16.67 50 12.5 20.83 8.33 4.17 12.5 12.5

OOD 73.4 73.34 73.24 73.39 30.46 30.63 30.49 30.53

10 ID 50 45.83 16.67 0 20.83 12.5 29.17 4.17

OOD 24.47 22.99 25.2 25.51 29.4 30.37 29.06 30.29

100 ID 29.17 45.83 54.17 58.33 16.67 45.83 37.5 29.17

OOD 24.22 22.95 24.16 23 25.81 24.08 26.16 26.54

1000 ID 45.83 45.83 54.17 58.33 45.83 45.83 54.17 58.33

OOD 22.87 22.95 24.16 23 22.95 22.95 22.95 22.95

10000 ID 45.83 45.83 54.17 58.33 45.83 45.83 54.17 58.33

OOD 22.87 22.95 24.16 23 22.95 22.95 22.95 22.95

Root

1 ID 33.33 20.83 16.67 45.83 4.17 0.0 16.67 4.17

OOD 73.42 73.42 73.16 73.39 30.54 30.59 30.64 30.54

10 ID 45.83 54.17 4.17 58.33 8.33 8.33 12.5 33.33

OOD 22.95 25.2 25.27 23.14 30.34 27.18 30.55 25.79

100 ID 45.83 37.5 54.17 58.33 4.17 50.0 25.0 54.17

OOD 22.83 24.4 23.32 22.99 29.3 24.51 29.13 23.74

1000 ID 45.83 37.5 41.67 37.5 45.83 45.83 54.17 58.33

OOD 23.14 24.4 24.76 25.12 22.95 22.95 22.95 22.95

10000 ID 45.83 37.5 41.67 37.5 45.83 45.83 54.17 58.33

OOD 23.14 24.4 24.76 25.12 22.95 22.95 22.95 22.95

Leaf

1 ID 50 41.67 83.33 4.17 8.33 33.33 25.0 0.0

OOD 73.32 73.24 73.14 73.42 30.25 28.98 30.64 30.44

10 ID 4.17 45.83 4.17 41.67 12.5 33.33 20.83 4.17

OOD 25.47 22.95 25.54 25.19 27.7 24.6 25.28 29.08

100 ID 8.33 45.83 54.17 8.33 25.0 37.5 37.5 41.67

OOD 26.63 22.96 22.95 24.61 24.94 24.19 24.9 24.07

1000 ID 41.67 45.83 54.17 8.33 45.83 45.83 54.17 58.33

OOD 23.54 22.96 22.95 24.61 22.83 22.95 22.95 22.95

10000 ID 41.67 45.83 54.17 8.33 45.83 45.83 54.17 58.33

OOD 23.54 22.96 22.95 24.61 22.83 22.95 22.95 22.95

mistral-Large-Instruct-2411 gemma-7b

Intermediate

1 ID 25.0 62.5 25.0 12.5 45.83 37.5 41.67 45.83

OOD 82.13 82.42 82.22 82.37 59.22 58.96 56.69 57.78

10 ID 0.0 45.83 41.67 37.5 45.83 45.83 54.17 50.0

OOD 26.89 22.97 24.53 24.7 22.95 22.95 22.95 23.25

100 ID 16.67 62.5 25.0 50.0 25.0 45.83 50.0 41.67

OOD 23.89 25.84 25.0 23.05 24.2 22.95 23.11 23.11

1000 ID 16.67 62.5 25.0 50.0 29.17 54.17 8.33 66.67

OOD 23.89 25.84 25.0 23.05 24.9 25.59 25.22 24.68

10000 ID 16.67 62.5 25.0 50.0 29.17 54.17 8.33 66.67

OOD 23.89 25.84 25.0 23.05 24.9 25.59 25.22 24.68

Root

1 ID 25.0 12.5 45.83 62.5 37.5 41.67 50.0 16.67

OOD 82.25 82.22 82.24 82.25 59.7 59.56 57.63 59.74

10 ID 0.0 0.0 4.17 58.33 45.83 41.67 33.33 58.33

OOD 26.19 26.89 25.41 22.95 28.43 22.97 29.24 22.97

100 ID 8.33 45.83 37.5 58.33 45.83 45.83 45.83 50.0

OOD 26.86 22.95 24.64 23.0 22.95 23.07 22.95 24.13

1000 ID 8.33 45.83 37.5 58.33 33.33 45.83 20.83 54.17

OOD 26.86 22.95 24.64 23.0 23.98 23.07 23.24 23.34

10000 ID 8.33 45.83 37.5 58.33 33.33 45.83 20.83 54.17

OOD 26.86 22.95 24.64 23.0 23.98 23.07 23.24 23.34

Leaf

1 ID 54.17 29.17 41.67 37.5 45.83 45.83 54.17 33.33

OOD 82.19 82.25 82.07 82.08 22.82 22.97 22.95 59.29

10 ID 4.17 0.0 54.17 58.33 45.83 45.83 45.83 58.33

OOD 25.47 25.51 22.95 23.07 22.95 23.07 23.33 22.87

100 ID 50.0 0.0 45.83 54.17 37.5 41.67 41.67 58.33

OOD 23.05 24.6 24.69 25.55 23.96 23.78 23.38 22.94

1000 ID 50.0 0.0 45.83 54.17 4.17 54.17 4.17 4.17

OOD 23.05 24.6 24.69 25.55 25.48 24.49 25.52 25.54

10000 ID 50.0 0.0 45.83 54.17 4.17 54.17 4.17 4.17

OOD 23.05 24.6 24.69 25.55 25.48 24.49 25.52 25.54
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DeepSeek-R1-0528-Qwen3-8B

Branch Train Size Test Set Biology History Economic Physics

Intermediate

1 ID 12.5 0.0 12.5 25.0

OOD 65.99 65.99 65.99 65.96

10 ID 12.5 0.0 12.5 25.0

OOD 65.96 65.93 66.0 65.95

100 ID 12.5 0.0 12.5 25.0

OOD 65.85 65.7 66.07 65.84

1000 ID 12.5 0.0 16.67 25.0

OOD 66.39 65.7 66.24 65.89

10000 ID 12.5 0.0 16.67 25.0

OOD 66.39 65.7 66.24 65.89

Root

1 ID 12.5 0.0 12.5 25.0

OOD 65.99 65.99 65.99 65.96

10 ID 12.5 0.0 12.5 25.0

OOD 65.97 65.98 65.99 65.99

100 ID 12.5 0.0 12.5 25.0

OOD 65.82 65.95 65.97 65.73

1000 ID 12.5 0.0 16.67 25.0

OOD 66.14 65.95 66.13 66.16

10000 ID 12.5 0.0 16.67 25.0

OOD 66.14 65.95 66.13 66.16

Leaf

1 ID 12.5 0.0 12.5 25.0

OOD 65.99 65.99 65.99 65.96

10 ID 12.5 0.0 12.5 25.0

OOD 65.99 66.04 66.0 65.92

100 ID 12.5 0.0 12.5 25.0

OOD 65.66 65.78 66.07 65.9

1000 ID 12.5 0.0 16.67 25.0

OOD 65.68 65.78 66.03 66.01

10000 ID 12.5 0.0 16.67 25.0

OOD 65.68 65.78 66.03 66.01
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Table 14: Normalized model similarity scores for Llama3

Editing Unlearning

Subject Branch Train Size CKA Fisher KL L2 CKA Fisher KL L2

biology

root

1 0.999 0.000 0.017 0.006 1.000 0.000 0.000 0.000

10 0.999 0.150 0.129 0.137 0.993 0.392 0.368 0.304

100 0.999 0.150 0.129 0.137 0.001 0.949 0.984 0.741

1000 0.999 0.150 0.129 0.137 0.623 0.895 0.811 0.770

10000 0.999 0.150 0.129 0.137 0.825 0.958 0.874 0.977

intermediate

1 0.999 0.012 0.080 0.014 1.000 0.000 0.000 0.000

10 0.999 0.087 0.119 0.091 0.994 0.390 0.355 0.302

100 0.999 0.147 0.142 0.142 0.277 0.919 0.944 0.727

1000 0.999 0.147 0.142 0.142 0.612 0.921 0.909 0.795

10000 0.999 0.147 0.142 0.142 0.784 0.988 0.896 0.982

leaf

1 0.999 0.010 0.079 0.017 1.000 0.000 0.000 0.000

10 0.999 0.216 0.263 0.229 0.994 0.371 0.358 0.285

100 0.999 0.479 0.695 0.494 0.277 0.917 0.948 0.729

1000 0.379 0.982 0.997 0.992 0.687 0.877 0.920 0.803

10000 0.379 0.982 0.997 0.992 0.909 0.903 0.876 0.989

economics

root

1 0.999 0.018 0.087 0.003 1.000 0.000 0.000 0.000

10 0.999 0.018 0.087 0.003 0.996 0.388 0.329 0.306

100 0.999 0.018 0.087 0.003 0.000 0.948 0.983 0.741

1000 0.999 0.018 0.087 0.003 0.623 0.893 0.805 0.767

10000 0.999 0.018 0.087 0.003 0.801 1.000 0.820 0.921

intermediate

1 0.999 0.020 0.052 0.004 1.000 0.000 0.000 0.000

10 0.999 0.194 0.159 0.199 0.997 0.378 0.334 0.298

100 0.999 0.316 0.269 0.322 0.502 0.940 0.950 0.747

1000 0.999 0.316 0.269 0.322 0.686 0.895 0.828 0.788

10000 0.999 0.316 0.269 0.322 0.807 0.909 0.825 0.966

leaf

1 0.999 0.022 0.048 0.018 1.000 0.000 0.000 0.000

10 0.999 0.323 0.338 0.326 0.998 0.366 0.284 0.289

100 0.999 0.363 0.362 0.371 0.394 0.912 0.915 0.724

1000 0.999 0.371 0.365 0.380 0.666 0.891 0.818 0.787

10000 0.999 0.371 0.365 0.380 0.851 0.891 0.815 0.942

history

root

1 0.999 0.006 0.038 0.003 1.000 0.000 0.000 0.000

10 0.999 0.124 0.152 0.134 0.994 0.390 0.365 0.298

100 0.999 0.124 0.152 0.134 0.282 0.950 0.954 0.730

1000 0.999 0.124 0.152 0.134 0.687 0.917 0.920 0.774

10000 0.999 0.124 0.152 0.134 0.895 0.957 0.878 0.981

intermediate

1 0.999 0.011 0.067 0.004 1.000 0.000 0.000 0.000

10 0.999 0.138 0.161 0.154 0.995 0.391 0.354 0.300

100 0.999 0.138 0.161 0.154 0.230 0.925 0.970 0.723

1000 0.999 0.138 0.161 0.154 0.738 0.868 0.850 0.770

10000 0.999 0.138 0.161 0.154 0.888 0.991 0.842 0.973

leaf

1 1 0.001 0.070 0.000 1.000 0.000 0.000 0.000

10 0.999 0.217 0.235 0.230 0.994 0.361 0.370 0.269

100 0.999 0.439 0.523 0.454 0.243 0.919 1.000 0.722

1000 0.232 0.963 0.985 0.965 0.673 0.900 0.988 0.805

10000 0.232 0.963 0.985 0.965 0.895 0.899 0.942 1.000

physics

root

1 0.999 0.011 0.000 0.010 1.000 0.000 0.000 0.000

10 0.999 0.158 0.127 0.162 0.994 0.396 0.359 0.309

100 0.999 0.158 0.127 0.162 0.437 0.920 0.940 0.723

1000 0.999 0.158 0.127 0.162 0.749 0.896 0.892 0.774

10000 0.999 0.158 0.127 0.162 0.909 0.932 0.847 0.978

intermediate

1 0.999 0.008 0.027 0.007 1.000 0.000 0.000 0.000

10 0.999 0.214 0.192 0.223 0.997 0.381 0.337 0.300

100 0.425 0.751 1.000 0.755 0.469 0.945 0.980 0.745

1000 0 1.000 0.990 1.000 0.701 0.911 0.869 0.801

10000 0 1.000 0.990 1.000 0.910 0.904 0.831 0.910

leaf

1 0.999 0.023 0.043 0.020 1.000 0.000 0.000 0.000

10 0.999 0.249 0.240 0.255 0.994 0.379 0.360 0.283

100 0.45 0.743 0.987 0.741 0.959 0.497 0.483 0.504

1000 0.154 0.976 0.985 0.985 0.934 0.710 0.692 0.748

10000 0.154 0.976 0.985 0.985 0.907 0.899 0.879 0.986
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Table 15: Normalized model similarity scores for DeepSeek

Editing Unlearning

Subject Branch Train Size CKA Fisher KL L2 CKA Fisher KL L2

biology

root

1 1.000 0.150 0.199 0.054 1.000 0.000 0.000 0.000

10 0.998 0.315 0.247 0.238 0.975 0.302 0.261 0.276

100 0.997 0.366 0.417 0.275 0.457 0.739 0.895 0.745

1000 0.997 0.366 0.426 0.275 0.481 0.752 0.914 0.827

10000 0.997 0.366 0.426 0.275 0.674 0.777 0.713 0.995

intermediate

1 0.999 0.144 0.115 0.061 1.000 0.000 0.000 0.000

10 0.996 0.405 0.389 0.271 0.988 0.292 0.298 0.271

100 0.994 0.461 0.468 0.352 0.649 0.733 0.693 0.747

1000 0.994 0.461 0.470 0.352 0.579 0.781 0.769 0.829

10000 0.994 0.461 0.470 0.352 0.727 0.775 0.792 0.916

leaf

1 0.999 0.131 0.011 0.033 1.000 0.000 0.000 0.000

10 0.991 0.523 0.682 0.385 0.986 0.250 0.501 0.248

100 0.966 0.738 0.828 0.608 0.772 0.635 0.824 0.731

1000 0.960 0.758 0.877 0.638 0.641 0.708 0.777 0.856

10000 0.960 0.758 0.877 0.638 0.781 0.764 0.756 0.972

economics

root

1 0.995 0.000 0.000 0.000 1.000 0.000 0.000 0.000

10 0.993 0.219 0.186 0.194 0.968 0.320 0.334 0.276

100 0.992 0.261 0.216 0.246 0.543 0.733 0.645 0.744

1000 0.992 0.261 0.221 0.246 0.408 0.819 0.730 0.819

10000 0.992 0.261 0.221 0.246 0.000 0.980 1.000 0.880

intermediate

1 0.992 0.102 0.250 0.053 1.000 0.000 0.000 0.000

10 0.976 0.480 0.615 0.387 0.988 0.308 0.264 0.265

100 0.972 0.500 0.634 0.412 0.675 0.746 0.857 0.754

1000 0.972 0.500 0.634 0.412 0.646 0.787 0.877 0.836

10000 0.972 0.500 0.634 0.412 0.645 0.869 0.919 0.917

leaf

1 0.996 0.028 0.045 0.030 1.000 0.000 0.000 0.000

10 0.982 0.378 0.399 0.320 0.976 0.264 0.500 0.251

100 0.953 0.546 0.561 0.505 0.716 0.711 0.910 0.733

1000 0.000 1.000 1.000 1.000 0.582 0.744 0.805 0.847

10000 0.000 1.000 1.000 1.000 0.460 1.000 0.890 0.897

history

root

1 0.999 0.164 0.199 0.073 1.000 0.000 0.000 0.000

10 0.997 0.299 0.394 0.197 0.980 0.315 0.370 0.276

100 0.993 0.427 0.682 0.357 0.594 0.692 0.659 0.734

1000 0.993 0.427 0.679 0.357 0.686 0.731 0.898 0.814

10000 0.993 0.427 0.679 0.357 0.550 0.798 0.965 1.000

intermediate

1 0.998 0.127 0.085 0.054 1.000 0.000 0.000 0.000

10 0.998 0.224 0.138 0.158 0.979 0.309 0.575 0.273

100 0.998 0.247 0.164 0.195 0.418 0.730 0.969 0.741

1000 0.998 0.247 0.168 0.195 0.732 0.724 0.762 0.811

10000 0.998 0.247 0.168 0.195 0.702 0.775 0.949 0.992

leaf

1 0.999 0.146 0.101 0.075 1.000 0.000 0.000 0.000

10 0.987 0.515 0.620 0.395 0.983 0.267 0.484 0.232

100 0.971 0.644 0.691 0.571 0.698 0.671 0.835 0.722

1000 0.968 0.658 0.699 0.590 0.106 0.739 0.833 0.868

10000 0.968 0.658 0.699 0.590 0.610 0.743 0.853 0.991

physics

root

1 0.999 0.182 0.087 0.076 1.000 0.000 0.000 0.000

10 0.998 0.287 0.231 0.157 0.980 0.300 0.320 0.250

100 0.998 0.287 0.232 0.157 0.600 0.700 0.800 0.750

1000 0.998 0.287 0.239 0.157 0.650 0.740 0.850 0.820

10000 0.998 0.287 0.239 0.157 0.550 0.800 0.950 0.950

intermediate

1 0.999 0.172 0.174 0.031 1.000 0.000 0.000 0.000

10 0.986 0.451 0.480 0.323 0.970 0.280 0.300 0.250

100 0.984 0.498 0.485 0.368 0.680 0.720 0.780 0.760

1000 0.983 0.498 0.482 0.368 0.630 0.750 0.820 0.830

10000 0.983 0.498 0.482 0.368 0.600 0.770 0.850 0.900

leaf

1 0.998 0.221 0.144 0.076 1.000 0.000 0.000 0.000

10 0.989 0.447 0.441 0.360 0.980 0.250 0.450 0.250

100 0.969 0.604 0.669 0.542 0.700 0.670 0.820 0.720

1000 0.965 0.625 0.660 0.567 0.650 0.720 0.850 0.850

10000 0.965 0.625 0.660 0.567 0.600 0.740 0.870 0.920
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Table 16: Normalized model similarity scores for Qwen3

Editing Unlearning

Subject Branch Train Size CKA Fisher KL L2 CKA Fisher KL L2

biology

root

1 0.999 0.102 0.060 0.085 1.000 0.000 0.000 0.000

10 0.996 0.461 0.331 0.424 0.995 0.347 0.280 0.278

100 0.996 0.482 0.341 0.442 0.773 0.882 0.744 0.745

1000 0.996 0.482 0.341 0.442 0.626 0.941 0.905 0.861

10000 0.996 0.482 0.341 0.442 0.836 0.999 0.931 0.990

intermediate

1 0.999 0.057 0.015 0.052 1.000 0.000 0.000 0.000

10 0.999 0.313 0.171 0.274 0.992 0.340 0.285 0.276

100 0.999 0.379 0.227 0.311 0.546 0.910 0.774 0.766

1000 0.999 0.379 0.227 0.311 0.304 0.949 0.854 0.864

10000 0.999 0.379 0.227 0.311 0.742 0.934 0.866 0.933

leaf

1 0.999 0.092 0.061 0.111 1.000 0.000 0.000 0.000

10 0.998 0.422 0.308 0.419 0.994 0.330 0.290 0.256

100 0.996 0.527 0.364 0.516 0.561 0.900 0.792 0.755

1000 0.843 0.888 0.759 0.889 0.386 0.962 0.895 0.883

10000 0.843 0.888 0.759 0.889 0.719 0.982 0.902 0.986

economics

root

1 0.999 0.002 0.072 0.000 1.000 0.000 0.000 0.000

10 0.998 0.292 0.236 0.268 0.995 0.342 0.280 0.283

100 0.998 0.311 0.245 0.290 0.754 0.894 0.743 0.755

1000 0.998 0.311 0.246 0.290 0.542 0.924 0.796 0.840

10000 0.998 0.311 0.246 0.290 0.667 0.946 0.820 0.936

intermediate

1 0.999 0.048 0.101 0.019 1.000 0.000 0.000 0.000

10 0.996 0.428 0.311 0.389 0.993 0.341 0.290 0.267

100 0.996 0.454 0.326 0.417 0.720 0.904 0.785 0.772

1000 0.996 0.454 0.326 0.417 0.668 0.943 0.825 0.864

10000 0.996 0.454 0.326 0.417 0.741 0.945 0.844 0.946

leaf

1 0.999 0.038 0.078 0.012 1.000 0.000 0.000 0.000

10 0.998 0.376 0.273 0.340 0.993 0.334 0.277 0.260

100 0.986 0.635 0.461 0.620 0.798 0.879 0.721 0.746

1000 0.000 1.000 1.000 1.000 0.677 0.960 0.858 0.871

10000 0.000 1.000 1.000 1.000 0.748 0.979 0.858 0.968

history

root

1 0.999 0.037 0.094 0.015 1.000 0.000 0.000 0.000

10 0.998 0.415 0.345 0.393 0.987 0.337 0.291 0.271

100 0.998 0.423 0.347 0.401 0.656 0.890 0.765 0.754

1000 0.998 0.423 0.347 0.401 0.608 0.900 0.773 0.832

10000 0.998 0.423 0.347 0.401 0.731 0.979 0.827 0.954

intermediate

1 0.999 0.014 0.098 0.002 1.000 0.000 0.000 0.000

10 0.997 0.445 0.368 0.419 0.991 0.341 0.281 0.272

100 0.996 0.500 0.389 0.482 0.301 0.910 0.765 0.764

1000 0.996 0.500 0.390 0.482 0.000 0.924 0.797 0.841

10000 0.996 0.500 0.390 0.482 0.691 0.979 0.847 0.971

leaf

1 1.000 0.041 0.122 0.049 1.000 0.000 0.000 0.000

10 0.999 0.401 0.325 0.406 0.987 0.323 0.299 0.238

100 0.997 0.510 0.386 0.515 0.655 0.886 0.819 0.732

1000 0.997 0.510 0.386 0.515 0.036 0.994 1.000 0.897

10000 0.997 0.510 0.386 0.515 0.520 0.982 0.980 1.000

physics

root

1 0.997 0.083 0.045 0.063 1.000 0.000 0.000 0.000

10 0.997 0.407 0.280 0.363 0.987 0.335 0.290 0.278

100 0.996 0.462 0.329 0.428 0.688 0.887 0.767 0.751

1000 0.996 0.462 0.329 0.428 0.517 0.921 0.858 0.848

10000 0.996 0.462 0.329 0.428 0.764 0.993 0.871 0.938

intermediate

1 0.999 0.000 0.000 0.003 1.000 0.000 0.000 0.000

10 0.996 0.424 0.310 0.407 0.986 0.339 0.310 0.269

100 0.993 0.493 0.363 0.485 0.733 0.897 0.803 0.755

1000 0.993 0.493 0.363 0.485 0.583 0.975 0.853 0.872

10000 0.993 0.493 0.363 0.485 0.723 0.891 0.827 0.906

leaf

1 0.999 0.051 0.053 0.048 1.000 0.000 0.000 0.000

10 0.996 0.402 0.325 0.375 0.995 0.335 0.289 0.259

100 0.992 0.509 0.384 0.493 0.740 0.892 0.787 0.739

1000 0.992 0.509 0.384 0.493 0.526 0.966 0.904 0.889

10000 0.992 0.509 0.384 0.493 0.642 1.000 0.853 0.984
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Table 17: Normalized model similarity scores for QwQ

Editing Unlearning

Subject Branch Train Size CKA Fisher KL L2 CKA Fisher KL L2

biology

root

1 0.741 0.208 0.000 0.000 0.493 0.000 0.000 0.000

10 0.736 0.550 0.492 0.414 0.440 0.321 0.348 0.286

100 0.997 0.613 0.521 0.478 0.490 0.799 0.826 0.737

1000 0.760 0.613 0.521 0.478 0.433 0.788 0.887 0.803

10000 0.760 0.613 0.521 0.478 0.491 0.934 0.977 0.989

intermediate

1 0.766 0.111 0.048 0.022 0.493 0.000 0.000 0.000

10 1.000 0.543 0.433 0.408 0.440 0.308 0.356 0.275

100 0.561 0.547 0.434 0.415 0.489 0.790 0.850 0.744

1000 0.739 0.547 0.435 0.415 0.000 0.845 0.829 0.810

10000 0.739 0.547 0.435 0.415 0.437 0.889 0.887 0.943

leaf

1 0.741 0.103 0.019 0.021 0.493 0.000 0.000 0.000

10 0.764 0.555 0.435 0.437 0.440 0.300 0.342 0.249

100 0.760 0.675 0.551 0.583 0.438 0.789 0.797 0.733

1000 0.976 0.803 0.699 0.758 0.050 0.886 0.964 0.846

10000 0.976 0.803 0.699 0.758 0.435 1.000 0.932 0.983

economics

root

1 0.741 0.063 0.097 0.066 0.493 0.000 0.000 0.000

10 0.765 0.303 0.305 0.274 0.493 0.310 0.348 0.297

100 0.765 0.329 0.320 0.292 0.490 0.810 0.823 0.733

1000 0.996 0.329 0.320 0.292 0.433 0.883 0.869 0.808

10000 0.996 0.329 0.320 0.292 0.487 0.844 0.865 0.844

intermediate

1 0.741 0.079 0.089 0.100 0.440 0.000 0.000 0.000

10 0.763 0.403 0.391 0.370 0.440 0.301 0.351 0.266

100 0.735 0.532 0.502 0.500 0.490 0.797 0.895 0.753

1000 0.766 0.000 0.032 0.016 0.430 0.862 0.937 0.832

10000 0.738 0.427 0.402 0.389 0.435 0.878 0.914 0.917

leaf

1 0.766 0.000 0.032 0.016 0.440 0.000 0.000 0.000

10 0.738 0.427 0.402 0.389 0.493 0.288 0.346 0.253

100 0.755 0.610 0.576 0.576 0.438 0.788 0.787 0.722

1000 0.000 1.000 1.000 1.000 0.487 0.886 0.962 0.834

10000 0.000 1.000 1.000 1.000 0.434 0.981 0.951 0.932

history

root

1 0.766 0.194 0.195 0.148 0.434 0.793 0.848 0.728

10 0.739 0.508 0.451 0.386 0.487 0.805 0.877 0.793

100 0.736 0.604 0.535 0.478 0.434 0.793 0.848 0.728

1000 0.761 0.604 0.535 0.478 0.487 0.805 0.877 0.793

10000 0.761 0.604 0.535 0.478 0.490 0.982 0.925 0.935

intermediate

1 0.563 0.210 0.205 0.140 0.493 0.000 0.000 0.000

10 0.999 0.500 0.473 0.406 0.493 0.315 0.345 0.279

100 0.762 0.569 0.527 0.474 0.491 0.789 0.791 0.740

1000 0.992 0.569 0.527 0.474 0.490 0.802 0.839 0.797

10000 0.992 0.569 0.527 0.474 0.492 0.852 0.901 0.930

leaf

1 0.766 0.235 0.244 0.183 0.493 0.000 0.000 0.000

10 0.994 0.568 0.501 0.462 0.493 0.290 0.347 0.239

100 0.748 0.740 0.666 0.658 1.000 0.765 0.829 0.723

1000 0.717 0.782 0.706 0.713 0.486 0.854 1.000 0.842

10000 0.717 0.782 0.706 0.713 0.488 0.878 0.955 1.000

physics

root

1 0.998 0.092 0.044 0.050 1.000 0.000 0.000 0.000

10 0.998 0.284 0.213 0.227 0.987 0.344 0.323 0.279

100 0.998 0.302 0.229 0.249 0.575 0.836 0.836 0.741

1000 0.998 0.302 0.232 0.249 0.639 0.852 0.867 0.814

10000 0.998 0.302 0.232 0.249 0.741 0.908 0.889 0.955

intermediate

1 0.999 0.060 0.067 0.014 1.000 0.000 0.000 0.000

10 0.994 0.363 0.327 0.318 0.984 0.333 0.316 0.273

100 0.736 0.548 0.525 0.522 0.627 0.854 0.854 0.753

1000 0.761 0.548 0.525 0.522 0.638 0.879 0.847 0.834

10000 0.761 0.548 0.525 0.522 0.744 0.855 0.836 0.905

leaf

1 0.999 0.098 0.080 0.048 1.000 0.000 0.000 0.000

10 0.995 0.366 0.335 0.330 0.990 0.321 0.366 0.264

100 0.804 0.619 0.680 0.592 0.800 0.686 0.697 0.654

1000 0.704 0.703 0.676 0.682 0.703 0.799 0.815 0.829

10000 0.704 0.703 0.676 0.682 0.716 0.880 0.867 0.963
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Table 18: Normalized model similarity scores for Mistral

Editing Unlearning

Subject Branch Train Size CKA Fisher KL L2 CKA Fisher KL L2

biology

root

1 0.999 0.023 0.000 0.022 1.000 0.000 0.000 0.000

10 0.480 0.547 0.977 0.532 0.988 0.347 0.376 0.000

100 0.351 0.757 0.958 0.749 0.410 0.857 1.000 0.000

1000 0.313 0.955 0.963 0.958 0.577 0.863 0.856 0.410

10000 0.313 0.955 0.963 0.958 0.778 0.911 0.837 0.978

intermediate

1 0.986 0.028 0.010 0.023 1.000 0.000 0.000 0.000

10 0.232 0.575 0.966 0.564 0.991 0.341 0.366 0.000

100 0.249 0.758 0.977 0.754 0.491 0.854 0.908 0.000

1000 0.385 0.972 0.994 0.972 0.498 0.884 0.820 0.319

10000 0.385 0.972 0.994 0.972 0.751 0.899 0.800 1.000

leaf

1 1.000 0.026 0.030 0.022 1.000 0.000 0.000 0.000

10 0.479 0.560 0.958 0.549 0.991 0.317 0.396 0.000

100 0.683 0.762 0.957 0.739 0.537 0.817 0.932 0.000

1000 0.578 0.952 0.963 0.953 0.571 0.849 0.873 0.327

10000 0.578 0.952 0.963 0.953 0.803 0.883 0.967 0.988

economics

root

1 0.986 0.012 0.139 0.013 1.000 0.000 0.000 0.000

10 0.351 0.543 1.000 0.526 0.986 0.350 0.314 0.288

100 0.147 0.736 0.982 0.719 0.432 0.858 0.790 0.747

1000 0.197 0.898 0.966 0.894 0.524 0.879 0.777 0.809

10000 0.197 0.898 0.966 0.894 0.489 0.975 0.880 0.912

intermediate

1 0.999 0.027 0.087 0.017 1.000 0.000 0.000 0.000

10 0.242 0.552 0.981 0.541 0.993 0.342 0.425 0.000

100 0.199 0.754 0.981 0.744 0.632 0.863 0.938 0.000

1000 0.143 0.971 0.995 0.973 0.667 0.875 0.774 0.329

10000 0.143 0.971 0.995 0.973 0.731 0.908 0.762 0.951

leaf

1 0.986 0.015 0.124 0.012 1.000 0.000 0.000 0.000

10 0.523 0.569 0.949 0.556 0.989 0.321 0.354 0.267

100 0.373 0.788 0.964 0.773 0.636 0.834 0.849 0.734

1000 0.324 0.989 0.974 0.991 0.642 0.865 0.827 0.835

10000 0.324 0.989 0.974 0.991 0.686 0.957 0.854 0.936

history

root

1 0.999 0.044 0.214 0.019 1.000 0.000 0.000 0.000

10 0.285 0.560 0.960 0.546 0.987 0.347 0.342 0.282

100 0.163 0.767 0.969 0.760 0.511 0.844 0.793 0.739

1000 0.185 0.929 0.959 0.930 0.660 0.849 0.864 0.807

10000 0.185 0.929 0.959 0.930 0.725 0.911 0.890 0.978

intermediate

1 0.999 0.035 0.238 0.021 1.000 0.000 0.000 0.000

10 0.448 0.568 0.956 0.551 0.988 0.347 0.403 0.282

100 0.136 0.751 0.957 0.743 0.316 0.855 0.901 0.743

1000 0.000 1.000 0.963 1.000 0.490 0.839 0.803 0.807

10000 0.000 1.000 0.963 1.000 0.760 0.915 0.879 0.979

leaf

1 0.986 0.051 0.211 0.034 1.000 0.000 0.000 0.000

10 0.626 0.552 0.954 0.537 0.988 0.317 0.384 0.246

100 0.560 0.776 0.957 0.757 0.532 0.825 0.885 0.725

1000 0.575 0.960 0.954 0.959 0.272 0.878 0.940 0.857

10000 0.575 0.960 0.954 0.959 0.675 0.875 0.925 0.997

physics

root

1 0.999 0.000 0.018 0.000 1.000 0.000 0.000 0.000

10 0.376 0.566 0.960 0.551 0.987 0.344 0.323 0.279

100 0.234 0.775 0.969 0.763 0.575 0.836 0.836 0.741

1000 0.117 0.971 0.971 0.975 0.639 0.852 0.867 0.814

10000 0.117 0.971 0.971 0.975 0.741 0.908 0.889 0.955

intermediate

1 0.999 0.029 0.042 0.024 1.000 0.000 0.000 0.000

10 0.443 0.591 0.964 0.573 0.984 0.333 0.316 0.273

100 0.349 0.788 0.962 0.780 0.627 0.854 0.854 0.753

1000 0.211 0.985 0.970 0.983 0.638 0.879 0.847 0.834

10000 0.211 0.985 0.970 0.983 0.744 0.855 0.836 0.905

leaf

1 0.986 0.065 0.048 0.025 1.000 0.000 0.000 0.000

10 0.333 0.566 0.967 0.548 0.990 0.321 0.366 0.264

100 0.647 0.775 0.967 0.764 0.800 0.686 0.697 0.654

1000 0.285 0.974 0.965 0.977 0.703 0.799 0.815 0.829

10000 0.285 0.974 0.965 0.977 0.716 0.880 0.867 0.963
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Table 19: Normalized model similarity scores for Gemma

edit Unlearning

Subject Branch Train Size CKA Fisher KL L2 CKA Fisher KL L2

biology

root

1 1.000 0.152 0.000 0.000 0.791 0.000 0.013 0.052

10 0.961 0.377 0.652 0.299 0.805 0.461 0.561 0.394

100 0.962 0.462 0.787 0.575 0.949 0.651 0.645 0.452

1000 0.653 0.692 0.954 0.813 0.875 0.757 0.725 0.547

10000 0.653 0.692 0.954 0.813 0.904 0.947 0.889 0.876

intermediate

1 1.000 0.000 0.197 0.040 1.000 0.000 0.000 0.000

10 0.225 0.686 0.944 0.452 0.588 0.370 0.550 0.354

100 0.183 0.809 0.981 0.673 0.596 0.542 0.642 0.462

1000 0.196 0.730 0.999 0.925 0.859 0.837 0.741 0.530

10000 0.196 0.730 0.999 0.925 0.888 1.000 0.905 0.859

leaf

1 0.544 0.673 0.932 0.446 0.853 0.000 0.000 0.000

10 0.169 0.795 0.959 0.586 0.544 0.466 0.610 0.435

100 0.115 0.877 0.954 0.699 0.508 0.561 0.666 0.511

1000 0.158 0.859 1.000 0.936 0.710 0.807 0.761 0.590

10000 0.158 0.859 1.000 0.936 0.739 0.997 0.925 0.920

economics

root

1 0.994 0.273 0.548 0.041 0.870 0.000 0.000 0.000

10 0.943 0.378 0.753 0.330 0.874 0.441 0.545 0.347

100 0.703 0.504 0.813 0.595 0.889 0.645 0.639 0.438

1000 0.152 0.726 0.964 0.897 0.822 0.828 0.737 0.534

10000 0.152 0.726 0.964 0.897 0.851 1.000 0.901 0.863

intermediate

1 0.999 0.191 0.324 0.009 0.886 0.000 0.000 0.000

10 0.283 0.661 0.873 0.435 0.578 0.397 0.562 0.382

100 0.174 0.798 0.970 0.638 0.580 0.515 0.630 0.451

1000 0.238 0.886 0.969 0.931 0.671 0.809 0.775 0.626

10000 0.238 0.886 0.969 0.931 0.699 1.000 0.939 0.956

leaf

1 0.300 0.635 0.944 0.440 0.866 0.000 0.000 0.000

10 0.154 0.700 0.967 0.544 0.631 0.449 0.578 0.370

100 0.254 0.887 0.955 0.664 0.495 0.521 0.660 0.518

1000 0.000 1.000 0.979 1.000 0.552 0.839 0.804 0.673

10000 0.000 1.000 0.979 1.000 0.581 1.000 0.968 1.000

history

root

1 1.000 0.061 0.074 0.036 0.878 0.189 0.182 0.173

10 0.149 0.762 0.924 0.489 0.501 0.394 0.577 0.405

100 0.108 0.657 0.974 0.639 0.738 0.559 0.606 0.375

1000 0.106 0.870 0.970 0.925 0.668 0.807 0.764 0.603

10000 0.106 0.870 0.970 0.925 0.696 0.998 0.928 0.933

intermediate

1 0.999 0.057 0.317 0.063 1.000 0.000 0.000 0.000

10 0.511 0.759 0.931 0.474 0.550 0.376 0.585 0.432

100 0.354 0.883 0.964 0.687 0.533 0.541 0.670 0.528

1000 0.401 0.869 0.955 0.942 0.713 0.833 0.788 0.646

10000 0.401 0.869 0.955 0.942 0.742 1.000 0.952 0.976

leaf

1 0.325 0.753 0.942 0.463 0.745 0.000 0.000 0.000

10 0.424 0.759 0.934 0.499 0.555 0.400 0.590 0.429

100 0.317 0.863 0.974 0.625 0.518 0.479 0.639 0.490

1000 0.276 0.863 0.989 0.874 0.678 0.747 0.746 0.590

10000 0.276 0.863 0.989 0.874 0.707 0.938 0.910 0.920

physics

root

1 1.000 0.094 0.106 0.025 1.000 0.000 0.000 0.000

10 0.135 0.847 0.946 0.535 0.440 0.403 0.600 0.447

100 0.120 0.880 0.950 0.711 0.511 0.574 0.672 0.519

1000 0.059 0.880 0.959 0.907 0.632 0.791 0.759 0.603

10000 0.059 0.880 0.959 0.907 0.661 0.982 0.923 0.933

intermediate

1 0.998 0.087 0.342 0.063 1.000 0.000 0.000 0.000

10 0.759 0.414 0.787 0.363 0.844 0.446 0.545 0.337

100 0.562 0.429 0.851 0.600 0.980 0.655 0.614 0.369

1000 0.159 0.675 0.995 0.846 0.867 0.775 0.702 0.477

10000 0.159 0.675 0.995 0.846 0.896 0.966 0.866 0.806

leaf

1 1.000 0.185 0.220 0.036 0.860 0.000 0.000 0.000

10 0.258 0.837 0.922 0.498 0.433 0.381 0.596 0.456

100 0.267 0.701 0.964 0.649 0.710 0.560 0.626 0.421

1000 0.142 0.882 0.976 0.908 0.651 0.783 0.759 0.604

10000 0.142 0.882 0.976 0.908 0.680 0.973 0.923 0.933
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