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ABSTRACT

Post-Training Quantization (PTQ) and Sparsification (PTS) are dominant meth-
ods in the compression of Large Language Models (LLMs) due to their minimal
resource usage and generalizability. It is a natural idea to integrate quantization
and sparsification in a unified framework, which however, often results in substan-
tial accuracy losses. Here we argue that, the key lies in optimization. This paper
introduces a novel joint optimization strategy that concurrently mitigates errors
induced by both sparsification and quantization. Unlike sequential approaches,
our method employs learnable transformation matrices to simultaneously optimize
errors across both dimensions, preventing the typical misalignments associated
with sequential optimizations. Furthermore, we present a reordering mechanism
within the learnable mask sparsification process to maintain consistent sparsity
ratios. This mechanism ensures the prioritization of the least important weights
during each update iteration, thus enhancing the stability of the compression pro-
cess. Our approach demonstrates considerable performance enhancements across
diverse models and datasets, with the most notable gains observed under condi-
tions of extremely low-bit quantization and high sparsity ratios. For example,
in the LLaMA2-13b model with weight quantization at 2 bit and a 75% sparsity
configuration, our method surpasses the state-of-the-art (SOTA) by 9.03% in av-
erage accuracy across five zero-shot tasks. Meanwhile, in the newest LLaMA3-8b
model, with weight quantization at 3 bit and a 50% sparsity configuration, our
method outperforms the SOTA by 4.58% (56.86% vs 52.28%) in zero-shot tasks
and achieves a perplexity reduction of 4.45 on the WikiText2 dataset (10.78 vs
15.23).

1 INTRODUCTION

The remarkable capabilities of large language models (LLMs) (Touvron et al., 2023a;b; Brown et al.,
2020; Le Scao et al., 2023; Zhang et al., 2022) have garnered considerable interest across a multi-
tude of disciplines. Yet, the escalating dimensions of these models present significant deployment
challenges on consumer-grade graphics processing units (GPUs). As a result, the topics of model
compression and acceleration have increasingly become focal points within the research community.
Two prevalent techniques—model quantization and sparsification—are recognized for their effec-
tiveness in both compressing and accelerating model inference processes. Quantization (Frantar
et al., 2023; Yuan et al., 2023; Lin et al., 2023; Xiao et al., 2023; Shao et al., 2023; Ma et al., 2024)
involves mapping high-precision floating-point parameters to lower-bit fixed-point representations.
This method not only reduces the model size by minimizing the bit requirements but also boosts
memory access efficiency, a crucial factor in speeding up computation. Especially on hardware plat-
forms equipped to accelerate bitwise operations, or on processors specifically optimized for low-bit
computations, quantized models can achieve notably faster processing speeds. Additionally, model
sparsification (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al., 2023; Xu et al., 2024) com-
presses models by transforming dense weight matrices into sparse formats through the application
of sparse masks. This approach can significantly quicken computation on hardware platforms that
are optimized for handling sparse matrix operations, thereby enhancing the overall execution speed
of the models.

While model compression techniques such as quantization and sparsification accelerate computa-
tional processes, they invariably entail some degree of performance degradation. The extensive
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fine-tuning required for large language models, which often comprise hundreds of millions of pa-
rameters, involves significant time and computational resources. As a result, compression methods
that bypass extensive training phases are gaining prominence. Among these, post-training quantiza-
tion, which necessitates no fine-tuning or only minor calibration, has been widely adopted from the
era of convolutional neural networks through to that of large language models. GPTQ (Frantar et al.,
2023) exemplifies advanced quantization techniques, implementing progressive quantization with
the Optimal Brain Surgeon (OBS) (Hassibi et al., 1993) algorithm to mitigate quantization errors
by revising high-precision parameters. Similarly, AWQ (Lin et al., 2023) performs input channel
scaling, utilizing activation statistics to achieve equivalent scaling of weight activations, effectively
managing the impact of outliers on quantization. OmniQuant (Shao et al., 2023) pioneered the adap-
tation of scaling and clipping parameters into learnable entities, facilitating block-wise optimization
using small data batches. In the realm of large language models, non-training-dependent sparsifica-
tion methods are increasingly favored over those requiring fine-tuning. For instance, Wanda (Sun
et al., 2023) posits that activations must be included in weight importance assessments, suggest-
ing that a singular weight statistic is insufficient to capture a weight’s true role within the model.
Dsnot (Zhang et al., 2023) introduces a training-free approach by iteratively updating sparse masks,
dynamically reducing the density of weights. Moreover, BESA (Xu et al., 2024) innovates by ap-
plying a learnable factor to a set of candidate sparsity rates, assigning variable sparsity to different
linear layers, and enabling dynamic mask optimization through adaptive sparsity.

The two compression techniques under consideration—model quantization and sparsification—do
not require a training phase, which allows for their combination to potentially enhance model com-
pression further. However, this amalgamation significantly impairs the model’s performance. Even
with advancements in cutting-edge compression algorithms, the performance of the model severely
deteriorates under configurations characterized by low bit-width and high compression ratios. A
primary contributor to this decline is the sequential implementation of the quantization and sparsity
algorithms. Our experiments indicate that initiating with quantization optimization followed by the
application of weight sparsity amplifies the quantization errors, consequently increasing the overall
mean squared error loss.

This paper introduces a joint optimization strategy designed to concurrently minimize errors asso-
ciated with quantization and sparsity. More precisely, following each iteration that establishes a
sparsity mask, we calibrate the quantization process using small data batches, applying the sparsity
mask to the weights concurrently. Losses resulting from quantization and sparsity are optimized us-
ing a learnable transformation matrix, which adjusts dynamically. This joint optimization approach
is designed to be orthogonal to a broad spectrum of existing quantization and sparsity algorithms,
and it has demonstrated superior performance across a variety of algorithmic configurations. Fur-
thermore, because the learnable transformation matrix modifies the distribution of weight data in
each iteration, the learnable mask sparsity strategy must consistently ensure that weights with lower
importance factors are preferentially masked. To maintain this selection, we implement a reordering
of the weights based on sparsity metrics at every iteration, prioritizing the least important weights to
sparsity. This reordering strategy promotes stable convergence and maintains optimal performance
throughout the training process. Ultimately, our method excels in the combined compression of
large language models, particularly under conditions of low-bit and high-sparsity configurations. In
conclusion, the key contributions of this study are summarized as follows:

• We introduce a novel joint optimization strategy that integrates compression techniques to
concurrently minimize errors associated with quantization and sparsity. This methodol-
ogy is designed to be orthogonal to a wide spectrum of existing compression algorithms,
demonstrating unparalleled performance across diverse algorithmic combinations.

• Furthermore, we have proposed a dynamic reordering method to enhance the efficacy of
learnable masks. By systematically reordering weight rows according to sparsity met-
rics at each iteration, this method ensures the consistent masking of the least significant
weights. This process not only stabilizes the convergence of the optimization algorithm but
also maximizes the effectiveness of learnable masking, contributing to more reliable model
training outcomes.

• Our techniques have set new benchmarks in the field of combined compression for large
language models, particularly in configurations characterized by low bit-width and high
sparsity. Notably, our strategy improved average performance by 9.03% over traditional
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sequential compression methods in five zero-shot tasks on the LLaMA2-13b model con-
figured with 2-bit quantization and 75% sparsity. Additionally, in a setting with 3-bit
quantization and 50% sparsity on the LLaMA3-8b model, our method surpassed the cur-
rent state-of-the-art by 4.58% (achieving 56.86% compared to 52.28%) in zero-shot tasks,
and significantly reduced perplexity by 4.45 on the WikiText2 dataset (10.78 compared to
15.23).

2 RELATED WORK

The substantial parameter count of large language models presents considerable challenges for the
application of quantization and sparsity methods, especially when fine-tuning is required. Given
these challenges, this paper focuses on the efficient strategies of post-training quantization and spar-
sity.

Post-training Quantization (PTQ). In the convolutional neural network (CNN) domain, several
post-training quantization methods, such as Adaround (Nagel et al., 2020), BRECQ (Li et al., 2021),
and QDROP (Wei et al., 2022a), employ adaptive rounding techniques for model weights. This
involves reconstructing the model either layer-wise or block-wise to optimize the rounding parame-
ters, thereby minimizing quantization errors. Specifically, in large language models, outliers signifi-
cantly complicate the quantization process. GPTQ (Frantar et al., 2023) addresses this by correcting
full-precision parameters using the OBS (Hassibi et al., 1993) algorithm. Furthermore, numerous
studies (Wei et al., 2022b; Lin et al., 2023; Xiao et al., 2023; Yuan et al., 2023; Shao et al., 2023;
Ma et al., 2024) have adopted equivalent transformation operations—including scaling, shifting,
rotating, and rearranging—to relocate the effects of activation outliers to the weights, effectively
diminishing their adverse impacts. Furthermore, the quantization method based on orthogonal ma-
trix (Ashkboos et al., 2024) transformation efficiently generates a quantized model without the need
for retraining. This orthogonally constrained sampling matrix effectively mitigates the impact of
outliers in activations on the quantization process.

Post-training Sparsity. Similarly, outliers in activations detrimentally influence sparsity perfor-
mance within large language models. Traditional pruning algorithms can severely degrade model
performance, typically necessitating subsequent fine-tuning for performance recovery. To address
this, a variety of post-training sparsity techniques (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang
et al., 2023; Xu et al., 2024) have been developed to efficiently implement sparsity in large mod-
els. They range from employing single-dimensional to multi-dimensional importance metrics, from
those based on statistical characteristics to those relying on gradient-based optimization, and evolve
from static to dynamic sparsity approaches. The evolution of post-training sparsity methods has sig-
nificantly enhanced the adaptability of large language models across diverse computing platforms,
promoting broader deployment and application.

3 METHODOLOGY

In this section, we initially introduce foundational concepts and establish notation conventions rele-
vant to quantization and sparsification. We then propose the application of a joint optimization com-
bination compression method in large language models. This method, in contrast to other combined
compression strategies, consistently achieves stable and low mean squared error losses throughout
the optimization process. Finally, to ensure effective sparsification of weights with low importance,
we introduce a reordering strategy that maintains the priority of non-critical weights, thus preserving
the model’s overall performance.

3.1 PRELIMINARY

Quantization. Model quantization typically involves mapping the weights or activation parameters
to low-bit integers to compress the model. To clarify, we define our quantization function as follows:

Q(x) = ∆ ∗
(
clamp

(⌊ x

∆

⌉
+ zp, 0, 2n − 1

)
− zp

)
. (1)
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Where ∆ is the quantization step size, zp is the zero point, n is the quantization bit width, and
the clamp(·) operation truncates data that exceeds the range to the upper or lower bounds. The
quantization step size is commonly used to map the distribution range of the input data x to the
range of the quantized fixed-point distribution. Consequently, calculating the step size factor and
the zero point based on the maximum and minimum values of x is a standard approach, as follows:

∆ =
max(x)−min(x)

2n − 1
, zp =

⌊
−min(x) ∗ (2n − 1)

max(x)−min(x)

⌉
. (2)

The presence of outliers in large language models significantly impairs performance (Frantar et al.,
2023; Lin et al., 2023; Xiao et al., 2023) when the maximum and minimum values are used to
determine the quantization step size. These outliers compress the bulk of non-outlier values towards
near-zero quantized integers, introducing substantial rounding errors for a majority of parameters.
Additionally, directly truncating outliers can lead to a marked decline in performance (Bondarenko
et al., 2024). To mitigate these issues, the maximum and minimum values are often scaled by a
learnable factor (Shao et al., 2023), enabling the determination of an optimal truncation range via
gradient descent. This approach is formalized as follows:

∆ =
α ∗max(x)− β ∗min(x)

2n − 1
, zp =

⌊
−β ∗min(x) ∗ (2n − 1)

α ∗max(x)− β ∗min(x)

⌉
. (3)

Where α and β are learnable parameters, adjusted with a small sample of data through gradient-
based calibration.

Sparsification. Sparsification of LLMs entails converting dense weight matrices into sparse matri-
ces through the application of a sparse mask. During this process, our objective is to minimize the
mean squared loss between the features before and after sparsification. The sparsity rate p is defined
as the ratio of the number of sparse elements to the total number of weight parameters. Specifi-
cally, for a given weight matrix W and activations X , the sparsification optimization problem is
formalized as follows:

argmin
M

∥XW −X (M ⊙W )∥2F , p = 1−
∥W∥0

Cin ∗ Cout
. (4)

Where M denotes the sparse mask, ⊙ represents the Hadamard product, ||W ||0 indicates the count
of non-zero elements in W , and Cin/Cout correspond to the number of input and output channels,
respectively, in the weight matrix W .

Blockwise Optimization. Due to the large number of parameters in LLMs, in order to save the
memory used by the model, we adopt a block-wise optimization strategy. Specifically, for the
optimization process of quantization or sparsification, our optimization problem is constructed as
follows:

argmin
W ′

∥fi(X,W )− fi(X,W ′)∥2F . (5)

In this formulation, for quantization and sparsification respectively, W ′ = Q(W ) or W ′ = M ⊙W
is used. The term fi denotes the i-th transformer block.

3.2 JOINT OPTIMIZATION

Recent methodologies (Xu et al., 2024) in combined compression typically sequence quantization
and sparsification processes. Given the prevalence of outliers in LLMs, contemporary quantization
techniques (Shao et al., 2023; Ma et al., 2024) employ learnable scales or matrices to execute equiv-
alent transformations on both weights and activation vectors. Consider a scenario where the input
activations are denoted as X and the weights as W , the quantization optimization problem can be
formalized as follows:

argmin
A

∥∥XW −XA−1Q(AW )
∥∥2
F
. (6)
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Figure 1: Comparison of Mean Squared Error (MSE) losses for combined compression techniques
using joint and sequential optimization methods. The label “w2a16g128” indicates weight-only
quantization at a 2-bit and a group size of 128. The “75%” refers to the sparsity rate implemented.
“Block” denotes transformer blocks of various depths. MSE losses of features are computed after
20 epochs of optimization across each block. The sparsification is performed using the Wanda (Sun
et al., 2023) method, and quantization is conducted with the OmniQuant (Shao et al., 2023) method.
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Figure 2: Comparison of Mean Squared Error (MSE) losses for combined compression techniques
using joint optimization and sequential optimization methods on LLaMA1&3.

Where A is a learnable transformation matrix. The latest combined compression methods (Xu et al.,
2024) first optimize quantization errors according to Eq. 6, and subsequently calculate the impor-
tance factors for the quantized weights Q(AW ) to determine the sparse mask. Specifically, this pro-
cess can be described as follows: assuming the matrix Aopt makes

∥∥XW −XA−1
optQ(AoptW )

∥∥2
F

optimal, the sparse mask M is then optimized to minimize
∥∥XW −XA−1

opt (M ⊙Q(AoptW ))
∥∥2
F

.
This sequential optimization approach results in quantization optimization that does not account for
the loss introduced by sparsification. Consequently, this two-stage combined compression method
causes the matrix A and the mask M to achieve only local optimality in their respective stages. As a
result, the overall mean squared error loss of the features is difficult to minimize globally. Therefore,
we propose the following combined compression method based on joint optimization:

argmin
A,M

∥∥XW −XA−1 (M ⊙Q(AW ))
∥∥2
F
. (7)

Specifically, in cases where the sparsification method statically determines the mask without relying
on gradient information, the matrix M is computed before the optimization process begins and re-
mains unchanged. Throughout the optimization process, the joint optimization method consistently
demonstrates superior performance in reducing mean squared error loss across various models. As
illustrated in Fig. 1, for the LLaMA2-13b and OPT-2.7b models, joint optimization consistently
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achieves lower loss compared to sequential optimization across different transformer blocks, under
varying bit widths and sparsity rates.

Additionally, we conduct experiments to analyze the distribution of mean squared error (MSE) losses
on LLaMA1&3. As illustrated in Fig. 2, the MSE losses resulting from joint optimization are
consistently lower than those from sequential optimization across both LLaMA1&3, highlighting
the effectiveness of the joint optimization approach.

For large language models, the objective of block-wise combined compression optimization is de-
fined as follows:

argmin
A,M,δ

∥∥fi(X,W )− fi((X − δ)A−1,M ⊙Q(AW ), b+ δW )
∥∥2
F
. (8)

Where δ represents a learnable offset designed to align the distributions across different channels
of weights and activations. Consistent with previous research (Shao et al., 2023; Ma et al., 2024;
Xu et al., 2024), we overlook the impact of quantization and sparsification on this offset when
compensating for the bias in linear layers. Detailed derivations are provided in the Appendix A.1.

3.3 REORDERING

To reduce the complexity of optimization, the learnable mask sparsification strategy typically es-
tablishes a set of candidate sparsity rates for each row of the weight matrix W . Each candidate
sparsity rate is multiplied by a learnable factor to ascertain the optimal sparsity rate for every row.
Concurrently, the rows of W are organized according to a sparsity importance factor, and weights
deemed less important are sparsified based on the aggregate sparsity rate derived from the candidate
rates. However, the learnable transformation matrix A, as specified in Eq. 7, alters the distribution of
weights with each iteration. Consequently, the importance of weights changes dynamically through-
out the optimization process. We propose that at the beginning of each optimization iteration, the
quantized weights Q(AW ) are reordered based on the following importance metric:

γi,j = ∥X:,i∥2F · |Wi,j | . (9)

By employing a reordering strategy, the dynamic mask sparsification method consistently and accu-
rately targets weights with lower importance in each iteration. This approach significantly enhances
the generalizability and effectiveness of the joint optimization method, thereby ensuring consistently
superior performance across various models and datasets.

4 EXPERIMENTS

4.1 SETTINGS

Implementation Details. The implementation details of our proposed joint optimization strategy
are outlined as follows. Consistent with established quantization (Shao et al., 2023; Ma et al., 2024)
and sparsification (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al., 2023; Xu et al., 2024)
methodologies, our calibration dataset comprises 128 segments, each consisting of 2048 tokens
sampled from the WikiText2 (Merity et al., 2016) training corpus. In terms of hyperparameter con-
figuration, when employing AffineQuant (Ma et al., 2024) for quantization, we set the stability factor
α = 0.1. For all experiments utilizing DSnoT (Zhang et al., 2023) as the sparsification method, we
define the maximum cycle T = 50 and the update threshold ϵ = 0.1. In experiments involving
BESA (Xu et al., 2024) as the sparsification approach, the sparsity radio β is set to 5e0. Our pro-
posed methodology is implemented in PyTorch (Paszke et al., 2019) and leverage the HuggingFace
Transformers library Wolf et al. (2019) for data and model management.

Baselines. We apply joint optimization strategy to the LLaMA (Touvron et al., 2023a),
LLaMA2 (Touvron et al., 2023b), LLaMA-3, and OPT (Zhang et al., 2022) families, representing
the forefront of open-source Large Language Models (LLMs). Notably, our approach transcends
limitations in model size, enabling optimization across a spectrum ranging from 125 million to
70 billion parameters on a single NVIDIA A800 GPU with 80GB of memory. To benchmark our
methodology, we juxtapose it with the state-of-the-art (SOTA) sequential optimization proposed by
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Table 1: Comparison of perplexity and zero-shot dataset accuracy between sequential optimiza-
tion and joint optimization at 75% sparsity on LLAMA1&2. “Sequential” and “Joint” denote the
sequential and joint combined compression methods, respectively. “w2a16g128” refers to 2-bit
weight-only quantization with a group size of 128. “Affine” indicates that quantization is performed
using AffineQuant (Ma et al., 2024).

Model Bits Sparsity Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. BoolQ HellaSwag WinoGrande ARC-c ARC-e Avg.

LLaMA2-13B

w16a16 − − 4.88 6.73 5.81 80.55 60.04 72.21 48.46 79.37 68.13

w2a16g128 75% Sequential-Wanda 2677.90 3837.04 3257.47 37.82 26.19 47.35 22.18 25.33 31.77

w2a16g128 75% Joint-Wanda 83.46 123.17 103.32 57.18 29.01 49.25 20.64 32.36 37.69

w2a16g128 75% Joint-Wanda-Affine 26.86 38.82 32.84 62.23 31.19 51.46 22.01 37.12 40.80

w2a16g128 75% Sequential-DSnoT 3918.30 7890.29 5904.30 37.82 26.23 48.38 20.81 25.46 31.74

w2a16g128 75% Joint-DSnoT 112.16 139.08 125.62 51.34 28.60 49.17 20.39 32.11 36.32

w2a16g128 75% Joint-DSnoT-Affine 59.92 76.93 68.43 52.53 29.19 51.30 21.24 31.48 37.15

LLaMA-7B

w16a16 − − 5.63 7.07 6.35 75.10 56.95 69.85 41.89 75.29 63.82

w2a16g128 75% Sequential-Wanda 3521.03 3567.52 3544.28 37.82 25.72 48.69 21.33 26.17 31.95

w2a16g128 75% Joint-Wanda 1247.68 1398.08 1322.88 37.82 25.86 49.56 21.24 26.76 32.25

w2a16g128 75% Joint-Wanda-Affine 44.79 70.32 57.56 50.12 28.22 49.80 20.22 32.70 36.21

w2a16g128 75% Sequential-DSnoT 3146.59 4742.01 3944.30 37.82 25.99 50.43 21.67 26.09 32.40

w2a16g128 75% Joint-DSnoT 1297.72 1468.20 1382.96 37.82 25.72 50.90 20.05 27.27 32.35

w2a16g128 75% Joint-DSnoT-Affine 85.69 126.70 106.20 39.41 27.50 52.80 20.98 35.01 35.14

LLaMA-13B

w16a16 − − 5.03 6.61 5.82 77.98 59.91 72.77 46.50 77.35 66.90

w2a16g128 75% Sequential-Wanda 1345.77 1705.19 1525.48 37.82 26.10 50.03 20.90 25.67 32.10

w2a16g128 75% Joint-Wanda 61.57 73.72 67.65 45.87 29.55 52.40 21.58 34.13 36.71

w2a16g128 75% Joint-Wanda-Affine 30.50 46.90 38.70 56.85 30.76 54.22 20.22 35.81 39.57

w2a16g128 75% Sequential-DSnoT 1408.23 1913.72 1660.98 37.82 26.00 48.85 21.24 26.38 32.06

w2a16g128 75% Joint-DSnoT 95.21 93.78 94.50 47.43 29.31 50.74 20.05 32.32 35.97

w2a16g128 75% Joint-DSnoT-Affine 52.20 64.35 58.28 57.79 29.70 51.38 20.05 37.12 39.21

Table 2: Comparison of perplexity and zero-shot dataset accuracy between joint optimization and
sequential optimization under different compression configurations on LLAMA3.

Model Bits Sparsity Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. PIQA HellaSwag WinoGrande ARC-c ARC-e Avg.

LLaMA3-8B

w16a16 − − 6.04 8.88 7.46 79.70 60.17 72.69 50.42 80.09 68.61

w4a16g128 50% Sequential-Wanda 10.89 15.65 13.27 74.21 50.76 67.79 35.49 67.97 59.24

w4a16g128 50% Joint-Wanda 9.13 13.62 11.38 74.70 51.84 68.24 38.65 71.54 60.99

w4a16g128 50% Sequential-DSnoT 10.06 14.87 12.46 74.53 50.97 67.24 38.22 70.70 60.33

w4a16g128 50% Joint-DSnoT 9.01 13.58 11.30 74.75 51.85 68.03 38.48 71.33 60.89

w3a16g128 50% Sequential-Wanda 15.23 22.10 18.66 68.44 60.61 43.07 28.66 60.60 52.28

w3a16g128 50% Joint-Wanda 10.78 15.72 13.25 71.54 65.03 48.73 33.61 65.40 56.86

w3a16g128 50% Sequential-DSnoT 15.51 22.56 19.04 68.28 43.36 61.24 28.58 61.74 52.64

w3a16g128 50% Joint-DSnoT 10.66 15.73 13.20 72.47 48.49 64.40 34.30 65.78 57.09

BESA (Xu et al., 2024) for combined compression. For fair comparison, we adopt per-channel
weight quantization, per-token activation quantization, and unstructured sparsity across all experi-
ments.

Evaluation. To evaluate the efficacy of the LLM compression achieved through the joint opti-
mization strategy, we conducted evaluations across a range of benchmark zero-shot accuracies,
encompassing PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019), ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi et al., 2019). Leveraging the lm-
eval-harness (Gao et al., 2021), we executed all zero-shot tasks and reported precision results for
each benchmark, as well as the overall average accuracy. Furthermore, we conducted perplexity
evaluations on the WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020) datasets, serving as
stable and robust indicators of model generation performance.

4.2 RESULTS

As shown in Tabs. 1, 2, 3 and 5 we evaluate the perplexity and zero-shot task accuracy of joint op-
timization and sequential optimization under different compression configurations using LLaMA1,
LLaMA2, LLaMA3, and OPT models of various scales. The experimental results demonstrate
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Table 3: Comparison of perplexity and five zero-shot datasets accuracy between sequential opti-
mization and joint optimization on LLaMA1&2.

Model Bits Sparsity Method
PPL ↓ Accuracy(%) ↑

WikiText2 C4 Avg. BoolQ HellaSwag WinoGrande ARC-c ARC-e Avg.

LLaMA2-13B

w16a16 − − 4.88 6.73 5.81 80.55 60.04 72.21 48.46 79.37 68.13

w2a16g128 50% Sequential-Wanda 10.88 13.63 12.26 61.83 44.32 56.59 28.58 59.55 50.17

w2a16g128 50% Joint-Wanda-Affine 9.17 12.26 10.72 66.20 45.00 58.01 31.48 62.83 52.70

w2a16g128 50% Sequential-DSnoT 11.83 14.49 13.16 59.51 43.58 58.16 29.60 58.33 49.84

w2a16g128 50% Joint-DSnoT-Affine 9.44 12.52 10.98 64.37 43.95 57.69 28.58 57.44 50.41

w2a16g128 60% Sequential-BESA 12.50 14.80 13.65 63.18 42.76 56.69 27.30 58.12 49.61

w2a16g128 60% Joint-BESA-Affine 10.75 13.70 12.23 67.09 42.69 55.80 29.94 59.09 50.92

LLaMA-7B

w16a16 − − 5.63 7.07 6.35 75.10 56.95 69.85 41.89 75.29 63.82

w2a16g128 50% Sequential-Wanda 12.68 16.29 14.49 48.16 39.47 53.98 24.82 52.39 43.76

w2a16g128 50% Joint-Wanda-Affine 10.89 14.48 12.69 62.01 40.40 55.16 25.85 55.59 47.80

w2a16g128 50% Sequential-DSnoT 13.32 16.98 15.15 40.45 38.96 53.82 24.14 52.81 42.04

w2a16g128 50% Joint-DSnoT-Affine 11.84 15.60 13.72 57.64 41.04 56.35 27.98 58.03 48.21

w2a16g128 60% Sequential-BESA 16.05 20.03 18.04 49.26 36.85 51.85 24.14 48.14 42.05

w2a16g128 60% Joint-BESA-Affine 14.59 19.17 16.88 53.48 37.24 55.48 23.72 50.37 44.06

LLaMA-13B

w16a16 − − 5.03 6.61 5.82 77.98 59.91 72.77 46.50 77.35 66.90

w2a16g128 50% Sequential-Wanda 9.17 11.79 10.48 62.93 45.68 61.40 29.01 60.26 51.86

w2a16g128 50% Joint-Wanda-Affine 8.17 10.98 9.58 65.96 46.17 63.69 31.31 66.03 54.63

w2a16g128 50% Sequential-DSnoT 9.52 12.13 10.83 64.18 45.48 61.79 27.90 60.35 51.94

w2a16g128 50% Joint-DSnoT-Affine 8.92 11.63 10.28 66.11 46.45 63.14 31.65 64.30 54.33

w2a16g128 60% Sequential-BESA 11.23 13.72 12.48 63.42 43.18 58.95 27.38 57.23 50.03

w2a16g128 60% Joint-BESA-Affine 10.41 13.61 12.01 63.39 44.57 61.08 29.69 62.12 52.17

Table 4: The contribution of the reordering method to the combined compression approach based
on learned sparsification masks.

Model Bits Sparsity Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. BoolQ HellaSwag WinoGrande ARC-c ARC-e Avg.

LLaMA-7B

w16a16 − − 5.63 7.07 6.35 75.10 56.95 69.85 41.89 75.29 63.82

w2a16g128 50% Joint without Reorder 114.72 316.01 215.36 37.82 25.87 50.83 19.19 27.78 32.30

w2a16g128 50% Joint with Reorder 13.85 19.06 16.46 58.68 38.34 52.80 24.57 52.44 45.37

LLaMA2-13B

w16a16 − − 4.88 6.73 5.81 80.55 60.04 72.21 48.46 79.37 68.13

w2a16g128 50% Joint without Reorder 236.09 586.26 411.18 37.88 25.93 50.19 19.96 26.59 32.11

w2a16g128 50% Joint with Reorder 11.88 14.99 13.44 59.26 40.82 52.72 25.08 52.18 46.12

that joint optimization consistently exhibits performance improvements across various combinations
of compression methods (for example, LLaMA3-8B with w3a16g128 and 50% sparsity achieved
56.86% accuracy vs. 52.28% with sequential optimization on zero-shot datasets). Notably, in sce-
narios with high compression rates, the performance gains from joint optimization are even more
significant. Specifically, on the LLaMA-7B model using the w2a16g128 quantization configura-
tion with 75% sparsity and employing the Wanda (Sun et al., 2023) sparsification method, joint
optimization reduces the perplexity on the WikiText2 dataset by 3476.24 compared to sequential
optimization (44.79 vs. 3521.03). These experiments further substantiate the substantial benefits of
joint optimization over sequential optimization.

Tab. 6 presents the results of combined compression for larger-scale models of LLaMA 1 and 2.
The experiments indicate that our method continues to outperform the latest combined compression
techniques. For instance, with a quantization configuration of w2a16g128 and 75% sparsity for
LLaMA-30B, the joint optimization strategy using the Wanda sparsity method reduced the average
perplexity on the WikiText2 and C4 datasets by 519.46 (from 577.02 to 57.56). Similarly, for
LLaMA2-70B with the same quantization configuration and sparsity rate, the joint optimization
strategy using the DSnoT sparsity method achieved a reduction in average perplexity by 79.41 (from
102.67 to 23.26).

4.3 ABLATION STUDY

Reordering Effectiveness. As shown in Tab. 4, we demonstrate the effectiveness of the reordering
method for learnable sparse masks on dynamic weights. On the LLaMA2-13B model with the
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Table 5: Comparison of perplexity and zero-shot dataset accuracy between sequential optimization
and joint optimization on OPT models of different scales.

Model Bits Sparsity Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 Avg. PIQA HellaSwag WinoGrande ARC-c ARC-e Avg.

OPT-125M

w16a16 − − 26.86 24.60 25.73 62.89 29.19 50.43 19.02 43.56 41.02

w2a16g128 50% Sequential-Wanda 425.31 493.04 459.18 54.05 25.82 49.64 20.56 30.59 36.13

w2a16g128 50% Joint-Wanda-Affine 98.47 119.93 109.20 55.44 26.72 51.93 17.06 35.77 37.38

w2a16g128 50% Sequential-DSnoT 539.87 556.32 548.10 54.08 25.84 50.43 18.77 29.12 35.65

w2a16g128 50% Joint-DSnoT-Affine 106.75 119.68 113.22 56.85 26.81 50.11 17.06 34.17 37.00

OPT-1.3B

w16a16 − − 14.27 14.72 14.50 71.59 41.48 59.90 23.37 56.90 50.65

w2a16g128 50% Sequential-Wanda 42.25 51.81 47.03 60.66 31.44 54.93 20.30 42.04 41.87

w2a16g128 50% Joint-Wanda-Affine 28.65 41.19 34.92 60.60 31.69 53.03 20.98 43.39 41.94

w2a16g128 50% Sequential-DSnoT 48.25 57.53 52.89 60.39 30.66 51.85 20.81 40.78 40.90

w2a16g128 50% Joint-DSnoT-Affine 29.23 41.30 35.27 60.99 31.97 53.11 21.92 43.56 42.31

OPT-2.7B

w16a16 − − 12.18 13.16 12.67 73.77 45.85 60.77 26.79 60.77 53.59

w2a16g128 50% Sequential-Wanda 429.37 860.91 645.14 58.05 26.68 50.67 18.00 34.34 37.55

w2a16g128 50% Joint-Wanda-Affine 19.95 29.00 24.48 65.12 34.64 53.59 20.98 48.65 44.60

w2a16g128 50% Sequential-DSnoT 546.27 1263.97 905.12 56.36 26.59 49.17 19.45 31.10 36.53

w2a16g128 50% Joint-DSnoT-Affine 20.28 28.83 24.56 64.85 34.58 56.11 20.05 46.92 44.50

OPT-6.7B

w16a16 − − 10.63 11.74 11.19 76.27 50.50 65.19 30.46 65.57 57.60

w2a16g128 50% Sequential-Wanda 17.59 21.64 19.62 68.66 39.70 58.72 25.93 56.90 49.98

w2a16g128 50% Joint-Wanda-Affine 15.33 23.96 19.65 68.66 39.04 58.08 22.95 55.76 48.90

w2a16g128 50% Sequential-DSnoT 18.53 22.43 20.48 68.38 38.79 58.48 23.97 53.66 48.66

w2a16g128 50% Joint-DSnoT-Affine 15.24 23.18 19.21 68.28 39.43 57.22 23.72 55.38 48.81

OPT-13B

w16a16 − − 9.85 11.19 10.52 75.84 52.42 65.04 32.93 67.12 58.67

w2a16g128 50% Sequential-Wanda 19.52 24.75 22.14 67.24 40.42 60.37 26.19 52.90 49.42

w2a16g128 50% Joint-Wanda-Affine 13.86 21.27 17.57 68.38 41.94 58.72 25.08 58.16 50.46

w2a16g128 50% Sequential-DSnoT 19.97 24.78 22.38 68.44 39.95 61.80 25.93 51.34 49.49

w2a16g128 50% Joint-DSnoT-Affine 13.87 21.21 17.54 68.71 41.52 60.22 25.42 56.10 50.39
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Figure 3: Impact of calibration samples and number of epochs on joint optimization performance.
We evaluate the perplexity of WikiText2 across different models using the w2a16g128 quantization
configuration with 50% sparsity. To enhance visualization clarity, the perplexities of the OPT model
and LLaMA-7B model (left part) are divided by 100, while the perplexity of the LLaMA3 model
(right part) is divided by 10.

w2a16g128 quantization configuration and 50% sparsity, the reordering method reduces the average
perplexity on WikiText2 and C4 by 397.74 compared to the method without reordering (13.44 vs.
411.18). Thus, the reordering method ensures that less important weight parameters are sparsified
in each iteration, thereby improving the performance of the compressed model.

Impact of Calibration Data and Epochs. Fig. 3 illustrates the impact of varying amounts of cali-
bration data and epochs on the performance of joint optimization. Overall, as the number of samples
and epochs increases, perplexity generally decreases across different models. This trend indicates
that more calibration data and training epochs are beneficial for joint optimization. Additionally, the
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Table 6: Comparison of perplexity between joint and sequential optimization of larger scale models
on LLAMA1&2.

Model Bits Sparsity Method
PPL ↓

WikiText2 C4 Avg.

LLaMA-30B

w16a16 − − 4.04 5.97 5.01

w2a16g128 75% Sequential-Wanda 392.89 761.15 577.02

w2a16g128 75% Joint-Wanda 43.39 71.74 57.56

w2a16g128 75% Sequential-DSnoT 443.38 967.83 705.60

w2a16g128 75% Joint-DSnoT 44.67 73.44 59.05

LLaMA-2-70B

w16a16 − − 3.32 5.52 4.42

w2a16g128 75% Sequential-Wanda 81.99 75.85 78.92

w2a16g128 75% Joint-Wanda 17.18 22.11 19.65

w2a16g128 75% Sequential-DSnoT 105.35 99.99 102.67

w2a16g128 75% Joint-DSnoT 18.42 28.10 23.26

OPT and LLaMA3 models show greater sensitivity to changes in the number of calibration samples
and epochs, respectively.

Order of compression methods. Fig. 4 in the appendix illustrates why joint optimization does not
apply sparsification first (Q(AM ⊙W )). The zp introduced in Eq. 1 maps the zero elements of the
sparse matrix MW to non-zero values, significantly reducing the sparsity. Therefore, to achieve the
target sparsity rate, we adhere to the approach defined in Eq. 7 for joint optimization of combined
compression.

5 CONCLUSION

Post-training quantization and sparsification methods have shown considerable promise in the com-
pression of large language models. However, previous combined compression approaches have
relied on sequential optimization, separately minimizing quantization and sparsification errors. This
practice has led to a significant increase in mean squared error (MSE) loss, especially in high com-
pression rate configurations. Our combined compression approach mitigates this issue by simulta-
neously optimizing both quantization and sparsification errors. Additionally, learnable sparsifica-
tion masks often fail to appropriately sparsify less important weights when dealing with dynamic
weights. To overcome this, we propose a reordering method that prioritizes the sparsification of
lower-importance weights in each iteration. This approach ensures stability and convergence in
the optimization process, further reducing the MSE of the objective function. Our method con-
sistently improves performance across various compression configurations and models. Notably,
the combined compression method exhibits substantial potential for enhancing model performance,
particularly in high compression rate scenarios. Future research could focus on developing more
effective learning strategies for joint optimization to further advance this field.

6 LIMITATIONS

Due to limited resources, the experiments in this study were primarily conducted on a selected
subset of natural language processing datasets and models. Conducting experiments on a broader
range of datasets and models would provide a more comprehensive demonstration of the method’s
generalization and robustness.
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Figure 4: Comparison of sparsity rates using different sequential compression methods for various
blocks. The method of quantizing first and then sparsifying achieves the target sparsity rate. In
contrast, performing sparsification first can be undermined by the zero points introduced during
quantization, leading to a final sparsity rate significantly lower than the intended target.

A APPENDIX

A.1 BIAS COMPENSATING

Given that we use only a small amount of data for compression optimization, avoiding model overfit-
ting presents a significant challenge. To mitigate this, we aim to approximate the final output of the
compressed model to match that of the original model. By ensuring similar output distributions, we
can better preserve the model’s generalization ability. Consequently, it is necessary to compensate
for the bias in the linear layer. Specifically, we proceed with the following derivation:

Y =XW + bias (10)

=XA−1AW + bias, (11)

=(X − δ)A−1AW + (bias+ δW ), (12)

≈(X − δ)A−1Q(AW ) + (bias+ δW ), (13)

≈(X − δ)A−1(M ⊙Q(AW )) + (bias+ δW ). (14)

Ultimately, we need to compensate for the bias with δW to maintain approximate output equiva-
lence. Consistent with previous research (Shao et al., 2023; Ma et al., 2024; Xu et al., 2024), we
approximate Q(AW ) ≈ AW and M ⊙Q(AW ) ≈ Q(AW ) to ensure equivalent model outputs.
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