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ABSTRACT

The security issue of large language models (LLMs) has gained wide attention
recently, with various defense mechanisms developed to prevent harmful output,
among which safeguards based on text embedding models serve as a fundamental
defense. Through testing, we discover that the output distribution of text embed-
ding models is severely biased with a large mean. Inspired by this observation, we
propose novel, efficient methods to search for universal magic words that attack
text embedding models. Universal magic words as suffixes can shift the embed-
ding of any text towards the bias direction, thus manipulating the similarity of any
text pair and misleading safeguards. Attackers can jailbreak the safeguards by ap-
pending magic words to user prompts and requiring LLMs to end answers with
magic words. Experiments show that magic word attacks significantly degrade
safeguard performance on JailbreakBench, cause real-world chatbots to produce
harmful outputs in full-pipeline attacks, and generalize across input/output texts,
models, and languages. To eradicate this security risk, we also propose defense
methods against such attacks, which can correct the bias of text embeddings and
improve downstream performance in a train-free manner.

1 INTRODUCTION

Recently, large language models (LLMs) have been widely applied in the industry, such as chat
systems Brown et al. (2020) and search engines Nayak (2019). However, LLMs can be maliciously
exploited to extract harmful output, making LLM security an important research topic.

In this topic, it is of great significance to discover security vulnerabilities of text embedding models
and propose corresponding defense methods. Current LLM security strategies include alignment Bai
et al. (2022) and safeguards OpenAI (2025). Lightweight text classifiers based on text embedding
models Kim et al. (2023) can be used as safeguards to judge whether the input and output of LLMs
are harmful. This method can serve as a foundational line of defense because it is low-cost while
maintaining the performance of LLMs. In addition, text embedding models are also used to enhance
modern search engines Nayak (2019). Therefore, the robustness of text embedding models affects
the security of both LLMs and search engines.

Attacking LLMs’ safeguards is challenging because the output of LLMs is unknown, the safeguards
are black boxes, and the token space is vast and discrete. This results in the following limitations of
existing attack methods on text embedding models: 1) Case-by-case attack methods require access
to LLMs’ output before safeguards, which is unrealistic for online dialogue systems; 2) White-box
attack methods require the gradients of text embedding models, which are also unrealistic; 3) Brute-
force search for prompt perturbations requires traversing a massive token space, leading to high time
costs.

To address these challenges, we propose an innovative approach to attack LLMs’ safeguards based
on text embedding models: to find universal “magic words” (i.e., adversarial suffixes) that would in-
crease or decrease the embedding similarity between any pair of texts so as to mislead the safeguards
in classifying within the text embedding space.

This task is feasible based on the following observation. We tested various text embedding
models and found that the cosine similarities between text embeddings and their mean (normal-
ized) concentrate near a significant positive value, as shown in Fig. 1. In other words, text em-
beddings do not distribute uniformly on a high-dimensional sphere Sd−1(since they are normal-
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ized); instead, they concentrate in a band on the sphere, as illustrated in Fig. 2. The direc-
tion of distribution bias is similar to all text embeddings, while the opposite direction is dis-
similar to all embeddings. This implies that if we can find suffixes that push any text towards
this bias direction, we can increase the similarity of any text with other texts. Similarly, one
could also try to find suffixes that reduce text similarity. We refer to these words as univer-
sal magic words since they can mislead safeguards on any text by manipulating text similarity.

𝑒 𝑠 !𝑒∗

Figure 1: The distribution of cosine
similarity between text embedding e(s)
of text s with normalized mean embed-
ding e∗ of all text, tested on various text
embedding models.

We estimate the bias direction with the mean and the prin-
cipal singular vector of text embeddings (see Sec. 3.1).
Actual tests and theoretical analysis show that the two
methods yield the same results.

Based on the identified bias direction, we use the follow-
ing methods to find universal magic words (see Sec. 3.2).
Alg. 1: brute-force search without leveraging the bias di-
rection, used as a baseline; Alg. 2 (black-box): find words
whose text embeddings are as similar/dissimilar as possi-
ble to the bias direction; Alg. 3 (white-box): find univer-
sal suffixes that push any text embedding closer to the bias
direction or far away from its original position. Alg. 3
uses gradients to solve this problem in only one epoch.
Experiments show that all three methods can find the best
magic words, but Algs. 2 and 3 are far more efficient than
Alg. 1. Additionally, only Alg. 3 can search for multi-
token magic words.

The universal magic words can be abused to attack safeguards in LLM security systems. As shown
in Fig. 3, the safeguards will fail to detect harmful content by appending magic words to the input
and output of LLMs.

Contributions. The contribution of this paper can be summarized as follows:
• We discover that the output distribution of text embedding models is uneven and the relationship

between this property and universal magic words;
• We propose novel methods for finding universal magic words, which are efficient and capable of

searching for multi-token magic words;
• We demonstrate that those universal magic words are able to jailbreak LLMs’ safeguards and

generalize across input/output texts, models, and languages (see experiments in Secs. 4.3 to 4.5).
• We propose defense methods against such attacks by correcting the uneven embedding distribu-

tion.

2 RELATED WORK

2.1 DEFENSE METHODS FOR LLMS

Alignment involves training LLMs to align with human values Askell et al. (2021); Liu et al. (2022);
Bai et al. (2022). This method is widely used because it does not introduce additional computational
overhead during inference. Due to the competition between assisting users and aligning values,
as well as the limited domain of safety training Wei et al. (2024), such methods are vulnerable to
adversarial attacks Zou et al. (2023); Chao et al. (2023). This has forced people to develop additional
security measures.

Safeguards are the additional measures on the input or output of LLMs to avoid harmful responses.

On the input side, there are several guard measures: 1) Detecting suspicious patterns Alon & Kam-
fonas (2023); Jain et al. (2023), which tends to yield false positives; 2) Reminding LLMs to align
values with system prompts Wei et al. (2023); Xie et al. (2023); Zhang et al. (2024), which can be
canceled by the user prompt “ignore previous instructions” Perez & Ribeiro (2022); 3) Perturbing
the user’s prompt into multiple versions before feeding it to the LLM to detect harmful requests Ku-
mar et al. (2023); Robey et al. (2023), which is costly; 4) Classifying whether the prompt is harmful
with a model Kim et al. (2023).
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On the output side, several detection methods for LLMs’ harmful responses serve as the last line of
defense in LLM security systems: 1) rule-based matching, with the same drawbacks as it is on the
input side; 2) another LLM to answer whether the output is harmful Phute et al. (2023); Inan et al.
(2023); Wang et al. (2023), which doubles the cost; 3) alternatively, text classifiers to do this He
et al. (2021); Kim et al. (2023); Markov et al. (2023), which is more cost-effective.

2.2 ATTACK METHODS FOR LLMS

Templates jailbreak LLMs with universal magic words effective for various prompts, some even
transferable across LLMs. Manual templates are heuristically designed, including explicit templates
(e.g., instructing LLMs to “ignore previous instructions” Perez & Ribeiro (2022), “Start with ‘Ab-
solutely! Here’s”’ Mozes et al. (2023) or “Do anything now” Mozes et al. (2023)) and implicit
templates (e.g., role-playing Bhardwaj & Poria (2023); Shah et al. (2023), storytelling Li et al.
(2023b) and virtual scenarios Li et al. (2023a); Kang et al. (2024); Singh et al. (2023); Du et al.
(2023)). Automatic templates are optimized by gradient descent (black-box) Wallace et al. (2019);
Zou et al. (2023); Zhu et al. (2024), random search (white-box) Lapid et al. (2024); Andriushchenko
et al. (2024), or generative models Liao & Sun (2024) to find adversarial prefixes and suffixes for
user prompts. These prefixes and suffixes could be individual words or sentences Zou et al. (2023),
and comprehensible Liao & Sun (2024) or not Lapid et al. (2024).

Rewriting attacks language models at several levels, including character-level (e.g., misspelling Li
et al. (2019)), word-level (e.g., synonyms Jin et al. (2020)), segment-level (e.g., assigning vari-
able names to segmented harmful text Wu et al. (2024); Kang et al. (2024)), prompt-level (e.g.,
rewriting prompts with an LLM Chao et al. (2023); Mehrotra et al. (2023); Tian et al. (2023); Ge
et al. (2023)), language-level (e.g., translating into a language that lacks LLM safety Qiu et al.
(2023)), and encoding-level (e.g., encoding harmful text into ASCII, Morse code Yuan et al. (2023)
or Base64 Kwon & Pak (2024)). Through optimization algorithms, attackers can automatically find
the most effective rewrites to bypass the LLM’s safeguards.

The methods above are all focused on attacking the LLM itself, while research on attacking safe-
guards is still in its early stages. A magic word “lucrarea” was discovered by the champion of a
Kaggle competition on attacking LLMs Nguyen (2024), through trying the tokens near ¡/s¿ in the
token embedding space. We find many more magic words, including “lucrarea”, with our novel
algorithms and give a more accurate and systematic explanation of why it works. Similar to our
method, PRP Mangaokar et al. (2024) attacks output guards by injecting magic words into LLMs’
responses. The distinctions between our work and PRP are: 1) we attack guards based on text em-
bedding models, which are more lightweight and cost-effective than LLM-based guards in PRP; 2)
we discovered the uneven distribution of text embeddings, which allows us to design algorithms to
search for magic words more efficiently.

3 METHOD

Notation: 1) Let s1 and s2 be two text strings, and let r be a positive integer. The operation s1+s2
denotes the concatenation of s1 and s2, and r ∗ s2 denotes the string s2 repeated r times. 2) For
example, if s1 = “he”, s2 = “llo”, then s1+s2 = “hello” and s1+2∗s2 = “hellollo”. Denote the
text embedding of text string s by e(s) and its dimension by d. e(s) is normalized to a unit vector,
hence e(s) ∈ Sd−1. The text embedding e(s) of s is computed as e(s) = e(s), s = E⊤τ(s). Here,
s ∈ Rh×l denotes the representation of s in the token embedding space, which is mapped to a text
embedding by e. Moreover, τ is a tokenizer that splits s into l tokens, outputting τ(s) ∈ {0, 1}T×l

where the columns are one-hot. T = {ti}i is the token vocabulary, with size |T | = T . E ∈ RT×h

denotes the token embeddings of all tokens, with dimension h. 3) The cosine similarity between text
s1 and s2 is defined as cos θ(s1, s2) := e(s1)

⊤e(s2).

This paper aims to find all possible universal magic words, which can be formulated as follows.

Assumption 3.1. There exists a word w+ satisfying that cos θ(s1 + w+, s2) ≥ cos θ∗, ∀s1, s2,
where cos θ∗ is close to 1. We refer to w+ as a positive universal magic word for the text em-
bedding model e, which can force any pair of texts to be similar enough in the text embedding
space.
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3.1 DESCRIPTION OF THE UNEVEN DIRECTION

To describe the unevenness of the text embedding distribution, we represent the bias direction of the
distribution by the normalized mean of text embeddings e∗ or the principal singular vector v∗ of the
text embedding matrix. We prove that any text appended by a positive universal magic word w+

will be close to e∗ (or v∗). This serves as the guiding principle for searching for magic words in
Sec. 3.2.

We denote the mean of text embeddings as ē = 1
|S|

∑
j e(sj) and the normalized mean as e∗ = ē

∥ē∥2
,

where S = {sj}j is the set of all possible texts.

The following proposition shows that any text with a magic word will be embedded close to e∗.
Proposition 3.2. Under Assumption 3.1, a positive universal magic word w+ must satisfy

cos θ(e(s+ w+), e∗) ≥
√
1− tan2 θ∗, ∀s ∈ S.

Denote the text embedding matrix of S as X ∈ R|S|×d, where the i-th row of X is e(si)⊤. Let v∗
be the principal right singular vector of X corresponding to the largest singular value.

The following proposition shows that any text with a magic word will be embedded close to v∗.
Proposition 3.3. Under Assumption 3.1, a positive universal magic word w+ must satisfy

cos θ(e(s+ w+), v∗) ≥
√
1− tan2 θ∗, ∀s ∈ S.

See Sec. C for the proof of the two propositions. In the experiments (see Sec. 4.1), we found that e∗
and v∗ are almost identical, so we will only refer to e∗ in the subsequent sections.

3.2 SEARCHING FOR UNIVERSAL MAGIC WORDS

Based on the observations in Sec. 3.1, we boldly presume the existence of universal magic words.
When used as a suffix, universal magic words could make any text more similar or dissimilar to
other texts in the embedding space.

We refer to the words that increase the text similarity as positive magic words and those that de-
crease the text similarity as negative magic words, as shown in Fig. 2.

𝑒̅

𝑒∗

𝜃

𝑆!"#

𝑒(𝑠)

𝑒(𝑠 + 𝑤#)

𝑒(𝑠 + 𝑤$)

Move	towards	𝑒∗

Move	away	from	𝑒(𝑠)

Figure 2: Text embeddings con-
centrate in a band on the sphere
Sd−1. Positive magic words can
push them towards the normalized
mean e∗. Negative magic words can
pull them away from their original
position.

Brute-Force Method The simplest method to find magic
words is a brute-force search, shown in Alg. 1. This method
directly calculates the similarity score of all tokens in the vo-
cabulary set and finds the top-k0 magic words. This method
does not rely on the bias direction.

For each token ti in the token vocabulary set T = {ti}i, we
define the positive similarity score as

c+i = max
1≤r≤16

1

S2

∑
j,k

cos θ(sj + r ∗ ti, sk) (1)

= max
1≤r≤16

1

S

∑
j

cos θ(sj + r ∗ ti, e∗) (2)

Tokens with higher positive scores are more effective as pos-
itive magic words. r represents the repetition count. Repeat-
ing the magic word usually amplifies its effect. However, we
limit r to a maximum of 16 to avoid completely distorting the
text.

Finding negative magic words requires more data. Specifically, in addition to the text sj , we also
need another piece of text s′j that is semantically similar to sj but phrased differently. This is because
the effect of a negative magic word is to make synonymous text no longer synonymous. Now the
set of text pairs is in the form S̃ = {(sj , s′j)}j with cos θ(sj , s

′
j) close to 1. We define the negative

similarity score of ti as

c−i = min
1≤r≤16

1

S

∑
j

cos θ(sj + r ∗ ti, s′j). (3)
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The lower negative similarity score indicates the greater effectiveness of magic words in making
synonymous text dissimilar.

Algorithm 1 Brute-Force Method

Input: text set S̃, vocabulary set T , number of
magic words k0
for ti in T do

c+i ← max1≤r≤16

∑
j cos θ(sj + r ∗ ti, e∗)

c−i ← min1≤r≤16

∑
j cos θ(sj + r ∗ ti, s′j)

end for
w± ← topki(±c

±
i , k0)

Output: w± {top-k0 pos./neg. magic words}

Algorithm 2 Context-Free Method
Input: vocabulary set T , normalized mean e∗, rep-
etition count r, candidate number k
for ti in T do

ci ← e(r ∗ ti)⊤e∗
end for
T ± ← topki(±ci, k) {candidate list, size=k}
w± ← Algorithm1(S̃, T ±, k0) {k > k0}
Output: w± {top-k0 pos./neg. magic words}

Context-Free Method As demonstrated previously, all text embeddings tend to be close to e∗ and
far from −e∗. Intuitively, tokens whose text embeddings have the same direction as e∗ are likely to
be positive magic words, and vice versa. Specifically, for a given ti ∈ T , we select the top-k and
bottom-k tokens as candidates for positive and negative magic words based on the following score

ci = e(r ∗ ti)⊤e∗, (4)

where r denotes the repetition count, set between 3 and 5. After this raw selection, we perform a
refined selection from the candidates using Alg. 1. This method is formulated in Alg. 2.

Gradient-Based Method The above two methods are not able to search for multi-token magic
words and do not leverage first-order information. What if we can access all the model parameters
(white-box setting) and wish to leverage gradients? Let’s formulate the problem more specifically.

The positive magic word we aim to find (denoted as w, consisting of m tokens) maximizes the
following objective argmaxw

∑
j cos θ(sj + w, e∗).

Unlike adversarial attacks in computer vision, the vocabulary’s discreteness introduces significant
optimization challenges. To address this, we split the optimization into two steps. In the first step,
we search for the optimal token embeddings t∗ ∈ Rh×m by solving

t∗ = argmaxt
∑

j
e([sj , t])

⊤e∗. (5)

In the second step, we identify the token in each position whose embedding is closest to the optimal.

Assuming that e([s, t]) is close to e([s,0]), Eq. (5) can be approximated by a first-order expan-
sion as argmaxt

∑
j (e([sj ,0]) + J(sj)t)

⊤
e∗ = argmaxtt

⊤(∑
j J(sj)

)⊤
e∗, where J(sj) :=

∂te([sj , t]) denotes the Jacobian of the model e at sj . The solution to the above problem is
t∗ ∝

(∑
j J(sj)

)⊤
e∗.

Interestingly, this t∗ is exactly the gradient of the following objective function L+ =
∑

j cos θ(sj +

t, e∗) with respect to t. In other words, our method performs gradient ascent on L+ in just one epoch.
A similar conclusion also holds for negative magic words with the following objective function
L− =

∑
j cos θ(sj + t, s′j).

This leads to the algorithm described in Alg. 3. Like Alg. 2, we first obtain k candidates with the
method above and then use Alg. 1 to identify the best k0 magic words.
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Algorithm 3 Gradient-Based Method

Input: text set S̃, vocabulary set T , normalized mean e∗, magic word length m, candidate number k
t∗± ← zeros(h,m)
for sj in S do

t← rand(h,m) {empirically better than zeros(h,m)}
L+ ← e(sj + t)⊤e∗

L− ← e(sj + t)⊤e(s′j)

t∗± ← t∗± ± ∂L±/∂t
end for{t∗± is the optimal m-token embedding}
[T ±

1 , ..., T ±
m ] = getWord(topk(±Et∗, k,dim = 0)) {T ±

u contains k candidates for u-th token}
T ± = T ±

1 × ...× T ±
m {candidate list, size=km}

w± ← Algorithm1(S̃, T ±, k0) {km > k0}
Output: w± {top-k0 pos./neg. magic words}

Table 1: Comparing different meth-
ods

Methods Alg. 1 Alg. 2 Alg. 3

Speed Slow Fast Fast
White/Black Box Black Black White

Multi-token No No Yes

As a summary of this section, Table 1 compares the three
methods in terms of speed, scenario (black-box/white-box),
and their ability to search for multi-token magic words.

3.3 ATTACKING LLMS’ SAFEGUARD

As shown in Fig. 3, we can append magic words to the
prompt to attack the input guard of LLMs directly and re-
quire the LLM to end answers with magic words to attack
the output guard indirectly.

Harmful	Question

Harmful	Question+𝑤
How	to	make	bombs?	
<adv_suffix_for_LLM>
<magic_word_for_input_guard>

How	to	make	bombs?	
<adv_suffix_for_LLM>

𝑒 𝑠 +𝑤Text
Embed.
Model

𝑒 𝑠

harmless

harmful
Classifier

Input	Guard LLM

Refuse	to	Answer

I	can	not	tell	you	how	to	make	bombs.

Harmful	Answer
Sure,	here	is	the	method	to	make	
bombs:	…

𝑒 𝑠 +𝑤Text
Embed.
Model

𝑒 𝑠Harmful	Question

Request	Answer+𝑤 Output	Guard
Remember	to	append	
“<magic_word_for_output_guard>”	
to	your	answer.

How	to	make	bombs?	
<adv_suffix_for_LLM>

Harmful	Answer+𝑤
Sure,	here	is	the	method	to	make	
bombs:	…
<magic_word_for_output_guard>

Harmful	Answer
Sure,	here	is	the	method	to	make	
bombs:	…

Classifier
Refuse	to	Answer

I	can	not	tell	you	how	to	make	bombs.

LLM
harmless

harmful

Harmful	Answer+𝑤
Sure,	here	is	the	method	to	make	
bombs:	…
<magic_word_for_output_guard>

Figure 3: Pipeline to attack the safeguard of LLMs. The input guard is attacked directly by append-
ing universal magic words to user prompts, and the output guard is indirectly attacked by requiring
LLMs to append universal magic words to their output.

This method works by moving text embedding to where the safeguard fails. As shown in Fig. 2, the
data manifold in text embedding space is a band on the sphere. Positive magic words can push the
text embedding towards e∗, i.e., along the normal direction of the manifold, and safeguards fail to
work properly outside the manifold due to the lack of training data. Negative magic words can push
the embedding of a harmful text far away from its original region of harmful semantics, leading to
misclassification.

Besides jailbreaking the safeguard of LLMs, universal magic words may also be used to manipulate
search rankings. Since most modern search engines are enhanced by text embedding models Nayak
(2019), abusers can increase the embedding similarity between their entries with any queries by
inserting magic words into their entries.

4 EXPERIMENTS

We tested our method on several state-of-the-art models from the MTEB text embedding bench-
mark Muennighoff et al. (2023), including sentence-t5-base Ni et al. (2022), nomic-embed-text-
v1 Nussbaum et al. (2024), e5-base-v2 Wang et al. (2022), jina-embeddings-v2-base-en Günther
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et al. (2023), gte-Qwen2-7B-instruct Li et al. (2023c), SFR-Embedding-Mistral Meng et al. (2024),
and e5-mistral-7b-instruct Wang et al. (2024). Additionally, considering that LLMs are sometimes
used as text embedding models, we also tested Qwen2.5-0.5B Qwen (2024) with mean pooling.
We used sentence-transformers/simple-wiki tomaarsen (2024) as the text dataset S̃ = {(si, s′i)}i,
where si is an English Wikipedia entry, and s′i is its simplified variant. In Secs. 4.3 and 4.5, we also
evaluated our method on JailbreakBench Chao et al. (2024) and non-English dialogues.

4.1 BIAS DIRECTION

Table 2: The overlap between the nor-
malized mean vector e∗ and the princi-
pal singular vector v∗.

Model |e∗ · v∗|

sentence-t5-base 1 − 1.7 × 10−6

Qwen2.5-0.5B 1 − 1.4 × 10−5

nomic-embed-text-v1 1 − 2.9 × 10−5

e5-base-v2 1 − 0.7 × 10−6

jina-embeddings-v2-base-en 1 − 3.3 × 10−6

Since the whole dataset is massive, we sampled 1/100 of
all entries (sample number is 1,000) to estimate the bias
direction of text embeddings. Our experiments show that
when the sample number exceeds 100, the estimation for
e∗ or v∗ is sufficiently accurate. We found that the nor-
malized mean vector e∗ is almost identical to the principal
singular vector v∗ as shown in Table 2. Sec. D explains
that this is a property of biased distributions. Therefore,
we only use e∗ in the subsequent experiments.

4.2 SEARCHING FOR MAGIC WORDS

One-token Magic Words. In our experiments, Algs. 2
and 3 successfully find the best one-token magic words identified by the brute-force baseline Alg. 1.
We demonstrate some of them in Table 3. Here, (Clean) represents the data without magic words,
and the similarity cos θ(sj , sk) or cos θ(sj , s′j) between clean text pair is shown in the form µ ±
σ. The similarity score of each magic word is defined in Eqs. (1) and (3), which indicates how
much it can shift the similarity. The table shows that the shift of similarity can be up to several
standard deviations, which is significant. This indicates that the magic words have a strong ability
to manipulate text similarity.

Table 3: The magic words for different text embedding models found by all three methods and their
similarity scores.

Model Positive Negative
magic word similarity c+i magic word similarity c−i

sentence-t5-base (Clean) 0.71± 0.03 (Clean) 0.96± 0.04
¡/s¿ 0.79 = µ+ 2.5σ dumneavoastra 0.89 = µ− 1.7σ

lucrarea 0.79 = µ+ 2.4σ impossible 0.89 = µ− 1.6σ

Qwen2.5-0.5B
(with mean pooling)

(Clean) 0.81± 0.08 (Clean) 0.97± 0.03
Christopher 0.84 = µ+ 0.4σ 0.34 = µ− 24σ

Boston 0.84 = µ+ 0.4σ 0.42 = µ− 21σ

nomic-embed-text-v1 (Clean) 0.36± 0.05 (Clean) 0.90± 0.09
[CLS] 0.45 = µ+ 1.7σ sentence 0.76 = µ− 1.6σ

7 0.42 = µ+ 1.1σ verb 0.76 = µ− 1.6σ

e5-base-v2 (Clean) 0.69± 0.03 (Clean) 0.95± 0.04
##abia 0.71 = µ+ 0.6σ 0.84 = µ− 2.4σ

##( 0.71 = µ+ 0.5σ bobbed 0.85 = µ− 2.2σ

jina-embeddings-v2-base-en (Clean) 0.62± 0.04 (Clean) 0.94± 0.05
[SEP] 0.73 = µ+ 2.7σ 117 0.84 = µ− 2.0σ
##laze 0.65 = µ+ 0.7σ geometridae 0.87 = µ− 1.5σ

Multi-token Magic Words. Compared to the other two methods, the advantage of the Alg. 3 is its
ability to search for multi-token magic words. In Table 4, we list several multi-token magic words
found by Alg. 3 on the sentence-t5-base model, which also shows a strong ability to manipulate text
similarity.
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Table 4: Multi-token magic words found by
Alg. 3.

Magic Word Similarity c±i

pos.
(Clean) 0.71± 0.03

Variety ros, 0.75 = µ+ 1.1σ
Tel ros, 0.74 = µ+ 1.0σ

neg.
(Clean) 0.96± 0.04

Rocket autre pronounce 0.85 = µ− 2.5σ
bourg In claimed 0.85 = µ− 2.5σ

Table 5: The Efficiency of different methods on
sentence-t5-base. Lower N c (number of candi-
dates) indicates higher efficiency.

magic word

N c method
Alg. 1 Alg. 2 Alg. 3

pos. ¡/s¿ 32100 2 1
lucrarea 32100 1 4

neg. dumneavoastra 32100 23 279
impossible 32100 1690 189

A100 time 16h 13s 72s

Efficiency. The baseline Alg. 1 takes all the T tokens in the vocabulary as candidates in its brute-
force search for the best one-token magic word w, taking O(T ) time. While Algs. 2 and 3 obtain
top-k candidates and then choose the best from them by a brute-force search, taking O(k) time,
which is significantly more efficient than Alg. 1 when k ≪ T . If the rank of w in Algs. 2 and 3 is r,
w can be found only if k ≥ r, taking at least O(r) time.

In Table 5, we compare the actual number of candidates for different methods (T for Alg. 1 and r
for Algs. 2 and 3) and the running time on A100. Algs. 2 and 3 finish in about 1 minute, which is
approximately 1000 times faster than Alg. 1.

4.3 ATTACKING SAFEGUARDS

We use magic words to attack safeguards based on text embedding. We obtain text embeddings
using sentence-t5-base and train various classifiers, including logistic regression (LR), SVM, and
a two-hidden-layer MLP, to detect harmful text in both the input and the output of LLMs. The
training dataset is JailbreakBench Chao et al. (2024). Subsequently, we use a positive magic word
and a negative magic word for sentence-t5-base in Table 3 to attack the safeguards.

The attack results are shown in Fig. 4. Regardless of the classifier used, the magic words significantly
reduce the area under the curve (AUC) of safeguards, making their classification performance close
to random guessing. This validates the effectiveness of our magic word attack.

Figure 4: The receiver operating characteristic (ROC) of input and output safeguards. Our magic
words significantly reduce their area under the curve (AUC). Renormalization in the text embedding
space mitigates the decrease of AUC and defends against this attack.
4.4 TRANSFER ATTACK

In addition to the universality for text, we also find that some magic words can transfer across mod-
els. We apply the previously discovered magic words to Larger and more recent text embedding
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models, including gte-Qwen2-7B-instruct Li et al. (2023c), SFR-Embedding-Mistral Meng et al.
(2024), and e5-mistral-7b-instruct Wang et al. (2024). The attack performance on gte-Qwen2-7B-
instruct is shown in Table 6, which shows that the transferred magic words achieve attack perfor-
mance close to the magic words found on gte-Qwen2-7B-instruct by Alg. 3. The transfer attacks are
also effective on SFR-Embedding-Mistral and e5-mistral-7b-instruct, as detailed in Sec. A.

Table 6: The AUC of safeguards based on gte-Qwen2-7B-instruct under transfer attacks.

safeguard Input Output
Magic Word from LR MLP SVM LR MLP SVM

(clean) - 0.86 0.88 0.87 0.82 0.78 0.83

Positive

inhabited sentence-t5-base 0.59 0.69 0.43 0.33 0.25 0.27
bourgeois sentence-t5-base 0.73 0.73 0.49 0.53 0.39 0.41

élé sentence-t5-base 0.76 0.78 0.44 0.39 0.24 0.26
grammar nomic-embed-text-v1 0.67 0.70 0.46 0.39 0.28 0.30

zenith Alg. 3 0.60 0.62 0.41 0.23 0.16 0.21

Negative
groundwater nomic-embed-text-v1 0.81 0.87 0.54 0.49 0.37 0.37

Laurel Alg. 3 0.76 0.69 0.42 0.37 0.23 0.25
roc Alg. 3 0.69 0.70 0.43 0.32 0.21 0.24

4.5 FULL PIPELINE ATTACK ON REAL-WORLD CHATBOTS

We attack several real-world chatbots following the full pipeline in Fig. 3. As shown in Table 7,
attacks targeting LLMs alone failed, but succeeded with magic words. For example, the chatbot
SparkDesk iFLYTEK (2025) rejected an explicit request for a Windows activation code (Fig. 5), but
accepted it with magic words (Sec. 4.5). See Sec. H for the screenshots of all cases in Table 7. This
indicates that magic word attacks can transfer from English Wiki tomaarsen (2024) to real dialogue
across languages.

Table 7: Attack Cases on Real-World Chatbots

Language Chatbot Target Failed Case Successful Case Screenshot

English

SparkDesk code to crack passwords explicit attack +magic word (output) Fig. 14
Windows activation code explicit attack +magic word (output) Fig. 15

Qwen Windows activation code explicit attack +magic word (output) Fig. 16
how to murder Trump fiction attack +magic word (output) Fig. 17

DeepSeek how to exterminate mankind explicit attack +magic word (input&output) Fig. 18
Windows activation code grandma attack +magic word (input) Fig. 19

ChatGPT how to make nuclear bombs grandma attack +magic word (input) Fig. 20
how to blow up the earth fiction attack +magic word (input) Fig. 21

Chinese DeepSeek
Sexual description explicit attack +magic word (output) Fig. 22
Sexual description substitution attack +magic word (output) Fig. 23
Sexual description substitution+fiction +magic word (output) Fig. 24

SparkDesk bloody description explicit attack +magic word (output) Fig. 25

Figure 5: Explicit attack failed. Figure 6: Magic word attack succeeded.

5 CONCLUSION

We have found that the output distribution of many current text embedding models is uneven. In-
spired by this observation, we have designed new algorithms to attack LLMs’ safeguards using text
embedding models. We propose to inject the magic words into the input and output of LLMs to
attack their safeguards. This attack misleads safeguards based on a variety of text embedding mod-
els and is transferable across models and languages in our experiments. Besides, we proposed and
validated that renormalization in the text embedding space can defend against this attack and im-
prove downstream performance in a train-free manner. A natural next step is to investigate how bias
emerges during training dynamics and to pursue a finer decomposition of the embedding space.
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Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models. arXiv
preprint arXiv:2211.09527, 2022.

Mansi Phute, Alec Helbling, Matthew Hull, ShengYun Peng, Sebastian Szyller, Cory Cornelius, and
Duen Horng Chau. Llm self defense: By self examination, llms know they are being tricked.
arXiv preprint arXiv:2308.07308, 2023.

Huachuan Qiu, Shuai Zhang, Anqi Li, Hongliang He, and Zhenzhong Lan. Latent jailbreak: A
benchmark for evaluating text safety and output robustness of large language models. arXiv
preprint arXiv:2307.08487, 2023.

Qwen. Qwen2.5: A party of foundation models. Github Blog, 2024. URL https://qwenlm.
github.io/blog/qwen2.5/. Accessed: 2025-01-14.

Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. Smoothllm: Defending large
language models against jailbreaking attacks. arXiv preprint arXiv:2310.03684, 2023.

Rusheb Shah, Soroush Pour, Arush Tagade, Stephen Casper, Javier Rando, et al. Scalable and
transferable black-box jailbreaks for language models via persona modulation. arXiv preprint
arXiv:2311.03348, 2023.

Sonali Singh, Faranak Abri, and Akbar Siami Namin. Exploiting large language models (llms)
through deception techniques and persuasion principles. In 2023 IEEE International Conference
on Big Data (BigData), pp. 2508–2517. IEEE, 2023.

Youran Sun and Babak Haghighat. Phase transitions in large language models and the o(n) model,
2025. URL https://arxiv.org/abs/2501.16241.

Yu Tian, Xiao Yang, Jingyuan Zhang, Yinpeng Dong, and Hang Su. Evil geniuses: Delving into the
safety of llm-based agents. arXiv preprint arXiv:2311.11855, 2023.

tomaarsen. Dataset: sentence-transformers/simple-wiki. Hugging Face, 2024. URL https:
//huggingface.co/datasets/sentence-transformers/simple-wiki. Ac-
cessed: 2025-01-13.

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey Nikolenko,
Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. Intrinsic dimension estimation
for robust detection of ai-generated texts. Advances in Neural Information Processing Systems,
36, 2024.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing nlp. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2153–2162, 2019.

12

https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
https://www.kaggle.com/competitions/llm-prompt-recovery/discussion/494343
https://www.kaggle.com/competitions/llm-prompt-recovery/discussion/494343
https://platform.openai.com/docs/guides/moderation/overview
https://platform.openai.com/docs/guides/moderation/overview
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2501.16241
https://huggingface.co/datasets/sentence-transformers/simple-wiki
https://huggingface.co/datasets/sentence-transformers/simple-wiki


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing text embeddings with large language models. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11897–11916, 2024.

Zezhong Wang, Fangkai Yang, Lu Wang, Pu Zhao, Hongru Wang, Liang Chen, Qingwei Lin,
and Kam-Fai Wong. Self-guard: Empower the llm to safeguard itself. arXiv preprint
arXiv:2310.15851, 2023.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
fail? Advances in Neural Information Processing Systems, 36, 2024.

Zeming Wei, Yifei Wang, Ang Li, Yichuan Mo, and Yisen Wang. Jailbreak and guard aligned
language models with only few in-context demonstrations. arXiv preprint arXiv:2310.06387,
2023.

Fangzhou Wu, Ning Zhang, Somesh Jha, Patrick McDaniel, and Chaowei Xiao. A new era
in llm security: Exploring security concerns in real-world llm-based systems. arXiv preprint
arXiv:2402.18649, 2024.

Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and
Fangzhao Wu. Defending chatgpt against jailbreak attack via self-reminders. Nature Machine
Intelligence, 5(12):1486–1496, 2023.

Youliang Yuan, Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Pinjia He, Shuming Shi, and
Zhaopeng Tu. Gpt-4 is too smart to be safe: Stealthy chat with llms via cipher. arXiv preprint
arXiv:2308.06463, 2023.

Yuqi Zhang, Liang Ding, Lefei Zhang, and Dacheng Tao. Intention analysis prompting makes large
language models a good jailbreak defender. arXiv preprint arXiv:2401.06561, 2024.

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani
Nenkova, and Tong Sun. Autodan: interpretable gradient-based adversarial attacks on large lan-
guage models. In First Conference on Language Modeling, 2024.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table of Contents
A Transfer Attacks on Safeguards 14

B Defense against Our Attacks 15

C Proof of Propositions 15
C.1 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.2 Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D Results from Random Matrix Theory 16

E Defense by Standardization 17

F Another Definition of Negative Magic Words 18

G Theoretical Analysis 19

H Full Pipeline Attacks on Real-World Chatbots 21
H.1 English Dialogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
H.2 Chinese Dialogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A TRANSFER ATTACKS ON SAFEGUARDS

Here are the supplementary experimental results for Sec. 4.4. The attack performance on SFR-
Embedding-Mistral and e5-mistral-7b-instruct is shown in Table 8 and Table 9 respectively. The
tables show that the transferred magic words achieve attack performance close to the magic words
found on gte-Qwen2-7B-instruct by Alg. 3.

Table 8: The AUC of safeguards based on SFR-Embedding-Mistral under transfer attacks.

safeguard Input Output
Magic Word from LR MLP SVM LR MLP SVM

(clean) - 0.97 0.96 0.96 0.97 0.97 0.95

positive

¡/s¿ sentence-t5-base 0.85 0.88 0.87 0.67 0.67 0.76
inhabited sentence-t5-base 0.73 0.81 0.67 0.73 0.74 0.80
diffusion Alg. 3 0.75 0.78 0.73 0.71 0.72 0.82

Alg. 3 0.85 0.85 0.87 0.84 0.85 0.88
Alg. 3 0.86 0.86 0.86 0.84 0.85 0.89

negative

groundwater nomic-embed-text-v1 0.82 0.83 0.78 0.81 0.81 0.85
pathetic sentence-t5-base 0.90 0.89 0.87 0.88 0.88 0.91
istance Alg. 3 0.87 0.88 0.87 0.85 0.86 0.90
ologia Alg. 3 0.80 0.83 0.78 0.80 0.80 0.83

Table 9: The AUC of safeguardsbasedd on e5-mistral-7b-instruct under transfer attacks.

safeguard Input Output
Magic Word from LR MLP SVM LR MLP SVM

(clean) - 0.95 0.97 0.96 0.94 0.95 0.96

positive

¡/s¿ sentence-t5-base 0.83 0.87 0.88 0.67 0.68 0.73
inhabited sentence-t5-base 0.63 0.70 0.65 0.71 0.72 0.75
diffusion SFR-Embedding-Mistral 0.66 0.72 0.69 0.74 0.73 0.78

SFR-Embedding-Mistral 0.84 0.87 0.87 0.85 0.86 0.89
SFR-Embedding-Mistral 0.86 0.89 0.88 0.87 0.88 0.91

negative

groundwater nomic-embed-text-v1 0.75 0.80 0.76 0.80 0.80 0.82
pathetic sentence-t5-base 0.86 0.89 0.87 0.86 0.87 0.88
istance SFR-Embedding-Mistral 0.85 0.88 0.87 0.87 0.88 0.90
ologia SFR-Embedding-Mistral 0.75 0.79 0.76 0.80 0.80 0.82
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B DEFENSE AGAINST OUR ATTACKS

To minimize the negative impact of our work, we propose the following recommendations to defend
against our attacks based on the above analysis.

Renormalization. Estimate the mean embedding ē from a large amount of text, subtract ē from
text embeddings, and renormalize them as ẽ(s) := e(s)−ē

∥e(s)−ē∥2
. This can eradicate the risk of the

magic words we found. We test the defense effect of renormalization against our magic words on
the sentence-t5-base model. The experimental setup is the same as Sec. 4.3. As shown in Fig. 4,
renormalization significantly alleviates or even eradicates the decrease in AUC caused by magic
words, therefore improving the robustness of LLMs’ safeguards.

Additionally, renormalization makes the distribution of text embeddings more uniform, which may
improve the performance of text embedding models. As shown in Fig. 4, renormalization increases
AUC on clean data, i.e., enhances the performance of three downstream classifiers in both input
and output data. This represents a train-free improvement to the text embeddings. By contrast,
experiments in Sec. E show standardization offers little defense against magic word attacks.

Vocabulary Cleaning. A larger vocabulary is not always better. It should align with the training
data, avoiding the inclusion of noisy words such as tokenization errors, misspellings, markups, and
rare foreign words, such as the magic words in Table 3.

Reinitialization. After the model has been trained, noisy words can be reinitialized based on the
average value of the token embeddings or the value of ¡unk¿ and then finetuned.

C PROOF OF PROPOSITIONS

C.1 PROOF OF PROPOSITION 3.2

Proof. Denote P = I − e(s+ w)e(s+ w)⊤. Then

sin θ(e(s+ w), e) = ∥Pe∥.

It follows immediately that

sin θ(e(s+ w), e∗) =
1

|S|

∥∥∥P ∑
j

e(sj)
∥∥∥/∥ē∥

≤ 1

|S|
∑
j

∥Pe(sj)∥/∥ē∥ ≤ sin θ∗
∥ē∥

.

On the other hand, it holds

ē⊤e(s+ w) =
1

|S|
∑
j

e(sj)
⊤e(s+ w) ≥ cos θ∗,

from which we obtain ∥ē∥ ≥ cos θ∗. The conclusion follows.

C.2 PROOF OF PROPOSITION 3.3

Proof. By Proposition 3.1, we have

∥Xe(s+ w)∥2 =
∑
j

|e(sj)⊤e(s+ w)|2 ≥ |S| cos2 θ∗.

Therefore, ∥X∥2 ≥ |S| cos2 θ∗.
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Denote P = I − e(s+ w)e(s+ w)⊤. Direct calculations give rise to

|S| cos2 θ∗ sin2 θ(e(s+ w), v∗)

≤ ∥X∥2∥Pv∗(v∗)⊤P∥

≤ ∥PX⊤XP∥ = ∥P
∑
j

e(sj)e(sj)
⊤P∥

≤
∑
j

∥Pe(sj)e(sj)
⊤P∥ ≤ |S| sin2 θ∗.

The conclusion follows immediately.

D RESULTS FROM RANDOM MATRIX THEORY

Let A be an n ×m matrix whose entries are i.i.d. standard normal random variables. Then, A has
the following properties.

1. The distribution of AA⊤ is called Wishart distribution.
2. In the regime where n,m → ∞ with a fixed aspect ratio γ = n/m, the empirical distribu-

tion of the eigenvalues of 1
mAA⊤ converges to the Marchenko–Pastur distribution

ρ(λ) =
1

2πγ

√
(λ+ − λ)(λ− λ−)

λ
+ max

(
1− 1

γ
, 0

)
δ0, (6)

where
λ± = (1±√

γ)2. (7)
3. The largest singular value of A is approximately

√
m

(
1 +

√
n

m

)
. (8)

Matrix B is obtained from A by normalizing each row of A. Concretely, if the i-th row of A is
denoted by ai ∈ Rm, then the i-th row of B is

bi =
ai

∥ai∥2
. (9)

Hence, each row bi is a unit vector in Rm. Then, B has the following properties.

1. Since each row ai is an i.i.d. Gaussian vector in Rm, normalizing it means bi is uniformly
distributed on the unit sphere Sm−1.

2. Let bi and bj be two distinct rows, their inner product follows Beta distribution

b⊤
i bj ∼ Beta

(
m− 1

2
,
m− 1

2

)
. (10)

When m ≫ 1,

b⊤
i bj ∼ N

(
0,

1

m

)
. (11)

3. The largest eigenvalue of BB⊤ approaches 1 when m → ∞ and in this case BB⊤ ≈ In.

Matrix C is formed by taking each row of B, adding a fixed vector u ∈ Rm, and then re-normalizing.
Symbolically, if bi is the i-th row of B, then the i-th row of C is

ci =
bi + u

∥bi + u∥2
. (12)

Then, the average of rows in C will be parallel to u, and the principal singular vector would also be
parallel to u.

Specifically, we conducted the following numerical experiment: we first randomly generated an
N × 768 random matrix A and then produced C using the method described above. The overlap
between the normalized mean vector e∗ of C and its principal singular vector v∗ as a function of the
magnitude of ∥u∥ = u is shown in Fig. 7.
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Figure 7: The overlap between the normalized mean vector e∗ of C and its principal singular vector
v∗ as a function of the magnitude of ∥u∥ = u.

E DEFENSE BY STANDARDIZATION

We tested the defense effect of standardizing text embeddings against our magic words. The experi-
mental setup is the same as in Sec. B, except that renormalization was replaced with standardization.
As shown in Fig. 8, the results indicate that standardization does not provide significant defense
against magic words like renormalization and even sometimes reduces the AUC.

Figure 8: The ROC (Receiver Operating Characteristic) of input and output guards. Our magic
words significantly decrease their AUC (Area Under Curve). Standardization in text embedding
space can mitigate the decrease of AUC and defend against this attack.

Renormalization and standardization exhibit significantly different effects in defending against mag-
ical words. This discrepancy may be attributed to the fact that for data distributed in a narrow band
on a high-dimensional sphere, renormalization preserves the signal-to-noise ratio (SNR), whereas
standardization reduces it.

Specifically, text embeddings lie within a narrow band on a high-dimensional sphere. The radial
components (i.e., orthogonal to e∗) have relatively large variance, while the axial components (i.e.,
aligned with e∗) have very small variance. Therefore, the signal can be considered to lie almost
entirely in the radial direction. In contrast, magical words lie outside this band and exhibit stronger
axial noise compared to normal text embeddings. So we can define SNR as the ratio of the radial
signal to the axial noise of magical words, excluding the background noise ē.
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As shown in Fig. 9, re-normalization uniformly scales both the radial signal and the axial noise
of magical words, thereby preserving the SNR. However, as illustrated in Fig. 10, standardization
amplifies the axial noise of magical words more than the radial signal, thus reducing the SNR.

𝑒̅

𝑒∗

𝜃

𝑆!"#

Figure 9: Renormalization uniformly amplifies
axial noise and radial signal and therefore pre-
serves the SNR.

𝑒̅

𝑒∗

𝜃

𝑆!"#

Figure 10: Standardization amplifies axial noise
more than radial signal and therefore reduces the
SNR.

F ANOTHER DEFINITION OF NEGATIVE MAGIC WORDS

In the main text, we define universal negative magic words as words that make a text move away
from semantically similar texts. However, there also exist words that push a text away from any
other text, which can be another definition of negative magic words. This can be expressed as an
assumption similar to Assumption 3.1: There exists a word w− satisfying that

cos θ(s1 + w−, s2) ≤ cos θ−∗ , ∀s1, s2, (13)

where cos θ−∗ is a number close to −1. Such a magic word w− can force any pair of texts to be
dissimilar enough in the text embedding space.

And similar to Sec. 3.1, any text appended by such magic word w− will be close to −e∗ (or −v∗),
as shown in Fig. 11. The Propositions 3.2, 3.3 for negative magic words can be given and proved in
a similar way.

𝑒̅

𝑒∗

𝜃

𝑆!"#

𝑒(𝑠)

𝑒(𝑠 + 𝑤#)

𝑒(𝑠 + 𝑤$)

−𝑒∗

Move	towards	𝑒∗

Move	towards	-𝑒∗

Figure 11: Northern (i.e., positive) or southern magic words can push text embeddings towards the
normalized mean e∗ (or −e∗). The same effect occurs for the principal singular vector v∗.
This effectively moves text embeddings closer to the southern pole −e∗ of the sphere, so we refer to
such magic words w− as southern magic words. Concretely, a good southern magic word should
make the following metric as small as possible,

c↓i = min
1≤r≤16

1

S2

∑
j,k

cos θ(sj + r ∗ ti, sk) (14)

= min
1≤r≤16

1

S

∑
j

cos θ(sj + r ∗ ti, e∗) (15)

We can use methods similar to Alg. 1, 2, 3 to find southern magic words. Some of the best southern
magic words we found for different text embedding models are demonstrated in Table 10. It is
reasonable to find that the Southern magic words “nobody” “None”, and “never” have negative
semantics.

We further experimented on attacking safeguards with southern magic words. The experimental
setup is the same as in Sec. B and the ROCs are shown in Fig. 12. The figure indicates that southern
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Table 10: Best southern magic words for different text embedding models.

Model Southern magic word
magic word similarity c↓i

sentence-t5-base (Clean) 0.71± 0.03
nobody 0.67 = µ− 1.0σ
None 0.67 = µ− 0.9σ

Qwen2.5-0.5B
(with mean pooling)

(Clean) 0.81± 0.08

0.14 = µ− 8.7σ

0.28 = µ− 7.0σ

nomic-embed-text-v1 (Clean) 0.36± 0.05
references 0.30 = µ− 1.1σ

writing 0.33 = µ− 0.6σ

e5-base-v2 (Clean) 0.69± 0.03
junctions 0.67 = µ− 0.8σ
coloring 0.67 = µ− 0.8σ

jina-embeddings-v2-base-en (Clean) 0.62± 0.04
never 0.61 = µ− 0.3σ

for 0.61 = µ− 0.3σ

magic words not only failed to reduce the AUC of the safeguards but even improved it. Therefore,
it is concluded that southern magic words have no attack effect on safeguards.

Figure 12: The receiver operating characteristic (ROC) of input and output safeguards under the
attacks of southern magic words .

G THEORETICAL ANALYSIS

As discussed above, the distribution of text embeddings on Sd−1 is biased towards the mean di-
rection e∗, as shown in the left part of Fig. 13. Alg. 3 finds the inverse image of e∗ in the token
embedding space, denoted by t∗ defined in Eq. (5). Since tokens are discrete, there isn’t always a
token near t∗ in the token embedding space. However, our experiments show that candidates can
always be found near t∗.

To address this paradox, we propose the following explanation. At the initialization of word em-
bedding models, token embeddings are randomly initialized in the token embedding space. During
training, they concentrate towards a certain subset of the token embedding space Tulchinskii et al.
(2024). This subset must be away from t∗ to avoid degrading text embeddings’ performance on
high-frequency data. However, there are always some low-frequency tokens that are rarely updated
by gradient descent and thus remain almost as they were randomly initialized. If they happen to be
located near t∗, they are the positive magic words we are looking for.
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text	embeddings	lie	in	an	
band	on	the	sphere

text	embedding	model

Algorithm	3

text	embedding	space

𝑡∗

token	embedding	are	
clustered	away	from	𝑡∗

token	embedding	space

𝑒̅

𝑒∗

𝜃

𝑆"#$

Figure 13: The mappings between the text embedding space and the token embedding space.

An interesting insight into why text embeddings, initially uniformly initialized, tend to concentrate
after training is that a Transformer can be mapped to an O(N) model Sun & Haghighat (2025),
and an O(N) model can acquire a nonzero vacuum expectation value (VEV) through spontaneous
symmetry breaking (SSB). This nonzero VEV implies that the mean of the text embeddings is no
longer zero.
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H FULL PIPELINE ATTACKS ON REAL-WORLD CHATBOTS

Below are screenshots of all attack cases in Table 7, including both English and Chinese dialogues.
Sensitive content has been blurred to prevent potential harm.

H.1 ENGLISH DIALOGUES

(a) Explicit attack: failed.

(b) Explicit attack+magic word (output): succeeded.

Figure 14: Attack SparkDesk: code to crack passwords.
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(a) Explicit attack: failed.

(b) Explicit attack+magic word (output): succeeded.

Figure 15: Attack SparkDesk: Windows activation code

(a) Explicit attack: failed.

(b) Explicit attack+magic word (output): succeeded.

Figure 16: Attack Qwen: Windows activation code.
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(a) Fiction attack: failed.

(b) Fiction attack+magic word (output): succeeded.

Figure 17: Attack Qwen: how to murder Trump.
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(a) Explicit attack: failed.

(b) Explicit attack+magic word (input&output): succeeded.

Figure 18: Attack DeepSeek: how to exterminate mankind.
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(a) Grandma attack: failed.

(b) Grandma attack+magic word (input): succeeded.

Figure 19: Attack DeepSeek: Windows activation code.
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(a) Grandma attack: failed.

(b) Grandma attack+magic word (input): succeeded.

Figure 20: Attack ChatGPT: how to make nuclear bombs.
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(a) Fiction attack: failed.

(b) Fiction attack+magic word (input): succeeded.

Figure 21: Attack ChatGPT: how to blow up the earth.
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H.2 CHINESE DIALOGUES

(a) Explicit attack: failed.

(b) Explicit attack+magic word (output): succeeded.

Figure 22: Attack DeepSeek: Sexual description.

(a) Substitution attack: failed.

(b) Substitution attack+magic word (output): succeeded.

Figure 23: Attack DeepSeek: Sexual description.
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(a) Substitution attack+Fiction attack: failed.

(b) Substitution attack+Fiction attack+magic word (output): succeeded.

Figure 24: Attack DeepSeek: Sexual description.
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(a) Explicit attack: failed.

(b) Explicit attack+magic word (output): succeeded.

Figure 25: Attack SparkDesk: bloody description.
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