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Abstract

Analog in-memory computing (AIMC) is a promising compute paradigm to improve speed and
power efficiency of neural network inference beyond the limits of conventional von Neumann-based
architectures. However, AIMC introduces fundamental challenges such as noisy computations and
strict constraints on input and output quantization. Because of these constraints and imprecisions,
off-the-shelf LLMs are not able to achieve 4-bit-level performance when deployed on AIMC-based
hardware. While researchers previously investigated recovering this accuracy gap on small, mostly
vision-based models, a generic method applicable to LLMs pre-trained on trillions of tokens does
not yet exist. In this work, we introduce a general and scalable method to robustly adapt LLMs for
execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models —
including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct — to retain performance comparable
to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization
constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation
models can be quantized for inference on low-precision digital hardware. Finally, we show that our
models also benefit from test-time compute scaling, showing better scaling behavior than models
trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between
high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation
models. Code is available at https://github.com/IBM/analog-foundation-models.

1 Introduction

Fueled by constant hardware [1–3] and software [4, 5] innovation, today’s Large Language Models
(LLMs) have billions [6], or even trillions [7] of parameters and support context windows with
millions of tokens [7, 8]. However, this scale comes at the cost of increased energy consumption
when training, and especially serving these models. While hardware used for training has been largely
dominated by high-throughput GPUs [1, 2] or TPUs, novel specialized digital chips for inference
have recently begun to emerge [9–12]. However, these chips often either do not scale in weight
density [9–11] or remain limited by the von Neumann bottleneck [12].

A promising alternative to fully-digital architectures is in-memory computing, where computations
are performed in-place on stored data. Analog in-Memory Computing (AIMC) addresses both
compute efficiency and data movement by performing fully-parallel Matrix-Vector Multiplications
(MVMs) in the analog domain [13, 14] on stored weight matrices, without having to move the weight
data to an external processor (see figure 1). While in-memory computing using SRAM to store
weights has recently been shown to achieve impressive throughput and power efficiency [15, 16],
it is fundamentally limited by the bit-cell size of SRAM, which has plateaued over the years [17].
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Figure 1: a. Linear layers in the transformer architecture can be offloaded to AIMC cores. b. In
one implementation, given a digital weight matrix W, each AIMC core calculates y = xWT in the
analog domain using voltages v and conductances G, where Gi,j ∝Wi,j .

In order to store larger neural networks fully on-chip, a more scalable memory technology must be
used, which is why researchers explored AIMC with dense Non-Volatile Memory (NVM) such as
embedded flash [18], Phase Change Memory (PCM) [19, 20], ReRAM [21, 22], or MRAM [23]. To
avoid being bound by the planar dimension, researchers have further explored the use of 3D NVM
technologies such as 3D NAND [24, 25]. Because the computation is performed in-place within
high-density 3D NVM, such architectures are suitable for hosting billion- and even trillion-parameter
models with a small footprint. This can yield up to three orders of magnitude higher energy efficiency
compared to state-of-the-art GPUs when running Mixture of Experts (MoE)-based LLMs [26].

Computations performed with AIMC are significantly faster and more energy efficient, but are
imprecise due to various device/circuit nonidealities. These include input and output quantization
as a result of digital-to-analog and analog-to-digital conversion, as well as device programming
noise [27], read noise [28], temperature-dependent conductance variations [29], IR-drop [30, 31],
or conductance drift [32, 33]. Similar to Quantization Aware Training (QAT), methods have been
devised to make neural networks more robust to analog noise [34–38] so that they are amenable for
deployment on AIMC accelerators. The efficacy of these methods has been successfully validated
on recently developed AIMC chips [19–21] for small CNNs and RNNs with less than 50 million
parameters. However, the robustness of LLMs to analog noise remains uncertain [39], highlighting
the need for innovative approaches to improve their resilience without repeating the entire training
pipeline. In particular, a key challenge is that, unlike quantization, the noise profile of an AIMC
chip is non-deterministic, cannot be efficiently modeled during training, and varies across chips –
necessitating a generic training method that can generalize across the diverse noise characteristics of
multiple AIMC devices.

In this paper, we answer the question of whether off-the-shelf LLMs are robust to noise extracted
from existing AIMC hardware, and we present a detailed data generation and training strategy to
turn LLMs into analog foundation models without access to the original pre-training data. Using
scalable Hardware Aware (HWA) training techniques, we train two analog foundation models on less
than 1% of the total number of pre-training tokens and demonstrate that analog noise induces a drop
comparable to 4-bit per-channel weight and 8-bit static input quantization on models trained with
state-of-the-art Post-Training Quantization (PTQ) and QAT methods. Our key contributions are as
follows:

• We demonstrate a detailed and easy-to-follow data generation and training pipeline to turn
LLMs into analog foundation models;

• Using these techniques, we train analog versions of Phi-3-mini-4k-instruct [40] and Llama-
3.2-1B-Instruct [6], and show that when hardware-realistic noise is applied, these models
attain accuracy levels comparable to quantized models using 4-bit per-channel weight and
8-bit static input quantization;

• We evaluate our analog foundation models on a variety of benchmarks, testing various
capabilities such as reasoning, factual knowledge, instruction following, and safety;
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• As a byproduct of our training pipeline, analog foundation models can also be quantized for
inference on low-precision digital hardware, obtaining competitive performance compared
to models trained with state-of-the-art quantization algorithms;

• Finally, we demonstrate that our models benefit equally from increased test-time compute
when compared to quantized models using 4-bit per-channel weight and 8-bit static input
quantization, even showing improvements of up to 4.74% on the MATH-500 benchmark.

2 Background and Related Work

When deploying a model to AIMC hardware, the weights of the neural network are programmed into
NVM devices which are arranged in a grid-like structure (see figure 1b). Then, quantized digital
inputs get converted into voltages using Digital to Analog Converters (DACs) and are applied to the
rows of the grid. Currents representing the dot product between the voltage vector and the weights at
each column then flow into Analog to Digital Converters (ADCs), where they are finally converted
back into the digital domain. The result is then send to either another AIMC core, a Digital Processing
Unit (DPU), or a RISC-V in a heterogeneous multi-core architecture [41, 42].

Three key attributes affect the accuracy of AIMC: weight noise, input DAC quantization and output
ADC quantization. Weight noise primarily comes from temporal and device-to-device variations of
the NVM conductance that encodes a weight [14] (see figure 1b). Static weight noise (does not get
resampled during inference) is mainly due to programming noise, which is the conductance error from
the target weight that remains after a device has been programmed with an iterative read-write-verify
programming scheme [27]. Dynamic weight noise sources whose magnitude vary as a function
of time include read noise [28] – due to analog 1/f noise of devices and circuits – and temporal
conductance drift, which is the decrease in device conductance over time that is notably observed
in PCM devices [33]. Input DAC quantization is equivalent to quantizing the input activations of
each layer. However, in contrast to many reduced-precision training papers that assume that the
quantization ranges can be dynamically recomputed per-token [43, 44], AIMC typically uses static
ranges [37, 45]. Computing the range of a signal dynamically in hardware is very expensive, and
therefore will negatively impact the overall efficiency of an AIMC accelerator [46]. Similarly, ADC
quantization which quantizes the pre-activation outputs of each layer, must also use static ranges.
But although DAC ranges can be configured per-layer, ADC ranges must be identical across layers,
as they reflect the fixed dynamic range and precision of the ADCs [45]. Although AIMC hardware
advancements can improve these nonidealities, increasing the precision of analog circuits comes at
an exponential cost in power and area [47]. Therefore, they cannot be completely eliminated and
must be mitigated by on-chip calibration methods and by adapting the pre-trained neural network
with HWA training. On-chip calibration methods typically involve calibrating the ADCs to reduce
non-linearity and ADC-to-ADC variability, as well as determining per-output scales and offsets to
correct for systematic linear nonidealities in each output channel [19]. However, calibration alone is
insufficient to achieve high on-chip accuracy because it cannot compensate for the stochastic nature
of programming noise, or temporal variations such as read noise and drift. Therefore, adapting the
neural network through HWA training is essential for accurate on-chip deployment. Calibration and
network adaptation are complementary: calibration reduces deterministic hardware variations, while
HWA training makes the network robust to the remaining stochastic and nonlinear effects.

Previous works that study HWA training for AIMC-based hardware are limited to CNNs [35, 48,
49], RNNs [37], LSTMs [37, 49, 50], GANs [51] and small encoder-only transformers [37, 52].
Consequently, the studied tasks are easy and the number of training samples small. Additionally,
unlike in modern LLMs, one always has full access to the training data and can easily repeat the full
training on a single GPU, with the exception of the encoder-only transformers, where HWA training
is employed at the finetuning stage. As we show in appendix A, performing HWA training only
during the finetuning stage leads to suboptimal results, and does not necessarily apply to LLMs as
they do not require task-specific finetuning.

In Zhang et al. [45], the authors mainly focus on the accuracy impact of ADCs with a fixed range and
resolution. This static output quantization leads to accuracy degradations, which the authors address
by reshaping the activation- and weight-distribution, and by using low-rank adaptation to increase
the model’s robustness to output quantization. However, additional nonidealities such as weight
noise are neglected, and LLMs only up to 1.7B parameters are investigated solely on the WikiText
benchmark. In contrast, our work globally focuses on the robustness to weight noise, input, and
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output quantization of pre-trained LLMs with more than 3 billion parameters, evaluated on various
standard LLM benchmarks. In fact, we show that – instead of using involved methods such as the
ones presented in Zhang et al. [45] – training with simple straight-through estimation suffices to
tolerate globally static output quantization with minimal loss in accuracy.

QAT can be used to enhance the robustness of neural networks to quantization errors by training with
the quantization operators in the forward pass. In the backward pass, these operators are ignored
and the gradients simply passed through [53]. In the context of LLMs, a particular challenge that
arises when applying QAT is the unavailability of the training data. This particular problem is solved
by LLM-QAT [43], where the authors propose to use the LLM itself to sample training data, which
is then used to train the quantized model via distillation from the original model. As we show in
our results, QAT does not yield satisfiable robustness to noise commonly found in AIMC hardware.
This is due to the fact that by quantizing the weights in the forward pass, the model overfits to the
deterministic quantization noise and does not generalize to other types of noise.

While QAT allows for more harsh modifications to the forward pass, it has the downside of requiring
resources and infrastructure for training LLMs. PTQ methods solve this by often relying on only
local optimizations [54, 55] and other cheap modifications to the network architecture [44, 56]. For
example, SpinQuant [44] learns optimal rotations that are applied to activation vectors in order to
remove outliers [56] and uses GPT-Q [54] for the weight quantization. Similar to QAT, we show
that PTQ methods do not yield any robustness to noise found in AIMC hardware. Furthermore, we
find that PTQ methods tend to degrade accuracy when static ranges for activation quantization are
calibrated in a post-training method. This further limits the applicability of PTQ methods, as dynamic
per-token quantization introduces non-negligible computational overhead in dedicated accelerators.

3 Methods

In our experiments, we make the following hardware assumptions. We assume a heterogeneous
accelerator that is capable of executing MVMs with static weights in analog. Other digital operations
such as activation functions and the attention computation are executed in FP16 using dedicated
digital units. Activations streaming into an analog core are quantized to 8 bits using learnable input
ranges that are fixed during inference. Similar to Zhang et al. [45], we assume output ranges for
8-bit output quantization that are identical across layers and fixed during training and inference.
In all cases, we employ symmetric quantization. When weight quantization is employed, we use
per-channel weight quantization. We keep the KV-cache in FP16.

To ease comparison, we use the following notation for describing our setups. We use SI for static
input quantization and DI for dynamic input quantization. When present, O indicates that globally
static output quantization is used. When noise is applied to weights, W<type> is used where <type>
indicates the type of noise used. For example, a configuration labeled SI8–W4hw noise–O8 represents
a configuration with static 8-bit input quantization, 4-bit per-channel weight quantization with
hardware-realistic noise added after quantization, and 8-bit globally static output quantization.

3.1 Training analog foundation models

Methodology We follow the training pipeline from Liu et al. [43], which is depicted in figure
2. First, the pre-trained model is used to generate data by iteratively sampling from the softmax
distribution of the model given the tokens generated so far, starting with the BOS token. Using
distillation, we then train the analog foundation model using HWA training. Finally, the trained model
can be deployed on analog or low precision digital hardware. The process from data generation to
deployment is illustrated in more detail in figure 11. Unlike Liu et al. [43], we do not find that greedy
sampling of the first 3-5 tokens improves downstream performance. We also find that, while synthetic
data performs the best, open-source datasets such as FineWeb [57] also yield good results as long as
distillation is used. The benefit of using distillation in the context of HWA training has also been
shown in Zhou et al. [58]. We also observe strong gains by scaling the number of training tokens from
1B to 20B, after which we did not see significant improvements. This is significantly more compared
to the 100M tokens used in Liu et al. [43] and we show that this scaling also benefits models trained
with LLM-QAT. For details on the ablations performed on the methodology, see appendix B.
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Figure 2: a. Synthetic data is generated by repeated sampling from the softmax distribution. b.
Analog foundation models are trained via knowledge distillation on the synthetic data. c. The trained
models can then be deployed on analog or low-precision digital hardware.

Hardware aware training We use AIHWKIT-Lightning [59], an open-source toolkit developed for
scalable HWA training based on PyTorch [60]. In our training, we employed four key HWA training
features, which we describe in more detail.
In AIMC cores, inputs are converted to analog values using DACs. On the one hand, higher input
precision eases network training and yields higher computational precision, but on the other hand
also incurs longer MVM latency. At 8 bits, this trade-off is optimal as it still yields low MVM latency,
and does not impact model accuracy [44]. We model input quantization of the inputs x according to
eq. 1, where βinp. quant are learnable input ranges, "input bits" are the number of bits for quantization,
and ⌊.⌉ is the round-to-nearest operator. For the first 500 forward passes during training, the input
ranges are initialized using an exponential moving average over κ · std(x), where κ is 15.0− 18.0,
as we observed that any activation clipping in the beginning of training hindered convergence. After
initialization, the input ranges are updated with a custom gradient [59] that favors tight input ranges
to reduce the quantization error.

xquant ← βinp. quant

2input bits−1 − 1
· ⌊clamp(x,−βinp. quant, βinp. quant) · 2

input bits−1 − 1

βinp. quant ⌉ (1)

Similar to Zhang et al. [45], our assumed tile architecture comprises ADCs that convert analog signals
to digital ones. We assume that these ADCs are not configurable per layer and can therefore be
modeled as output quantization with globally fixed output ranges λadc, as shown in eq. 2. In contrast
to Zhang et al. [45] where perplexity on WikiText-2 increases by more than 400 when simple QAT
is used, we show that we only lose between 0.2% and 0.5% average accuracy when training with
globally static 8-bit output quantization using simple straight-through estimation [53]. For more
details, see appendix C.

yquant
i ← clamp(

βadc quant
i

2adc bits−1 − 1
· ⌊yi ·

2adc bits−1 − 1

βadc quant
i

⌉,−βadc quant
i , βadc quant

i )

βadc quant
i = λadc · βinp. quant · max(|W:,i|)

(2)

In order to enhance robustness to noisy analog computations, we inject per-channel additive Gaussian
noise [35] into the weights during the forward pass (see eq. 3). During the backward pass, the
noise-free weights are used. In more detailed ablation studies (see appendix C), we show that an
additive Gaussian noise that only scales the noise with respect to the per-channel maximum of the
weights works best, and that a small γweight (0.02− 0.03) optimally balances the trade-off between
accuracy and robustness.

Wnoisy
:,i ←W:,i + γweight · max(|W:,i|) · τ

where τ ∼ N (0, I)
(3)

Finally, when a network layer is deployed to AIMC hardware, weights are mapped to conductance
values in a range that is dictated by the nature of the NVM devices in the hardware. To fully exploit
the conductance range, we clip the weights after every optimizer step according to eq. 4, where α is a
user-configurable hyperparameter that controls the amount of clipping.

W∗
:,i ← clamp(W:,i,−ζi, ζi) where ζi = α · std(W:,i) (4)
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We find that although noise injection has been widely believed to provide the most significant
improvements in robustness, we demonstrate in further ablation studies (see appendix C) that for
LLMs weight clipping yields stronger robustness, and that a combination of the two performs
best. This is because clipping applied during training causes smaller weights to be mapped to
larger conductance values, which have higher Signal-to-Noise Ratio (SNR) compared to the lower
conductance values for the PCM-based model we consider. As a result, the average per-weight SNR
increases, resulting in higher robustness (see appendix D for details).

Training setup For training our analog foundation models, we use 20B tokens which are syn-
thetically generated using vLLM [61]. After data generation, we train our models on 96 V100
GPUs. Because of the V100’s limited DRAM capacity, we use DeepSpeed ZeRO stage 2, which
includes gradient- and optimizer state partitioning. We also use activation checkpointing and CPU
offloading to further reduce memory consumption. For both models, we train with a maximum
sequence length of 4096 which is also the chunk size used during data generation. Training of the
Phi-3-mini-4k-instruct-based analog foundation model takes about 230h, while training the smaller
Llama-3.2-1B-Instruct-based models takes about 90h. When using GPUs with more memory, the
time and number of required GPUs reduces drastically as training is more efficient. For example,
training a Phi-3-mini-4k-instruct-based model on 8 A100s takes the same time as training it on 48
V100s.

3.2 Evaluation

Thorough evaluation on a wide variety of benchmarks is key to understanding the true performance
of our models compared to the original ones. In many related works, we observe that the number
of benchmarks used for evaluation is small, or hard benchmarks (especially reasoning-based ones)
are omitted [37, 43, 45], which can lead to misleading results. In this paper, we overcome this
limitation by examining our models on a total of 12 benchmarks covering diverse key areas of
LLM capabilities, including problem solving tasks in STEM [62, 63], medicine [64] or multiple
professions [65], commonsense reasoning [66], mathematical reasoning [67, 68], trivia [69], natural
language inference [70], instruction following [71], and safety [72]. For more information on the
exact prompts used for few-shot learning, the way we extracted the answers for every benchmark, the
system prompts used, see appendix E.
To simulate the performance of our models in a more realistic setting, we used a noise model from a
state-of-the-art 64-core PCM-based AIMC chip [19]. In this chip, the noise introduced by imprecise
programming of the weights into the NVM devices - programming noise - dominates, which is
why we chose to focus on this type of noise. Note that programming noise does not originate
directly from device-to-device variability, which is mostly accounted for by the iterative read-write-
verify programming scheme that iteratively nudges the device conductance towards a target value.
Programming noise is actually the conductance error from the target weight that remains after a device
has been programmed. As can be seen in figure 9, the amount of noise depends on the conductance
state, with higher conductances having more noise than lower ones. However, because of an additive
noise floor, lower conductance states have a worse signal-to-noise ratio than higher conductance
states. In this paper, we indicate benchmark results obtained with this realistic noise model with
Whw noise. Because the noise model from Le Gallo et al. [19] is specific to one type of NVM device,
we also evaluate our foundation models on generic additive Gaussian noise (see eq. 3). Results
obtained with this type of noise are indicated with Wgaussian noise. Unless stated otherwise, experiments
involving noise injection during evaluation were repeated 10 times for different random seeds, which
we found to be crucial for meaningful comparisons.

4 Results

4.1 Analog foundation models are robust to analog noise

When evaluating both models – Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct – off-the-shelf,
we see that only injecting hardware-realistic noise leads to an average drop of 8.01% and 9.81%,
respectively (see table 1). On more challenging benchmarks such as GSM8K, accuracy drops
even more: 21.43% for Phi-3-mini-4k-instruct and 23.2% for Llama-3.2-1B-Instruct. Our analog
foundation models improve on this significantly, reducing the gap to off-the-shelf FP16 performance
to 3.81% for Phi-3-mini-4k-instruct and 4.58% for Llama-3.2-1B-Instruct while also including static
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8-bit input quantization and globally static 8-bit output quantization (see further results in appendix F
where we compare to an analog foundation model trained with 7-bit input quantization). Strong gains
can be observed especially for harder tasks such as GSM8K, HellaSwag, and ANLI, where the gaps
were reduced by up to 12.87%. We find that QAT also improves robustness to hardware-realistic
analog noise, which is due to the indirect noise injection during training via weight-quantization.
As table 1 shows, our analog foundation models still outperform models trained with LLM-QAT
significantly, especially on harder tasks with differences of up to 12.87% for Phi-3-mini-4k-instruct
and 8.16% Llama-3.2-1B-Instruct. We also compare our analog foundation models to models that
were quantized post-training with SpinQuant [44]. Because the original implementation of SpinQuant
uses dynamic per-token input quantization, we report the model performance with it (DI8), along
with our implementation using hardware-friendly static input ranges (SI8) which evidently performs
worse. In any case, we observe that models quantized using SpinQuant [44] show lower robustness to
hardware noise even compared to the original off-the-shelf model.

Table 1: Comparison of Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct-based analog foundation
models against off-the-shelf models, models trained with LLM-QAT, and models quantized with
SpinQuant. Best results when hardware-realistic noise is applied are bold faced. Evaluations with
noise injections are repeated for 10 different seeds per benchmark.
Model Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

Phi-3-mini-4k-instruct
(W16) 69.36 79.91 78.62 83.51 52.91 38.06 84.56 91.08 52.25 70.03

Phi-3-mini-4k-instruct
(W16hw noise)

63.32
±1.56

58.48
±8.10

73.25
±1.71

73.36
±6.63

44.90
±2.39

33.48
±1.34

80.39
±3.06

89.02
±1.05

42.00
±3.89 62.02

Analog FM
(SI8-W16-O8) 67.24 76.19 77.00 82.68 48.66 37.00 84.04 90.74 52.38 68.44

Analog FM
(SI8-W16hw noise-O8)

65.11
±0.32

71.35
±0.97

75.34
±1.60

80.56
±0.74

46.43
±0.70

35.57
±0.71

83.15
±0.54

89.83
±0.28

48.63
±2.83 66.22

LLM-QAT (SI8-W4) 64.12 69.90 75.50 79.18 44.03 36.19 81.57 89.31 51.50 65.70
LLM-QAT
(SI8-W4hw noise)

60.05
±1.27

60.10
±1.40

68.82
±8.66

74.77
±1.15

40.03
±1.35

33.77
±1.15

77.88
±1.51

87.23
±0.89

42.59
±5.52 60.58

SpinQuant (SI8-W4) 62.66 68.46 72.51 72.43 44.50 34.51 80.12 89.10 45.44 63.30
SpinQuant
(SI8-W4hw noise)

29.67
±2.26

2.85
±1.71

57.29
±4.02

25.08
±0.67

23.20
±1.72

24.07
±0.99

29.61
±3.52

36.03
±8.53

30.58
±3.36 28.71

SpinQuant (DI8-W4) 67.28 74.83 76.27 81.53 49.06 36.45 83.62 90.45 48.47 67.55
SpinQuant
(DI8-W4hw noise)

48.34
±2.13

16.97
±7.31

63.89
±2.76

33.44
±4.10

31.68
±0.83

27.77
±1.31

60.57
±4.79

75.69
±3.63

34.72
±1.24 43.68

Llama-3.2-1B-Instruct
(W16) 46.94 45.79 65.20 33.16 35.14 26.23 51.71 69.15 36.12 45.49

Llama-3.2-1B-Instruct
(W16hw noise)

35.94
±1.89

22.59
±1.70

61.38
±1.67

26.50
±0.69

25.46
±1.76

24.06
±0.84

39.24
±3.12

52.35
±2.90

33.60
±1.33 35.68

Analog FM
(SI8-W16-O8) 44.94 36.32 64.92 30.75 32.55 26.50 50.09 67.21 35.72 43.22

Analog FM
(SI8-W16hw noise-O8)

42.91
±1.06

30.75
±1.36

63.17
±0.80

29.27
±0.99

31.16
±1.07

26.24
±0.63

46.66
±1.49

63.14
±1.72

34.92
±1.20 40.91

LLM-QAT (SI8–W4) 41.57 26.99 64.59 30.23 28.69 26.94 46.93 62.71 33.47 40.24
LLM-QAT
(SI8-W4hw noise)

40.06
±1.46

20.91
±0.87

61.93
±1.59

28.97
±0.75

27.23
±0.91

25.99
±0.77

43.80
±1.17

58.95
±1.81

33.40
±0.60 37.92

SpinQuant (SI8-W4) 26.84 2.05 43.24 24.59 20.99 21.66 26.19 28.24 33.56 25.26
SpinQuant
(SI8-W4hw noise)

25.58
±0.63

1.59
±0.54

42.95
±3.73

24.88
±0.33

19.70
±0.68

21.81
±0.39

24.80
±0.67

24.74
±1.07

24.61
±10.93 23.41

SpinQuant (DI8-W4) 43.38 37.38 64.65 31.31 33.25 25.87 46.50 63.47 35.75 42.40
SpinQuant
(DI8-W4hw noise)

33.22
±2.25

14.79
±2.69

60.13
±2.46

25.77
±0.61

23.60
±1.68

24.01
±1.14

35.44
±2.19

46.09
±3.31

33.82
±0.52 32.98

Not all AIMC-based hardware suffers from the same type and amount of noise. To show that the
results presented in table 1 also generalize to a more generic noise profile at different noise magnitudes,
we perform sweeps over the magnitude of additive Gaussian noise relative to the maximum absolute
per-channel weight which we inject into the weights. Figure 3 confirms the trend already evident in
table 1: the analog foundation models and models trained with QAT show the strongest robustness,
with the analog foundation models generally achieving higher baseline accuracy and more graceful
decline in average accuracy, improving over the LLM-QAT baseline by up to 11.25%. Although
the Llama-3.2-1B-Instruct-based model quantized with SpinQuant shows slightly higher robustness
compared to the original off-the-shelf models, one can generally conclude that SpinQuant does not
yield much improvements in robustness.

In addition to sweeping generic additive Gaussian noise, we performed further experiments in
appendix F, where we evaluate Phi-3-mini-4k-instruct on a noise model extracted from ReRAM
devices [21]. Under this overall stronger noise, our analog foundation model shows 7.05% better per-
formance compared to the LLM-QAT model (see appendix F.1). To better understand the robustness
under hardware-realistic noise at different magnitudes, we scaled the PCM-based programming noise
by factors of 1.5 and 2.0. Experiments (see appendix F.1) show that our analog foundation model
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outperforms the runner-up LLM-QAT model by 15.92% for the 1.5× scale and 20.62% for the 2.0×
scale. Finally, to test the robustness to other types of noise, we conducted experiments where we
inject read noise and apply conductance drift according to a publicly available noise model based on
hardware [73]. Results on Arc-C and MedQA show that the analog foundation model is significantly
more robust to drift and read noise compared to both the off-the-shelf model and the model trained
with LLM-QAT (see appendix F.2).

Modern AIMC chips have much smaller tiles compared to the weight matrices of modern LLMs.
Therefore, larger weight matrices must be split into smaller chunks and mapped onto different tiles.
The MVM is then performed by aggregating partial results of the individual tiles using high(er)-
precision digital circuitry. Using tiled matrices has a positive impact on accuracy, primarily because
weights are now re-scaled per-tile, instead of per-layer, resulting in higher SNR. Experiments on
Phi-3-mini-4k-instruct show that off-the-shelf models and models trained with LLM-QAT benefit
from this increased SNR, improving average noisy accuracy by 1.76% and 1.11%, respectively.
Because the analog foundation models already have tight weight distributions, tiling does not have an
effect on the noisy performance (see appendix G for details). Nonetheless, the analog foundation
model still outperforms the LLM-QAT model by 4.43%.

Figure 3: Average benchmark performance (y-axis) as a function of additive Gaussian noise magnitude
(x-axis) expressed in percentage of per-channel maximum absolute weight. Results shown for a.
Phi-3-mini-4k-instruct- and b. Llama-3.2-1B-Instruct-based models.

4.2 Safety and instruction following

Models often undergo multiple stages of training, including pre-training, instruction finetuning, and
alignment. Whether HWA training on purely synthetic data causes the loss of capabilities learned
during these extra stages is an open question [43], which we try to answer by benchmarking our
models on IFEval [71], a benchmark designed to measure a model’s ability to follow instructions, and
XStest [72], a benchmark to evaluate a model’s willingness to answer harmful and harmless prompts.
For IFEval, we report the prompt- and instruction-level accuracy. In this benchmark, one prompt
comprises multiple instructions. The instruction-level accuracy is more forgiving as it counts the
number of individual instructions followed. To correctly follow a prompt, all instructions within that
prompt must be followed. For XSTest, we report the Invalid Prompt Refusal Rate (IPRR), measuring
how often the model refused to answer a harmful prompt, and the Valid Prompt Refusal Rate (VPRR),
measuring how often the model refused to answer a harmless prompt such as "How do I kill a Python
process?". For more details, see appendix E. By evaluating the benchmarks repeatedly using our
hardware-realistic noise, we also investigate how these capabilities change under the influence of
noise.
As table 2 shows, our analog foundation models mostly retain the ability to follow instructions. Due
to their high robustness, this capability also does not change much when hardware-realistic noise
is added to the weights. Regarding safety, one can see that the off-the-shelf Phi-3-mini-4k-instruct
model answer to more harmful prompts when noise is injected. This is generally not the case for the
analog foundation models, which tend to become more careful when answering prompts, which is
reflected by the "window" between IPRR and VPRR shifting towards higher values.

4.3 Deployment of analog foundation models on 4-bit digital hardware

As illustrated in figure 1, analog foundation models can also be deployed to low-precision digital
hardware by applying Round-to-Nearest (RTN) quantization to the weights post-training. The iterative
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Table 2: Instruction following capability (IFEval) and safety metrics (IPRR, VPRR) of analog
foundation models compared to FP16 baseline. For IFEval and IPRR, higher values (↑) are better,
while for VPRR, lower values (↓) are better.

Model IFEval XSTest

Prompt Level ↑ Instruction Level ↑ IPRR ↑ VPRR ↓ ∆ ↑
Phi-3-mini-4k-instruct (W16) 51.94 62.23 82.00 18.40 63.6
Phi-3-mini-4k-instruct (W16hw noise) 44.77± 3.36 56.57± 2.59 73.30± 6.71 11.44± 4.42 61.86
Analog FM (SI8-W16-O8) 48.61 59.71 81.50 16.00 65.5
Analog FM (SI8-W16hw noise-O8) 49.76± 0.40 60.34± 0.48 80.70± 2.49 16.48± 3.12 64.22
LLM-QAT (SI8-W4) 50.46 61.15 84.50 19.20 65.3
LLM-QAT (SI8-W4hw noise) 44.14± 3.99 55.92± 3.19 82.00± 3.32 17.20± 1.77 64.8

Llama-3.2-1B-Instruct (W16) 49.54 60.41 77.00 8.00 69.00
Llama-3.2-1B-Instruct (W16hw noise) 37.67± 3.66 49.98± 3.90 79.10± 8.68 11.44± 4.08 67.66
Analog FM (SI8-W16-O8) 43.81 55.57 88.50 16.40 72.1
Analog FM (SI8-W16hw noise-O8) 41.55± 2.36 52.35± 1.73 87.50± 2.37 16.72± 4.26 70.78
LLM-QAT (SI8-W4) 37.71 50.73 94.50 29.60 64.9
LLM-QAT (SI8-W4hw noise) 35.19± 0.80 47.19± 0.85 92.60± 2.10 30.72± 5.67 61.88

clipping we apply during training yields tight weight distributions that produce small per-channel
quantization errors, which the model is robust to, owing to the noise injection during training. As table
3 shows, this yields better performance than 4-bit models quantized with LLM-QAT and SpinQuant
with SI8 quantization. Although a slightly higher performance (< 1%) is observed on Phi-3-mini-4k-
instruct for SpinQuant with DI8, it comes at the cost of additional overhead to implement dynamic
quantization of activations in hardware (see Section 2). This makes our analog foundation models
not only applicable to AIMC-based hardware, but also to digital hardware. Interestingly, the drop in
performance resulting from 4-bit weight quantization of the analog foundation models is comparable
to the drop induced by applying hardware-realistic noise (see table 1).

Table 3: Analog foundation models with 4-bit RTN quantization are competitive with 4-bit models
quantized using LLM-QAT and SpinQuant.
Model Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

Phi-3-mini-4k-instruct (W16) 69.36 79.91 78.62 83.51 52.91 38.06 84.56 91.08 52.25 70.03
Analog FM+RTN (SI8-W4-O8) 65.58 71.34 78.72 81.14 45.83 36.11 82.76 89.77 48.47 66.64
LLM-QAT (SI8-W4) 64.12 68.92 75.11 79.22 45.20 36.30 81.48 89.18 51.16 65.63
SpinQuant (SI8-W4) 62.66 68.46 72.51 72.43 44.50 34.51 80.12 89.10 45.44 63.30
SpinQuant (DI8-W4) 67.13 74.83 77.40 81.66 48.51 36.56 83.28 90.28 48.47 †67.57

Llama-3.2-1B-Instruct (W16) 46.94 45.79 65.20 33.16 35.14 26.23 51.71 69.15 36.12 45.49
Analog FM+RTN (SI8-W4-O8) 44.33 32.15 62.54 29.47 30.82 26.68 47.78 66.20 36.94 41.88
LLM-QAT (SI8–W4) 41.57 26.99 64.59 30.23 28.69 26.94 46.93 62.71 33.47 40.24
SpinQuant (SI8-W4) 26.86 2.50 47.40 24.32 23.82 24.85 28.33 35.02 33.03 27.35
SpinQuant (DI8-W4) 43.37 29.42 64.53 31.26 32.78 26.13 45.99 63.17 34.28 †41.21

† Models use dynamic per-tensor activation quantization.

4.4 Test-time compute scaling

As conventional scaling laws approach their limits, novel directions for scaling LLMs have been
explored. In test-time compute scaling, model performance is improved by increasing the amount
of compute used by the model at inference time. As AIMC is rather unsuitable for training, but
promises orders of magnitudes higher power efficiency for inference, shifting the compute budget
from training to inference is an ideal trend for AIMC. Therefore, we investigated whether our models
also performed on-par to 4-bit weight quantized models when the compute used for inference is
scaled up. To test this, we follow Snell et al. [74] and generate n responses to each prompt from the
MATH-500 [68] dataset. Using a math process reward model [75, 76], answers are assigned a reward
and the best answer is chosen by performing weighted majority voting or by simply picking the
answer with the highest reward. For each model, we pick the strategy that performed best. As figure 4
shows, the analog foundation models with noisy weights perform better compared to models trained
with 8-bit static input and 4-bit per-channel weight quantization. Additionally, we observe that the
gap between the noisy analog foundation model and the original off-the-shelf model decreases as
we increase n. While this increase is small (0.4%) for Phi-3-mini-4k-instruct, it is much bigger for
Llama-3.2-1B-Instruct (3.58%).
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Figure 4: Math-500 accuracy (y-axis) as a function of number of generations (x-axis). Results shown
for the original models, LLM-QAT models, and analog foundation models based on a. Phi-3-mini-4k-
instruct- and b. Llama-3.2-1B-Instruct-based models.

5 Conclusion and Limitations

We demonstrate for the first time on a broad range of benchmarks that LLMs can be made robust
against noise commonly found in AIMC hardware, achieving similar performance to models with
4-bit per-channel weight quantization and static 8-bit activation quantization. Additionally, as a
byproduct of our training pipeline, analog foundation models are also robust to weight-quantization
noise, enabling deployment on low-precision digital accelerators without the need for further training.
Finally, we demonstrate that our analog foundation models scale better compared to their quantized
counterparts when the amount of test-time compute is increased.

While our paper lays an important foundation, it also comes with limitations. Training billion-
parameter models is resource intensive, especially for larger models. Although the training cost is
one-time and our method only requires training on less than 1% of the total pre-training tokens, it
might still be infeasible for many researchers to train their own models. Adding to this, input/output
quantization and noise injection make the linear kernel approximately three times slower compared
to the vanilla version, and, as we show in appendix H, training with noise injection and output
quantization leads to slower convergence. As our ablation studies on the number of pre-training
tokens show, the benefit of increasing the number of tokens diminishes around 20B tokens, and other
avenues, such as improving data quality, must be explored to further reduce the performance gap
of our models to the FP16 baseline. To reduce training overhead, one could think about employing
low-rank adaptations in a HWA manner for training the network, or even better, avoid training
altogether and use a post-training method for increasing the robustness of LLMs, similar to PTQ
methods. Besides the high resource intensity, another limitation of our work is the relatively large
gap in accuracy compared to off-the-shelf models, especially for reasoning tasks such as GSM8K or
MATH-500. Further research is needed to reduce this gap. Finally, while we show that our models
inherited the safety measures of the original models without significant loss in performance, it should
be noted that the risk of LLMs producing toxic or harmful content still persists.

Our work answers the important question whether LLMs can be made robust enough to run on
AIMC-based hardware. With this result, we hope to motivate research into further scaling AIMC
chip implementations and the development of methods to further increase the robustness of LLMs to
nonidealities found in AIMC hardware. We believe that our work is also relevant to the broader edge
AI domain, including neuromorphic computing.
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Table 4: Summary of each GLUE task, including the number of training and test samples, the metric
used for evaluation, and the task type.

Task Train Samples Test Samples Metric Type

CoLA 8.55k 1.06k Matthew’s Correlation Binary Classification
MNLI 393k 9.80k Accuracy Multi-class Classification
MRPC 3.67k 1.73k Accuracy Binary Classification
QNLI 105k 5.46k Accuracy Binary Classification
QQP 364k 40.4k Accuracy Binary Classification
RTE 2.49k 3.00k Accuracy Binary Classification
SST2 67.3k 1.82k Accuracy Binary Classification
STSB 5.75k 1.38k Pearson Correlation Regression

Table 5: Performance comparison on GLUE benchmark of RoBERTa when HWA training is either
applied during the pre-training and finetuning stage, or only during the finetuning stage.

Model CoLA MNLIm MRPC QNLI QQP RTE SST2 STSB Avg.

RoBERTa (W16) 62.19 87.82 89.46 92.81 91.72 78.34 94.72 90.92 85.98
Pre-train + finetune (SI8–W16hw noise) 62.48† ± 1.03 87.21± 0.07 88.33† ± 1.17 92.41± 0.17 91.42± 0.11 74.87† ± 0.51 94.70± 0.35 90.52± 0.18 85.24
Finetune only (SI8–W16hw noise) 51.71± 2.01 86.53± 0.16 87.01± 0.51 92.12± 0.21 91.29± 0.05 73.61± 2.01 93.89± 0.35 90.04± 0.15 83.27

† No noise injection during training was used in the finetuning stage.

A Analog RoBERTa

In this section, we show that employing HWA training only during the finetuning stage yields inferior
results compared to when HWA training is already performed during the pre-training stage, especially
for tasks where the amount of finetuning data is scarce. To show this, we use RoBERTa [77], a variant
of BERT [78] that improves on BERT’s performance by training on 10× more data. To compare
the performance when HWA training is employed during the pre-training stage or only during the
finetuning stage, we train an analog version of RoBERTa by repeating the pre-training process on
roughly 20% of the pre-training tokens. More specifically, we use a mix of BookCorpus, English
Wikipedia, CC-News, and OpenWebText to train the model for 31’000 steps on 8 V100 GPUs, which
takes about 35 hours. Using this model as the starting point, we then finetune it on each GLUE [79]
(see table 4 for details) task starting from five different seeds.

During evaluation, we use the same hardware-realistic noise used throughout this paper and evaluate
each model on five seeds. More details can be found in appendix E. Table 5 shows that by applying
HWA training during the pre-training stage, performance can be improved by 1.97% on average,
bringing the performance under hardware-realistic noise within 1% of the FP16 performance of the
original RoBERTa model. Significant gains in performance can be observed for tasks with fewer
training samples such as CoLA, MRPC, or RTE. From this, we conclude that it is generally better to
apply HWA training in the pre-training phase of a model.

B Ablations on the training methodology

In this section, we show the results of our ablation studies on the training methodology we used.
We investigate different data generation methods, the choice between real world and synthetic data,
different loss functions, and the amount of tokens used for training.

B.1 Data generation

For all models, sequences of length 4096 are sampled. We continue sampling even when an EOS
token was encountered. When sampling from the softmax distribution, we sample from the top-50
values in Llama-3.2-1B-Instruct and from all of the values in Phi-3-mini-4k-instruct. Similar to
Liu et al. [43], we compare three different data generation strategies. The first strategy is based on
sampling every token from the softmax distribution, and is denoted as "SSS". The second strategy
– denoted "RGS" – first samples the initial token uniformly at random, followed by sampling the
next 5 tokens greedily, and finally sampling the rest of the tokens from the softmax distribution.
The last strategy – denoted "SGS" – initially samples the first token from the softmax distribution,
followed by greedily picking the next 5 tokens, followed by sampling the rest of the tokens from
the softmax. Table 6 shows benchmark results for Phi-3-mini-4k-instruct analog foundation models
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trained without output quantization on 1B tokens. We found that while the differences between the
methods are small, pure softmax sampling performed the best.

Table 6: Results on varying synthetic data generation techniques on Phi-3-mini-4k-instruct.

Model Generation
Technique

Benchmarks Avg.
MMLU
(5-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

SI8–W16 SSS 65.37 78.11 80.56 47.03 36.15 82.20 89.87 50.81 66.26

SI8–W16 RGS 65.15 76.22 78.80 47.03 35.70 82.54 90.00 49.81 65.66

SI8–W16 SGS 65.64 75.95 80.04 45.63 36.25 82.29 90.13 49.44 65.67

Upon further inspection, we found that some generated sequences collapsed on repetition of random
characters or sequences. We therefore also experimented with filtering out the 20% sequences with
the lowest log-probability. While this boosted performance by 0.45%, we did not use it in our final
models as the difference was too insignificant and data generation was slower. We believe that more
experimentation in this direction could yield improvements of the order of 1%.

B.2 Number of training tokens

Using the optimal HWA training and data generation configuration, we trained both analog foundation
models on a varying number of synthetically generated tokens. For Llama-3.2-1B-Instruct we trained
on up to 40B tokens because training was almost twice as fast as for Phi-3-mini-4k-instruct, for which
we trained on up to 20B tokens. Table 7 shows the benchmark results for the varying number of tokens.
Overall, the best performance is reached for 20B tokens. Interestingly, for Llama-3.2-1B-Instruct we
see that the performance with 40B tokens declines on average compared to the 20B case. We observe
that on the reasoning tasks like GSM8K, performance still improved, but declined on tasks based on
factual knowledge like BoolQ.

Table 7: Ablation study on the effect of number of training tokens for Phi-3-mini-4k-instruct and
Llama-3.2-1B-Instruct.
Model Tokens Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

Phi-3-mini-4k-instruct

Analog FM (SI8–W16–O8) 1B 65.50 70.74 76.73 79.90 47.48 36.56 82.25 90.40 51.09 66.74
Analog FM (SI8–W16hw noise–O8) 1B 63.18±0.34 63.62±1.49 74.71±1.82 76.31±1.20 43.49±0.80 34.21±0.89 81.34±0.63 89.40±0.34 46.80±1.93 63.67

Analog FM (SI8–W16–O8) 10B 66.79 76.27 76.54 82.35 48.19 36.85 83.36 90.66 49.97 67.89
Analog FM (SI8–W16hw noise–O8) 10B 65.02±0.31 71.79±0.95 75.22±1.84 79.89±0.92 46.57±1.13 35.55±0.59 82.38±0.57 89.77±0.35 47.43±2.38 65.96

Analog FM (SI8–W16–O8) 20B 67.24 77.41 77.00 83.05 49.76 37.20 83.62 90.74 51.94 68.66
Analog FM (SI8–W16hw noise–O8) 20B 65.14±0.33 71.63±0.84 75.44±1.71 80.25±0.68 46.54±0.81 35.87±0.62 82.75±0.59 89.93±0.26 49.38±1.93 66.33

Llama-3.2-1B-Instruct

Analog FM (SI8-W16-O8) 1B 45.16 33.74 66.12 31.38 31.76 26.05 46.67 65.03 35.34 42.36
Analog FM (SI8–W16hw noise-O8) 1B 40.83± 0.31 25.59± 1.38 63.28± 0.47 28.35± 0.35 28.11± 1.09 25.16± 0.36 44.17± 0.93 59.19± 0.75 33.79± 1.10 38.72

Analog FM (SI8-W16-O8) 10B 44.92 35.94 64.65 30.80 33.33 25.92 50.34 65.82 36.47 43.13
Analog FM (SI8–W16hw noise-O8) 10B 42.56± 0.27 29.64± 0.96 63.40± 0.48 29.06± 0.37 29.94± 1.21 25.80± 0.38 47.01± 1.01 62.31± 0.41 34.48± 1.19 40.47

Analog FM (SI8-W16-O8) 20B 44.94 36.32 64.92 30.75 32.55 26.50 50.09 67.21 35.72 43.22
Analog FM (SI8–W16hw noise-O8) 20B 42.83± 1.08 30.46± 1.30 62.77± 0.91 29.34± 1.09 31.21± 1.29 26.26± 0.72 47.34± 1.77 63.04± 2.00 34.92± 0.96 40.91

Analog FM (SI8-W16-O8) 40B 45.10 37.83 61.90 28.35 32.08 26.24 51.28 67.21 36.25 42.92
Analog FM (SI8–W16hw noise-O8) 40B 43.21± 0.75 31.29± 1.19 61.06± 1.14 27.36± 0.69 31.08± 1.65 25.63± 0.96 47.70± 1.62 63.74± 1.07 35.12± 0.85 40.69

For standard QAT, a similar performance trend can be observed as table 8 demonstrates.

Table 8: Ablation study on the number of tokens for LLM-QAT.
Model Tokens Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

LLM-QAT (SI8–W4) 1B 64.16 67.17 76.94 78.59 46.31 35.47 81.06 88.80 48.84 65.26
LLM-QAT (SI8–W4) 10B 65.27 71.95 74.50 81.09 45.75 35.23 82.34 89.18 50.25 66.17
LLM-QAT (SI8–W4) 20B 64.12 68.92 75.11 79.22 45.20 36.30 81.48 89.18 51.16 65.63

B.3 Source of training data

In order to determine whether it is actually beneficial to use synthetic data, we trained two analog
foundation models, one on a 1B token subset of the FineWeb [57] dataset and the other on 1B
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synthetically generated tokens. As table 9 shows, training on synthetically generated data leads to
better performance, however, when resources to generate the synthetic dataset are not available, using
a publicly available dataset of high quality still leads to decent results.

Table 9: Ablation study on the choice of the data source on Phi-3-mini-4k-instruct.

Model Benchmarks Avg.
MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

SI8-W16, FineWeb 66.89 68.31 81.28 75.63 49.14 36.04 83.62 90.53 49.34 66.75
SI8-W16, Synthetic 66.22 71.46 77.78 80.90 49.53 35.65 83.33 90.57 51.25 67.41

B.4 Importance of knowledge distillation

By employing harsh HWA training or QAT, information and capability stored in a pre-trained LLM
is lost and needs to be recovered during the re-training process. When using standard cross-entropy
during this re-training process, the LLM will start to model the data used for this stage, which is
undesirable as the model will represent a different data distribution compared to the original model
which is almost always trained on data that is not publicly available. By training on a pure distillation
loss, the model is only encouraged to imitate the original model on the given data – and not to model
it. Table 10 shows the results when Phi-3-mini-4k-instruct is trained with and without distillation on
a 1B subset of the FineWeb dataset. Training without distillation leads to an average drop of 8.05%.

Table 10: Ablation study on the choice of loss function for re-training on Phi-3-mini-4k-instruct.
Model Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

SI8-W16, Distillation 67.09 69.90 80.09 75.39 51.02 36.35 83.70 90.53 48.69 66.97
SI8-W16, No distillation 62.28 55.27 71.22 56.86 43.24 31.49 80.55 87.92 41.47 58.92

C Ablations on hardware aware training

C.1 Output quantization

To quantify the drop in performance attributed to globally static output quantization, we trained two
Phi-3-mini-4k-instruct-based models on 1B synthetically generated tokens with and without output
quantization. Table 11 shows the results across the 9 benchmarks. As can be seen, adding 8-bit
globally static output quantization during training leads to a degradation of 0.36% when no noise is
applied to the weights at inference time, and 0.27% when noise is applied.

Table 11: The effect of output quantization on the performance of Phi-3-mini-4k-instruct.

Model Benchmarks Avg.
MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

SI8–W16 67.69 76.12 77.89 82.67 49.84 37.08 84.47 90.91 50.03 68.52
SI8–W16noisy 65.23 70.66 75.82 78.97 46.16 35.75 82.30 89.81 46.66 65.71
SI8–W16–O8 67.05 75.89 77.31 81.70 49.14 37.62 84.56 90.87 49.28 68.16
SI8–W16noisy–O8 64.73 69.90 76.27 77.94 45.50 35.74 82.27 89.92 46.67 65.44

C.2 Noise injection

An important aspect of HWA training is noise injection into the weights during the forward pass
in order to make the model more robust to small weight fluctuations. Adding noise during training
of LLMs generally lowers downstream FP16 performance. In contrast to earlier works that have
claimed better generalization as a result of noise injection, we have not observed improvement of
FP16 performance. We have, however, observed an improvement in performance when noise is added
during evaluation. This leads to a trade-off between FP16 accuracy and robustness: adding too much
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noise will degrade the FP16 performance too much, while adding no noise will yield a large drop in
accuracy when noise is added during evaluation. To study the optimal noise injection magnitude, we
sweep the amount of noise injected during training of various Phi-3-mini-4k-instruct-based models,
which are trained with weight clipping (α = 3.0) and 8-bit input- and output quantization. This
amount is controlled by the parameter γweight in eq. 3, which we re-state here.

Wnoisy
:,i ←W:,i + γweight · max(|W:,i|) · τ

where τ ∼ N (0, I)

Figure 5 shows the average accuracy of the benchmarks (y-axis) for models trained with different
amounts of noise injection (x-axis). As the amount of training noise increases, the gap between the
noise-free accuracy (blue) and noisy accuracy (pink, 10 seeds, only mean is shown) shrinks, which is
a sign of increased robustness. This, however, comes at the cost of lower FP16 performance, clearly
illustrating the trade-off between accuracy and robustness. It can be seen that the optimal robustness
is achieved for γweight = 0.02, which was also used in the final analog foundation model training run
for Phi-3-mini-4k-instruct.
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Figure 5: Sweep over amount of noise injected during training.

Besides the amount of noise injected into the model, we found that the type of noise also matters. We
performed further studies on three different types of noise: purely additive Gaussian noise, purely
multiplicative Gaussian noise, and a combination of the two, which we name affine. These types can
be captured in eq. 5 with three different hyperparameter configurations. For additive Gaussian noise,
we have βweight = 0, for multiplicative noise we have γweight = 0, and for the affine type of noise we
have βweight ̸= 0 and γweight ̸= 0.

Wnoisy
:,i ←W:,i + (γweight · max(|W:,i|) + βweight|W:,i|) · τ

where τ ∼ N (0, I)
(5)

Using these noise types, we performed the following sweeps on Phi-3-mini-4k-instruct using 1B
tokens for training. For the additive noise we swept γweight, for the multiplicative noise we swept
βweight, and for the affine noise we kept γweight = 0.02 and swept βweight. We generally found that the
multiplicative component did not contribute any robustness, which was surprising as our assumed
noise model is most closely modeled by the affine, and not by the additive, noise type. This result
suggests that it is more important to increase the robustness of the small weights, as they receive the
most relative noise during evaluation, and that the larger weights are already robust enough.
Having found the optimal values for the additive and affine noise type, we trained two models on
10B tokens to test which of the two types yield the best results. Table 12 shows that both noise
configurations perform similarly well, especially on hard tasks such as GSM8K, compared to the
baseline that was trained with no noise injection.

We conclude that the additive component of the noise model is the most important, and that training
with heteroscedastic noise does not offer any advantage in our setting. For this reason, and because
constant additive noise is slightly more computationally efficient, we used constant additive noise for
the training of our analog foundation models.
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Table 12: Performance comparisons across different noise injection settings during HWA training
on Phi-3-4096-Instruct. All evaluation with noise were performed across 10 runs with different
seeds, and the reported values represent the mean performance. The models were trained with 10
billion tokens. We compare three different models: "No noise" (βweight = γweight = 0%), "Affine"
(βweight = 6%, γweight = 2%), and "Additive" (βweight = 0%, γweight = 2%).
Model Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

No Noise (SI8–W16–O8) 67.05 75.89 77.31 81.70 49.14 37.62 84.56 90.87 49.28 68.16
No Noise (SI8–W16noisy–O8) 64.73 69.90 76.27 77.94 45.50 35.74 82.27 89.92 46.67 65.44
Affine (SI8–W16–O8) 66.56 75.74 77.16 82.16 48.03 36.41 83.62 90.40 51.22 67.93
Affine (SI8–W16noisy–O8) 64.72 71.74 75.83 80.20 46.00 35.27 82.34 89.79 47.69 65.95
Constant (SI8–W16–O8) 66.79 76.57 76.27 82.35 49.29 36.72 83.28 90.61 49.88 67.97
Constant (SI8–W16noisy–O8) 65.02 72.00 75.28 79.76 46.36 35.63 82.35 89.80 47.49 65.96

Figure 6: Analog foundation models trained with iterative weight clipping have a much smaller
KL-divergence to the uniform distribution compared to the baseline models (a.). This is achieved by
iteratively removing outliers which also reduces Kurtosis (b.), another proxy for the KL-divergence
often used to increase robustness to quantization noise [80].

C.3 Weight clipping

During training, weights are clamped to ±α standard deviations. By clamping after every optimizer
step, outliers are iteratively removed and weights are prevented from becoming outliers. The
hyperparameter α acts as a regularization parameter that controls how tight the weight distribution
should be. We generally find that values between 2.0 and 3.5 work best, as they remove outliers
without impacting model performance much. In Shkolnik et al. [80], the authors have shown that
uniform distributions are more robust to changes in the quantization step size compared to normal
distributions. Because the authors showed that this assumption holds for all quantization step sizes,
we hypothesize that there is also a connection to our noise models. Building on their insight, the
authors propose Kurtosis regularization as a proxy for bringing the weight distributions closer to the
uniform distribution. Our method is an equally valid and computationally even cheaper proxy to
bringing the weight distribution closer to the uniform distribution as figure 6 shows.

Table 13 shows the performance for models based on Phi-3-4096-Instruct trained on 10B synthetically
generated tokens with only clipping and with clipping and noise injection. As can be seen, the average
improvement from adding clipping to the training is 2.52% while the improvement from adding noise
injection is only 0.52%.

Table 13: Comparison between the effect of clipping and the effect of noise injection during training of
Phi-3-4096-Instruct-based models on 10B tokens. For noisy evaluations, experiments were repeated
for 10 seeds and only the mean is shown.
Model Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

Baseline (W16) 69.36 79.91 78.62 83.51 52.91 38.06 84.56 91.08 52.25 70.03
Phi-3-4096-Instruct (W16hw noise) 64.06 60.24 73.72 75.72 45.66 33.94 81.24 89.34 42.87 62.92
Clipping (SI8–W16–O8) 67.05 75.89 77.31 81.70 49.14 37.62 84.56 90.87 49.28 68.16
Clipping (SI8–W16noisy–O8) 64.73 69.90 76.27 77.94 45.50 35.74 82.27 89.92 46.67 65.44 (+2.52%)
Clipping + Noise (SI8–W16–O8) 66.79 76.57 76.27 82.35 49.29 36.72 83.28 90.61 49.88 67.97
Clipping + Noise (SI8–W16noisy–O8) 65.02 72.00 75.28 79.76 46.36 35.63 82.35 89.80 47.49 65.96 (+0.52%)
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D The effect of weight clipping on signal-to-noise ratio

Weight clipping applied during training has an important effect on the distribution of weights and
their robustness to noise. By iteratively clamping weights to ±α standard deviations after each
optimizer step (see eq. 4), the weight distribution becomes tighter and outliers are removed. This
has a beneficial side effect: smaller weight magnitudes are mapped to relatively larger conductance
values on the device, which improves their signal-to-noise ratio.

Figure 7a shows the conductance-dependent SNR characteristic of the PCM noise model used in our
experiments. The SNR is highest for mid-range conductance values and degrades for both very small
and very large conductances, with particularly poor SNR near zero conductance. By tightening the
weight distribution through clipping, our analog foundation models shift the weight-to-conductance
mapping such that more weights occupy the higher-SNR regions of the device characteristic.

We quantified this effect by computing the average per-layer mean SNR for each model, where the
SNR of each weight is determined by its normalized conductance value according to the PCM noise
model. Figures 7b and 7c show the SNR distribution across all linear layers for Llama-3.2-1B-Instruct
and Phi-3-mini-4k-instruct, respectively. The analog foundation models (purple) consistently achieve
higher average SNR compared to both the off-the-shelf models (cyan) and the LLM-QAT models
(pink). Specifically, for Llama-3.2-1B-Instruct, the analog foundation model achieves an average
per-layer mean SNR of 14.46 dB compared to 11.66 dB for the off-the-shelf model and 12.02 dB for
the LLM-QAT model. For Phi-3-mini-4k-instruct, the analog foundation model achieves 13.66 dB
compared to 12.02 dB and 12.18 dB, respectively.

Interestingly, the LLM-QAT models also show improved SNR compared to the off-the-shelf models,
which partially explains their observed robustness to analog noise. However, their SNR improvement
is more modest than that of the analog foundation models.

Figure 7: a. Signal-to-noise ratio as a function of normalized conductance for the PCM noise model.
The SNR is highest for mid-range conductances and degrades near zero and at the extremes. b.
Average per-layer SNR for each linear layer in Llama-3.2-1B-Instruct-based models. c. Average
per-layer SNR for each linear layer in Phi-3-mini-4k-instruct-based models. The analog foundation
models (purple) consistently achieve higher SNR compared to off-the-shelf models (cyan) and LLM-
QAT models (pink).

D.1 Weight clipping reduces quantization error

While noise injection during training encourages weights to converge to flatter regions of the loss
landscape [35], we find that iterative weight clipping (see eq. 4) contributes most significantly
to robustness against weight quantization. Weight clipping explicitly removes outliers from the
weight distribution, which reduces the dynamic range that must be covered by the quantization grid.
This leads to smaller quantization errors compared to models where outliers remain in the weight
distribution.

To quantify this effect, we computed the mean absolute quantization error for each linear layer
when applying 4-bit per-channel RTN quantization to the weights. Figure 8 shows the per-layer
quantization errors for both Phi-3-mini-4k-instruct (figure 8a) and Llama-3.2-1B-Instruct (figure 8b).
The analog foundation models (purple) consistently exhibit lower quantization errors compared to the
LLM-QAT models (pink) across nearly all layers. For Phi-3-mini-4k-instruct, the analog foundation
model achieves an average per-layer mean absolute quantization error of 0.0034± 0.0005 compared
to 0.0062± 0.0013 for the LLM-QAT model. For Llama-3.2-1B-Instruct, the corresponding values
are 0.0019± 0.0006 and 0.0045± 0.0015, respectively.
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This substantial reduction in quantization error—approximately 45% for Phi-3-mini-4k-instruct
and 58% for Llama-3.2-1B-Instruct—helps explain why our analog foundation models perform
competitively when deployed on low-precision digital hardware (see table 3). The tighter weight
distributions resulting from iterative clipping allow the quantization grid to more efficiently represent
the weight values, leading to smaller approximation errors.

Figure 8: Mean absolute quantization error per linear layer when applying 4-bit per-channel round-to-
nearest quantization. a. Results for Phi-3-mini-4k-instruct-based models. b. Results for Llama-3.2-
1B-Instruct-based models. Analog foundation models (purple) consistently achieve lower quantization
errors compared to LLM-QAT models (pink) due to tighter weight distributions resulting from iterative
clipping during training.

E Evaluation details

E.1 Noise models used

We use the noise model from the IBM Hermes Project chip [19], a 64-core PCM-based state-of-the-art
AIMC chip. In this chip, weights are represented in "unit cells" comprising of 4 PCM devices per
unit cell, with two devices per polarity, meaning that two devices can be used to encode one weight.
When two devices are used instead of one, programming noise is reduced by roughly a factor of√
2. In this paper, we assume the case where two devices are used to encode a weight. Figure 9

shows the weight error std(W − Ŵ )/Wmax as a function of the normalized weight, where std(.) is
the standard deviation over all elements in the error matrix, W is the target weight matrix, Ŵ is the
inferred programmed weight matrix, and Wmax is the maximum weight. The error bars in the plot
indicate one standard deviation over measurements of all 64 cores of the chip. The model we used is
a third-degree polynomial fitted to this data:

Whw noisei,j = Wi,j + η

η ∼ N (0, σ2
i,j)

σi,j = 1.23e− 5W 3
i,j − 3.06e− 3W 2

i,j + 2.45e− 1Wi,j + 2.11

E.2 Benchmarks

More details about the used benchmarks are outlined in table 14. In the following, we show the
exact shots used for each evaluation, detail how the data is pre-processed, and how the prediction is
extracted from the model response.

Table 14: Benchmarks used for evaluation, showing number of test samples, number of few-shot
examples used, and task types. MC denotes multiple-choice questions, and CoT refers to chain-of-
thought reasoning.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

HellaSwag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

MATH-500
(0-shot)

IFEval
(0-shot)

XSTest
(0-shot)

Test Samples 6,168 3,200 1,176 2,376 6,552 1,328 10,056 2,544 14,064 500 541 450

Type 4 MC
logit comp.

CoT
answer gen.

Yes/No
logit comp.

4 MC
logit comp.

5 MC
logit comp.

4 MC
logit comp.

4 MC
logit comp.

4 MC
logit comp.

3 MC
answer gen.

CoT
answer gen.

Prompt/instruction
level accuracy VPRR/IPRR

Chance (%) 26.89 0.0∗ 62.17 25.73 21.93 25.24 26.71 26.60 0.0∗ 0.0∗ 0.0∗ 0.0†

† Assuming if no reasonable answer is generated the response is classifed as "3_partial_refusal", which is ignored.
* For tasks where the answer needs to be generated, we assume zero chance probability.
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Figure 9: We evaluate our models on the programming noise model extracted from the IBM Hermes
Project Chip [19]. Plot taken from Le Gallo et al. [19].

MMLU The Massive Multitask Language Understanding (MMLU) benchmark [63] evaluates
models across 57 subjects spanning mathematics, humanities, STEM, and social sciences to measure
their general knowledge. For all models, we tokenized the data without using a chat template. The
predicted answer was extracted by comparing the logits of the possible four correct answers. The
shots we used are listed below.

GSM8K The GSM8K benchmark [67] is a dataset of 8,500 grade school math problems designed
to evaluate the mathematical reasoning capabilities of large language models. For the evaluations
based on Llama-3.2-1B-Instruct, we used the chat format with the following system prompt: "Let’s
think step by step. At the end, you MUST write the answer as an integer after ’####’." which we
found improved the performance. For this task, we let the model generate at most 512 new tokens. We
also used "Q:" and "Question:" as additional strings to stop generation as we sometimes encountered
hallucination of new test questions by models.

BoolQ The BoolQ benchmark [69] is a question answering benchmark consisting of yes/no ques-
tions about passages from Wikipedia that tests natural language understanding and reading compre-
hension abilities. In all, cases, the prediction was generated by comparing the log probabilities of
"yes" and "no". No chat format was used. Zero shots were used for this benchmark.

HellaSwag The HellaSwag benchmark [66] is a common sense natural language inference dataset
used to evaluate whether models can make accurate predictions about everyday scenarios through
multiple-choice questions that require robust understanding of physical and social dynamics.

MedQA The MedQA benchmark [64] consists of a medical question answering dataset that requires
models to answer real-world medical questions from professional medical exams, including the United
States Medical Licensing Examination (USMLE). For this benchmark, no chat format was used and
the predictions were obtained by comparing the log probabilities of the possible choices.

AGIEval The AGIEval benchmark [65] is designed to evaluate models on human standardized
tests including college entrance exams, law school admission tests, and graduate-level professional
certification exams. For this benchmark, no chat format was used and the predictions were obtained
by comparing the log probabilities of the possible choices. Zero shots were used for this benchmark.

Arc-C The ARC-C benchmark is the challenging subset of the AI2 Reasoning Challenge [62] that
tests models with complex, non-straightforward grade-school science questions requiring reason-
ing capabilities and causal understanding. For this benchmark, no chat format was used and the
predictions were obtained by comparing the log probabilities of the possible choices.

Arc-E The ARC-E benchmark is the easy subset of the AI2 Reasoning Challenge [62]. The same
settings as for ARC-C apply.

27



ANLI The Adversarial Natural Language Inference (ANLI) benchmark [70] is a challenging
benchmark dataset created through an iterative human-and-model-in-the-loop process, where human
annotators craft examples that fool existing NLI models but are still solvable by humans, making it
particularly effective for evaluating robust natural language understanding. For this benchmark, we
let the model generate the answer. We generate a maximum of 10 new tokens and use "Input:" as
an additional stop token. For the Llama-3.2-1B-Instruct-based models, we use the chat format with
the system prompt: "You are a classification model that strictly responds with one of the following
three answers: "Yes it does", "No it is neutral", or "No it is a contradiction". Given a premise and a
hypothesis, determine the correct response. Do not provide any additional explanations or responses
outside of these three options."

IFEval The IFEval benchmark [71] is used for checking the instruction following capability of a
language model through verifiable instructions. For this evaluation, two metrics capture the models
performance: Prompt-level accuracy and instruction-level accuracy. One prompt, or test sample, can
contain multiple instructions that should be followed by the model. The instruction-level accuracy is
the ratio of single instructions followed over the total number of instructions. In order to follow a
prompt, all instructions inside a prompt must be followed. Therefore, the prompt-level accuracy is
strictly lower compared to the instruction-level accuracy. Note that since we are using the Phi-3-mini-
4k-instruct version before the update (commit ff07dc01615f8113924aed013115ab2abd32115b),
no system prompt is used as the original model was trained without. Also, the <|end|> token needs
to be included in the list of tokens that stop generation. The system prompt for Llama-3.2-1B-Instruct
is "You are a helpful assistant that precisely follows the given instructions.". During generation of the
response, we generated up to 1024 tokens. We found that the benchmark was unreliable for less than
1024 generated tokens as some responses required more than 1024 tokens to properly finish. For the
evaluation whether the instruction was followed, we used the official implementation from Google.

XSTest The XSTest benchmark [72] is used for testing the safety of a model. More specifically, it
tests whether the model correctly denies answers to harmful prompts, and correctly answers prompts
that sound harmful but are actually not. For example "How do I kill a Python process?" should be
answered, while "How do I burn down a house?" should not be answered. There are two key metrics:
The improper prompt refusal rate (IPRR) and the valid prompt refusal rate (VPRR). IPRR checks
whether prompts that are harmful are actually refused. This metric should be ideally 100%. The
VPRR checks how many harmless prompt are denied answer. This should ideally be 0%. When
using the benchmark, we generate 512 new tokens in response to the prompt. We then use GPT 4 to
judge whether our response complied ("1_full_compliance"), refused ("2_full_refusal") or partially
refused ("3_partial_refusal"). The IPRR is calculated as num. "2_full_refusal"|prompt harmful

num. harmful . The VPRR is
calculated as 1− num. "1_full_compliance"|prompt harmless

num. harmless .

E.3 Evaluation prompting

The used shots are in light blue text and the final prompt is in pink.

MMLU – 5 shots The following are multiple choice questions (with answers) about abstract algebra.

Question: Find all c in Z3 such that Z3[x]/(x
2 + c) is a field. A. 0 B. 1 C. 2 D. 3

Answer: B

Question: Statement 1 | If aH is an element of a factor group, then |aH| divides |a|. State-
ment 2 | If H and K are subgroups of G then HK is a subgroup of G. A. True, True B. False, False C.
True, False D. False, True
Answer: B

Question: Statement 1 | Every element of a group generates a cyclic subgroup of the group.
Statement 2 | The symmetric group S10 has 10 elements. A. True, True B. False, False C. True, False
D. False, True
Answer: C

Question: Statement 1| Every function from a finite set onto itself must be one to one.
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Statement 2 | Every subgroup of an abelian group is abelian. A. True, True B. False, False C. True,
False D. False, True
Answer: A

Question: Find the characteristic of the ring 2Z. A. 0 B. 3 C. 12 D. 30
Answer: A

Question: Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over
Q.. A. 0 B. 4 C. 2 D. 6 Answer:

GSM8K – 8 shots Q: The state of Virginia had 3.79 inches of rain in March, 4.5 inches of rain in
April, 3.95 inches of rain in May, 3.09 inches of rain in June and 4.67 inches in July. What is the
average rainfall amount, in inches, in Virginia?

A: It rained for a total of 3.79+4.5+3.95+3.09+4.67 = 20 inches The rain period is from
March through July for a total of 5 months so the average rainfall is 20/5 = 4 inches of rain per month
#### 4

Q: A chocolate box contains 200 bars. Thomas and his 4 friends take 1/4 of the bars and
decide to divide them equally between them. One of Thomas’s friends doesn’t like chocolate bars
very much and returns 5 of his bars to the box. Later, his sister Piper comes home and takes 5 fewer
bars than those taken in total by Thomas and his friends so she can also share with her friends.
What’s the total number of bars left in the box?

A: Thomas and his friends took 1/4*200 = 50 bars. The total number of bars left in the
box was 200-50 = 150 bars. Since there are five of them sharing, each of them got 50/5 = 10 bars.
After a friend returned 5 bars, there were 150 + 5 = 155 bars in the box. Piper took five fewer bars,
that is 50 - 5 = 45 bars. The total remaining bars left in the box is 155 - 45 = 110 bars.
#### 110

Q: Gilbert grows herbs in his yard to use in his cooking. At the beginning of the spring,
he planted three basil bushes, a parsley plant, and two kinds of mint. Halfway through spring, one of
the basil plants dropped seeds from a flower and made an extra basil plant grow. However, a rabbit
came by the garden near the end of spring and ate all the mint. How many herb plants did Gilbert
have when spring ended?

A: Gilbert planted 3 + 1 + 2 = 6 herb plants. He gained a basil plant when one of the
basil plants seeded a new plant, so he had 6 + 1 = 7 plants. The rabbit ate both mint plants, so Gilbert
had 7 - 2 = 5 herb plants when spring ended.
#### 5

Q: Marta was about to start the school year and needed to buy the necessary textbooks.
She managed to buy five on sale, for $10 each. She had to order two textbooks online, which cost her
a total of $40, and three she bought directly from the bookstore for a total of three times the cost of
the online ordered books. How much in total did Martha spend on textbooks?

A: Marta bought five textbooks on sale, for a total of 5 * 10 = $50. Three textbooks from
the bookstore had a cost of 3 * 40 = $120. That means that Marta spent in total 50 + 40 + 120 = $210
on textbooks.
#### 210

Q: At the burger hut, you can buy a burger for $5, french fries for $3, and a soft drink for
$3. If you order a special burger meal, you get all 3 of these food items for $9.50. A kid’s burger is
$3, a kid’s french fries are $2, and a kid’s juice box is $2. They also have a kids meal of all 3 kids’
food items for $5. Mr. Parker buys 2 burger meals for his wife and himself. He also buys 2 burger
meals and 2 kid’s meals for his 4 children. How much money does Mr. Parker save by buying the 6
meals versus buying the individual food items?
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A: To buy regular food items individually, they cost $5 + $3 + $3 = $11. To buy kids food
items individually, they cost $3 + $2 + $2 = $7. If you buy the special burger meal, you save $11 -
$9.50 = $1.50. If you buy the kid’s meal, you save $7 - $5 = $2. Mr. Parker buys 4 special burger
meals, bringing his discount to 4 x $1.50 = $6. He buys 2 kid’s meals, bringing his discount to 2 x $2
= $4. The total savings for Mr. Parker is $6 + $4 = $10.
#### 10

Q: A roadwork company is paving a newly constructed 16-mile road. They use a mixture
of pitch and gravel to make the asphalt to pave the road. Each truckloads of asphalt uses two bags
of gravel and five times as many bags of gravel as it does barrels of pitch to make. It takes three
truckloads of asphalt to pave each mile of road. The company paved 4 miles of road on one day, then
one mile less than double that on the second day. How many barrels of pitch will the company need
to finish the remaining road on the third day?

A: On the second day, the company paved 4 * 2 - 1 = 7 miles. The company has 16 - 7 -
4 = 5 miles of road remaining to pave. They will need 3 * 5 = 15 truckloads of asphalt to pave 5
miles of road. For 15 truckloads, they will need 15 * 2 = 30 bags of gravel. Thus, the company will
need 30 / 5 = 6 barrels of pitch to finish the road on the third day.
#### 6

Q: Nancy wanted to make peanut butter cookies for a family gathering, but her cousin is
allergic to peanuts. She decided to make almond butter cookies instead. A jar of almond butter costs
three times the amount that a jar of peanut butter does. It takes half a jar to make a batch of cookies.
A jar of peanut butter costs $3. How many dollars more does it cost per batch to make almond butter
cookies instead of peanut butter cookies?

A: A jar of almond butter costs 3 * 3 = $9. It takes half a jar to make a batch of cookies,
so it costs 9 / 2 = $4.50 to use almond butter. It costs 3 / 2 = $1.50 to use peanut butter. Thus, it costs
4.50 - 1.50 = $3 more to make a batch of almond butter cookies than peanut butter cookies.
#### 3

Q: Barry goes to a shop to buy a shirt he’d been admiring for quite some time. He tells
the attendant that it’s his birthday so she decides to give him a 15% special discount. The price tag on
the shirt says $80. How much is he supposed to pay now, considering the special discount?

A: 15% of $80 = (15/100)*$80 = $12 The dollar amount of the discount is $12 so he is
supposed to pay just $80-$12 = $68
#### 68
Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins
for her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per
fresh duck egg. How much in dollars does she make every day at the farmers’ market?

A:

BoolQ – 0 shots All biomass goes through at least some of these steps: it needs to be grown,
collected, dried, fermented, distilled, and burned. All of these steps require resources and an
infrastructure. The total amount of energy input into the process compared to the energy released
by burning the resulting ethanol fuel is known as the energy balance (or “energy returned on energy
invested”). Figures compiled in a 2007 report by National Geographic Magazine point to modest
results for corn ethanol produced in the US: one unit of fossil-fuel energy is required to create 1.3
energy units from the resulting ethanol. The energy balance for sugarcane ethanol produced in Brazil
is more favorable, with one unit of fossil-fuel energy required to create 8 from the ethanol. Energy
balance estimates are not easily produced, thus numerous such reports have been generated that are
contradictory. For instance, a separate survey reports that production of ethanol from sugarcane,
which requires a tropical climate to grow productively, returns from 8 to 9 units of energy for each
unit expended, as compared to corn, which only returns about 1.34 units of fuel energy for each unit of
energy expended. A 2006 University of California Berkeley study, after analyzing six separate studies,
concluded that producing ethanol from corn uses much less petroleum than producing gasoline. does
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ethanol take more energy make that produces?

HellaSwag – 5 shots Input: Health: [header] How to choose dental floss [title] Choose a thick
floss when you have large gaps. [step] If you have large spaces between your teeth, pick an extra
thick floss. Some options include dental tape or super dental floss..
References: A. If you have small gaps between your teeth, a thicker floss might work fine. [substeps]
You should also avoid super floss, as it’ll damage the fine plastic coating of your teeth. B. Choosing a
thicker floss will help ensure that you are actually flossing all the surfaces of your teeth and makes
flossing easier. [substeps] You’ll know you have gaps if a normal dental floss slides in very easily,
and you see ample space around it. C. However, since dental floss is so wide and heavy, you’ll need
to pick a thinner one which is less brittle than regular dental floss. [substeps] If your mouth has a
very narrow gap between your teeth and your gums, choose an extra floss. D. [substeps] You can pick
between super and super thick floss with two or four slits in the end to allow blood to be expelled.
Weigh your dental floss before you purchase it so you know how much dental floss you’ll need.
Answer: B

Input: Education and Communications: [header] How to construct a perpendicular line to
a given line through point on the line [title] Line up the given line and the protractor. [step] Set the
protractor’s origin hole over the line’s given point. Align the protractor so that its base line sits
exactly over the given line..
References: A. [substeps] The protractor should now look like a vertical graph that stays connected
at a diagonal through fixed regions. Note: if the vertical axis of the target line is labeled as angle 1,
this lines intersect as shown on the graph. B. [title] Position the other end of the protractor over and
over the line’s hypotenuse (the line intersecting the hypotenuse pit). [step] Align the hypotenuse
pit so that its base line sits exactly over the hypotenuse pit. C. This is the node of the line, so point
the protractor at it. Line up the marked line horizontally and curve to make it perpendicular. D.
[substeps] The origin hole is the small hole at the bottom-center of the protractor. The base line is the
line on the bottom of the protractor marking 180/0 degrees.
Answer: D

Input: Knitting: We see a lady knitting a blue item. We shift and see the puppy sitting
next to her. We see her phone on the chair arm. we.
References: A. see the price screen. B. see movement in the sky and the lady turns. C. zooms in and
out on the blanket. D. see a man talking and another kneeling.
Answer: C

Input: Youth: [header] How to remember your new locker combination [title] In each of
your notebooks or binders, write down your combination as an addition problem. [step] So if your
combination was 17/5/37, you would write it as 17 + 5 + 37. Or, if they are smaller numbers or
you’re in a higher grade, do something like 17x5x37..
References: A. Make sure they are a few inches long. [title] If you’re having trouble remembering
your pattern, mark it somewhere on your textbook in pencil, and stick a note on it. B. If somebody
saw it in your binder or notebook, they would think you were doing homework! [title] If you have a
calendar handy, keep the combo on your birthday. [title] Write down your combination on a piece of
paper. C. [title] In between your binder and notebooks, jot down all of your school’s new rules. [step]
Be sure not to break things, however, or you won’t be able to remember them all. D. Keep in mind
that these numbers are called es even though they are different from the original combination. [title]
Write down your locker combination and the letters it has.
Answer: B

Input: Education and Communications: [header] How to write a debate speech [title] Un-
derstand how debates work. [step] You will be given a debate topic-this is called a " resolution. "
your team must take a stance either affirmative or negative to the resolution..
References: A. Sometimes you will be given the stance, and sometimes you will be asked to take a
position. In different debate formats, this can be called a motion and the sides will be proposition and
opposition. B. [substeps] Affirmative: affirmative means if you or others agree, each team has a
member on both sides. Positive: affirmative means you may reject a point and disagree. C. Your
team will then act as the " moderator " and encourage others to agree with them. The other team

31



should present their stances on the topic and either answer them with an open, unarguable argument
or counter with a positive declaration. D. An affirmative stance will dictate how support the issues
that you discuss. A negative stance will determine how support needs to be provided to you, as well
as whether support is warranted.
Answer: A
Input: Roof shingle removal: A man is sitting on a roof. he.
References: A. is using wrap to wrap a pair of skis. B. is ripping level tiles off. C. is holding a
rubik’s cube. D. starts pulling up roofing on a roof.
Answer:

MedQA – 2 shots Question: A 75-year-old man comes to the physician because of abdominal
pain and nausea over the past 2 weeks and a 1-month history of pain in his knees and hips. He has
smoked one pack of cigarettes daily for 30 years. Physical examination shows decreased muscle
strength. Laboratory studies show: Hemoglobin 11.0 mg/dL Serum Creatinine 1.5 mg/dL Calcium
12.2 mg/dL Parathyroid hormone 115 pg/mL Parathyroid hormone-related peptide elevated Urine
Blood 2+ Ultrasonography of his abdomen shows a 6-cm mass in his right kidney. Nephrectomy
is performed. A photograph of the resected specimen is shown. The patient’s tumor most likely
originated from which of the following locations?

Options: A. Distal convoluted tubules B. Proximal convoluted tubules C. Glomerulus D.
Renal pelvis E. Collecting tubules
Answer: B

Question: A 17-year-old girl presents to an urgent care clinic after waking up in the morn-
ing with a left-sided facial droop and an inability to fully close her left eye. Of note, she is currently
on oral contraceptives and escitalopram and smokes half a pack of cigarettes per day. Her temperature
is 98.2°F (36.8°C), blood pressure is 110/68 mmHg, pulse is 82/min, and respirations are 12/min. On
exam, she has generalized, unilateral left-sided drooping of her upper and lower face, and an inability
to move the left side of her mouth or close her left eye. Her extraocular movements and swallow are
intact. She has no other neurologic deficits. Which of the following interventions would most likely
address the most likely cause of this patient’s symptoms?

Options: A. Head CT without contrast B. Implantation of gold weight for eyelid C. Intra-
venous immunoglobulin D. Prednisone alone E. Valacyclovir alone
Answer: D
Question: A 21-year-old sexually active male complains of fever, pain during urination, and
inflammation and pain in the right knee. A culture of the joint fluid shows a bacteria that does not
ferment maltose and has no polysaccharide capsule. The physician orders antibiotic therapy for the
patient. The mechanism of action of action of the medication given blocks cell wall synthesis, which
of the following was given?

Options: A. Chloramphenicol B. Gentamicin C. Ciprofloxacin D. Ceftriaxone E. Trimetho-
prim
Answer:

AGI-Eval – 0 shots Q: A car is being driven, in a straight line and at a uniform speed, towards the
base of a vertical tower. The top of the tower is observed from the car and, in the process, it takes
10 minutes for the angle of elevation to change from 45° to 60°. After how much more time will
this car reach the base of the tower? Answer Choices: (A)5(

√
3 + 1) (B)6(

√
3 +
√
2) (C)7(

√
3− 1)

(D)8(
√
3− 2) (E)None of these

A: Among A through E, the answer is

ARC-C – 10 shots Question: The element krypton is a gas that shows almost no chemical activity.
To find another element with similar properties, what should a student look for on the Periodic Table
of the Elements?
Options:
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A. an element in the same group
B. an element in the same period
C. an element with the same net charge
D. an element with the same atomic mass
Answer: A

Question: Which gas is released by producers that consumers take in to survive?
Options:
A. oxygen
B. nitrogen
C. water vapor
D. carbon dioxide
Answer: A

Question: Biological evolution can occur through all of these except.
Options:
A. competition. B. fossilization. C. variation. D. adaptation.
Answer: B

Question: Students are learning about the natural resources in Maryland. One group of
students researches information about renewable natural resources in the state. The other group
researches information about nonrenewable natural resources in the state. The resources the students
investigate include plants, animals, soil, minerals, water, coal, and oil. Which of the following human
activities negatively affects a natural resource?
Options:
A. fishing in a lake
B. using water to produce electricity
C. planting native plants along a lakeshore
D. directing runoff from cropland into a lake
Answer: D

Question: Which kind of bridge uses cables for support?
Options:
A. a truss bridge
B. a suspension bridge
C. a beam bridge
D. a cantilever bridge
Answer: B

Question: The main function of a tree’s trunk is to provide.
Options:
A. air
B. fruit
C. sunlight
D. support
Answer: D

Question: The human body temperature is relatively constant. Which is a feedback mech-
anism that helps the human body maintain its normal temperature in a cold environment?
Options:
A. Water is released from the skin.
B. Muscles shake in small movements.
C. The rate of heart beats slows.
D. The lungs take in additional air.
Answer: B

Question: The length of time between night and day on Earth varies throughout the year.
This time variance is explained primarily by.
Options:
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A. the position of the Sun.
B. the position of the Moon.
C. Earth’s angle of tilt
D. Earth’s distance from the Sun
Answer: C

Question: As water starts to freeze, the molecules of water.
Options:
A. gain thermal energy.
B. move more freely.
C. increase in size.
D. decrease in speed.
Answer: D

Question: Which of the following best explains the cause of windows rattling during a
thunderstorm?
Options:
A. electrical energy
B. sound energy
C. light energy
D. heat energy
Answer: B
Question: An astronomer observes that a planet rotates faster after a meteorite impact. Which is the
most likely effect of this increase in rotation?
Options:
A. Planetary density will decrease.
B. Planetary years will become longer.
C. Planetary days will become shorter.
D. Planetary gravity will become stronger.
Answer:

ARC-E – 10 shots Question: What do all living organisms have in common?
Options:
A. require water for survival
B. require silicon for structural support
C. require oxygen for respiration
D. require sunlight for photosynthesis
Answer: A

Question: What happens to the chemical energy in methane’s bonds when methane reacts
with oxygen and forms H2O and CO2?
Options:
A. It is released as heat.
B. It generates a current.
C. It increases product mass.
D. It is transformed into neutrons.
Answer: A

Question: Which word best describes the physical state of an ice cube?
Options:
A. gas
B. solid
C. liquid
D. plasma
Answer: B

Question: Volcanic eruptions are caused primarily by the movement of.
Options:
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A. rock by erosion
B. Earth in its orbit
C. planetary winds
D. tectonic plates
Answer: 4

Question: A scientific guess about the cause and effect of an event is called.
Options:
A. a variable.
B. a theory.
C. a hypothesis.
D. an observation.
Answer: C

Question: Fruit flies reproduce by sexual reproduction. What percent of genes does a fer-
tilized egg of a fruit fly receive from one parent?
Options:
A. 25%
B. 50%
C. 75%
D. 100%
Answer: B

Question: All of the following can become fossils except.
Options:
A. bones.
B. shells.
C. teeth.
D. rocks.
Answer: D

Question: Bracket fungi grow and feed on the dead wood inside of trees. What is the role
of bracket fungi in an ecosystem?
Options:
A. secondary consumers
B. primary consumers
C. decomposers
D. producers
Answer: C

Question: Which condition is most likely to cause the formation of a temperature inver-
sion?
Options:
A. rapid cooling of the ground at night
B. high wind on a sunny morning
C. saturation of soil with warm rain
D. rapid collision of warm and cold fronts
Answer: A

Question: Which of these structures is produced in an ovary?
Options:
A. fetus
B. sperm
C. egg
D. embryo
Answer: C
Question: Which statement best explains why photosynthesis is the foundation of most food webs?
Options:
A. Sunlight is the source of energy for nearly all ecosystems.
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B. Most ecosystems are found on land instead of in water.
C. Carbon dioxide is more available than other gases.
D. The producers in all ecosystems are plants.
Answer:

ANLI – 7 shots Input: Is this true and why?
Linguistics is the scientific study of language, and involves an analysis of language form, language
meaning, and language in context. The earliest activities in the documentation and description of
language have been attributed to the 4th century BCE Indian grammarian Pān. ini, who wrote a formal
description of the Sanskrit language in his "As.t.ādhyāyı̄ ".
entails
Form and meaning are the only aspects of language linguistics is concerned with.
Output: No it is a contradiction. Linguistics involves an analysis of language form, language
meaning, and language in context, so context is also a crucial aspect. The algorithm missed this point,
perhaps.

Input: Is this true and why?
Franco Zeffirelli, KBE Grande Ufficiale OMRI (] ; born 12 February 1923) is an Italian director and
producer of operas, films and television. He is also a former senator (1994–2001) for the Italian
centre-right "Forza Italia" party. Recently, Italian researchers have found that he is one of the few
distant relatives of Leonardo da Vinci.
entails
Franco Zeffirelli had a political career
Output: Yes it does. Franco Zeffirelli was a senator so he had a political career. The system likely
was fooled because I used words not used in the context.

Input: Is this true and why?
Eme 15 is the self-titled debut studio album by Mexican-Argentine pop band, Eme 15. The album
was released in Mexico and Latin America on June 26, 2012 through Warner Music México, and
features songs from the Nickelodeon Latin America and Televisa musical television series, Miss XV.
entails
Eme 15 was released in Mexico and Latin America on June 27, 2012 through Warner Music México,
and features songs from the Nickelodeon Latin America and Televisa musical television series, Miss
XV.
Output: No it is a contradiction. The album was released in June 26, 2012 not June 27, 2012. I
added alot of correct info but changed one small detail.

Input: Is this true and why?
Lee Hong-gi (; ] ; Japanese:イ•ホンギ) is a South Korean singer-songwriter, actor, writer, and
fashion designer. He is best known for his singing abilities and being the main singer of the South
Korean rock band F.T. Island. Lee released his first solo extended play "FM302" in South Korea on
18 November 2015 and his Japanese album "AM302" on 9 December 2015.
entails
The South Korean rock band F.T. Island is best known for it’s lead singer, Lee Hong-gi.
Output: No it is neutral. Lee Hong-gi is best known for his talents, according to the context;
however, it is not mentioned that his band is most known for him. All squares are rectangles, but not
all rectangles are squares. Using key words from the context (Lee Hong-gi, best known, the South
Korean rock band) matched and I’m assuming the computer thought the matching strings of text was
a positive.

Input: Is this true and why?
Lost Moon: The Perilous Voyage of Apollo 13 (published in paperback as Apollo 13), is a non-fiction
book first published in 1994 by astronaut James Lovell and journalist Jeffrey Kluger, about the failed
April 1970 Apollo 13 lunar landing mission which Lovell commanded. The book is the basis of the
1995 film adaptation "Apollo 13", directed by Ron Howard.
entails
the book wouldnt have happened if we didnt try to go into space
Output: Yes it does. there wouldnt have been a failed mission if we never tried to go to space
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Input: Is this true and why?
3096 (3096 Tage) is a 2013 German drama film directed by Sherry Hormann. The film is based on
the true story of Natascha Kampusch, a 10-year-old girl and her eight-year ordeal being kidnapped
by Wolfgang Přiklopil. Northern Irish actress Antonia Campbell-Hughes portrays Kampusch, while
Thure Lindhardt plays Přiklopil.
entails
Lindhardt wrote 3096.
Output: No it is neutral. It is unknown who wrote the film. The system was confused by the facts of
the narrative.

Input: Is this true and why?
Testimony: The Story of Shostakovich is a 1988 British musical drama film directed by Tony Palmer
and starring Ben Kingsley, Sherry Baines and Robert Stephens. The film is based on the memoirs of
Dmitri Shostakovich (1906–1975) as dictated in the book "Testimony" (edited by Solomon Volkov,
ISBN ) and filmed in Panavision. Some consider the book to be a fabrication.
entails
Dmitri Shostakovich may have been lying about his life in this book.
Output: Yes it does. The context states that the story may have been fabricated.
Input: Is this true and why?
Ernest Jones is a British jeweller and watchmaker. Established in 1949, its first store was opened in
Oxford Street, London. Ernest Jones specialises in diamonds and watches, stocking brands such as
Gucci and Emporio Armani. Ernest Jones is part of the Signet Jewelers group.
entails
The first Ernest Jones store was opened on the continent of Europe.
Output:

F Additional noise experiments

F.1 Sensitivity to noise magnitude and generalization across memory technologies

To evaluate the robustness of our training methodology under more severe noise conditions and
across different NVM technologies, we performed two additional experiments. First, we scaled
our PCM noise model by factors of ×1.5 and ×2 to simulate higher-than-typical noise scenarios.
Second, we evaluated our models using a ReRAM noise model extracted from Wan et al. [21] to
assess generalization beyond PCM-based devices.

Table 15 shows the results for Phi-3-mini-4k-instruct-based models under these different noise
conditions. Under the baseline PCM noise model, our analog foundation model achieves 66.33%
average accuracy compared to 60.70% for the LLM-QAT model. As noise magnitude increases,
both models degrade, but our analog foundation model maintains substantially better performance:
at ×1.5 noise scaling, our model achieves 63.19% (vs. 47.27% for LLM-QAT), and at ×2 scaling,
58.05% (vs. 37.43% for LLM-QAT). This demonstrates that our training approach provides more
robust adaptation to severe noise conditions compared to standard quantization-aware training.

When evaluated with the ReRAM noise model, which exhibits different noise characteristics compared
to PCM devices, our analog foundation model maintains strong performance at 65.57% average
accuracy, outperforming the LLM-QAT model by 7.05%. This suggests that our training methodology
generalizes well across different NVM technologies without requiring retraining for each specific
device.

The detailed breakdown across all benchmarks for the ReRAM evaluation is provided in table 16,
showing consistent improvements across diverse tasks including reasoning (GSM8K), knowledge
(MMLU), and natural language inference (ANLI).

F.2 Robustness to read noise and conductance drift

Beyond programming noise, real AIMC hardware exhibits additional nonidealities including read
noise and conductance drift. Read noise arises from temporal conductance fluctuations due to 1/f
noise in NVM devices, while conductance drift refers to the time-dependent decrease in device
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Table 15: Sensitivity analysis across different noise conditions and memory technologies for Phi-
3-mini-4k-instruct. PCM (×1.5) and PCM (×2) refer to scaled versions of the baseline PCM noise
model. All evaluations with noise are repeated for 10 seeds.

Noise Condition Phi-3-mini-4k-instruct
(W16)

Analog FM
(SI8–W16–O8)

LLM-QAT
(SI8–W4)

No Noise 70.03 68.66 65.63
PCM 62.92± 2.63 66.33± 0.86 60.70± 2.46
PCM (×1.5) 50.12± 7.01 63.19± 1.25 47.27± 3.94
PCM (×2) 33.63± 5.03 58.05± 1.53 37.43± 5.91
ReRAM 59.73± 1.91 65.57± 0.91 58.52± 2.70

Table 16: Detailed benchmark results for Phi-3-mini-4k-instruct-based models evaluated with ReRAM
noise model. Best results when hardware-realistic noise is applied are bold faced. Evaluations with
noise injection are repeated for 10 different seeds per benchmark.
Model Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

Phi-3-mini-4k-instruct (W16) 69.36 79.91 78.75 83.51 52.83 38.06 84.56 91.08 52.25 70.03
Phi-3-mini-4k-instruct (W16hw noise) 61.80

±0.66
49.65
±4.91

71.79
±1.93

72.06
±1.42

43.33
±1.35

32.31
±0.88

79.19
±1.24

88.13
±0.31

39.35
±4.45

59.73

Analog FM (SI8–W16–O8) 67.24 76.95 77.22 83.24 49.61 37.23 83.62 90.57 51.94 68.62
Analog FM (SI8–W16hw noise–O8) 64.61

±0.29
69.96
±0.88

76.33
±1.20

79.29
±0.97

45.73
±0.73

35.71
±0.47

82.23
±0.51

89.57
±0.23

46.73
±2.88

65.57

LLM-QAT (SI8–W4) 64.12 68.92 75.11 79.22 45.20 36.30 81.48 89.18 51.16 65.63
LLM-QAT (SI8–W4hw noise) 59.00

±1.14
53.40
±2.25

70.60
±4.16

72.01
±1.76

38.31
±2.62

32.91
±1.18

76.75
±1.51

86.26
±0.82

37.46
±8.89

58.52

conductance observed in PCM devices. To evaluate robustness to these additional noise sources, we
employed a publicly available comprehensive noise model [73] that includes programming noise,
conductance-dependent read noise, and time-dependent drift characteristics calibrated on real PCM
hardware.

We evaluated the Phi-3-mini-4k-instruct-based models on the MedQA and Arc-C benchmarks while
simulating drift over timespans ranging from one minute to one year after programming. Table
17 shows the results. The analog foundation model demonstrates significantly stronger robustness
compared to both the off-the-shelf model and the LLM-QAT model across all time scales. For
example, on MedQA after one year of drift, our analog foundation model maintains 33.74% accuracy
compared to 29.25% for the off-the-shelf model and 23.30% for the LLM-QAT model. Similar trends
are observed on Arc-C, where after one year our model achieves 68.57% compared to 58.89% and
49.44% for the baseline and LLM-QAT models, respectively. These results demonstrate that our
training methodology provides robustness not only to programming noise, but also to the temporal
variations that occur in deployed AIMC hardware.

Table 17: Robustness to conductance drift evaluated on Phi-3-mini-4k-instruct-based models. Results
shown for MedQA and Arc-C benchmarks at different time points after programming. The noise
model includes programming noise, read noise, and time-dependent conductance drift. All evaluations
are repeated for 10 different seeds.
Model MedQA (2-shot) Arc-C (10-shot)

FP16 t = 1min t = 1h t = 1d t = 1m t = 1y FP16 t = 1min t = 1h t = 1d t = 1m t = 1y

Phi-3-mini-4k-instruct
(W16hw noise)

52.91 43.54
±0.81

43.65
±0.62

40.75
±0.86

35.82
±1.11

29.25
±1.12

84.56 82.37
±0.61

81.59
±0.37

79.01
±0.41

72.71
±0.77

58.89
±3.75

Analog FM
(SI8–W16hw noise–O8)

49.69 45.85
±0.78

45.03
±0.75

42.09
±0.97

38.02
±1.23

33.74
±1.12

84.47 83.43
±0.14

83.05
±0.25

81.50
±0.47

76.79
±1.15

68.57
±1.23

LLM-QAT
(SI8–W4hw noise)

46.15 39.87
±1.00

36.59
±1.21

31.98
±0.69

26.71
±0.35

23.30
±0.56

81.31 78.34
±1.66

75.72
±1.20

69.71
±0.80

58.98
±0.93

49.44
±0.89

F.3 Input quantization precision

To investigate the impact of input quantization precision on model performance, we trained an
additional analog foundation model using 7-bit input quantization instead of 8-bit on 1B synthetically
generated tokens. Table 18 shows that reducing input precision from 8 bits to 7 bits results in an
average performance drop of approximately 1.5%, and additional 1.1% when hardware-realistic
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noise is injected during evaluation. This demonstrates that our training methodology is robust to
varying input quantization precisions, though 8-bit input quantization offers a better trade-off between
hardware complexity and model accuracy.

Table 18: Ablation study on input quantization precision for Phi-3-mini-4k-instruct. Models trained
on 1B tokens with either 8-bit or 7-bit static input quantization. Evaluations with noise injection are
repeated for 10 different seeds per benchmark.

Model Avg.

Analog FM (SI8–W16–O8) 66.74
Analog FM (SI8–W16hw noise–O8) 63.67
Analog FM (SI7–W16–O8) 65.25
Analog FM (SI7–W16hw noise–O8) 62.57

G Impact of tiled AIMC architectures

Modern AIMC chips typically employ tiled architectures where weight matrices are partitioned into
smaller tiles, each mapped to a separate crossbar array. While the weight matrices in LLMs can be
as large as 8192× 8192, individual AIMC tiles are commonly limited to sizes between 256× 256
and 1024× 1024 due to physical constraints [19, 26]. When performing MVMs, partial results from
individual tiles are computed in the analog domain and then aggregated using high-precision digital
circuitry. This tiled approach has implications for the overall noise characteristics of the system.

A key advantage of tiling is that weight-to-conductance mapping is performed independently per
tile rather than per layer. This means that outliers in one tile do not affect the conductance scaling
of weights in other tiles. As a result, more weights across the model can be mapped to higher
conductance values, which generally exhibit better SNR in the PCM noise model (see figure 7a).
However, the benefit of tiling depends strongly on the weight distribution: models with many outliers
see significant improvements, while models with already-tight weight distributions see minimal
changes.

To quantify this effect, we evaluated the Phi-3-mini-4k-instruct-based models from table 1 using a
tile size of 512× 512. Table 19 shows the results. For the off-the-shelf model with hardware-realistic
noise, tiling improves average accuracy from 62.92% to 64.68% (+1.76%). The LLM-QAT model
shows a similar improvement from 60.69% to 61.80% (+1.11%). In contrast, the analog foundation
model shows minimal change, decreasing from 66.33% to 66.23% (−0.10%). This is expected
because the analog foundation model already has tight weight distributions due to iterative clipping
during training (see section C and figure 7), leaving little room for tiling to provide additional SNR
improvements.

These results demonstrate that our training methodology produces models that are inherently well-
suited for AIMC deployment, achieving near-optimal conductance mapping even without the benefits
of fine-grained tiling. While tiling can partially compensate for suboptimal weight distributions in off-
the-shelf and QAT-trained models, it does not eliminate the performance gap to our analog foundation
models. Furthermore, our approach provides robustness improvements that are complementary to
architectural choices such as tile size, making it applicable across different AIMC system designs.

H Training convergence

In order to increase the robustness of the weights of the model, Gaussian noise according to eq.
3 is injected into the weights during the forward pass. Additionally, to adapt the model to output
quantization, which simulates the ADCs, we perform globally static output clipping and quantization
on the MVM outputs. Figure 10 shows that both methodologies lead to slower convergence. As a
result, models need to be trained for more steps to reach the desired performance.

39



Table 19: Impact of tiled AIMC architecture on Phi-3-mini-4k-instruct-based models. Results shown
for tile size 512× 512. Weight-to-conductance mapping is performed per-tile rather than per-layer,
which improves SNR for models with wider weight distributions. Best results when hardware-realistic
noise is applied are bold faced. Evaluations with noise injection are repeated for 10 different seeds
per benchmark.
Model Benchmarks Avg.

MMLU
(5-shot)

GSM8K
(CoT 8-shot)

BoolQ
(0-shot)

Hellaswag
(5-shot)

MedQA
(2-shot)

AGIEval
(0-shot)

Arc-C
(10-shot)

Arc-E
(10-shot)

ANLI
(7-shot)

Phi-3-mini-4k-instruct (W16) 69.36 79.91 78.75 83.51 52.83 38.06 84.56 91.08 52.25 70.03
Phi-3-mini-4k-instruct (W16hw noise) 65.28

±0.50
65.11
±4.59

74.84
±1.40

78.22
±2.00

47.10
±0.98

34.40
±0.92

82.33
±0.97

89.97
±0.46

44.83
±2.07

64.68

Analog FM (SI8–W16–O8) 67.24 76.95 77.22 83.24 49.61 37.23 83.62 90.57 51.94 68.62
Analog FM (SI8–W16hw noise–O8) 65.16

±0.24
70.72
±1.25

75.58
±1.50

80.53
±0.75

46.65
±1.18

35.68
±0.59

82.95
±0.45

89.87
±0.27

48.95
±2.33

66.23

LLM-QAT (SI8–W4) 64.12 68.92 75.11 79.22 45.20 36.30 81.48 89.18 51.16 65.63
LLM-QAT (SI8–W4hw noise) 61.52

±0.46
61.63
±0.75

69.08
±6.02

76.42
±1.01

42.22
±0.97

34.10
±0.75

79.15
±0.83

87.85
±0.65

44.22
±4.27

61.80

SpinQuant (DI8–W4) 67.28 74.83 76.27 81.66 49.06 36.45 83.62 90.45 48.47 67.55
SpinQuant (DI8–W4hw noise) 49.46

±1.87
20.49
±6.69

64.42
±2.71

36.01
±3.78

32.16
±1.21

28.16
±1.28

62.20
±4.30

77.05
±3.26

34.60
±1.29

44.95

Figure 10: a. Impact of noise injection on convergence. b. Impact of output quantization on training
convergence.

I Training details

Generic training During our training runs, we used the AdamW [81] optimizer with β1 = 0.9,
β2 = 0.98, and ϵ = 1.0e−06 for both Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct base models.
We employed distillation (with beta=1.0) using a temperature of 2.0 for Phi-3 and 1.0 for Llama.
Both models were trained for 2 epochs with a batch size of 96, polynomial learning rate scheduler,
warmup ratio of 0.016, and a maximum gradient norm of 1.0. We applied gradient checkpointing and
set weight decay to 0.01. The learning rates differed, with 1.0e-06 for Phi-3 and 5.0e-07 for Llama.
The learning rate was multiplies by the number of GPUs used (96 for the main experiments).

Hardware-aware training We used AIHWKIT-Lightning [59] for HWA training. For both models,
we enabled input range learning (decay=0.01, input_min_percentage=0.95) with init_value
of 3.0, though the init_std_alpha was 15.0 for Phi-3 and 18.0 for Llama. Interestingly, we
found that during the initial ∼ 500 training steps, outliers need to be kept almost completely, which
is ensured by calibrating the input ranges from data with 15 or 18 times the standard deviation
of the activations. After ∼ 500 batches, input range learning takes over and input ranges start
to tighten due to the gradients, but mostly because of the decay. We found this to be crucial for
getting good performance with static input ranges. We used a additive Gaussian noise injection with
magnitude modifier.std_dev 0.02 for Phi-3 and 0.03 for Llama. Forward input (inp_res) and
output (out_res) resolution was set to 254 for both models, with output bounds (out_bound) of 12
for Phi-3 and 14 for Llama.

J Test-time compute scaling details

For this experiment, we follow the implementation of Beeching et al. [82] (https://github.
com/huggingface/search-and-learn). For the runs involving noisy weights, we sample 256
completions for every prompt in the MATH-500 dataset five times. This leads to 640000 generations
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Figure 11: Illustration of pipeline for data generation, training, and deployment using quantization or
hardware-realistic analog noise.

per model. For every prompt, we sample a maximum of 2048 new tokens with a temperature of 0.8
and top-p of 1.0. The system prompt used is:

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

## Step 1: [Concise description]
[Brief explanation and calculations]

## Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: $ \boxed{answer}$. I hope it is correct.

Where [answer] is just the final number or expression that solves the problem.
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For Phi-3-mini-4k-instruct, we moved the system prompt into the user prompt separated by a newline.
Also, the <|end|> token needs to be included in the list of tokens that stop generation.

Table 20: Full results behind the test-time compute scaling results presented in the main text of the
paper for Phi-3-mini-4k-instruct and Phi-3-mini-4k-instruct. PRM (greedy) indicates picking the
answer with the highest reward. PRM (voting) indicates weighting the answers with their respective
rewards and picking the answer with the highest cumulative reward. Voting refers to simple majority
voting.
Method Number of samples

n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Phi-3-mini-4k-instruct (SI8–W16)
PRM (greedy) 35.24± 1.59 41.32± 0.94 44.80± 1.90 47.80± 1.71 49.36± 1.89 50.60± 0.68 52.44± 0.61 52.76± 1.14 53.80± 0.76
PRM (voting) 35.24± 1.59 41.36± 0.89 46.56± 1.54 50.48± 1.11 52.68± 0.93 54.68± 0.84 55.60± 0.78 56.40± 0.13 56.80± 0.66
Voting 35.24± 1.59 35.24± 1.59 42.76± 1.25 47.88± 0.93 50.12± 0.83 52.64± 0.48 53.08± 0.65 53.08± 0.30 53.44± 0.46

Phi-3-mini-4k-instruct (SI8–W16hw noise)
PRM (greedy) 18.28± 2.10 22.40± 4.16 26.36± 4.74 30.68± 4.81 33.60± 5.87 34.36± 5.00 36.84± 3.59 38.16± 3.25 39.04± 2.32
PRM (voting) 18.28± 2.10 22.40± 4.16 27.40± 4.84 33.00± 4.15 35.76± 4.39 38.52± 4.74 40.16± 4.12 40.72± 3.41 41.40± 3.21
Voting 18.28± 2.10 18.28± 2.10 24.16± 3.66 30.56± 4.69 33.92± 4.89 36.16± 4.53 38.56± 4.00 39.04± 3.36 39.04± 3.30

Analog FM (SI8–W16–O8)
PRM (greedy) 33.40± 1.52 39.76± 1.25 43.72± 1.35 46.84± 1.01 47.72± 0.20 47.64± 0.61 48.32± 1.24 49.40± 0.59 49.52± 1.36
PRM (voting) 33.40± 1.52 39.76± 1.29 45.08± 1.28 49.20± 0.75 51.20± 0.58 52.68± 1.25 53.00± 0.75 53.20± 0.87 54.12± 0.52
Voting 33.40± 1.52 33.40± 1.52 40.08± 1.56 45.48± 1.06 48.84± 1.13 50.84± 1.44 51.16± 0.83 52.12± 1.11 51.88± 0.68

Analog FM (SI8–W16hw noise–O8)
PRM (greedy) 27.48± 1.38 31.84± 0.87 36.88± 1.34 39.64± 0.97 42.28± 1.16 43.56± 1.55 45.40± 0.55 46.60± 0.99 47.16± 1.58
PRM (voting) 27.48± 1.38 31.88± 0.83 38.28± 1.48 42.68± 1.10 45.28± 0.48 47.12± 1.28 48.24± 0.75 49.08± 1.47 49.48± 0.98
Voting 27.48± 1.38 27.48± 1.38 33.84± 1.68 40.00± 0.72 42.84± 0.62 44.32± 1.40 45.96± 0.73 46.52± 1.17 47.12± 1.14

LLM-QAT (SI8–W4)
PRM (greedy) 28.28± 0.78 33.20± 1.06 37.16± 1.26 40.12± 1.60 42.68± 1.95 44.04± 1.90 45.00± 0.89 45.84± 0.72 46.72± 0.84
PRM (voting) 28.28± 0.78 33.16± 1.05 38.36± 1.26 41.76± 1.54 44.08± 1.47 46.20± 1.31 47.12± 1.20 47.24± 0.50 47.68± 0.73
Voting 28.28± 0.78 28.28± 0.78 34.08± 1.00 39.28± 0.71 42.08± 0.97 44.76± 0.81 46.20± 0.87 46.12± 0.84 46.48± 0.72

LLM-QAT (SI8–W4hw noise)
PRM (greedy) 22.01± 3.69 26.21± 3.93 29.69± 4.62 33.09± 4.75 35.41± 3.14 37.90± 3.16 39.50± 2.84 39.58± 2.74 40.70± 2.61
PRM (voting) 22.01± 3.69 26.17± 3.91 30.25± 4.44 34.62± 4.38 37.10± 2.20 39.46± 3.45 41.78± 3.46 42.26± 2.04 41.98± 2.08
Voting 22.01± 3.69 22.01± 3.69 26.41± 4.20 31.97± 3.71 35.85± 3.45 37.82± 3.61 39.98± 3.18 40.42± 1.61 40.50± 1.62

Llama-3.2-1B-Instruct (SI8–W16)
PRM (greedy) 25.86± 1.11 32.63± 0.87 37.15± 1.36 40.15± 0.88 42.67± 1.15 44.00± 1.39 44.36± 1.56 45.00± 1.09 45.52± 0.60
PRM (voting) 25.86± 1.11 32.63± 0.87 37.35± 1.70 41.59± 1.51 43.75± 1.42 45.32± 0.85 46.04± 0.55 46.88± 0.81 46.60± 0.26
Voting 25.86± 1.11 25.86± 1.11 32.07± 1.09 37.11± 0.99 40.23± 1.31 41.79± 1.05 42.39± 0.67 43.15± 1.37 43.47± 0.85

Llama-3.2-1B-Instruct (SI8–W16hw noise)
PRM (greedy) 8.05± 0.83 11.57± 1.06 15.45± 1.42 19.70± 1.21 22.54± 1.66 24.86± 1.39 26.54± 1.19 28.79± 1.75 30.39± 2.11
PRM (voting) 8.05± 0.83 11.53± 1.02 14.65± 1.25 17.70± 1.36 19.30± 1.15 19.74± 1.93 20.66± 1.52 21.30± 2.13 21.62± 1.94
Voting 8.05± 0.83 8.05± 0.83 10.25± 0.66 14.53± 1.06 15.61± 0.96 16.49± 1.51 17.17± 1.40 17.42± 2.03 17.74± 1.29

Analog FM (SI8–W16–O8)
PRM (greedy) 19.12± 0.83 24.84± 0.83 30.80± 1.44 34.20± 1.53 36.64± 1.86 39.52± 1.03 41.60± 1.56 42.20± 2.05 42.84± 1.30
PRM (voting) 19.12± 0.83 24.84± 0.83 30.32± 1.26 33.88± 0.84 35.48± 0.88 37.44± 1.16 38.36± 0.89 38.72± 0.92 38.88± 0.53
Voting 19.12± 0.83 19.12± 0.83 22.88± 1.25 29.48± 1.05 32.32± 0.86 33.92± 1.70 34.32± 0.33 35.48± 0.30 35.52± 0.84

Analog FM (SI8–W16hw noise–O8)
PRM (greedy) 14.74± 0.61 19.87± 0.77 25.00± 0.39 28.29± 1.29 31.69± 1.19 33.78± 1.46 35.58± 1.09 37.42± 0.99 39.06± 1.61
PRM (voting) 14.74± 0.61 19.87± 0.77 24.12± 0.45 27.05± 0.96 30.21± 1.32 32.25± 1.20 33.01± 1.11 33.37± 1.02 33.89± 0.91
Voting 14.74± 0.61 14.74± 0.61 18.55± 0.69 22.72± 0.43 26.84± 1.95 28.32± 1.22 29.61± 1.12 30.05± 0.67 30.61± 0.81

LLM-QAT (SI8–W4)
PRM (greedy) 13.40± 1.15 17.20± 1.00 20.36± 1.08 25.40± 0.63 29.32± 0.35 31.32± 1.37 32.80± 1.34 33.64± 0.82 34.32± 0.95
PRM (voting) 13.40± 1.15 17.20± 1.00 19.56± 1.32 23.60± 1.11 26.64± 0.64 27.88± 0.55 29.40± 0.92 30.80± 1.21 30.64± 0.61
Voting 13.40± 1.15 13.40± 1.15 15.92± 1.36 19.68± 0.64 21.88± 0.95 24.08± 0.47 26.44± 0.89 27.44± 0.57 27.80± 0.46

LLM-QAT (SI8–W4hw noise)
PRM (greedy) 9.36± 0.91 11.76± 0.98 15.60± 1.12 18.52± 0.93 22.12± 0.83 24.96± 0.99 26.36± 0.66 27.96± 1.28 28.60± 0.63
PRM (voting) 9.36± 0.91 11.76± 0.98 14.80± 1.23 17.72± 0.95 19.52± 0.83 21.04± 1.06 21.72± 0.79 22.08± 0.65 22.28± 0.78
Voting 9.36± 0.91 9.36± 0.91 11.16± 1.50 14.32± 1.39 15.84± 0.56 17.68± 0.99 18.68± 0.70 19.20± 0.79 19.04± 1.17

K Hardware throughput and energy efficiency estimation

While deployment on physical AIMC hardware is beyond the scope of this work, we provide
estimates of throughput and energy efficiency using an open-source simulator for AIMC-based
architectures [26]. We simulated pipelined inference of the Phi-3-mini-4k-instruct model with a
pre-fill phase of 256 tokens, generation of 64 tokens, and a batch size of 4. Due to the Python-based
implementation of the simulator, longer sequences become computationally prohibitive to simulate.

Under these conditions, Phi-3-mini-4k-instruct achieves a throughput of 2554.43 tokens/s and an
energy efficiency of 199.78 tokens/s/W on the simulated AIMC architecture. To contextualize this
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result, we compare against a hypothetical scenario where a GPU could execute all INT8 operations
involved in model inference in a single pass at 100% utilization. Even in this idealized comparison,
the AIMC-based system demonstrates 3.6× higher energy efficiency.

However, this comparison does not fully capture the potential advantages of AIMC systems. The high
density of NVM enables AIMC-based accelerators to host billions of parameters entirely on-chip,
eliminating the energy-intensive data movement between off-chip memory and processing units that
dominates energy consumption in conventional architectures. This advantage becomes particularly
pronounced for models with tens to hundreds of billions of parameters, especially sparse architectures
such as MoEs [26]. For such large-scale models, the energy savings from eliminating off-chip
memory access can reach multiple orders of magnitude, while also enabling deployment scenarios
that would be impractical with conventional hardware due to memory capacity constraints.
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Justification: In the abstract and introduction, we make the following claims. We claim
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small drop our model has compared to the off-the-shelf model evaluated in FP16.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in "Conclusion and Limitations". Our
main limitation is the resource intensity of our approach. We acknowledge that this might
limit applicability for some researchers and stress the need for more resource-efficient ways
of creating analog foundation models. We propose ideas addressing this issue that can be
pursued. We also acknowledge the fact that there is still a gap in accuracy that needs to be
addressed through further innovation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper is purely empirical.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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models. In the appendix, we provide details on the hyperparameters used for training our
models and the evaluation we performed, including the exact examples used for few-shot
learning, prompt structure, and answer extraction method.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code to reproduce the data-generation and training of our analog
foundation models.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training hyperparameters and evaluation details can be found in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]

Justification: We report error bars for every result involving sampling. Generally, every
experiment involving sampling/noise was repeated 10 times and the mean result and standard
deviation is reported.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For the training of our models, we provide detailed resource requirements for
training the models, including total training time on different GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We made sure to preserve anonymity and conform with the NeurIPS Code of
Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss that our paper answers an important question in the field of Analog
In-Memory Computing, and therefore also in the field of AI accelerators in general. We
hope that this inspires new research and motivates further scaling of AIMC-based chips. On
a more negative side, we discuss that we based our models on aligned pre-trained models,
and that, although we show that our models do not lose the ability to prevent harmful content
generation, we still know that these LLMs can produce harmful and toxic content. This is
discussed in the Conclusion and Limitations section of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our models are based on pre-trained models that were aligned post-training.
As we show, our models do not lose the ability to prevent generating harmful content or
answering to a harmful prompt.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We build our models on top of the Phi-3 and Llama 3 series, which we credit.
Our dataset is synthetically generated without any starting prompts, so does not warrant
credit.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code is released under the MIT License. The code is well documented. Apart
from the code, no new asset is released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research with human subjects was performed.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects was performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not an important, original, or non-standard component of the core
methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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