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Abstract

Spectral clustering is a widely used algorithm to find clusters in networks. Several researchers
have studied the stability of spectral clustering under local differential privacy with the
additional assumption that the underlying networks are generated from the stochastic block
model (SBM). However, we argue that this assumption is too restrictive since social networks
do not originate from the SBM. Thus, we delve into an analysis for general graphs in this
work. Our primary focus is the edge flipping method – a common technique for protecting
local differential privacy. We show that, when the edges of an n-vertex graph satisfying
some reasonable well-clustering assumptions are flipped with a probability of O(log n/n),
the clustering outcomes are largely consistent. Empirical tests further corroborate these
theoretical findings. Conversely, although clustering outcomes have been stable for non-
sparse and well-clustered graphs produced from the SBM, we show that in general, spectral
clustering may yield highly erratic results on certain well-clustered graphs when the flipping
probability is ω(log n/n). This indicates that the best privacy budget obtainable for general
graphs is Θ(log n).

1 Introduction

As the demand for trustworthy artificial intelligence grows, the need to protect user privacy becomes more
crucial. Several methods have been proposed to address this concern. Among these, differential privacy is the
most common. Introduced by Dwork (2008), differential privacy measures the amount of privacy a system
leaks by using a metric called the privacy budget. This method involves corrupting users’ information, then
processing the corrupted data to obtain statistical conclusions while still maintaining privacy. Developing
algorithms that can accurately provide statistical conclusions from the corrupted information is a topic of
interest among many researchers such as Zhu et al. (2017). One of the advantages of the differential privacy
notion is that the information revealed from the users’ sensitive information is quantified by a term called
privacy budget. We say that an algorithm protects users’ information when its privacy budget is small.

In this work, we are interested in a variant of differential privacy called local differential privacy introduced
by Kasiviswanathan et al. (2011). Unlike traditional differential privacy, local differential privacy does not
allow the collection of all users’ information before it is corrupted. Instead, it requires users to corrupt their
data at their local devices before sending them to central servers. This ensures that users’ information is not
leaked during transmission. As discussed by Erlingsson et al. (2014) and Apple’s Differential Privacy Team
(2017), local differential privacy is used by companies for their services.

We focus on algorithms for social networks. In a social network, each user is represented by a node, and
their relationships with other users are represented by edges. The relationship or edge information is usually
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sensitive because one might not want others to know that they have a relationship with some particular
individuals. One of the most common techniques for protecting user relationship information under the local
differential privacy notion is randomized response or edge flipping, which is a technique considered in Warner
(1965), Mangat (1994), and Wang et al. (2016). In this technique, before sending their adjacency vector
(which represents their friend list) to the central server, each bit in the adjacency vector is flipped with a
specified probability p. We obtain local differential privacy with the budget of Θ(log 1/p) by the flipping.

Because of the simplicity of randomized response, it has been extensively used as a part of many differen-
tially private graph algorithms Imola et al. (2021); Hillebrand et al. (2025). These include graph clustering
algorithms such as Ji et al. (2020); Mohamed et al. (2022); Fu et al. (2023). One of the most widely used
and scalable graph clustering algorithms – spectral clustering – has also received a lot of attention in this
context. We are particularly interested in the combination of randomized response and spectral clustering,
because it has been shown in Peng & Yoshida (2020) that spectral clustering is robust against random edge
removal. It could also be robust against edge flipping. Many analyses such as Hehir et al. (2022) have been
recently done for this combination. However, all of these analyses assume that the input social networks are
generated from the stochastic block model (SBM).

1.1 Our Contribution

We argue that assuming that the input graph is generated from the SBM is too restrictive. Thus, in this
study, we consider the robustness of spectral clustering for general graphs. In what follows, let G be an
n-vertex input graph. Our main contribution of Section 3 can be summarized by the following theorem:
Theorem 1.1 (Informal version of Theorem 3.1). Let G′ be obtained from G via the edge flipping mechanism
with probability p = O(log n/n). Then, under some reasonable assumptions, the number of vertices misclas-
sified by the spectral clustering algorithm by running it on G′ instead of G is O(η(G) · n) with probability
1 − o(1), where η(G) is the spectral robustness defined in 2.1.

We shall see later that η(G) is a constant much smaller than 1 for well-clustered graphs. Theorem 1.1 implies
that:

Spectral clustering is robust against edge flipping or the randomized response
method with probability p = O(log n/n), or privacy budget ϵ = Ω(log n). (1.1)

The privacy budget Ω(log n) can be considered too large in many applications, which might limit the contri-
bution of this work. However, this large privacy budget has also been considered in some previous works on
differentially private graph clustering such as Mohamed et al. (2022). As the authors prove that a constant
privacy budget can be achieved for non-sparse, well-clustered graphs generated by SBM, one might antici-
pate a similar outcome for general non-sparse, well-clustered graphs. Howeover, in Section 4, we show the
following negative result that the edge flipping mechanism cannot achieve better privacy:

There is a family of non-sparse and well-clustered graphs for which edge flipping
with probability p = ω(log n/n) massively changes the sparsest cut. (1.2)

Our findings are depicted in Figure 1.1. This figure focuses on a segment of the Facebook network in the
Stanford network analysis project (SNAP) described in Leskovec & Mcauley (2012), as sourced from the
“0.edges” file, called as Facebook0 in this paper. We have modified each relationship in this network with
a 0.005 probability of flipping, and the figure displays the network both before and after these changes.
Observations from the figure reveal significant additions and removals of edges, suggesting that we can
protect user information via edge-flipping. For instance, the connectivity (or degree) of node 86 is notably
higher after the flipping. However, it is worth noting that the clustering characteristics remain largely
unchanged before and after the network modification.

One of the results of Mohamed et al. (2022) proves (1.1), assuming that the input social networks are
generated from the SBM. However, we found that no graphs in practice satisfy properties of SBMs. For
example, if a graph is generated from the SBM, its degree distribution should follow a mixture of two
binomials. However, we found that none of the publicly available datasets at SNAP (Leskovec & Krevl,
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Figure 1.1: A part of the Facebook network detailed in Leskovec & Mcauley (2012) before and after flipping
edges with a probability of 0.005. The neighborhood (colored light pink) of node 86 changes a lot after the
flipping.

2014) follow this degree distribution. This motivates us to make much weaker assumptions in this work.
The only two assumptions we require are: 1) the social network has a sufficient cluster structure and 2) its
maximum degree is sufficiently large. The SBM’s considered by Mohamed et al. (2022) also satisfy these
assumptions (see Remark 2.13).

We use some ideas from the work of Peng & Yoshida (2020), who have studied the sensitivity of spectral
clustering algorithms. However, their work focuses on scenarios where each edge is removed with a specific
probability. In contrast, local differential privacy not only removes edges but also adds edges to social
networks. Furthermore, the number of edges added is often much greater than those removed, especially
for sparse networks. Thus, while our proof structure generally follows the outline of their proof, the core
components (such as Lemma 3.2, Lemma 3.3 and Theorem 4.1) are original and require careful probabilistic
arguments.

Remark 1.2. For many readers, it may seem counter-intuitive that the privacy budget increases with the
number of users, given that differential privacy tends to be more effective with larger databases. This can
be explained by considering the nature of the data being protected. In relational databases or general graph
differential privacy, there are n pieces of information to protect. However, for local edge differential privacy,
the protection extends to O(n2) bits of edge information.
Remark 1.3. Spectral clustering analysis under local differential privacy is a relatively recent area of explo-
ration. However, there is a substantial body of work on graph clustering with differential privacy, as evidenced
by studies like Mohamed et al. (2022) and Wang et al. (2013). Notably, a recent study by Chen et al. (2023)
provides both upper and lower limits for privacy budgets pertaining to non-sparse graphs generated from the
SBM.

2 Preliminaries

2.1 Notation

Edge-subsets. We assume that G = (V, E(G)) is a graph of n vertices. Also, assume that the set of nodes
V is {1, . . . , n}. For any subset F ⊆

(
V
2
)
, we denote by G△F the graph (V, E(G)△F ). By F ∼p

(
V
2
)
, we

mean that F is a random subset of
(

V
2
)

such that each subset is taken with probability p.
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Cuts. For a subset S ⊆ V of vertices, we denote by S the complement set V \ S. Further, given
two subsets A, B ⊆ V with A ∩ B = ∅, let eG(A, B) denote the number of edges of G with one end-
point in A and one in B. For any two sets of nodes S, S′ ⊆ V , dsize(S, S′) is given by dsize(S, S′) =
min

(
|S△S′| + |S△S′|, |S△S′| + |S△S′|

)
. As |S△T | = |S△T |, we can equivalently write dsize(S, S′) =

2|S△S′|. A cut (S, S) is similar to (S′, S′) if dsize(S, S′) is small.

Spectral Graph Theory. Any n × n real symmetric matrix A has n real eigenvalues. We denote the
i-th smallest eigenvalue of A as λi(A), i.e. λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). For any graph G, the Laplacian
matrix LG is given by DG − AG, where DG is the diagonal degree matrix with (DG)ii = degG(i) and AG is
the adjacency matrix of G.

In this work, we relate the performance of spectral clustering under the edge-flipping mechanism via the
following quantity:
Definition 2.1 (Spectral robustness). We define the spectral robustness of the graph G as η(G) :=
∆(G)λ2(LG)

λ3(LG)2 , where ∆(G) denotes the maximum degree of any vertex of G.

2.2 Edge Differential Privacy under Randomized Response

The notion of ε-edge differential privacy is defined as follows:
Definition 2.2 (ε-edge differential privacy; Nissim et al. (2007)). Let G be a social network and let Y be a
randomized mechanism that outputs Y (G) from the social network G. For any ε > 0, any possible output of
the mechanism Y denoted by y, and any two social networks G(1) = (V, E(1)(G)) and G(2) = (V, E(2)(G))
that differ by one edge, we say that Y is ε-edge differentially private if e−ε ≤ Pr[Y (G(1))=y]

Pr[Y (G(2))=y] ≤ eε. We refer to
the value of ε as the privacy budget of Y .

Intuitively, a lower value of ε results in better privacy protection. In this research, for 0 ≤ p ≤ 0.5, we
investigate a randomized mechanism Yp that seeks to generate a result highly similar to spectral clustering
outcomes, using randomized response. The mechanism Yp is defined as Yp = SC ◦ Fp, where Fp represents a
randomized function that modifies the relationship between each node pair with a probability of p, and SC is
a function for computing spectral clustering. In other words, the randomized mechanism performs spectral
clustering on G∆F , in which (u, v) ∈ F with a probability of p for every u, v ∈ V . The following theorem is
shown in Wang et al. (2016).
Theorem 2.3 (Wang et al. (2016)). The publication Yp is ε-edge differentially private whenever 1−p

p ≤ eε.

Theorem 2.3 implies that Yp is ε-edge differential private for ε ≥ ln(1 − p) − ln p. When p is small, we have
ln(1 − p) ≈ 0, and therefore the privacy budget of the publication Yp is Ω(log 1/p).

2.3 Spectral Clustering

For a graph G, the general goal of clustering techniques is to find a good cut (S, S) such that eG(S, S) is
small, and most of the edges of G are either concentrated in S or S. In order to avoid trivial cuts (for example
where S comprises of a single vertex), it is customary to instead define the cut-ratio αG(S) = eG(S,S)

|S||S|
and

find cuts that minimize αG(S) (see Wei & Cheng (1989); Hagen & Kahng (1992)). α(G) = min
∅⊊S⊊V

αG(S)
is defined as the cut-ratio of G. Unless otherwise specified, we shall denote by S∗ the cut that achieves
αG(S∗) = α(G).

Another widely used way of defining the cut-ratio is α′
G(S) = eG(S,S)

min(|S|,|S|)
. This definition is used in Peng &

Yoshida (2020), Guattery & Miller (1995), and Kwok et al. (2013). We observe that these two definitions
are related:
Lemma 2.4. 1

2 · nαG(S) ≤ α′
G(S) ≤ nαG(S).

4
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Proof. For the left side of the inequality, note that n
2 · αG(S) = |S|+|S|

2 · eG(S,S)
|S||S|

= 1
2

(
eG(S,S)

|S| + eG(S,S)
|S|

)
≤

max
{

eG(S,S)
|S| , eG(S,S)

|S|

}
= α′

G(S). On the other hand, α′
G(S) = αG(S) · max(|S|, |S|) ≤ n · αG(S).

Lemma 2.4 will be useful in converting results formulated using α′
G to those using our cut-ratio αG.

Now we describe the spectral clustering algorithm. Spectral clustering uses the eigenvalues and eigenvectors
of LG to compute a cut of S. Let us denote by SC2 the following algorithm that clusters a given graph G
into two clusters:

• Compute the second smallest eigenvector v⃗ = [v1, . . . , vn]⊺ of LG using the Lanczos algorithm or
an approximation method, such as the one proposed in Adil & Saranurak (2024). Let v1, . . . , vn be
distinct nodes of V such that vv1 ≤ · · · ≤ vvn

.

• Return the cut (S, S), where S = {v1, . . . , vi0} and i0 = arg min
1≤i≤n

αG(v1, . . . , vi).

The cut-ratio of G can be quantified very precisely via the famous Cheeger’s inequality.
Lemma 2.5 (Cheeger’s Inequality; Cheeger (1971); Alon (1986)). λ2(LG) ≤ nα(G) ≤

√
8∆(G)λ2(LG).

We shall also use the following improvement of Lemma 2.5:
Lemma 2.6 (Improved Cheeger Inequality; Kwok et al. (2013)). Let SC2(G) denote the cut given by the
spectral clustering algorithm. Then, αG(SC2(G)) ≤ O

(
λ2(LG)∆(G)1/2

nλ3(LG)1/2

)
.

Lemma 2.5 and 2.6 give us a way of quantifying the quality of the cut output by SC2 in terms of the cut-ratio
of G. Indeed, as λ2(LG)

n ≤ α(G),

αG(SC2(G)) ≤ O

(
∆(G)1/2

λ3(LG)1/2

)
· α(G). (2.1)

Let S∗ be the cut of G with the smallest cut-ratio. While equation (2.1) can be interpreted as a measure of
how close SC2(G) is with S∗, we shall need stability results from Peng & Yoshida (2020) to precisely bound
dsize(SC2(G), S∗).
Lemma 2.7 (Lemma 3.5 of Peng et al. (2015)). Let G = (V, E) be any graph with optimal min-cut S∗.
Then, for any ρ ≥ 1, if S ⊆ V satisfies α′

G(S) ≤ ρ · αG(S∗), then dsize(S, S∗) = Θ
(

λ2(LG)∆(G)1/2

λ3(LG)3/2 · ρ
)

· n.

The following lemma is directly obtained from Lemma 2.7.
Lemma 2.8 (Stability of min-cut). Let G = (V, E) be any graph with optimal min-cut S∗. Then, for any
ρ ≥ 1, if S ⊆ V satisfies αG(S) ≤ ρ · αG(S∗), then dsize(S, S∗) ≤ O

(
λ2(LG)∆(G)1/2

λ3(LG)3/2 · ρ
)

· n.

Proof. Observe that by Lemma 2.4, αG(S) ≤ ρ · αG(S∗) implies α′
G(S) ≤ 2ρ · α′

G(S∗). This lemma then
follows from a direct application of Lemma 3.5 of Peng & Yoshida (2020).

2.4 Concentration Inequalities

We also require some concentration inequalities for random variables, which we present here.
Lemma 2.9 (Hoeffding’s inequality; Hoeffding (1963)). Let X1, . . . , Xn be independent random variables
such that ai ≤ Xi ≤ bi almost surely. If S = X1 + · · · + Xn, then we have Pr [S ≤ E(S) − t] ≤
exp

(
−2t2/

∑n
i=1(bi − ai)2).

Lemma 2.10 (Chernoff bound; Mitzenmacher & Upfal (2017)). For a binomial random variable X with
mean µ and t > 0, we have Pr [X ≥ µ + t] ≤ exp

(
− t2

2µ+t

)
.

Lemma 2.11 (Weyl’s Inequality; Weyl (1912)). For any real symmetric matrices M and H |λi(M + H) −
λi(M)| ≤ ∥H∥2, where ∥H∥2 denotes the spectral norm of H.
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2.5 Assumptions

In order to demonstrate the robustness of spectral clustering, we require assumptions on the social network
G and the probability p of edge flipping. Recall that F ∼p

(
V
2
)

is the set of vertex pairs to be flipped.
Assumption 2.12. We assume the following:

1. p < log n/10n,
2. (a) ∆(G) ≥ 10 log nλ3(LG), (b) λ2(LG) ≥ 1/10, (c) η(G) := λ2(LG)∆(G)

λ3(LG)2 is small,
(d) λ3(LG) ≥ 10 log n,

3. Let the minimum cuts of G and G△F be (S∗, S∗) and (S∗
F , S∗

F ), respectively. Then
each of |S∗|, |S∗|, |S∗

F |, |S∗
F | have size at least n/10.

Plausibility of Assumption 2.12:

The first assumption can be justified by our discussion in Section 2.2, where we note that to achieve a privacy
budget of O(log n), p should be Ω(1/n). We further note that, if G is a sparse social network with O(n)
edges and p ≫ log n/n, then as E(|F |) = Ω(n log n), G△F will have too much noise, and would become close
to the Erdős-Rényi random graph F ∼ G(n, p). Spectral algorithms cannot perform well for these graphs.
For example, it is shown in Chung & Radcliffe (2011) that the eigenvalues of the normalized Laplacian LF

are close to those of the expected values. A quick calculation shows that the second and third eigenvalues of
E(LF ) are both equal (and close to 1), implying the inefficiency of spectral clustering algorithms on G(n, p)
for p asymptotically larger than log n/n.

On the other hand, one may think that values of p larger than log n/n, for example p = Ω(1) is achievable
by the edge flipping mechanism if the input graph G is not sparse. However, there are two issues with
this: firstly, social networks are not dense in practice. We found that all publicly available social networks
in SNAP (Leskovec & Krevl, 2014) are sparse. Secondly, we demonstrate in Section 4, a well-clustered
non-sparse graph, whose sparsest cut changes drastically when introducing noise p = ω(log n/n).

The second assumption derives from usual properties of social networks. Recall that we have 0 = λ1(LG) ≤
λ2(LG) ≤ · · · ≤ λn(LG) < 2∆(G). This assumption asserts that there are big gaps between λ2(LG), λ3(LG)
and ∆(G).

First, we note that most social networks that we encounter in practice, have super-nodes (nodes of degree
Ω(n)) (Barabási & Albert, 1999), justifying our assumption (a).

Assumption (b) ensures that G is well-connected: note that disconnected graphs have λ2(LG) = 0 and
graphs that have small edge-separators have a small λ2(LG). We also make a note here that we can relax
this assumption to any constant threshold λ2(LG) ≥ Θ(1), by changing the value of γ0 used in Section 3.3.
Conversely, the counterexample provided in Section 4 has connectivity of O(1/n), implying that for the
stability of SC2, the algebraic connectivity of G cannot be too small.

Finally, (c) ensures that there is a gap between λ3(LG) and λ2(LG), which ensures that the graph has a good
bi-cluster structure, which lets SC2 find good clusters in G. The large gap between λ2(LG) and λ3(LG) is
usually assumed in several works on spectral clustering such as Peng et al. (2015); Peng & Yoshida (2020)
since the large gap implies that the graph is well-clustered.

Observe that using inequalities (a), (b) and (c), we can deduce that λ3(LG) = λ2(LG)∆(G)
λ3(LG)η(G) ≥ log n

η(G) , which
implies our assumption of (d).

Our final assumption stems from the fact that usually social networks admit linearly sized clusters, and
also we are usually interested in detecting clusters of larger size via the definition of the cut ratio α(G), for
example. Moreover, our analysis in Equation 3.6 suggests that |S∗

F | and |S∗
F | are close to the output |SF | and

|SF | of SC2, which is designed to output balanced cuts. This justifies our assumption of |S∗
F |, |S∗

F | ≥ 0.1n.
Remark 2.13. When dealing with SBM’s with probabilities p = a log n/n inside each cluster and q =
b log n/n between, the work of Deng et al. (2021) proves that λ2(LG) ≤ O(b log n) and λ3(LG) ≥ b log n.
Therefore, these SBM’s satisfy Assumption 2.12, and the result for Randomized Response in Mohamed et al.
(2022) follows from our work.
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3 Main Theorem

We restate and prove a formal version of Theorem 1.1 in this section.
Theorem 3.1. Let G = (V, E) be a graph and p satisfy Assumption 2.12. Let F ∼p

(
V
2
)
. Then, with

probability at least 1 − 5n−8/5,

dsize (SC2(G), SC2(G△F )) = O(η(G) · n).

Proof Structure. Suppose S∗ and S∗
F are the optimum min-cuts of G and G△F . Denote by S and SF

the outputs of SC2 on G and G△F , respectively.

The key idea is to bound dsize(S, SF ) using triangle inequality:

dsize(S, SF ) ≤ dsize(S, S∗) + dsize(S∗, S∗
F ) + dsize(S∗

F , SF ). (3.1)

We bound each of the terms in their own subsection below. Observe that by Equations (3.2), (3.6) and (3.8),
we obtain

dsize(S, SF ) ≤ O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n = O(η(G) · n)

with probability at least 1 − 4n−21/11 − n−8/5 ≥ 1 − 5n−8/5, completing the proof. In the remainder of this
section, we bound each term appearing in the right side of Equation (3.1).

3.1 The term dsize(S, S∗).

An upper bound on this term is a direct corollary of Cheeger’s inequality and stability: observe that
Lemma 2.8 and (2.1) give us

dsize(S, S∗) ≤ O

(
λ2(LG)∆(G)1/2

λ3(LG)3/2 · ∆(G)1/2

λ3(LG)1/2

)
· n = O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n (3.2)

3.2 The term dsize(S∗
F , SF ).

First, we describe a lemma to compare the eigenvalues and maximum degrees of G△F and G.
Lemma 3.2. Let G have n vertices, and F ∼ G(n, p). Under Assumption 2.12, with probability at least
1 − 3n−21/11, all of the following hold:

(a) λ2(LG△F ) ≤ λ2(LG), (b) λ3(LG△F ) ≥ λ3(LG)/10, (c) ∆(G△F ) ≤ 2∆(G).

Proof. Part (a). By monotonicity of λ2, λ2(LG△F ) ≤ λ2(LG∪F ). As λ2(LG∪F ) ≤ λ2(LG) + λ2(LF \G), and
p < log n/10n, F (and hence F \G) is almost surely disconnected Erdős et al. (1960), implying λ2(LF \G) = 0.
Hence, we have λ2(LG△F ) ≤ λ2(LG∪F ) ≤ λ2(LG). ■

Part (b). For this part, we shall use Weyl’s Inequality as follows: suppose F1 = F \ G and F2 = G ∩ F be
subgraphs of F on the vertex set V (G). By additivity of the Laplacian, LG△F − LG = LF1 − LF2 . Now as
∥A∥2 = maxx∈Rn x⊺Ax for any symmetric n × n matrix A, which implies

∥LG△F − LG∥2 = max
x∈Rn

|x⊺LF1x − x⊺LF2x| ≤ max
x∈Rn

x⊺LF x = λn(LF ) ≤ 2∆(F ).

By the union bound, note that for any v ∈ V (G),

Pr[∆(F ) >
9
2 log n] ≤ n · Pr[degF (v) >

9
2 log n] ≤ n · Pr [degF (v) − p(n − 1) > 4 log n] . (3.3)

Using the Chernoff bound, the probability in (3.3) is at most

n · exp
(

− 16(log n)2

2(n − 1)p + 4 log n

)
< n · exp

(
−16(log n)2

11
2 log n

)
= n · exp

(
−32

11 log n

)
= n−21/11, (3.4)

7
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Thus ∥LG△F − LG∥2 ≤ 9 log n holds with probability at least 1 − n−21/11. By Weyl’s inequality and
Assumption 2.12(2),

λ3(LG) − λ3(LG△F ) ≤ 9 log n ≤ 9
10λ3(LG),

finishing the proof of (b). ■

Part (c). Observe that for every vertex v ∈ V (G), we have

degG△F (v) − degG(v) ≤ degF (v) ≤ ∆(F ).

Hence,
Pr
[
degG△F (v) > degG(v) + ∆(G)

]
≤ Pr [∆(F ) > ∆(G)] ≤ Pr [∆(F ) > 10 log n] .

By a similar calculation to (3.3) and (3.4), we conclude that degG△F (v) > degG(v) + ∆(G) holds with
probability at most n−4. Again, by the union bound, with probability at least 1 − n−3, we have

degG△F (v) ≤ degG(v) + ∆(G) for all v ∈ V (G). (3.5)

Taking the maximum of (3.5) over all v, we see that (c) holds with probability at least 1 − n−3, which is
greater than 1 − n−21/11. ■

As the assertions of (a), (b), (c) each hold with probability at least 1 − n−21/11, all of them simultaneously
hold with probability at least 1 − 3n−21/11, completing our proof of Lemma 3.2.

Now, observe that by the same argument as (3.2) in addition with Lemma 3.2, we get that with probability
at least 1 − 3n−21/11,

dsize(S∗
F , SF ) ≤ O

(
λ2(LG△F )∆(G△F )

λ3(LG△F )2

)
· n = O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n (3.6)

3.3 The term dsize(S∗, S∗
F ).

For the remainder of this section, let γ0 be given by

γ0 := 200
√

∆(G)/λ3(LG) > 200
√

10 log n.

In order to bound dsize(S∗, S∗
F ), we require the following rather technical lemma.

Lemma 3.3. Let S∗ denote the minimum cut of G and S∗
F denote the minimum cut of G△F . Suppose

n/2 ≥ |S∗|, |S∗
F | ≥ ϵn for some 1/2 > ϵ > 0. Further, suppose αG(S∗

F ) ≥ γ0αG(S∗). Then,

Pr (γ0αG△F (S∗
F ) − αG△F (S∗) < 0) < exp

(
−

4
(
γ2

0 − 1
)2

25γ2
0

· αG(S∗)2ϵ2n2

)
. (3.7)

As the proof is involved, we defer it to the end of this section.

First, we demonstrate the bound on dsize(S∗, S∗
F ) using Lemma 3.3. We consider two cases:

• Case 1. αG(S∗
F ) ≤ γ0αG(S∗): In this case, Lemma 2.8 directly gives us dsize(S∗, S∗

F ) ≤
O
(

γ0λ2(LG)∆(G)1/2

λ3(LG)3/2

)
· n = O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n.

• Case 2. αG(S∗
F ) > γ0αG(S∗): In this case, setting ϵ = 1/10 in Lemma 3.3, we note that the

probability that αG△F (S∗) > γ0αG△F (S∗
F ) is at most:

exp
(

− (2γ2
0 − 2)2αG(S∗)2n2

2500γ2
0

)
< exp

(
− γ2

0
2500 · (αG(S∗) · n)2

)
< exp

(
−160 log n · λ2(LG)2)

< exp
(

−160 log n · 1
100

)
= n−8/5

8
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The last line follows from Assumption 2.12(2). Hence, with probability at least 1 −
n−8/5, αG△F (S∗) ≤ γ0αG△F (S∗

F ) holds. By Lemma 2.8, this implies dsize(S∗, S∗
F ) ≤

O
(

γ0λ2(LG△F )∆(G△F )1/2

λ3(LG△F )3/2

)
· n. Together with Lemma 3.2, we obtain that with probability at least

1 − n−8/5 − 3n−21/11,

dsize(S∗, S∗
F ) ≤ O

(
∆(G)1/2

λ3(LG)1/2 · λ2(LG△F )∆(G△F )1/2

λ3(LG△F )3/2

)
· n = O

(
λ2(LG)∆(G)

λ3(LG)2

)
· n, (3.8)

finishing our upper bound on dsize(S∗, S∗
F ). ■

We now present our proof of Lemma 3.3.

Proof. (Lemma 3.3). The main idea behind the proof is as follows: first, we show that Lemma 3.3 holds
with S∗

F replaced with any fixed subset A. Then, we use the fact that

Pr (γ0αG△F (S∗
F ) < αG∆F (S∗)) = Pr (γ0αG△F (S∗

F ) < αG△F (S∗) | αG(S∗
F ) > γ0αG(S∗))

=
∑

A:αG(A)>γ0αG(S∗)

Pr(S∗
F = A) · Pr (γ0αG△F (S∗

F ) < αG△F (S∗) | S∗
F = A)

≤ max
A:αG(A)>γ0αG(S∗)

Pr (γ0αG△F (A) < αG△F (S∗)) ,

(3.9)
as
∑

A Pr(S∗
F = A) = 1.

Now, we bound Pr (γ0αG△F (A) < αG△F (S∗)) for any fixed A.

Claim 3.4. Let S∗ denote the minimum cut of G. Suppose n
2 ≥ |S∗| ≥ ϵn for some 1

2 > ϵ > 0. Then, for
any γ > 1 and n

2 ≥ |A| ≥ ϵn,

Pr (γαG△F (A) − αG△F (S∗) < 0) < exp
(

−4 (γαG(A) − αG(S∗))2

25γ2 · ϵ2n2

)
. (3.10)

Proof of Claim 3.4. Let YA := γαG△F (A) − αG△F (S∗). We wish to show that YA ≥ 0 with high probability.

For any tuple (x, y) ∈ V × V , define X(x,y) as the boolean random variable such that X(x,y) = 1 if xy ∈
E(G△F ) and X(x,y) = 0 otherwise. As X(x,y) = X(y,x), we abuse notation and write Xxy as a shorthand
for both these variables. Note that Xxy are all mutually independent, and

E(X(x,y)) = Pr(xy ∈ E(G△F )) =
{

p, if e ̸∈ E(G),
1 − p, if e ∈ E(G). (3.11)

Further, for any subset A ⊆ V , by definition

αG△F (A) = eG△F (A, A)
|A||A|

= 1
|A||A|

·
∑

(x,y)∈A×A

X(x,y),

Which, by (3.11), implies

E(αG△F (A)) = 1
|A||A|

·

 ∑
e∈EG(A,A)

E(Xe) +
∑

e∈A×A\EG(A,A)

E(Xe)


= 1

|A||A|
·
(
eG(A, A) · (1 − p) + |A||A| · p − eG(A, A) · p

)
= (1 − 2p) · αG(A) + p.

(3.12)

9
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Let µ denote the expectation of YA. By linearity and (3.12),

µ = E(YA) = (1 − 2p) · (γαG(A) − αG(S∗)) + p · (γ − 1) >
4
5 · (γαG(A) − αG(S∗)) , (3.13)

As γ > 1 and p < 1/10. We also have µ > 0, and Pr(YA < 0) = Pr(YA − µ < −µ). Now we shall use
Hoeffding’s inequality to provide an upper bound on Pr(YA < 0). To that end, YA has to be rewritten as a
sum of independent random variables. However,

YA = γ

|A||A|
·
∑

e∈A×A

Xe − 1
|S∗||S∗|

·
∑

e∈S∗×S∗

Xe. (3.14)

As the two summations in YA have overlapping terms, we separate them as follows. Let Z1 = S∗ \ A,
Z2 = S∗ ∩ A, Z3 = A \ S∗, Z4 = S∗ ∪ A. Observe then,

S∗ × S∗ = (Z1 × Z3) ⊔ (Z1 × Z4) ⊔ (Z2 × Z3) ⊔ (Z2 × Z4)
A × A = (Z3 × Z1) ⊔ (Z3 × Z4) ⊔ (Z2 × Z1) ⊔ (Z2 × Z4)

(3.15)

This lets us break each sum in (3.14) into four parts, and using X(x,y) = X(y,x), we can write Y as

YA =
∑

e∈(Z1×Z3)⊔(Z2×Z4)

(
γ

|A||A|
− 1

|S∗||S∗|

)
Xe +

∑
e∈(Z1×Z4)⊔(Z2×Z3)

γXe

|A||A|
−

∑
e∈(Z3×Z4)⊔(Z1×Z2)

Xe

|S∗||S∗|
.

(3.16)
Note that all summands in (3.16) are independent of each other. For simplicity, let us denote zi := |Zi| for
i = 1, . . . , 4.

Since −|c| ≤ cXe ≤ |c| for any constant c ∈ R, we can use Hoeffding’s inequality to get Pr(Y < 0) = Pr(YA −
µ < −µ) ≤ exp(− 2µ2

D ), where D = 4(z1z3 + z2z4)
(

γ
(z2+z3)(z1+z4) − 1

(z1+z2)(z3+z4)

)2
+ 4γ2(z1z4+z2z3)

(z2+z3)2(z1+z4)2 +
4(z3z4+z1z2)

(z1+z2)2(z3+z4)2 . After some calculations, this leads to

D = 4γ2(z1 + z2)(z3 + z4)
(z2 + z3)2(z1 + z4)2 + 4(z2 + z3)(z1 + z4)

(z1 + z2)2(z3 + z4)2 − 8γ(z1z3 + z2z4)
(z1 + z2)(z3 + z4)(z2 + z3)(z1 + z4) (3.17)

< 4γ2
(

(z1 + z2)(z3 + z4)
(z2 + z3)2(z1 + z4)2 + (z2 + z3)(z1 + z4)

(z1 + z2)2(z3 + z4)2

)
(3.18)

= 4γ2
(

|S∗||S∗|
|A|2|A|2

+ |A||A|
|S∗|2|S∗|2

)
≤ 4γ2 · 2 · n2/4

ϵ2n4/4 = 8γ2

ϵ2n2 . (3.19)

Here (3.19) follows from the fact that n2/4 ≥ |S∗||S∗|, |A||A| ≥ ϵn · n/2. Therefore, in conjunction with
(3.13), we obtain Pr(YA < 0) ≤ exp

(
− 2µ2

D

)
< exp

(
− 4(γαG(A)−αG(S∗))2

25γ2 · ϵ2n2
)

, as desired. ■

Now we return to our proof of Lemma 3.3. For any set A ⊆ V with n
2 ≥ |A| ≥ ϵn and αG(A) > γ0αG(S∗), we

have Pr(γ0αG△F (A) < αG△F (S∗)) < exp
(

− 4(γ0αG(A)−αG(S∗))2

25γ2
0

· ϵ2n2
)

≤ exp
(

− 4(γ2
0 −1)2

25γ2
0

· αG(S∗)2ϵ2n2
)

.

When we plug this back into Equation (3.9), it gives our desired bound.

4 Instability of spectral clustering when p = ω(log n/n)

We now construct a family of random graphs G, whose sparsest cut (in expectation) drastically changes under
edge flipping with p = ω(log n/n). The formal construction is given in Theorem 4.1. In the construction,
we denote by G ∼= G(n, p) a random graph G generated according to the Erdős–Rényi model with n nodes
and connection probability p. Denote F ∼= G(n, p), and recall that the result of the edge flipping is G∆F .
Furthermore, we consider the matrices whose entries are the expected values of the corresponding entries in
LG and LG∆F . These matrices are denoted by E[LG] and E[LG∆F ], respectively.

10
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Theorem 4.1. Let 1/2 > β > 1/10 be a constant. Let G be a graph on n vertices with vertex set A ⊔ B ⊔ C,
where |A| = βn, |B| = |C| = (1 − β)n/2. Suppose the induced subgraphs of G on A, B and C satisfy
G[A] ∼= G(βn, 400 log2 n/n), G[B] ∼= G(n, log n/n) and G[C] ∼= G((1 − β)n/2, 400 log2 n/n). Further, suppose
that every pair of vertices (x, y) with x ∈ B and y ∈ C are adjacent with a probability of 20 log n/n. Finally,
let any pair of vertices (x, y) with x ∈ A and y ∈ B ∪ C are adjacent with probability 1/10n. A visual
representation of this construction is shown in Figure 4.1 (left). Then, the following holds:

1. G satisfies Assumption 2.12 in expectation. In other words, the expected maximum degree of G,
denoted by ∆, satisfies ∆ ≥ 10 log nλ3(E[LG]), the value of λ2(E[LG]) is larger than 1/10, the value
of λ2(E[LG])∆̄(G)

λ3(E[LG])2 is small, and λ3(E[LG]) ≥ 10 log n.

2. When p = ω(log n/n), lim
n→∞

λ2(E[LG△F ])
λ3(E[LG△F ]) = 1.

G(|A|, 400 log2 n
n )

|A| = βn

G(|B|, log n
n )

|B| = (1 − β)n/2

G(|C|, 400 log2 n
n )

|C| = (1 − β)n/2

20 log n
n

1
10n

1
10n

G(|A|, Θ(max(p, log2 n
n

)))

|A| = βn

G(|B|, p − o(p))

|B| = (1 − β)n/2

G(|C|, Θ(max(p, log2 n
n

)))

|C| = (1 − β)n/2

p − o(p)

p − o(p)

p − o(p)

Figure 4.1: The graph G (left) and the graph G△F where F ∼= G(n, p) (right). Dashed lines represent
probabilistic edges between the parts A, B and C.

Proof of (1). It is straightforward to see that the expected maximum degree of G satisfies

∆ =
(

(1 − β)n

2 − 1
)

· 400 log2 n

n
+ (1 − β)n

2 · 20 log n

n
+ βn · 1

10n
= 200(1 − β) log2 n + O(log n). (4.1)

Next, we observe that E[LG] is a block matrix with blocks corresponding to A, B, C. The first three
eigenvectors of E[LG] would therefore take constant values on the blocks A, B and C. The normalized
eigenvector of λ1(E[LG]) = 0 is constant on all three blocks, that of λ2(E[LG]) is constant on A and B ∪ C
(since the density of edges between B and C is larger than between A and B ∪ C), and that of λ3(E[LG])
can take different values on each blocks. Suppose the eigenvector of λ2(E[LG]) takes the value x2 on A
and y2 on B ∪ C, then, by the fact that the sum of all elements of the eigenvector is 0, we must have
βx2 + (1 − β)y2 = 0. Also, by the fact that the sum square of all elements of the eigenvector is 1, we
must have βnx2

2 + (1 − β)ny2
2 = 1. This implies that x2 = ±

√
1−β
βn and y2 = ∓

√
β

(1−β)n . Let the second
eigenvector of E[LG] be (ν2,i)i∈V . Since λ2(E[LG]) =

∑
{i,j}∈E(ν2,i − ν2,j)2, we obtain that:

λ2(E[LG]) = βn · (1 − β)n
10n

· (x2 − y2)2 = β(1 − β)
10 · 4

β(1 − β)n = 4
10 . (4.2)

Now, as the eigenvector of λ3(E[LG]) will take values of, say, x3 on A, y3 on B and z3 on C, then, because the
sum of all elements of the eigenvector is 0, they satisfy βx3 +(1−β)y3/2+(1−β)z3/2 = 0. Because the sum
square of all elements of the eigenvector is 1, they satisfy βnx2

3+(1−β)ny2
3/2+(1−β)nz2

3/2 = 1. Additionally,
since the second and the third eigenvectors are orthogonal, we obtain that βx2 ·x3+ 1−β

2 y2 ·y3+ 1−β
2 y2 ·z3 = 0.

Since βx2 + (1 − β)y2 = 0 and βx2 = −(1 − β)y2, we obtain that x3 + y3/2 + z3/2 = 0. By solving the three

11
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equations, we obtain that x3 = 0, y3 = ± 1√
(1−β)n

, z3 = ∓ 1√
(1−β)n

. Let the third eigenvector of E[LG] be
(ν3,i)i∈V . Since λ3(E[LG]) =

∑
{i,j}∈E(ν3,i − ν3,j)2:

λ3(E[LG]) = β(1 − β)n2

10n
· 1

(1 − β)n + (1 − β)2n2 · 20 log n

4n
· 4

(1 − β)n = 20(1 − β) log n + O(1). (4.3)

For these values, we notice that η(G) = 200(1−β) log2 n·4
400(1−β)2 log2 n·10 = 1

5(1−β) is small, thus G satisfies Assumption 2.12
in expectation.

Proof of (2). Since G△F is obtained from randomly flipping adjacencies with probability p, observe that
E(AG△F ) = pJ +(1−2p)E(AG), where J is the all-ones matrix. Note that the average degrees of the nodes of
G△F are the entries of E(AG△F )1 where 1 is the all-ones vector. Thus, E(AG△F )1 = pn1+(1−2p)E(AG)1.
For the diagonal degree matrices, this implies that E(DG△F ) = diag(E(AG△F )1) = pnI + (1 − 2p)E(DG).
In terms of the average Laplacian matrices, this gives us the relation

E[LG△F ] = pnI + (1 − 2p)E(DG) − pJ − (1 − 2p)E(AG) = pn

(
I − J

n

)
+ (1 − 2p)E[LG]. (4.4)

Let {ν1 = 1, ν2, . . . , νn} be the eigenvectors of E[LG]. Observe that E[LG△F ]1 = 0, thus ν1 = 1 is clearly an
eigenvector of E[LG△F ]. On the other hand, when i ̸= 1, by orthogonality we have that Jνi = 0, and thus,

E[LG△F ]νi = pnνi + (1 − 2p)E[LG]νi = (pn + (1 − 2p)λi(E[LG]))νi. (4.5)

Equation (4.5) implies that E[LG△F ] and E[LG] share the same eigenvectors, and moreover, since we assume
that p ≤ 0.5 in this work, we obtain that for i ̸= 1,

λi(E[LG△F ]) = pn + (1 − 2p)λi(E[LG]). (4.6)

Now, since np = ω(log n) = ω(λ3(E[LG])), we obtain

lim
n→∞

λ2(E[LG△F ])
λ3(E[LG△F ]) = lim

n→∞

pn + (1 − 2p)λ2(E[LG])
pn + (1 − 2p)λ3(E[LG]) = 1. (4.7)

Since the Laplacian matrices LG and LG∆F closely resemble their expectations E[LG] and E[LG∆F ] as
discussed in Chung & Radcliffe (2011); Lu & Peng (2013), Theorem 4.1 implies that the graph G satisfies
Assumption 2.12. Moreover, the ratio λ2(LG∆F )

λ3(LG∆F ) is close to one, indicating that spectral clustering is unlikely
to yield accurate clustering results with high probability.

5 Experiments

We conduct experiments on real social networks to verify our theoretical results. In this work, we mainly use
the network called “Social circles: Facebook” obtained from the Stanford network analysis project (SNAP),
detailed in Leskovec & Mcauley (2012). We found that spectral clustering cannot find plausible results for
some of those networks, due to the fact that there are many connected components, and also small sets of
nodes with only one to two edges to the rest of the graph. Those small sets usually form a cluster in the
outcomes of spectral clustering, which makes the outcomes undesirable. We therefore decided to eliminate
all small node sets that have at most 10 outgoing edges.

We examine the graphs defined in the files “0.edges” and “1684.edges.” We call the graphs as Facebook0 and
Facebook1684. After removing nodes of small degree, there are n = 120 left in the first graph and n = 574
left in the second. As illustrated in Figure 1.1, the social network Facebook0 is composed of two clusters,
both of which are quite sizable. Alternatively, the social network Facebook1684 is divided into three clusters.
The first is a small yellow cluster including nodes 0–15, followed by a bigger cluster of yellow nodes, and
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Figure 5.1: (a): The social network Facebook1684 obtained from SNAP after pruning. Each node was
assigned a color based on the spectral clustering outcomes. (b): We generated 100 graphs from the first
graph Facebook0 (Figure 1.1), and plotted the worst discrepancy dsize between the outputs of the spectral
clustering of the original and perturbed graphs for these 100 random runs.

a dense cluster of blue nodes. For ease of reference, these clusters will be subsequently named Cluster A,
Cluster B, and Cluster C, respectively. Both Facebook0 and Facebook1684 have the attributes necessary for
Assumption 2.12.

Our main theorem ensures that the clustering outcomes remain mostly consistent when edges are flipped with
a probability p < log n

10n . The upper bound is about 0.004 for Facebook0 and about 0.001 for Facebook1684.
We examine p ∈ {0.0001q : 1 ≤ q ≤ 50}. For each probability p and graph, we create 100 random graphs F
with the given probability. Note that the original graph is represented by G. We then compute the difference
between the clustering results of G (represented by SC2(G)) and that of G△F (represented by SC2(G△F )).

The chart in Figure 5.1b shows the result we obtain from the first graph. The chart demonstrates the differ-
ence between the clustering outputs, represented as dsize(SC2(G), SC2(G△F )). The values shown represent
the worst-case results across 100 randomly generated graphs for each probability setting. We present the
worst outcome among the 100 trials to highlight that, even in the least favorable scenario, the distance
remains small. This demonstrates the robustness of the method.

Figure 5.1b reveals that, across all considered probabilities, the clustering outcomes remain consistent in
every random graph. In each instance, when comparing the original graph to the graph with flipped edges,
a minimum of 116 nodes are assigned to the same clusters. Only a maximum of four nodes out of 120
experience a change in their cluster placement.

For the second graph, the result is even more robust. For all the probabilities we have conducted the
experiment, there were no change in the clustering results by the edge flipping. These two experiments
suggest that the clustering results exhibit strong resilience to edge flipping.

5.1 Results on Larger Flipping Probability

In Figure 5.2, the flipping probability is raised above the level outlined in Assumption 2.12. Our experiments
with the network derived from the Facebook0 network demonstrate that clustering outcomes remain stable
as long as the flipping probability does not exceed 0.15.

In contrast, with the network derived from Facebook1684, the stability of the results is preserved only when
the flipping probability remains under 0.04. Utilizing spectral clustering on the original graph divides it
into two segments: one combining clusters A and B, and another comprising cluster C. However, exceeding
a flipping probability of 0.04 occasionally alters the spectral clustering outcome to one group consisting of
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Figure 5.2: The robustness results of the social networks upon the introduction of a flipping probability
that exceeds the value specified in Assumption 2.12 (a) for Facebook0 network and (b) for Facebook1684
network.

cluster A and another combining clusters B and C. This variation seems reasonable, as the latter grouping
also yields a low conductance.

Section 4 demonstrates that in certain networks, clustering outcomes are unstable when the probability
exceeds the level specified in Assumption 2.12. However, our experiments indicate that this threshold may
be higher for particular graph types. In future work, we plan to develop theoretical results for these specific
graphs.

5.2 Average Distances

While the maximum distances across the 100 iterations underscore the robustness of the algorithm, we also
present the average distances in Figure 5.3 to offer a more comprehensive assessment. The plots reveal that,
although the worst-case distance can be large, the average distance remains relatively small even under high
flipping probabilities. This suggests that spectral clustering with randomized response maintains robustness
on average, even when the flipping probability exceeds the theoretical bound established in our analysis.

(a) (b)

Figure 5.3: The average dsize results of the social networks upon the introduction of a flipping probability
that exceeds the value specified in Assumption 2.12 for (a) the Facebook0 network and (b) the Facebook1684
network.

6 Concluding Remarks

In this manuscript, we demonstrate and empirically verify that under some assumptions, the spectral clus-
tering algorithm is robust under the randomized response method. While our primary objective is its use
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in local differential privacy, our validation also confirms the robustness of spectral clustering against social
networks containing inaccurate adjacency information. We demonstrate that the outcomes are robust when
p < log n/10n, but also acknowledge that the results can undergo significant alterations for larger p values.
This occurs because randomized response introduces an excessive number of edges to the graph in such cases.
We are aiming to examine the robustness of other local (approximate) differential privacy approaches (e.g.,
as in Adhikari et al. (2020)) that do not add as many edges as the randomized response method.

Although in Peng & Yoshida (2020), there are results for spectral clustering with k clusters, we cannot use
ideas from those results in this work. Indeed, because we also consider edge addition, we have to demonstrate
many additional theoretical results including Lemma 2.4 and Lemma 3.3. These analyses cannot be directly
extended to the case when k > 2. We, anyway, believe that such an extension would be interesting future
work.
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