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Abstract
In this paper, we study distributed mean estima-
tion (DME) under privacy and communication
constraints in the multi-message shuffle model.
We propose communication-efficient algorithms
for privately estimating the mean of bound `2-
norm and `∞-norm norm vectors. Our algorithms
are designed by giving unequal privacy at dif-
ferent resolutions of the vector (through binary
expansion) and appropriately combining it with
co-ordinate sampling. We show that our pro-
posed algorithms achieve order-optimal privacy-
communication-performance trade-offs.

1. Introduction
We consider distributed mean estimation (DME) problem,

where a set of clients are connected to a (untrusted) server
to estimate the average of the clients’ data. DME has wide
applications including federated learning (FL), in which
the central server estimates the mean of the local updates at
each round of the FedAvg (McMahan et al., 2017). However,
DME faces two major challenges in the real world. (i) Pri-
vacy: the clients’ data might contain sensitive information,
and hence, each client wants to preserve privacy of her own
local data. (ii) Communication: the connection between the
server and clients might be over wireless/band-limited net-
works, and hence, the communication becomes a bottleneck
for estimation. We focus on the shuffle model of differential
privacy (DP), where the clients are connected to the server
through a secure shuffler that randomly permutes the clients’
responses before passing them to the server (Bittau et al.,
2017; Erlingsson et al., 2019; Cheu et al., 2019).

We propose mechanisms for DME of bounded `∞-norm
and `2-norm vectors that matches the lower bound. Further-
more, our proposed schemes can be applied in the local DP
model and achieves order-optimal privacy-communication-
accuracy trade-offs. Communication efficiency is obtained

1University of California, Los Angeles, CA, USA. Correspon-
dence to: Antonious M. Girgis <amgirgis@ucla.edu>.

Workshop of Federated Learning and Analytics in Practice, colo-
cated with 40 th International Conference on Machine Learning,
Honolulu, Hawaii, USA. Copyright 2023 by the author(s).

by appropriately sampling the co-ordinates and using finite
number of bits through a binary expansion. Our core idea
for privacy is to allocate unequal privacy for different resolu-
tions of the real vector, obtained through a binary expansion
of it. We allocate increasing privacy with the order of bits,
i.e., lower privacy for most significant bits (MSBs); this
gives better performance in terms of mean squared error
(MSE), as MSBs are more important. This, combined with
careful accounting for the composition using RDP, gives our
privacy guarantees and performance.

1.1. Contributions and Literature Context

Distributed mean estimation (DME) in the local model of
DP is well-studied with a characterization of the optimal
privacy-communication-utility trade-off (see (Chen et al.,
2020; Girgis et al., 2021c; Asi et al., 2022) and reference
therein). Our scheme when applied to the local DP model
also achieves the optimal privacy-communication-utility
trade-offs for LDP framework (see Theorems 4.1 and 5.1).
However, LDP mechanisms suffer from high MSE compar-
ing to the central DP mechanisms. To improve the perfor-
mance of the LDP mechanism without a need for a trusted
server, the shuffle model has been proposed (Bittau et al.,
2017; Erlingsson et al., 2019; Cheu et al., 2019), where
a secure shuffler randomly permutes the private messages
of the clients before sending them to the untrusted server.
This was further enhanced by using multi-message shufflers
(MMS) in (Balle et al., 2020c; Ghazi et al., 2020b).

In this work, we establish the fundamental privacy-
communication-performance trade-offs for computing vec-
tor sum in the multi-message shuffle (MMS) model, see
Theorems 4.2 and 5.2. . For bounded `2-norm vectors, our
proposed scheme achieves MSEO

(
d

n2ε2

)
that requires only

O
(

min{nε2, d log
(
nε2

d

)
}
)

bits per client.

To put this in context, our result is order-wise better than
the private vector summation result in (Cheu et al., 2022),
which had communication O(d

√
n) per client, where d is

the vector dimension. The works of (Balle et al., 2019;
2020c; Ghazi et al., 2020b) focused on the scalar private
real summation problem. For single-message shuffle model,
Balle et. al. presented lower and matching upper bounds for
scalar private real summation, showing that the MSE is order
Θ
(
n1/3

)
. In (Cheu et al., 2019), the MMS mechanism is
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optimal in MSE but needs O(
√
n)-bits per client. In (Balle

et al., 2020c; Ghazi et al., 2020b), a MMS mechanism based
on IKOS scheme (Ishai et al., 2006) was proposed for real
summation in which each client needs to send only O(1)
messages to the shuffler, each of size O(log(n)) bits. Our
mechanism, when applied to the scalar case, achieves the
optimal MSE with O

(
log
(
nε2
))

-bits per client that im-
proves the communication cost in the high privacy regime
(see Theorem 4.2).

2. Problem Formulation
We consider a set of n clients. Each client has a vector
xi ∈ X for i ∈ [n], where X ⊂ Rd denotes a bounded
subset of all possible inputs. For example, X , Bd2(r2)
denotes the d dimensional ball with radius r2, i.e., each
vector xi satisfies ‖xi‖2 ≤ r2 for i ∈ [n]. The clients are
connected to an untrustworthy server that wants to estimate
the mean x = 1

n

∑n
i=1 xi. In this paper, we consider two

distributed privacy models.

Local DP Model In the local DP model, our goal is
to design two mechanisms: (i) A client-side mechanism
R : X → Y that generates a randomized output yi ∈ Y .
The local mechanism R satisfies privacy and communica-
tion constraints as follows: The output yi = R (xi) can be
represented using only b-bits. Furthermore, the mechanism
R satisfies ε0-LDP. Each client sends the output yi directly
to the server. (ii) Server aggregator A : Yn → Rd to esti-
mate the mean x̂ = A (y1, . . . ,yn) such that the estimated
mean x̂ is an unbiased estimate of the true mean x.

Shuffle Model The shuffle model consists of three pa-
rameters (R,S,A): (i)Encode: a set of L local mecha-
nisms R(k) : X → Y, k ∈ [L], each similar to the local
DP model. Each client sends the L outputs y(k)

i , k ∈ [L],
where y

(k)
i ∈ Y , to the secure shufflers. (ii) Shuffle: a

single secure shuffler Sk : Yn → Yn receives n outputs
y
(k)
i , i ∈ [n] and generates a random permutation π(k) of

the received messages. The multi-message shuffle is a
parallel set of L single-message shufflers {Sk}. (iii) An-
alyze: the server receives the L shufflers’ outputs and ap-
plies the aggregator A : YnL → Rd to estimate the mean
x̂ = A

(
yπ(k)(1), . . . ,yπ(k)(n), k ∈ [L]

)
. The shuffle model

is (ε, δ)-DP if the view of the output of the L shufflers satis-
fies (ε, δ)-DP.

In the two privacy models, the performance of the estimator
x̂ is measured by the expected loss:

MSE = sup
{xi∈X}

E
[
‖x̂− x‖22

]
, (1)

where the expectation is taken over the randomness of the
private mechanisms. Our goal is to design communication-

efficient and private schemes to generate an unbiased esti-
mate of x while minimizing the expected loss (1). We start
by the DME of binary vectors, where X , {0, 1}d. Then,
we study the DME for bounded `∞-norm i.e., ‖xi‖∞ ≤ r∞
and bounded `2-norm vectors, where ‖xi‖2 ≤ r2.

Remark 2.1 (parallel shufflers vs single shuffler). Observe
that we describe the multi-message shuffle model using L
independent shufflers, where each shuffler receives a single
message from each client. We can also represent the multi-
message shuffle model with a single shuffler that receives the
total nL messages from all clients by indexing the messages
of each client with a slight increase of the communication
cost, see (Balle et al., 2020c) for more details.

3. Binary vectors
In this section, we consider binary vectors: bi ∈ {0, 1}d.

The server wants to estimate the mean b = 1
n

∑n
i=1 bi.

This problem is a generalization to the scalar binary summa-
tion problem (Cheu et al., 2019). A straightforward solution
is to apply the scalar mechanism in (Cheu et al., 2019) per
coordinate that requires d bits per client. Our private mech-
anisms require O (min{ε0, d}) and O

(
min{nε2, d}

)
bits

per client in the local DP and shuffle models, respectively.

The client-side mechanism is presented in Algorithm 1,
where the parameter s determines the communication bud-
get for each client and the parameter p determines the total
privacy budget (see Theorem 3.1). For given s ∈ {1, . . . , d},
each client splits the binary vector bi into s sub-vectors,
each with dimension a = dds e. Then, the client chooses
uniformly at random one coordinate from each sub-vector
and privatizes its bit using the binary randomized response
(2RR) Algorithm 1 in the full version (Girgis & Diggavi,
2023). Observe that the output of Algorithm 1 can be repre-
sented as a sparse d-dimensional vector with only s non-zero
bits.

When s = d, then each client applies the 2RR mechanism on
each coordinate separately. On the other hand, when s = 1,
the client chooses uniformly at random one coordinate and
applies the 2RR mechanism. Thus, we get trade-offs be-
tween privacy-communication and accuracy. The server
aggregator ABin is simply aggregating the received random-
ized bits. For completeness, we present the aggregator ABin

in Algorithm 7 in the full version (Girgis & Diggavi, 2023)

Below, we state the bound on the MSE of the proposed
mechanisms in the local DP and shuffle models. The proofs
are deferred to the full version in (Girgis & Diggavi, 2023).
Furthermore, we present RDP guarantees of our mecha-
nisms for both local DP and shuffle models in the detailed
proofs in the full version (Girgis & Diggavi, 2023).

Theorem 3.1 (Local DP model). The output of
the local mechanism RBin

p,s can be represented us-
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Algorithm 1 : Local RandomizerRBin
p,s

1: Public parameter: Privacy parameter p, and communi-
cation budget s.

2: Input: bi ∈ {0, 1}d.
3: If ds is not integer, add (sdds e − d) dummy zeros to the

binary vector b. Let a← d
s .

4: for j ∈ [s] do
5: Choose uniformly at random one coordinate zij ←

Unif ({(j − 1)a, . . . , ja}).
6: yij ← aR2RR

p (bi[zij ])
7: end for
8: Return: The client sends s messages Yi ←
{(ai1, yi1) , . . . , (ais, yis)}.

ing s (log (dd/se) + 1)-bits. By choosing p =
1
2

(
1−

√
ε20/s

2

ε20/s
2+4

)
, the mechanism RBin

p,s satisfies ε0-LDP.

Let b̂ be the output of the analyzer ABin. The estimator b̂ is
an unbiased estimate of b with MSE:

MSEBin
ldp = O

(
d2

n
max

{
1

s
,
s

ε20

})
. (2)

Theorem 3.1 shows that each client needs to send
s = min{dε0e, d} communication bits to achieve MSE
O
(

d2

nmin{ε0,ε20}

)
. Now, we move to the shuffle model,

where we assume there exists s shufflers. The j-
th shuffler randomly permutes the set of messages
{(aij , yij) : i ∈ [n]} from the n clients.

Theorem 3.2 (MMS model). The output of the local mech-
anism RBin

p,s can be represented using s (log (dd/se) + 1)
bits. For every n ∈ N, ε ≤ s, and δ ∈ (0, 1), shuffling the
outputs of n mechanismsRBin

p,s satisfies (ε, δ)-DP by choos-

ing p = 1
2

(
1−

√
v2

v2+4

)
, where v2 = nε2

4s log(1/δ) . Let b̂

be the output of the analyzer ABin. The estimator b̂ is an
unbiased estimate of b with MSE:

MSEBin
shuffle = O

(
d2

n2
max

{
n

(
1

s
− 1

d

)
,

log (1/δ)

ε2

})
.

(3)

Theorem 3.2 shows that each client requires to send s =
O
(
min{nε2, d}

)
communication bits such that the error in

the shuffle model is bounded by O
(

d2

n2ε2

)
that matches the

MSE of central differential privacy mechanisms. For the
scalar case when d = 1, our results in Theorem 3.2 match
the optimal MSE as in (Cheu et al., 2019).

4. Bounded `∞-norm vectors
In this section, we consider the bounded `∞-norm, where

the ith client has a vector xi such that ‖xi‖∞ ≤ r∞ for

i ∈ [n]. For ease of operation, we will scale each vector such
that each coordinate becomes bounded in range [0, 1], and
then re-scale it at the server-side. Let zi = xi+r∞

2r∞
, where

the operations are done coordinate-wise. Thus, we have that
zi[j] ∈ [0, 1] for all j ∈ [d] and i ∈ [n], where zi[j] denotes
the jth coordinate of the vector zi. Observe that the vector
zi can be decomposed into a weighted summation of binary
vectors b(k)

i ∈ {0, 1}d,∀k ≥ 1 as:

zi =

∞∑
k=1

b
(k)
i 2−k, (4)

where recursively, b(k)
i = b2k

(
zi − z

(k−1)
i

)
c, k ≥ 1 for

z
(0)
i = 0 and z

(k)
i =

∑k
l=1 b

(l)
i 2−l.

To make our mechanism communication efficient, each
client approximates the vector zi by using the first m binary
vectors {b(k)

i : 1 ≤ k ≤ m}. Note that the first m binary
vectors give the best approximation to the real vector zi
with error ‖zi−z

(m)
i ‖22 ≤ d/4m. However, this mechanism

creates a biased estimate of zi. Hence, to design an unbiased
mechanism, the client approximates the vector zi using the
first m− 1 binary vectors {b(k)

i : 1 ≤ k ≤ m− 1} of the
binary representation above and the last binary vector (ui)
is reserved for unbiasness as follows:

ui[j] = Bern
(

2m−1(zi[j]− z
(m−1)
i [j])

)
, (5)

where z
(m−1)
i =

∑m−1
k=1 b

(k)
i 2−k and Bern(p) denotes

Bernoulli random variable with bias p. For completeness,
we prove some properties of this quantization scheme in the
full version (Girgis & Diggavi, 2023). Then, we estimate
the mean of binary vectors {b(k)

i ∈ {0, 1}d : i ∈ [n]} using
Algorithm 1 with different privacy guarantees for each level
k ∈ [m], where we allocate lower privacy (higher privacy
parameter νk) for the most significant bits (MSBs) (lower
k) in order to get better performance in terms of MSE.

The private DME mechanism is given in Algorithm 2, where
v controls the total privacy of the mechanism. There are
two communication parameters: m controls the number of
levels for quantization and s controls the number of dimen-
sions used to represent each binary vector. In Theorems 4.1
and 4.2, we present how the privacy and communication
parameters v,m, s affects the accuracy of the mechanism.
The server aggregator A`∞ estimates the mean of each bi-
nary vectors {b(k)i } and decodes the messages to generate
an estimate to the true mean z = 1

n

∑n
i=1 zi. Then, the

server scales the vector z to generate an unbiased estimate
of the mean x. The server-side is presented in Algorithm 3
in the full version (Girgis & Diggavi, 2023). We prove the
bound on the MSE of the proposed mechanisms in the local
DP and MMS models in the following theorems. We defer
the proofs to the full version (Girgis & Diggavi, 2023).
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Algorithm 2 : Local RandomizerR`∞v,m,s
1: Public parameter: Privacy budget v, communication

levels m, and communication coordinates per level s.
2: Input: xi ∈ Bd∞ (r∞).
3: zi ← (xi + r∞) /2r∞
4: z

(0)
i ← 0

5: for k = 1, . . . ,m− 1 do
6: b

(k)
i ← b2k(zi − z

(k−1)
i )c

7: vk ← 4
−k
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v
8: pk ← 1

2

(
1−

√
v2k/s

2

v2k/s
2+4

)
9: Y(k)

i ← RBin
pk,s

(b
(k)
i )

10: z
(k)
i ← z

(k−1)
i + b

(k)
i 2−k

11: end for
12: Sample ui ← Bern

(
2m−1

(
zi − z

(m−1)
i

))
13: vm ← 4

−m+1
3(∑m−1

l=1 4
−l
3 +4

−m+1
3

)v
14: pm ← 1

2

(
1−

√
v2m/s

2

v2m/s
2+4

)
15: Y(m)

i ← RBin
pm,s(ui)

16: Return: The client sends Yi ←
{
Y(1)
i , . . . ,Y(m)

i

}
.

Theorem 4.1 (Local DP model). The output of the
local mechanism R`∞v,m,s can be represented using
ms (log (dd/se) + 1) bits. By choosing v = ε0, the mech-
anism R`∞v,m,s satisfies ε0-LDP. Let x̂ be the output of the
analyzer A`∞ . The estimator x̂ is an unbiased estimate of
x = 1

n

∑n
i=1 xi with bounded MSE:

MSE`∞LDP = O
(
r2∞d

2

n
max

{
1

d4m
,

1

s
,
s

ε20

})
. (6)

Theorem 4.1 shows that each client needs to set m =
1 and s = dε0e communication bits to achieve MSE
O
(

d2

nmin{ε0,ε20}

)
when ε0 ≤ d.

Theorem 4.2 (MMS model). The output of the local mecha-
nismR`∞v,m,s can be represented usingms (log (dd/se) + 1)
bits. For every n ∈ N, ε ≤ ms, and δ ∈ (0, 1), the shuffling
the outputs of n mechanismsR`∞v,m,s satisfies (ε, δ)-DP by

choosing v2 = snε2

4 log(1/δ) . Let x̂ be the output of the an-
alyzer A`∞ . The estimator x̂ is an unbiased estimate of
x = 1

n

∑n
i=1 xi with bounded MSE:

MSE`∞
shuffle = O

(
r2∞d

2

n2
max

{
n

d4m
, n

(
1

s
− 1

d

)
,
log (1/δ)

ε2

})
.

(7)

In Theorem 4.2, by setting m = dlog
(
nε2/d

)
e and s =

O
(
min{nε2, d}

)
, MSE is bounded by O

(
d2

n2ε2

)
, which

matches MSE of central differential privacy mechanisms.

5. Bounded `2-norm Vectors
For bounded `2-norm, i.e., xi such that ‖xi‖2 ≤ r2 for
i ∈ [n], we first use the random rotation proposed in (Suresh
et al., 2017) to bound the `∞-norm of the vector with radius
r∞ = O

(
r2√
d

)
. Then, we apply the bounded `∞-norm al-

gorithm in Section 4. The complete algorithms are presented
in the full version (Girgis & Diggavi, 2023).

Theorem 5.1 (Local DP model). The output of the
local mechanism R`2v,m,s can be represented using
ms (log (dd/se) + 1) bits. By choosing v = ε0, the mech-
anism R`2v,m,s satisfies ε0-LDP. Let x̂ be the output of the
analyzer A`2 . With probability at least 1− β, the estimator
x̂ is an unbiased estimate of x = 1

n

∑n
i=1 xi with MSE:

MSE`2LDP = Õ
(
r22
n

max

{
1

4m
,
d

s
,
ds

ε20

})
, (8)

where Õ hides log (nd) factor.
Theorem 5.2 (MMS model). The output of the local mecha-
nismR`2v,m,s can be represented usingms (log (dd/se) + 1)
bits. For every n ∈ N, ε ≤ ms, and δ ∈ (0, 1), the shuffling
the outputs of n mechanismsR`2v,m,s satisfies (ε, δ)-DP by

choosing v2 = nε2

s log(1/δ) . Let x̂ be the output of the analyzer
A`2 . With probability at least 1− β, the estimator x̂ is an
unbiased estimate of x = 1

n

∑n
i=1 xi with MSE:

MSE`2
MMS = Õ

(
r22 max

{
1

n4m
,
1

n

(
d

s
− 1

)
,
d log (1/δ)

n2ε2

})
,

(9)
where Õ hides log (nd) factor.

Remark 5.3 (Kashin’s represention). Observe that the
MSE in (9) has a factor of (log(nd)) due to the random
rotation matrix. We can remove this factor by using the
Kashin’s representation (Kashin, 1977) to transform the
bounded `2-norm vector into a bounded `∞-norm vector
(see e.g., (Lyubarskii & Vershynin, 2010; Caldas et al., 2018;
Chen et al., 2020))

Next we present a lower bound for DME under privacy
and communication constraints, which can be derived using
results from (Chen et al., 2022) and (Bun et al., 2014).

Theorem 5.4 (Lower Bound For central DP model).
Let n, d ∈ N, ε > 0, r2 ≥ 1, and δ = o( 1

n ). For any
x1, . . . ,xn ∈ Bd2(r2), the MSE is bounded below by:

MSE`2central = Ω

(
r22 max

{
d

n2ε2
,

1

n4b/d

})
(10)

for any unbiased algorithmM that is (ε, δ)-DP with b > d-
bits of communication per client. Furthermore, when b < d

4
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bits per client, the MSE is bounded below by:

MSE`2central = Ω

(
r22dmax

{
1

n2ε2
,

1

nb

})
. (11)

Remark 5.5. (Optimality of our mechanism) When the com-
munication budget b > d, we can see that our MSE in
Theorem 5.2 matches the lower bound in Theorem 5.4 (up
to logarithmic factor) by choosing s = d and m = b/d.
Furthermore, when the communication budget b < d, our
algorithm achieve the lower bound by choosing s = b and
m = 1. Thus, our algorithm for MMS is order optimal for
all privacy-communication regimes.
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