
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING HIGH-DEGREE PARITIES:
THE CRUCIAL ROLE OF THE INITIALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Parities have become a standard benchmark for evaluating learning algorithms.
Recent works show that regular neural networks trained by gradient descent can
efficiently learn degree k parities on uniform inputs for constant k, but fail to do
so when k and d − k grow with d (here d is the ambient dimension). However,
the case where k = d−Od(1), including the degree d parity (the full parity), has
remained unsettled. This paper shows that for gradient descent on regular neural
networks, learnability depends on the initial weight distribution. On one hand, the
discrete Rademacher initialization enables efficient learning of full parities, while
on the other hand, its Gaussian perturbation with large enough constant standard
deviation σ prevents it. The positive result for full parity is shown to hold up
to σ = O(d−1), pointing to questions about a sharper threshold phenomenon.
Unlike statistical query (SQ) learning, where a singleton function class like the
full parity is trivially learnable, our negative result applies to a fixed function and
relies on an initial gradient alignment measure of potential broader relevance to
neural networks learning.

1 INTRODUCTION

Initialization plays a crucial role in the performance of neural network training algorithms. It has
been shown that a proper initialization can help avoiding issues such as vanishing or exploding
gradients, or set the foundation for efficient convergence and improved generalization (He et al.
(2015); Glorot & Bengio (2010); Sutskever et al. (2013); Kumar (2017)). In this work, we show
that the choice of initialization can be critical when learning complex functions, such as high-degree
parities.

Parity functions are a well-known class of challenging problems for differentiable learning models,
where the task is to determine the parity of bits belonging to an unknown subset of input coordinates.
Due to their inherent non-linearity and extreme sensitivity to small input changes, parity functions
often serve as a challenging benchmark for evaluating and comparing learning algorithms, including
gradient descent on neural networks (Abbe & Sandon (2020); Daniely & Malach (2020)). For
instance, they have been used for showing the advantages of using convolutional architectures over
fully connected ones (Malach & Shalev-Shwartz (2020)), the superiority of differentiable models
compared to kernel methods (Abbe et al. (2021)), and the efficacy of curriculum learning in contrast
to standard training (Abbe et al. (2024b); Cornacchia & Mossel (2023)).

Previous research has mainly focused on the family of sparse parities, also known as k-parities,
where the size of the support of the target parity, k, is bounded, i.e., it does not grow with input
dimension d. It has been shown that on uniform inputs, k-parities can be learned by gradient descent
algorithms (GD/SGD) on standard architectures, such as 2-layer fully connected (Barak et al. (2022);
Abbe & Boix-Adsera (2022); Glasgow (2023); Kou et al. (2024)), with a sample complexity of
Õ(dk−1)1 (Kou et al. (2024)).

In contrast, for dense parities, where the support of the target parity is unbounded (k = ωd(1)),
the picture is less clear. It has been shown that when both k and d − k are unbounded, stochastic
gradient descent (SGD) with large batch size and limited gradient precision on fully connected

1Where Õ(dc) = O(dc poly log(d)), for c ∈ R.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

architectures cannot learn dense parities with any initialization2 (Abbe & Sandon (2020)). The
difficulty in learning parities stems from their orthogonality on uniform inputs, leading to a low
cross-predictability (CP) (Abbe & Sandon (2020)). However, this only occurs if a given class of
k-parities is sufficiently large. Since the cardinality of this class is

(
d
k

)
=
(
d

d−k
)
, this hardness result

does not extend to almost-full parities, where k = d−Od(1), including the special case of the single
d-parity (the full parity).

In fact, it is known that the full parity, as a symmetric function, is learnable by gradient descent
methods with specific initialization (Nachum & Yehudayoff (2020)), such as setting all first layer
weights to 1. For random and symmetric initializations, Abbe & Boix-Adsera (2022) showed that
almost-full parities are weakly-learnable3 by gradient descent on a two-layer fully connected net-
work with discrete Rademacher initialization.

In this paper, we focus on almost-full parity functions and provide a deeper understanding of how
the initialization impacts their learning. First, we show that SGD on a two-layer fully connected
ReLU network with Rademacher initialization can achieve perfect accuracy for k = d − Od(1),
thus going beyond weak learning. Next, we investigate the robustness of this positive result and
argue that it is a special case. In particular, we prove that with Gaussian initialization GD with
limited gradient precision with the correlation loss cannot learn high degree parities on two layer
ReLU networks. We then introduce an intermediate case of perturbed-Rademacher initialization,
where the weights are initialized from a mixture of two Gaussian distributions with means +1 and
−1 and a standard deviation of σ. In the case of full parity we prove that when σ = O(d−1),
the positive result still holds, while if σ is a large enough constant, learning does not occur. We
leave the analysis for the remaining range of σ and the investigation of a potential threshold to
future work. While our theoretical analysis focuses on Gaussian perturbations, our experiments also
explore other perturbations, both discrete and continuous, supporting our claim that the success of
the Rademacher initialization is a special case. In our experiments, we also explore other settings
beyond our theoretical analysis in order to justify the robustness of our findings.

Crucially, the proof technique for our negative result does not rely on constructing an orbit class
or using measures for function classes (as in the cross-predictability case). Instead, it introduces a
new approach centered on a novel measure, the initial gradient alignment, which may be relevant
for evaluating the suitability of an initialization for a target distribution beyond the specific parity
setting discussed in this paper.

2 RELATED WORK

Learning Parities. Learning parities on uniform inputs is easy with specialized techniques like
Gaussian elimination over two-element fields or through emulation networks trained with Stochastic
Gradient Descent (SGD) using small batch sizes (Abbe & Sandon (2020)). However, in the statistical
query (SQ) setting (Kearns (1998)) and with gradient descent methods that have limited gradient
precision (Abbe & Sandon (2020)), learning parities presents computational barriers. Recent works
have focused on sparse parities, or k-parities (where k = Od(1)), as a classical benchmark for
evaluating learning algorithms (Suzuki et al. (2024); Edelman et al. (2023); Barak et al. (2022);
Daniely & Malach (2020); Malach et al. (2021); Abbe & Boix-Adsera (2022); Malach & Shalev-
Shwartz (2020); Abbe et al. (2024b); Cornacchia & Mossel (2023); Wei et al. (2019); Ji & Telgarsky
(2019)). In particular, in the special case of k = 2 (i.e. the XOR problem), Glasgow (2023) proved
a sample complexity upper bound of Õ(d) on a 2-layer network of logarithmic width, while for
general k, Kou et al. (2024) proved a sample complexity of Õ(dk−1), matching the SQ lower bounds
in both cases. For dense parities, it has been established that if both k and d− k grow with d, SGD
with large batch sizes fail at learning in polynomial time (Abbe & Sandon (2020)). We build on
top of Abbe & Boix-Adsera (2022), which showed that almost-full parities are weakly-learnable by
gradient descent on a two-layer fully connected network with Rademacher initialization. We provide
a more complete picture on the role of the initialization for learning the full parity, and we argue that
the Rademacher initialization is in some sense a special case.

2Assuming the initialization is invariant to permutation of the input neurons.
3i.e., an inverse polynomial edge over the trivial estimator is achieved with constant probability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The Role of the Initialization. Several studies have shown that initialization is crucial for optimiz-
ing neural networks, preventing vanishing or exploding gradients (Glorot & Bengio (2010)), speed-
ing up convergence (He et al. (2015)), ensuring informative gradient flow in early layers (Sutskever
et al. (2013)), and enabling learning challenging targets (Zhang et al. (2019); Hanin & Rolnick
(2018)). While these works focus on improving learning through tailored initializations, our paper
addresses the more fundamental question of what can gradient descent learn with standard initial-
izations. Thus, our work aligns more closely with (Abbe & Boix-Adsera (2022); Abbe & Sandon
(2020)), which characterize functions learnable by gradient descent on shallow networks, but with-
out exploring initialization. Another work (Edelman et al. (2023)) shows that sparse initialization
aids in learning sparse parities. However, the main challenge in their case is identifying the sup-
port of the sparse parity. In contrast, when learning the full parity, sparsifying the Rademacher
initialization does not aid in learning the full parity (see Figure 3, Section 6).

Complexity Measures. Previous works have studied the sample and time complexity of learning
with SGD on neural networks, proposing various measures, such as: the noise sensitivity (O’Donnell
(2014); Zhang et al. (2021); Abbe et al. (2022b); Hahn & Rofin (2024)), which applies mostly to
settings with i.i.d. inputs and is related to the degree of the functions, is known to be loose for strong
learning (Abbe et al. (2022a; 2023)); the globality degree (Abbe et al. (2024a)), which generalizes
the degree and sensitivity notions to non-i.i.d. settings but remains focused on weak rather than
strong learning; the statistical query (SQ) dimension (Kearns (1998); Feldman (2016)) and the cross-
predictability (Abbe & Sandon (2020)), which are usually defined for a class of targets/distributions
rather than a single distribution (in particular the full parity is efficiently SQ learnable since there is a
single function); the neural tangent kernel (NTK) alignment (Jacot et al. (2018); Cortes et al. (2012))
that are limited to the NTK framework; the information exponent (Arous et al. (2021); Bruna et al.
(2023)), generative exponent (Damian et al. (2024)) and leap (Abbe et al. (2023)), which measure
when fully connected neural networks can strongly learn target functions on i.i.d. or isotropic input
distributions and sparse or single/multi-index functions. In particular, few works studied measures
based on the alignment between the networks initialization and the target distribution, as in this
paper. (Mok et al. (2022); Ortiz-Jiménez et al. (2021)) studied the label-gradient-alignment (LGA),
defined as the norm of the target function in the RKHS induced by the NTK (Jacot et al. (2018)) at
initialization, showing its empirical relevance for predicting network performance. In contrast, we
focus on a theoretical analysis, with our measure of initial gradient alignment being loss-dependent.
Abbe et al. (2022c) defined the initial alignment (INAL) as the maximum average correlation of any
neuron with the target, providing a lower bound for functions with small INAL, though their result
relies on input embedding and orbit hardness, which does not apply to almost-full parities.

3 SETTING AND INFORMAL CONTRIBUTIONS

We consider learning with a neural network of P parameters, NN(x; θ), θ ∈ RP , initialized as
θ0 ∼ D0, for some distribution D0, and trained using noisy stochastic gradient descent (noisy-SGD,
see Def. 3). We assume that the network has access to data samples (x, f(x)), where x ∼ D, for D
being a distribution in Rd and f : Rd → {±1} is an unknown target function. We focus on learning
parity functions on uniform inputs (D = Unif{±1}d). A parity function over a subset S of the input
coordinates [d] := {1, 2, . . . , d} is a function χS : {±1}d → {±1}, defined as χS(x) :=

∏
i∈S xi,

where S ⊆ [d]. We will focus on the case where S = [d] (full parity) or |S| = d − Od(1) (almost
full parity). Let us define our notion of perturbed initialization.

Definition 1 (Perturbed Initialization). Consider a neural network with parameters θ ∈ RP and
two independent random vectors A,Hσ ∈ RP with independent coordinates where A is arbitrary
and Hσ has independent entries (Hσ)p ∼ N (0, σ2 · IP). We say that a neural network NN(x; θ)
has a (A, σ)-perturbed initialization with noise level σ if its parameters are initialized to θ0p =

Ap +
√
VarAp(Hσ)p.

We will mostly consider the case where A ∼ Unif{±1}P (Rademacher initialization). In this
scenario, we refer to the initialization as σ-perturbed Rademacher.

Theorem 1 (Informal, Positive Full Parity). Let f(x) = χd(x). A two-layer ReLU network with
some poly(d) hidden units and σ-perturbed Rademacher initialization with σ = O(d−1), trained

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

by GD or SGD with any batch-size with the correlation4 or the hinge loss, will learn f to perfect
accuracy in poly(d) steps.

For our negative result, we introduce the following notion of Gradient Alignment.

Definition 2 (Gradient Alignment). For a neural network NN(x; θ), an input distribution D, a target
function f : Rd → R, and a loss function L : R× R → R, we denote the population gradient as

Γf (θ) := Ex [∇θL(NN(x; θ), f(x))] . (1)

If θ is a random initialization then we define the gradient alignment of θ as

GALf (θ) := Eθ∥Γf (θ)− Γr(θ)∥22 , (2)

where Γr(θ) := Ex,y[∇θL(NN(x; θ), y)] for y ∼ Rad(1/2) and independent of x. That is, Γr(θ) is
the gradient of a random classification task.

We remark that for the squared and the correlation loss, the Gradient Alignment at initialization
corresponds to the Label-Gradient-Alignment of Ortiz-Jiménez et al. (2021); Mok et al. (2022).

We first prove that, under some conditions, if the Gradient Alignment at initialization is small, the
network does not learn. We remark that this result holds for general input distributions (beyond
Boolean and uniform) and for all networks with a linear output layer (see Section 5.1 for details).

Theorem 2 (Informal, Negative General). Let f : Rd → {±1} be a target function, and let
NN(x; θ) be a neural network with a linear output layer, trained by noisy-GD with noise level τ and
the correlation loss. Assume either: 1) Gaussian initialization of the weights and homogeneous ac-
tivation, or 2) (A, σ)-perturbed initialization, polynomially bounded gradients, and τ small enough
(see details in Corollary 3). If GALf (θ

0) < exp(−Ω(d)), then after poly(d) training steps, the
network will achieve an accuracy of at most 1

2 +O(exp(−Ω(d))).

We then apply this result to the case of almost-full parities on uniform inputs.

Theorem 3 (Informal, Negative Almost-Full Parities). Let f(x) = χS(x), for S ⊆ [d] such that
|S| ≥ d/2. Noisy-GD with correlation loss and any noise level τ = Ω(1/ poly(d)) on any two-
layer fully connected ReLU network of poly(d) size, initialized with Gaussian initialization will not
achieve accuracy better than random guessing in poly(d) training steps.

We expect Theorem 3 to hold also in case of σ-perturbed Rademacher initialization for σ > σ∗

for some fixed σ∗ > 0. To that end in Section 5.2.2 we prove the gradient alignment bound for
the hidden layer weights in the perturbed case. Together with a similar bound for the output layer
weights (which we omit from this version of the paper) that would give the statement of Theorem 3
also for the σ-perturbed initialization, with σ > σ∗.

Full versions of Theorems 1 and 3 presented in the following sections provide the following rigorous
separation between Rademacher and Gaussian initializations: Noisy-GD for correlation loss, when
applied to a two-layer fully connected ReLU network with some poly(d) hidden neurons, can learn
the full parity function in poly(d) steps if the network is initialized with Rademacher weights.
However, using Gaussian initialization while leaving all other aspects of the algorithm unchanged
requires exponential time to learn. Furthermore, the negative result is robust to details like changing
hyperparameters, and as discussed above, both positive and negative results are also valid for some
ranges of σ-perturbed Rademacher initializations.

4 POSITIVE RESULT FOR RADEMACHER INITIALIZATION

In both positive and negative results we will be working with the noisy SGD and GD algorithm
specified below:

Definition 3 (Noisy-(S)GD). Consider a neural network NN(.; θ), with initialization of the weights
θ0. Let f : X → R be a target function defined on an input space X . Assume we are given fresh
samples x ∼ D, for some input distribution D defined on X . Given a weakly differentiable loss

4The correlation loss is defined as Lcorr(y, ŷ) = −yŷ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

function L, the updates of the noisy-SGD algorithm with learning rate γ are defined by

θt+1 = θt − γ

(
1

B

B∑
s=1

∇θtL(NN(xs; θt), f(xs)) + Zt

)
, (3)

where for all t ∈ {0, . . . , T − 1}, Zt are i.i.d. N (0, τ2), for some noise level τ ,
and they are independent from other variables, and B is the batch size. If the average
over the batch size 1

B

∑B
s=1 ∇θtL(NN(xs; θt), f(xs)) is replaced by the population mean

Ex∼D [∇θtL(NN(x; θt), f(x))], we refer to the algorithm as (full batch) noisy-GD.

In this section we consider two layer neural networks with Rademacher initialization for the hidden
layer weights. Our results imply that with large enough poly(d) number of hidden neurons, the
hidden layer embedding induced by the Rademacher distribution makes the almost-full parities for
k = d−Od(1) linearly separable. Then:

1. When trained with the correlation loss on the uniform input distribution, the network
achieves perfect accuracy in one step of full GD or in poly(d) steps of SGD.

2. When trained with the hinge loss on any input distribution, the neural network achieves
classification error ϵ in poly(d)/ϵ steps of SGD. (For simplicity we restrict this result to
full parity.)

As mentioned, our positive result for the full parity holds also for a perturbed Rademacher initial-
ization with deviation up to C/d for some constant C > 0. We demonstrate this for hinge loss, see
Section 4.2.

4.1 GD AND SGD WITH CORRELATION LOSS

We consider a fully connected network N(x) =
∑n
i=1 viσ(wi.x + bi), where σ is an arbitrary

activation function. In the corollaries we will take σ to be either ReLU or its clipped version. The
network is trained with correlation loss L(y, ŷ) = −yŷ where only the output layer weights v are
trained. This is in contrast to the hinge loss result in Section 4.2 where we allow training of both
layers. The gradient of output weights on input x ∈ {±1}d is given by ∇vL = −fa(x)σ(Wx+ b),

where W is an n × d matrix with rows w1, . . . , wn and fa(x) =
∏d−a
i=1 xi is the almost full parity

function. During training, the inputs are sampled from the uniform distribution on {±1}d.

The hidden layer weights wi are initialized as i.i.d. Rademacher and the output weights as vi = 0.
The biases are i.i.d. according to some distribution bi ∼ B. Our result depends on the following
quantity:

∆
(a)
d,b,σ := Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

 d∑
j=1

xj + b

 . (4)

In the following, let us assume that Eb∼B

(
∆

(a)
d,b,σ

)2
= ∆2 and |σ(w · x+ b)| ≤ R, where both ∆2

and R can vary with d. Furthermore, we assume that there exists a constant C not depending on d
such that for every b in the support of B it holds |∆d,b,σ| ≤ C∆. (The last assumption is satisfied for
any distribution B with a support of constant size. The distributions we consider in the corollaries
have this property.)
Theorem 4. Consider a network as above trained for one step with the GD algorithm. If n ≥
Ω(dR

2

∆2), then, except with probability at most 2 exp(−d) over the choice of initialization, we have
sign(N1(x)) = fa(x) for every x ∈ {±1}d, where N t(x) denotes the output of the network at time
t. This conclusion holds also in the presence of GD noise of magnitude τ up to O(∆2/R).

Theorem 5. Consider the above network trained with SGD of any batch size. Let n ≥ Ω(dR
2

∆2).
Then, except with probability 3 exp(−d), after T ≥ Ω(R

4

∆4 (d + log n)) steps, the network predicts
correctly sign(NT (x)) = fa(x) for every x ∈ {±1}d in the presence of GD noise of magnitude τ
up to O(

√
T∆2

R).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We present an application of Theorem 4 to a specific setting. By estimating ∆, we prove a corollary
for the full parity function for ReLU activation and its bounded variant, i.e., clipped ReLU. For
clipped ReLU, order of d2 neurons are sufficient for learning with high probability. We also provide
a result for the almost full (d− a)-parities for ReLU activation and any a = O(1):
Corollary 1. In case of the full parity a = 0 and σ = ReLU, let bi = 0 if d is even or bi = −1 if d
is odd. Then, we have ∆2 = Θ(1/d) andR = d+1. Hence, Ω(d4) hidden neurons are sufficient for
strong learning in one step of GD. In the case of clipped ReLU σ(x) = max(0,min(x, 5)) it holds
∆2 = Θ(1/d) and R = 5, hence Ω(d2) hidden neurons are sufficient.
Corollary 2. Let a ∈ N. Take b ∼ B such that bi = a+2 with probability 1/2 and bi = a+2+0.1
with probability 1/2. Then, for σ = ReLU it holds ∆2 ≥ Ω(d−1−2⌈a/2⌉]). Accordingly, n ≥
Ω(d4+2⌈a/2⌉) hidden neurons are sufficient for strong learning in one GD step.

In the corollaries above, we have chosen convenient bias values for simplicity, but the precise values
are not crucial except for “unlucky” choices where ∆ can become too small. In particular learning
should hold for random biases for most reasonable distributions. For the clipped ReLU activation,
we expect (but do not prove) that the bound on the number of neurons in Corollary 2 could be
improved to n ≥ Ω(d2+2⌈a/2⌉) using a similar modification as in Corollary 1.

4.2 SGD ANALYSIS FOR HINGE LOSS

One of the implications of Theorem 4 is that under Rademacher initialization, with high probability
the hidden layer embeddings of the parity function are linearly separable. We use known techniques
(in particular, we borrow parts of the analysis from Nachum & Yehudayoff (2020)) to show that this
implies learning for SGD under the hinge loss. For simplicity in this section we restrict ourselves to
the ReLU activation and full parity. We refer to Appendix A.5 for details.

5 NEGATIVE RESULTS

5.1 NEGATIVE RESULTS FOR GENERAL TARGETS

In this section we prove a negative result that holds for all neural networks with a linear output layer:
Definition 4 (Linear Output Layer). We say that a neural network NN(x; θ) has linear output layer
if its output can be written as NN(x; θ) =

∑n
i=1 viNNi(x;ψ), where θ = (v, ψ) are the trainable

weights of the network, and n denotes the number of neurons in the last hidden layer.

In the context of binary classification, the network’s ±1 label prediction is given by sign(NN(x; θ)).
Let us state our main negative result.
Theorem 6 (Negative Result for General Targets). Let NN(x; θ) be a network with a linear output
layer. Let the weights θ0 be initialized according to an (A, σ)-perturbed initialization (Def. 1), for
A ∈ RP with independent coordinates with distributions symmetric around 0. Assume the network
is given samples (x, f(x)) where x ∼ D, for D being a distribution on Rd. Let NN(x; θT) be the
output of the noisy-GD algorithm with noise level τ and learning rate γ after T steps of training with
the correlation loss. Assume that there exists some bound ε > 0 such that for every 0 ≤ λ2 ≤ Tγ2τ2

we have

GALf (θ
0 + λH) ≤ ε , (5)

where H ∼ N (0, IP). Then, P
[
sign(NN(x; θT)) = f(x)

]
≤ 1

2 + T
√
ε

2τ .

In words, this theorem states that if equation 5 holds for ε which is small compared to the noise level
τ , then noisy gradient descent will require a large number of training steps to achieve performance
better than random guessing. Therefore, even the weakest form of learning is impossible. We
provide here a brief outline of the proof, and refer to Appendix B for the full proof.

Proof Outline of Theorem 6. Our proof is composed of three steps: 1) We define the ‘junk-flow’,
i.e. the training dynamics of a network trained on random noise (Definition 6); 2) We show that
if the GAL remains small along the junk-flow, then the noisy-GD dynamics stay close to the junk

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

flow in total variation (TV) distance, meaning that the network does not learn (Lemma 5); 3) For
correlation loss, we demonstrate that if equation 5 holds, then the GAL remains small along the
junk flow. Notably, steps (1) and (2) apply to any architecture with a linear output layer, symmetric
initialization, and any loss function. However, step (3) is currently limited to the correlation loss, as
tracking junk-flow dynamics for other losses is more complex.

Let us make a few remarks.

Remark 1. For simplicity, we present Theorem 6 in the context of full batch noisy-GD. However, we
note that the proof can be extended to noisy-SGD with a sufficiently large batch size, by leveraging
the concentration of the effective gradient around the population mean, similarly to e.g. (Abbe &
Sandon (2020), Theorem 3).

Remark 2. We propose using GALf as a measure for hardness of learning. However, the condition
in equation 5 requires verifying that GALf remains small for all Gaussian perturbations of the
initialization, with variance within the specified range. In Corollaries 3 and 4, we demonstrate that,
in some settings, the condition in equation 5 can be simplified and expressed uniquely in terms of
GALf (θ

0).

Remark 3. We emphasize that Theorem 6 applies to any binary classification task and network
architecture with a linear output layer, unlike, for example, Abbe et al. (2022c), which is specific to
Boolean functions and product measures. Importantly, our result is restricted to the correlation loss,
as the proof relies on coupling the gradient descent dynamics with the ’junk flow’, as mentioned in
the proof outline. We empirically observe that also for hinge loss, the GALf remains small along
the junk flow over time (see Figure 2 in Section 6).

As a first corollary, we show that when the GD noise level τ is small compared to the variances in
the initial Hσ , the distributions of Hσ and Hσ + λH are similar. As a result, equation 5 can be
expressed in terms of GALf (θ

0).

Corollary 3. Let f : Rd → {±1} be a target function under a given input distribution D. Let
NN(x; θ) be network with linear output layer, with weights initialized according to an (A, σ)-
perturbed initialization, for 0-symmetric independent A ∈ RP . Assume that ∥Ex|∇NN(x; θ)|∥22 ≤
R for all θ.5 Let NN(x; θT) be the output of the noisy-GD algorithm with noise level τ and learning
rate γ such that τ2 ≤ σ2 minp VarAp

PTγ2 , after T steps with the correlation loss. Then,

P(NN(x; θT) = f(x)) ≤ 1

2
+
T
√
4R+ 1

2τ
·GALf (θ

0)1/18. (6)

The proof of Corollary 3 is deferred to Appendix B.3. While the above corollary applies to gen-
eral perturbed initializations, it relies on the assumption that the GD noise level τ is sufficiently
small. However, we also show that in the specific case of Gaussian initialization and assuming a
homogeneous architecture, this assumption can be removed.

Gaussian Initialization. Let us restrict ourselves to the special case of Gaussian initialization, i.e.
when A = 0P . We assume that the activation h satisfies the following homogeneity property.

Definition 5 (H-Weakly Homogeneous.). Let h : R → R be an activation function. We say that h
is H-weakly homogeneous if for all x ∈ R and C ≥ 0, h(Cx) = CHh(x).

For example, ReLU(x) = max{0, x} is 1-weakly homogeneous. xk is k-weakly homogeneous, for
all k ∈ N. We prove the following result.

Corollary 4. Let NN(x; θ) be a fully connected network of depth L, with H-weakly homogeneous
activation and with weights initialized as θ0p ∼ N (0, σ2

lp
) where lp denotes the layer of parameter

θp, for p ∈ [P]. Let f : Rd → {±1} be a balanced target function. Let NN(x; θT) be the output of
the noisy-GD algorithm with noise-level τ , after T steps of training with the correlation loss. Then,

P(NN(x; θT) = f(x)) ≤ 1

2
+
T

2τ

L∏
l=1

(
1 +

Tγ2τ2

σ2
l

)H
·GALf (θ

0)1/2. (7)

5This always holds if we assume gradient clipping.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 NEGATIVE RESULTS FOR HIGH-DEGREE PARITIES

5.2.1 SMALL ALIGNMENT FOR GAUSSIAN INITIALIZATION

In this section we state a rigorous lower bound for learning of large degree parities with pure Gaus-
sian initialization. This is in the setting of two layer ReLU neural networks. Then we will discuss
extending this result to a perturbed Rademacher initialization for a large enough constant perturba-
tion.
Theorem 7. Let θ = (w, b, v) for w ∈ Rn×d, b ∈ Rn, v ∈ Rn and NN(x; θ) =

∑n
i=1 viReLU(wi ·

x + bi). Let a = a(d) ≤ d/2 and fa(x) =
∏d−a
i=1 xi. Consider the i.i.d. initialization w ∼

N
(
0, 1d Idn×d

)
, b ∼ N (0, σ2 Idn) for any σ2 = O(1), v ∼ N

(
0, 1

n Idn
)
.

Then, for any number of hidden neurons n = exp(o(d)), any number of time steps T = exp(o(d)),
any learning rate 0 ≤ γ ≤ exp(o(d)), any noise level exp(−o(d)) ≤ τ ≤ exp(o(d)), after T steps
of the noisy GD algorithm with correlation loss,

Pr
[
sign(NNT (x; θ)) = fa(x)

]
≤ 1

2
+ exp(−Ω(d)) . (8)

Theorem 7 follows from Theorem 6 and the following bound on the gradient alignment:
Proposition 1. Let a neural network be as in Theorem 7. Then, for every σ2

0 > 0, there exists
C,C ′ > 0 such that for any network with σ2 ≤ σ2

0 we have a gradient alignment bound
GALfa(θ) ≤ PC ′ exp(−Cd) , (9)

where P := nd+ 2n is the total number of parameters.

5.2.2 SMALL ALIGNMENT FOR PERTURBED INITIALIZATION

Consider the perturbed Rademacher initialization 1√
d
(r + g) for g ∼ N (0, σ2) for some constant

σ > 0. In order to prove a rigorous lower bound like in Theorem 7 for this initialization, we need to
establish the alignment bound for GALf (r + g). Once this bound is proved, the remaining steps of
the proof are similar as for Theorem 7.
Theorem 8. There exists σ0 > 0 such that for all σ = σ(d) such that σ0 ≤ σ ≤ exp(o(d)) the
following holds:

Let θ = (w, v) forw ∈ Rn×d, v ∈ Rn and NN(x; θ) =
∑n
i=1 viReLU(wi·x). Let f(x) =

∏d
i=1 xi.

Consider the i.i.d. initialization w = 1√
d
(r + g) where r ∼ Rad(1/2), g ∼ N (0, σ2) with all

coordinates independent, v ∼ N
(
0, 1

n Idn
)
.

Then, for any number of hidden neurons n = exp(o(d)), any number of time steps T = exp(o(d)),
any learning rate 0 ≤ γ ≤ exp(o(d)), any noise level exp(−o(d)) ≤ τ ≤ exp(o(d)), after T steps
of the noisy GD algorithm with correlation loss,

Pr
[
sign(NNT (x; θ)) = f(x)

]
≤ 1

2
+ exp(−Ω(d)) . (10)

Proposition 2. There exists σ0, C, C ′ > 0 such that the following holds: Let the setting be as in
Theorem 8. For any network with perturbed initialization with σ ≥ σ0 we have a gradient alignment
bound

GALf (θ) ≤ σ2PC ′ exp(−Cd) , (11)
where P := nd+ n is the total number of parameters.

The proofs for this section can be found in Appendices C and D.

6 EXPERIMENTS

In this section, we show empirical results on the impact of the initialization in learning the full parity.
As our model, we use a multi-layer perceptron (MLP) with 3 hidden layers of neurons sizes 512,
512 and 64 with ReLU activation, and we train it with SGD with batch size 64 on the hinge loss,
training all layers simultaneously. Each experiment is repeated for 7 random seeds and we report the
95% confidence intervals. In Appendix E, we report further experiment details, as well as additional
experiments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 25000 50000 75000 100000125000150000175000200000
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y = 0.0
 = 0.1
 = 0.2
 = 0.3
 = 0.4

gauss.

10000 50000 90000 130000
Train Size

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

 = 0.0
 = 0.1
 = 0.2
 = 0.3
 = 0.4

gauss.

Figure 1: Learning the full parity with σ-perturbed initialization by SGD with the hinge loss on a
4-layer MLP, with d = 50, with online fresh samples (left) and with an offline fixed dataset (right).

101

input dim. (even)

10 9

10 7

10 5

10 3

10 1

GA
L

gauss. init., t=2, approx.
gauss. init., t=5, approx.
rad. init., t=0, exact
gauss. init., t=0, exact

2 × 102 3 × 102 4 × 102

input dim.

10 4GA
L

=0(Rad.)
=0.02
=0.03
=0.04
=0.05

Figure 2: Computing numerically the alignment GALf with the hinge loss (left) and the correlation
loss (right), for a one-neuron network.

σ-Perturbed Initialization. We first consider learning the full parity function with σ-perturbed
initializations and investigate the effect of varying σ (Figure1). To make different initializations
comparable, we normalize them such that the variance entering each neuron is 1 (see Appendix E for
details). We observe that the test accuracy after training decreases as σ increases. This pattern is seen
in both the online setting (left plot), where fresh batches are sampled at each iteration, and the offline
setting (right plot), where the network is trained on a fixed dataset until the training loss decreases to
10−2, and evaluated on a separate test set. For input dimension d = 50, as in Figure 1, we find that
some learning occurs for σ ∈ {0.1, 0.2}. However, in the Appendix, we report experiments with
larger input dimensions, where learning does not occur for these values of σ (Figure5).

Gradient Alignment. In Figure 2 we compute the gradient alignment for a one-neuron ReLU
network under different initializations and losses, which are not covered by our theoretical results.
The left plot shows the GALf at initialization for the hinge loss with Rademacher and Gaussian
initializations, across input dimensions up to 30 (solid lines). We observe that GALf decreases at
an inverse-polynomial rate for Rademacher, but super-polynomially fast for Gaussian initialization.
We also estimate, with Montecarlo, the GALf after training the neuron for a few steps (t = 2 and
t = 5) on random labels (dots). We observe that training on random labels does not increase the
GALf . A theoretical understanding of this observation would allow to extend our negative result to
the hinge loss.

In the right plot, we estimate numerically the initial GALf for the correlation loss for a single
threshold neuron. We consider σ-perturbed initializations with small σ, contrasting Theorem 8 and
Proposition 2, which apply only for large σ. For small σ, GALf deviates from the Rademacher case,
suggesting that it could be super-polynomially small for all constants σ > 0. Further investigation
for small σ is left for future work, and Appendix E shows that GALf remains super-polynomially
small for larger values of σ, confirming our theory.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20000 40000 60000 80000 100000
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y
Rad.+Unif., :0.1
Rad.+Unif., :1.0
sparse Rad., s:1/2
sparse Rad., s:1/3
sparse Rad., s:1/5
Unif{ 2, 1, 1, 2}

10000 50000 90000 130000
Train Size

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y Rad.+Unif., :0.1
Rad.+Unif., :1.0
sparse Rad., s:1/2
sparse Rad., s:1/3
sparse Rad., s:1/5
Unif{ 2, 1, 1, 2}

Figure 3: Learning the full parity with perturbations of the Rad. initialization by SGD with the
hinge loss on a 4-layer MLP, with d = 50, with online fresh samples (left) and with an offline
dataset (right).

Other Perturbed Initializations. We next explore perturbations beyond mixtures of Gaussians.
In Figure 3, we consider three types: 1) a mixture of two continuous uniform distributions with
means +1 and −1, and standard deviations σ ∈ {0.1, 1.0}; 2) a sparsified Rademacher initialization,
where a fraction s ∈ {1/2, 1/3, 1/5} of the weights are set to 0, and the rest follow a Rad(1/2)
distribution; and 3) a symmetric discrete initialization, where the weights are randomly chosen from
{−2,−1, 1, 2}. We find that the mixture of continuous uniforms behaves similarly to the mixture of
Gaussians: for σ = 0.1 and input dimension d = 50, the network successfully learns, but learning
is prevented at larger σ. Additionally, we observe that all other discrete initializations fail to enable
learning, suggesting that the Rademacher initialization is a special case.

7 CONCLUSION

In this paper, we advance the understanding of whether high degree parities can be learned using
noisy-GD on standard neural networks with i.i.d. initializations. Specifically, we show that while the
full parity is easily learnable with Rademacher initialization, it becomes challenging when Gaussian
perturbations with large variance are introduced. This constitutes a separation between SQ algo-
rithms and gradient descent on neural networks: the full parity is an example of a function that
is trivially learnable in the statistical query (SQ) framework but difficult for noisy-GD on neural
networks with most typical initializations, with the Rademacher being a special case. It raises in-
teresting questions about a threshold where learning behavior changes based on the perturbation
level σ. Additionally, we propose a novel, loss-dependent measure for assessing alignment between
the initialization and the target distribution, and prove a negative result for the correlation loss that
applies to general input distributions, beyond the specific case of full parity and Boolean inputs. We
leave to future work strengthening of that result, e.g., to hinge loss and/or deeper architectures.

REFERENCES

Mathoverflow. https://mathoverflow.net/questions/351523/
gaussian-concentration-inequality/, 2020.

Emmanuel Abbe and Enric Boix-Adsera. On the non-universality of deep learning: quantifying the
cost of symmetry. arXiv preprint arXiv:2208.03113, 2022.

Emmanuel Abbe and Colin Sandon. On the universality of deep learning. In Advances in Neural
Information Processing Systems, volume 33, pp. 20061–20072, 2020.

Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon, and Nathan Srebro. On the power of
differentiable learning versus PAC and SQ learning. In Advances in Neural Information Process-
ing Systems, volume 34, 2021.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022a.

10

 https://mathoverflow.net/questions/351523/gaussian-concentration-inequality/
 https://mathoverflow.net/questions/351523/gaussian-concentration-inequality/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Emmanuel Abbe, Samy Bengio, Elisabetta Cornacchia, Jon Kleinberg, Aryo Lotfi, Maithra Raghu,
and Chiyuan Zhang. Learning to reason with neural networks: Generalization, unseen data and
boolean measures. Advances in Neural Information Processing Systems, 35:2709–2722, 2022b.

Emmanuel Abbe, Elisabetta Cornacchia, Jan Hazla, and Christopher Marquis. An initial alignment
between neural network and target is needed for gradient descent to learn. In International Con-
ference on Machine Learning, pp. 33–52. PMLR, 2022c.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learn-
ing Theory, pp. 2552–2623. PMLR, 2023.

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can trans-
formers reason? the locality barrier and inductive scratchpad. arXiv preprint arXiv:2406.06467,
2024a.

Emmanuel Abbe, Elisabetta Cornacchia, and Aryo Lotfi. Provable advantage of curriculum learning
on parity targets with mixed inputs. Advances in Neural Information Processing Systems, 36,
2024b.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. Journal of Machine Learning Research, 22
(106):1–51, 2021.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

Stanford S Bonan and Dean S Clark. Estimates of the hermite and the freud polynomials. Journal
of Approximation Theory, 63(2):210–224, 1990.

Joan Bruna, Loucas Pillaud-Vivien, and Aaron Zweig. On single index models beyond gaussian
data. arXiv preprint arXiv:2307.15804, 2023.

Elisabetta Cornacchia and Elchanan Mossel. A mathematical model for curriculum learning for
parities. In International Conference on Machine Learning, pp. 6402–6423. PMLR, 2023.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based
on centered alignment. J. Mach. Learn. Res., 13(1):795–828, mar 2012. ISSN 1532-4435.

Alex Damian, Loucas Pillaud-Vivien, Jason D Lee, and Joan Bruna. The computational complexity
of learning gaussian single-index models. arXiv preprint arXiv:2403.05529, 2024.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural Infor-
mation Processing Systems, 33:20356–20365, 2020.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Pareto frontiers
in neural feature learning: Data, compute, width, and luck. arXiv preprint arXiv:2309.03800,
2023.

Vitaly Feldman. A general characterization of the statistical query complexity. arXiv preprint
arXiv:1608.02198, 2016.

Margalit Glasgow. Sgd finds then tunes features in two-layer neural networks with near-optimal
sample complexity: A case study in the xor problem. arXiv preprint arXiv:2309.15111, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? arXiv preprint
arXiv:2402.09963, 2024.

Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture.
Advances in neural information processing systems, 31, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bernard Harris and Andrew P Soms. The use of the tetrachoric series for evaluating multivariate
normal probabilities. Journal of Multivariate Analysis, 10(2):252–267, 1980.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbi-
trarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

Nirmit Joshi, Theodor Misiakiewicz, and Nathan Srebro. On the complexity of learning sparse
functions with statistical and gradient queries. arXiv preprint arXiv:2407.05622, 2024.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45
(6):983–1006, 1998.

Yiwen Kou, Zixiang Chen, Quanquan Gu, and Sham M Kakade. Matching the statistical query
lower bound for k-sparse parity problems with stochastic gradient descent. arXiv preprint
arXiv:2404.12376, 2024.

Siddharth Krishna Kumar. On weight initialization in deep neural networks. arXiv preprint
arXiv:1704.08863, 2017.

N N Lebedev. Special functions and their applications. Courier Corporation, 1972. Translated by
Richard A Silverman.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes.
Springer, 2013.

Eran Malach and Shai Shalev-Shwartz. Computational separation between convolutional and fully-
connected networks, 2020. URL https://arxiv.org/abs/2010.01369.

Eran Malach, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. Quantifying the benefit of using
differentiable learning over tangent kernels. In International Conference on Machine Learning,
pp. 7379–7389. PMLR, 2021.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
without training?, 2022. URL https://arxiv.org/abs/2203.14577.

Ido Nachum and Amir Yehudayoff. On symmetry and initialization for neural networks. In LATIN
2020: Theoretical Informatics: 14th Latin American Symposium, São Paulo, Brazil, January 5-8,
2021, Proceedings 14, pp. 401–412, 2020.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. doi: 10.1017/
CBO9781139814782.

Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. What can lin-
earized neural networks actually say about generalization? 2021. doi: 10.48550/ARXIV.2106.
06770. URL https://arxiv.org/abs/2106.06770.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Taiji Suzuki, Denny Wu, Kazusato Oko, and Atsushi Nitanda. Feature learning via mean-field
langevin dynamics: classifying sparse parities and beyond. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

12

https://arxiv.org/abs/2010.01369
https://arxiv.org/abs/2203.14577
https://arxiv.org/abs/2106.06770

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Oldrich Alfons Vasicek. A series expansion for the bivariate normal integral. Journal of Computa-
tional Finance, 1(4):5–10, 1998.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge University Press, 2018.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Chiyuan Zhang, Maithra Raghu, Jon M. Kleinberg, and Samy Bengio. Pointer value retrieval: A new
benchmark for understanding the limits of neural network generalization. ArXiv, abs/2107.12580,
2021.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

A PROOFS AND DETAILS FOR SECTION 4

A useful identity to be remembered for later is, for every x,w ∈ {±1}d:

d∏
j=1

xjwj = (−1)(d−w·x)/2 . (12)

A.1 PROOF OF THEOREM 4

First, consider the case without GD noise. One step of GD with learning rate γ results in the
following update:

vt+1
i = vti + γEx∼{±1}d

d−a∏
j=1

xj

σ(wi · x+ bi) (13)

= vti + γEx∼{±1}d

d−a∏
j=1

wij

 (−1)(d−a−
∑d−a

j=1 wijxj)/2σ(

d∑
j=1

wijxj + bi) (14)

= vti + γ

d−a∏
j=1

wij

∆
(a)
d,bi,σ

, (15)

keeping in mind from equation 4 that

∆
(a)
d,b,σ = Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

 d∑
j=1

xj + b

 . (16)

Since wi · x is distributed as a sum of i.i.d. Rademachers regardless of wi, the value in equation 14
indeed can be replaced with the factor ∆(a)

d,bi,σ
which does not depend on wi.

Accordingly, after one step of GD for starting zero weights v0 = 0, the output of the network is
given by

N1(x) =

n∑
i=1

γ∆
(a)
d,bi,σ

d−a∏
j=1

wijσ(wi · x+ bi) . (17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

For fixed x ∈ {±1}d and in expectation over w and b, this is, using equation 12,

Ew,bN1(x) = γ

n∑
i=1

Ebi

∆(a)
d,bi,σ

Ew∼{±1}d

d−a∏
j=1

wijσ(wi · x+ bi)

 (18)

= γ

d−a∏
j=1

xj

 n∑
i=1

Ebi
[
∆

(a)
d,bi,σ

Ew∼{±1}d

[
(−1)(d−a−

∑d−a
j=1 wijxj)/2σ(wi · x+ bi)

]]
(19)

= γ

d−a∏
j=1

xj

 n∑
i=1

Ebi
[
[∆

(a)
d,bi,σ

]2
]
= γ

d−a∏
j=1

xj

n∆2 . (20)

Let us come back to the expression fa(x)N1(x) for a fixed x ∈ {±1}d. Its value is a random
variable depending on the hidden layer initialization W . By equation 17, it can be written as a sum
of n i.i.d. random variables, and each of them has absolute value at most γRC∆. Furthermore,
it follows from equation 20 that Ewfa(x)N1(x) = γn∆2. Therefore, we can upper bound the
prediction error probability by Hoeffding’s inequality:

Pr
w,b

[fa(x)N
1(x) ≤ 0] ≤ Pr

w,b

[
fa(x)N

1(x) ≤ γn∆2

2

]
≤ exp

(
− n∆2

8R2C2

)
≤ exp(−2d) , (21)

where the last inequality holds for n ≥ Ω(dR
2

∆2). Therefore, by union bound, the network will make
correct predictions fa(x)N1(x) > 0 for all x ∈ {±1}d except with probability exp(−d).
In the presence of gradient noise, the weights are given as ṽ1 = v1 + γξ, where ξ ∼ N (0, τ2 Id).
Then,

fa(x)Ñ
1(x) = fa(x)N

1(x) + γfa(x)

n∑
i=1

ξiσ(wi · x+ bi) ≥ fa(x)N
1(x)− γR

n∑
i=1

|ξi| . (22)

Using equation 21, except with probability exp(−d), we will have fa(x)Ñ1(x) > 0 for every x
as long as γR

∑
i |ξi| ≤

γn∆2

2 , or equivalently
∑
i |ξi| ≤

n∆2

2R . Note that E|ξi| = τ
√
2/π, so by

assumption τ ≤ O(∆
2

R) we have E
∑
i |ξi| ≤

n∆2

4R .

Furthermore, as ξi has Gaussian distribution, its absolute value |ξi| is sub-Gaussian (see, e.g., Propo-
sition 2.5.2 in Vershynin (2018)). Therefore, by sub-Gaussian concentration, we can estimate

Pr

[
n∑
i=1

|ξi| ≥
n∆2

2R

]
≤ Pr

[
n∑
i=1

|ξi| − E|ξi| ≥
n∆2

4R

]
≤ exp

(
−Ω

(
n∆4

R2τ2

))
≤ exp(−d) ,

(23)

where the last inequality holds as n ≥ Ω(dR
2

∆2) and τ2 = O(∆
4

R2). All in all, the noisy network
classifies all inputs correctly except with probability at most 2 exp(−d).

A.2 PROOF OF THEOREM 5

In the general case of noisy SGD, let v = v1 ∈ Rn be the update given by GD, that is vi =
Exfa(x)σ(wi · x+ bi). The SGD update can be written as

v̂t+1
i = v̂ti + γeti + γξti , (24)

where: (a) eti for 1 ≤ i ≤ n is a random variable with expectation Eeti = vi and bounded by
|eti| ≤ R; (b) ξt ∼ N (0, τ2 Id); and where those random variables are independent across time.

From equation 21, if n > Ω(dR
2

∆2), except with probability exp(−d) over the choice of hidden layer
weights w and biases b, for every x ∈ {±1}d it holds

fa(x)

n∑
i=1

viσ(wi · x+ bi) >
γn∆2

2
. (25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Let x ∈ {±1}d. We estimate

fa(x)N̂
T (x) = fa(x)γ

n∑
i=1

(
Tvi +

T∑
t=1

eti − vi + ξti
)
σ(wi · x+ bi) (26)

>
γTn∆2

2
− γR

(
n∑
i=1

∣∣∣∣∣
T∑
t=1

eti − vi

∣∣∣∣∣+
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣
)
. (27)

Accordingly, if
∑
i |
∑
t ξ
t
i | ≤ Tn∆2

8R and |
∑
t e
t
i − vi| ≤ Tn∆2

8R for every 1 ≤ i ≤ n, then
fa(x)N̂

T (x) > 0. We now show that each of those two events fails to occur with only exponentially
small probability.

First, recall that we have almost surely |eti| ≤ R. By Hoeffding’s inequality,

Pr

[
T∑
t=1

|eti − vi| ≥
Tn∆2

8R

]
≤ 2 exp

(
− T∆4

27 ·R4

)
≤ exp(−d)/n ,

as soon as T ≥ Ω(R
4

∆4 (d+log n)). By union bound, |
∑
t e
t
i−vi| ≤ Tn∆2

8R holds for every 1 ≤ i ≤ n,
except with probability exp(−d).

As for the additional Gaussian noise, observe that for τ = O(
√
T∆2

R) we have

E

[
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣
]
= nτ

√
T
√
2/π ≤ Tn∆2

16R
. (28)

Similarly as in the GD case,
∣∣∣∑t

ξti√
Tτ

∣∣∣ is a sub-Gaussian random variable. Therefore, we have
concentration

Pr

[
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣ ≥ Tn∆2

8R

]
≤ Pr

[
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣− nτ
√
T
√
2/π ≥ Tn∆2

16R

]
(29)

≤ exp

(
−Ω

(
Tn∆4

τ2R2

))
(30)

≤ exp(−d) , (31)

since τ = O(
√
T∆2/R) and n = Ω(dR

2

∆2).

A.3 PROOFS OF COROLLARY 1 AND COROLLARY 2

Let ∆d,b,σ := ∆
(0)
d,b,σ . We need to find asymptotic bounds on |∆d,b,σ| for σ = ReLU and σ =

clipped-ReLU (let’s denote it as CReLU) and |∆(a)
d,b,ReLU| for a > 0. We therefore turn to de-

veloping formulas for ∆d,b,CReLU and ∆
(a)
d,b,ReLU. Let’s first consider the following combinatorial

claim:

Claim 1. For any integer d, c > 1 and c′ such that c ≤ c′:

1.
∑d
k=c(−1)k

(
d
k

)
= (−1)c

(
d−1
c−1

)
2.
∑d
k=c(−1)kk

(
d
k

)
= (−1)cd

(
d−2
c−2

)
3.
∑c′

k=c(−1)k
(
d
k

)
= (−1)c

(
d−1
c−1

)
+ (−1)c

′(d−1
c′

)
4.
∑c′

k=c(−1)kk
(
d
k

)
= (−1)cd

(
d−2
c−2

)
+ (−1)c

′
d
(
d−2
c′−1

)
.

Proof. Here and below, we follow the convention
(
d
k

)
= 0 for k < 0 or k > d.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. This follows by observing that it is a telescopic sum, with the term (−1)d
(
d−1
d

)
= 0 by

convention:
d∑
k=c

(−1)k
(
d

k

)
=

d∑
k=c

(−1)k
((

d− 1

k

)
+

(
d− 1

k − 1

))
= (−1)c

(
d− 1

c− 1

)
. (32)

2. Here we use the above and the fact that k
(
d
k

)
= d
(
d−1
k−1

)
,

d∑
k=c

(−1)kk

(
d

k

)
= d

d∑
k=c

(−1)k
(
d− 1

k − 1

)
= (−1)cd

(
d− 2

c− 2

)
. (33)

3. This follows from equation 32, indeed

c′∑
k=c

(−1)k
(
d

k

)
=

d∑
k=c

(−1)k
(
d

k

)
−

d∑
k=c′+1

(−1)k
(
d

k

)
(34)

= (−1)c
(
d− 1

c− 1

)
+ (−1)c

′
(
d− 1

c′

)
(35)

4. Similarly this follows from equation 33,

c′∑
k=c

(−1)kk

(
d

k

)
=

d∑
k=c

(−1)kk

(
d

k

)
−

d∑
k=c′+1

(−1)kk

(
d

k

)
(36)

= (−1)cd

(
d− 2

c− 2

)
+ (−1)c

′
d

(
d− 2

c′ − 1

)
.

Lemma 1. Let d > 1, b ∈ R, c = c(d, b) := ⌈(d− b)/2⌉ and c′ = ⌊(d− b+ 5)/2⌋. Then,

∆d,b,ReLU =
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
, (37)

∆d,b,CReLU =
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
(38)

+
(−1)d+c

′

2d

[
(d+ b− 5)

(
d− 2

c′ − 1

)
− (d− b+ 5)

(
d− 2

c′

)]
. (39)

Proof. Recall that x in the definition of ∆d,b,σ is distributed as i.i.d. uniform Rademachers. There-
fore, we can write xj = −1 + 2zj , where z are i.i.d uniform Bernoullis. Using Claim 1 and the
definition of ∆d,b,σ:

∆d,b,ReLU = (−1)dEz

(−1)
∑

j zj ReLU

b− d+ 2

d∑
j=1

zj

 (40)

= (−1)d2−d
d∑
k=c

(−1)k
(
d

k

)
(b− d+ 2k) , (41)

= (−1)d+c2−d
(
(b− d)

(
d− 1

c− 1

)
+ 2d

(
d− 2

c− 2

))
(42)

= (−1)d+c2−d
(
d

(
d− 2

c− 2

)
− d

(
d− 2

c− 1

)
+ b

(
d− 1

c− 1

))
(43)

=
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
. (44)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Similarly we have,

∆d,b,CReLU = (−1)dEz

(−1)
∑

j zj CReLU

b− d+ 2

d∑
j=1

zj

 (45)

= (−1)d2−d
d∑
k=c

(−1)k
(
d

k

)
min(5, b− d+ 2k) , (46)

= (−1)d2−d
c′∑
k=c

(−1)k
(
d

k

)
(b− d+ 2k) + 5(−1)d2−d

d∑
k=c′+1

(−1)k
(
d

k

)
, (47)

= (−1)d+c2−d
[
(b− d)

(
d− 1

c− 1

)
+ 2d

(
d− 2

c− 2

)]
(48)

+ (−1)d+c
′
2−d

[
(b− d− 5)

(
d− 1

c′

)
+ 2d

(
d− 2

c′ − 1

)]
, (49)

= (−1)d+c2−d
[
d

(
d− 2

c− 2

)
− d

(
d− 2

c− 1

)
+ b

(
d− 1

c− 1

)]
(50)

+ (−1)d+c
′
2−d

[
d

(
d− 2

c′ − 1

)
− d

(
d− 2

c′

)
+ (b− 5)

(
d− 1

c′

)]
, (51)

=
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
(52)

+
(−1)d+c

′

2d

[
(d+ b− 5)

(
d− 2

c′ − 1

)
− (d− b+ 5)

(
d− 2

c′

)]
.

A.3.1 PROOF OF COROLLARY 1

Recall the value c = ⌈(d− b)/2⌉ from Lemma 1. For ReLU activation, in the case of even d (recall
that the bias is bi = 0), we have c = d/2 and:

|∆d,0,ReLU| =
d

2d

∣∣∣∣(d− 2

d/2− 2

)
−
(
d− 2

d/2− 1

)∣∣∣∣ = 4

2d

(
d− 3

d/2− 1

)
(53)

= Θ

(
1√
d

)
, (54)

where in the last line we applied an estimate 2d

8
2

3
√
d
≤
(
d−3
d/2−1

)
≤ 2d

8
2√
d

. In the case of odd d (with
bias bi = −1) it holds c = (d+ 1)/2, and we proceed similarly

|∆d,−1,ReLU| =
1

2d

(
d− 1

(d− 1)/2

)
= Θ

(
1√
d

)
. (55)

For the CReLU activation, in the even case, c = d/2 and c′ = d/2 + 2

|∆d,0,CReLU| =
1

2d

∣∣∣∣d(d− 2
d
2 − 2

)
− d

(
d− 2
d
2 − 1

)
+ (d− 5)

(
d− 2

d/2 + 1

)
− (d+ 5)

(
d− 2

d/2 + 2

)∣∣∣∣ ,
(56)

=
1

2d

∣∣∣∣−4

(
d− 3

d/2− 1

)
+

5

d− 1

(
d− 1

d/2 + 2

)∣∣∣∣ , (57)

= Θ

(
1√
d

)
. (58)

The last equality holds because as d grows
(
d−3
d/2−1

)
dominates over 1

d−1

(
d−1
d/2+2

)
. In the case d odd

we have c = (d+ 1)/2, c′ = (d+ 1)/2 + 2 and we proceed similarly to get

|∆d,−1,CReLU| =
1

2d

∣∣∣∣−(d− 1

(d− 1)/2

)
+

6

d− 1

(
d− 1

(d− 5)/2

)∣∣∣∣ = Θ

(
1√
d

)
. (59)

The rest of the corollary is an application of Theorem 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3.2 PROOF OF COROLLARY 2

Let b ∈ R, by a straightforward calculation we have

∆
(a)
d,b,σ = Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

 d∑
j=1

xj + b

 ,

= Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

d−a∑
j=1

xj +

d∑
j=d−a+1

xj + b

 ,

= Ez∼{0,1}aEx∼{±1}d−a

(−1)(d−a−
∑d−a

j=1 xj)/2σ

d−a∑
j=1

xj − a+ 2

d∑
j=d−a+1

zj + b

 ,

=

a∑
ℓ=0

(
a
ℓ

)
2a

Ex∼{±1}d−a

(−1)(d−a−
∑d−a

j=1 xj)/2σ

d−a∑
j=1

xj − a+ 2ℓ+ b

 ,

=

a∑
ℓ=0

(
a
ℓ

)
2a

∆
(0)
d−a,b−a+2ℓ,σ .

Recall that σ = ReLU. Applying Lemma 1, where c = c(d, b) = ⌈d−b2 ⌉ and consequently c(d −
a, b− a+ 2ℓ) = c− ℓ, we have

∆
(a)
d,b,σ =

1

2a

a∑
ℓ=0

(
a

ℓ

)
∆d−a,b−a+2ℓ,σ , (60)

=
1

2a

a∑
ℓ=0

(
a

ℓ

)
(−1)d−a+c−ℓ

2d−a

[
(d+ b+ 2(ℓ− a))

(
d− a− 2

c− ℓ− 2

)
− (d− b− 2ℓ)

(
d− a− 2

c− ℓ− 1

)]
,

(61)
=: dT (d, c, a) + C(d, c, a) + bB(d, c, a) , (62)

where

B(d, c, a) =
(−1)d−a+c

2a

a∑
ℓ=0

(
a

ℓ

)
(−1)ℓ

2d−a

[(
d− a− 2

c− ℓ− 2

)
+

(
d− a− 2

c− ℓ− 1

)]
. (63)

The following claim shows that a suitable lower bound for |B(d, c, a)| is sufficient to obtain a lower
bound for |∆(a)

d,b,σ|.

Claim 2. Let us assume that b ∈ Z. If |B(d, c, a)| > Cd−α (for some C,α > 0), then either
|∆(a)

d,b,σ| >
C
100d

−α or |∆(a)
d,b+0.1,σ| >

C
100d

−α.

Proof. Let us suppose there exist C and α > 0 such that |B(d, c, a)| > Cd−α. If |∆(a)
d,b,σ| >

C
100d

−α, then we are done with the proof. On the other hand, if |∆(a)
d,b,σ| ≤

C
100d

−α, then we have

|∆(a)
d,b+0.1,σ| = |dT (d, c, a) + C(d, c, a) + (b+ 0.1)B(d, c, a)| , (64)

= |∆(a)
d,b,σ + 0.1B(d, c, a)| , (65)

≥ 0.1|B(d, c, a)| − |∆(a)
d,b,σ| , (66)

≥ 0.1Cd−α − 0.01Cd−α , (67)

>
C

100
d−α . (68)

Equation 64 holds because for every d, c(d, b) = ⌈d−b2 ⌉ = ⌈d−(b+0.1)
2 ⌉ = c(d, b + 0.1), so the

values of T (d, c, a), C(d, c, a) and B(d, c, a) (see equation 62) are the same for b and b+ 0.1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

It remains to find the order of magnitude for |B(d, c, a)|, in order to do so, let us consider a certain
recursive sequence of differences of binomial coefficients.

Let d ∈ N and let n = n(d) := ⌊d/2⌋. For n− d ≤ k ≤ n− a let

A0(d, k) := 2−d
(

d

n− k

)
, (69)

Aa(d, k) := Aa−1(d, k)−Aa−1(d, k + 1) for a > 0. (70)

The main lemma that we will need is the following combinatorial bound:

Lemma 2. Let a ∈ N and k ∈ Z such that either a is even or k ≥ 0. Then,

|Aa(d, k)| = Θ
(
d−1/2−⌈a/2⌉

)
. (71)

Furthermore, for large enough d, it holds sign(Aa(d, k)) = (−1)⌊a/2⌋.

We will prove the lemma only for the case of even d, as the calculations for d odd are analogous. To
that end, first let’s give another formula for Aa(d, k). Let

P0(n, k) := 1 , (72)
Pa(n, k) := (n+ k + a)Pa−1(n, k)− (n− k)Pa−1(n, k + 1) for a > 0. (73)

Claim 3. For every a ∈ N, even d, and −n ≤ k ≤ n− a:

Aa(d, k) = 2−d
(

d

n− k

)(a∏
i=1

1

n+ k + i

)
Pa(n, k) . (74)

Proof. By induction on a. The base case a = 0 is clear. For a > 0 we use induction and the
definitions of Aa and Pa:

Aa(d, k) = Aa−1(d, k)−Aa−1(d, k + 1) (75)

= 2−d
(

d

n− k

)(a−1∏
i=1

1

n+ k + i

)
Pa−1(n, k) (76)

− 2−d
(

d

n− k − 1

)(a−1∏
i=1

1

n+ k + 1 + i

)
Pa−1(n, k + 1) (77)

= 2−d
(

d

n− k

)(a∏
i=1

1

n+ k + i

)(
(n+ k + a)Pa−1(n, k)− (n− k)Pa−1(n, k + 1)

)
(78)

= 2−d
(

d

n− k

)(a∏
i=1

1

n+ k + 1

)
Pa(n, k) .

We will say that a degree t polynomial of one variable Q(k) has positive coefficients if all its coef-
ficients until degree t are positive. We state without proof a self-evident claim:

Claim 4. LetQ(k) be a polynomial with positive coefficients of degree t > 0. Then,Q(k+1)−Q(k)
is a polynomial with positive coefficients of degree t− 1.

Claim 5. Let a ≥ 0. Then, there exist some polynomials Qa,i(k) such that

Pa(n, k) =

⌊a/2⌋∑
i=0

(−1)iQa,i(k) · ni (79)

and Qa,i(k) is a degree a− 2i polynomial with positive coefficients.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. We proceed by induction on a. For a = 0, the statement is clear with Q0,0(k) = 1. Let
a > 0. By equation 73,

Pa(n, k) = (n+ k + 1)Pa−1(n, k)− (n− k)Pa−1(n, k + 1) (80)

= n
(
Pa−1(n, k)− Pa−1(n, k + 1)

)
+ (k + a)Pa−1(n, k) + kPa−1(n, k + 1) . (81)

By induction, the degree in n of Pa−1 is t := ⌊a−1
2 ⌋, and therefore the degree of Pa is at most t+1.

From equation 81, and assuming for convenience Qa−1,−1(k) = Qa−1,t+1(k) = 0, we have for
every 0 ≤ i ≤ t+ 1:

(−1)iQa,i(k) = (−1)i−1Qa−1,i−1(k)− (−1)i−1Qa−1,i−1(k + 1) (82)

+ (−1)i(k + a)Qa−1,i(k) + (−1)ikQa−1,i(k + 1) (83)

and hence

Qa,i(x) = Qa−1,i−1(k + 1)−Qa−1,i−1(k) + (k + a)Qa−1,i(k) + kQa−1,i(k) . (84)

For 0 ≤ i ≤ t, by induction it holds that (k+a)Qa−1,i(k)+kQa−1,i(k) is a polynomial with positive
coefficients of degree a− 2i. On the other hand Qa−1,i−1(k + 1)−Qa−1,i−1(k) is either zero (for
i = 0 or when Qa−1,i−1 has degree 0) or, by Claim 4, a polynomial with positive coefficients of
degree a− 2i. Either way, Qa,i(k) is a polynomial with positive coefficients of degree a− 2i.

It remains to consider

Qa,t+1(x) = Qa−1,t(k + 1)−Qa−1,t(k) (85)

If a is even, then ⌊a/2⌋ = t + 1. Then, Qa−1,t(k) is a polynomial of degree 1 with positive
coefficients and the right-hand side of equation 85 is a positive constant. If a is odd (hence ⌊a/2⌋ =
t), then Qa−1,t(k) is a constant and therefore Qa,t+1(k) = 0. In either case, we get that Pa(n, k)
has the decomposition according to equation 79.

Proof of Lemma 2. Let d be even, a ∈ N and k ∈ Z. Recall that by Claim 3,

Aa(d, k) = 2−d
(

d

n− k

)(a∏
i=1

1

n+ k + i

)
Pa(n, k) . (86)

By Claim 5, the degree of n in Pa(n, k) is t := ⌊a/2⌋.

Furthermore, if a is even, then the coefficient of Pa at nt is equal to (−1)a/2 multiplied by a pos-
itive constant. If a is odd, the leading coefficient is (−1)⌊a/2⌋ multiplied by a linear function in k
with positive coefficients. It is easy to see that for a even or k ≥ 0, the leading coefficient of Pa
evaluated at k is equal to (−1)⌊a/2⌋ multiplied by a positive constant. From this indeed it follows
sign(Aa(d, k)) = sign(Pa(n, k)) = (−1)⌊a/2⌋ for d large enough.

Furthermore, using known bounds on binomial coefficients∣∣Aa(d, k)∣∣ = Θ
(
d−1/2−a+t

)
= Θ

(
d−1/2−⌈a/2⌉

)
. (87)

As mentioned, the case of odd d is proved by an analogous calculation.

Expanding the recursive definition, we can also write Aa(d, k) as follows:

Claim 6. Let a, n ∈ N, and k ∈ Z,

Aa(d, k) =

a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)
A0(d, k + ℓ) =

1

2d

a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)(
d

n− k − ℓ

)
. (88)

Proof. The proof proceeds by induction on a.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For a = 0, there is nothing to prove. Let a > 0,

a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)
A0(d, k + ℓ) =

a∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ

)
A0(d, k + ℓ) +

a∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ− 1

)
A0(d, k + ℓ) ,

(89)

=

a−1∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ

)
A0(d, k + ℓ) +

a∑
ℓ=1

(−1)ℓ
(
a− 1

ℓ− 1

)
A0(d, k + ℓ) ,

(90)

=

a−1∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ

)
A0(d, k + ℓ) +

a−1∑
ℓ=0

(−1)ℓ+1

(
a− 1

ℓ

)
A0(d, k + ℓ+ 1) ,

(91)
= Aa−1(d, k)−Aa−1(d, k + 1) , (92)
= Aa(d, k) . (93)

Equation 90 holds by the convention
(
a−1
a

)
=
(
a−1
−1

)
= 0.

Recall that equation 63 can be rewritten as

B(d, c, a) =
(−1)d−a+c

2d

a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)[(
d− a− 2

c− ℓ− 2

)
+

(
d− a− 2

c− ℓ− 1

)]
. (94)

Comparing this with Claim 6, we have

B(d, c, a) =
(−1)d−a+c

2a+2

(
Aa(d− a− 2, n− c+ 2) +Aa(d− a− 2, n− c+ 1)

)
, (95)

where n = n(d− a− 2) = ⌊d−a−2
2 ⌋ and c = ⌈d−b2 ⌉.

From this point we can conclude the proof of Corollary 2. Recall that we choose the biases bi
uniformly from the set {a+ 2, a+ 2 + 0.1}. In particular, taking b = a+ 2,

n− c+ 1 = ⌊d− a− 2

2
⌋ − ⌈d− a− 2

2
⌉+ 1 ≥ 0 . (96)

Furthermore, it is easy to see that {n− c+1, n− c+2} ⊆ {0, 1, 2}. Therefore, applying Lemma 2
with k = 0, 1, 2 we get, for large enough d,

|B(d, c, a)| = 1

2a+2

(∣∣Aa(d− a− 2, n− c+ 2)
∣∣+ ∣∣Aa(d− a− 2, n− c+ 1)

∣∣) , (97)

= Θ
(
d−

1
2−⌈ a

2 ⌉
)
. (98)

Equation 98 holds because a is a fixed natural number and from Lemma 2, for d large enough,
sign(Aa(d− a− 2, n− c+ 2)) = sign(Aa(d− a− 2, n− c+ 1)).

From equation 98 and Claim 2, we get that ∆2 = Eb∼B

[
(∆

(a)
d,b,σ)

2
]
≥ Cd−1−2⌈ a

2 ⌉, for some
C > 0. The rest of the proof of Corollary 2 follows from Theorem 4.

A.4 ALMOST FULL PARITIES d− 1 AND d− 2

Here, we provide a simpler calculation for the specific cases of almost full-parities, namely k = d−1
and k = d− 2.

Corollary 5. In the cases of almost full parities a = 1 and a = 2, let b = −2 if d is even and
b = −1 for d odd. For σ = ReLU it holds ∆2 = Θ(d−3). Accordingly, n ≥ Ω(d6) hidden neurons
are sufficient for strong learning in one GD step.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Let c := c(d, b) = ⌈d−b2 ⌉, thus c(d− 1, b− 1) = c and c(d− 1, b+ 1) = c− 1. Using equation 37
and equation 60, we have:

∆
(1)
d,b,ReLU =

1

2
∆d−1,b−1,ReLU +

1

2
∆d−1,b+1,ReLU , (99)

=
1

2

[
(−1)d−1+c

2d−1

(
(d+ b− 2)

(
d− 3

c− 2

)
− (d− b)

(
d− 3

c− 1

))]
(100)

+
1

2

[
− (−1)d−1+c

2d−1

(
(d+ b)

(
d− 3

c− 3

)
− (d− b− 2)

(
d− 3

c− 2

))]
, (101)

=
(−1)d+c

2d

[
(d− b)

(
d− 3

c− 1

)
− 2(d− 2)

(
d− 3

c− 2

)
+ (d+ b)

(
d− 3

c− 3

)]
. (102)

Then for d even i.e. b = −2 and c = d+2
2 , we obtain

|∆(1)
d,−2,ReLU| =

1

2d

∣∣∣∣(d+ 2)

(
d− 3
d+2
2 − 1

)
− 2(d− 2)

(
d− 3
d+2
2 − 2

)
+ (d− 2)

(
d− 3
d+2
2 − 3

)∣∣∣∣ ,
=

1

2d
(d− 3) !

(d+2
2 − 1) !(d− d+2

2) !

∣∣∣(d+ 2)(d− d+ 2

2
− 1)(d− d+ 2

2
)

− 2(d− 2)(
d+ 2

2
− 1)(d− d+ 2

2
) + (d− 2)(

d+ 2

2
− 2)(

d+ 2

2
− 1)

∣∣∣ ,
=

1

2d(d− 1)(d− 2)

(
d− 1
d+2
2 − 1

) ∣∣∣∣ (d− 2) [(d+ 2)(d− 4)− d(d− 2)]

4

∣∣∣∣ ,
=

2

2d(d− 1)

(
d− 1
d+2
2 − 1

)
,

= Θ

(
1

d
√
d

)
.

Similarly, for d odd i.e. b = −1 and c = d+1
2 , we have

|∆(1)
d,−1,ReLU| =

1

2d(d− 2)

(
d− 1
d+1
2 − 1

)
= Θ(

1

d
√
d
) . (103)

Let’s provide a similar analysis for ∆(2)
d,b,ReLU. We have c(d− 2, b− 2) = c, c(d− 2, b) = c− 1 and

c(d− 2, b+ 2) = c− 2, so

∆
(2)
d,b,ReLU =

1

4
∆d−2,b−2,ReLU +

1

2
∆d−2,b,ReLU +

1

4
∆d−2,b+2,ReLU ,

=
(−1)d+c

2d

[
(d+ b− 4)

(
d− 4

c− 2

)
− (d− b)

(
d− 4

c− 1

)
− 2(d+ b− 2)

(
d− 4

c− 3

)
+ 2(d− b− 2)

(
d− 4

c− 2

)
+ (d+ b)

(
d− 4

c− 4

)
− (d− b− 4)

(
d− 4

c− 3

)]
,

=
(−1)d+c

2d

[
− (d− b)

(
d− 4

c− 1

)
+ (3d− b− 8)

(
d− 4

c− 2

)
− (3d+ b− 8)

(
d− 4

c− 3

)
+ (d+ b)

(
d− 4

c− 4

)]
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then for d even i.e. b = −2 and c = d+2
2 , and observing that

(d−4
d+2
2 −2

)
=
(d−4

d+2
2 −4

)
, we get

|∆(2)
d,−2,ReLU| =

1

2d

∣∣∣∣−(d+ 2)

(
d− 4
d+2
2 − 1

)
+ (4d− 8)

(
d− 4
d+2
2 − 2

)
− (3d− 10)

(
d− 4
d+2
2 − 3

)∣∣∣∣ ,
=

2(d− 6)

2d(d− 3)(d− 2)

(
d− 2
d+2
2 − 1

)
,

= Θ

(
1

d
√
d

)
.

With the same procedure we can show that for d odd i.e. b = −1 and c = d+1
2 we have∣∣∣∆(2)

d,−1,ReLU

∣∣∣ = 2

2d(d− 2)

(
d− 2
d+1
2 − 1

)
= Θ

(
1

d
√
d

)
.

The rest of Corollary 5 follows easily from Theorem 4.

A.5 POSITIVE RESULT: SGD FOR HINGE LOSS

As in Section 4.1, we consider the two layer architecture, this time with possibly perturbed
Rademacher hidden layer initialization N(x) =

∑n
i=1 viReLU((wi + gi) · x + bi), that is

wij ∼ Rad(1/2) and gij ∼ N (0, σ2). Other weights are initialized as before, i.e., hidden layer
biases are bi = 0 for d even and bi = −1 for d odd, and output layer weights are vi = 0. As in the
case of the correlation loss, the exact bias values are not crucial.

The training is with hinge loss Lβ(y, ŷ) = max(0, β−yŷ) for some β ≥ 0 under i.i.d. samples from
any fixed probability distribution on {±1}d. For simplicity we consider batch size 1 SGD, though
larger batches could also be used. This time we allow a more realistic setting where both layers are
trained.

Theorem 9. For the network described above, for σ ≤ C/d for sufficiently small C > 0, except
with probability 3 exp(−d) over the choice of initialization the following holds:

Let D be a distribution on {±1}d, ϵ > 0 and 0 < δ ≤ 1/2. If n ≥ Ω(d4) and n ≤ poly(d), then
after training with batch size one SGD for some choices of T = poly(d) 1ϵ ln

1
δ and learning rate

γ = 1/poly(d), using hinge loss Lβ for 0 ≤ β ≤ O(d2nγ), except with probability δ over the
choice of i.i.d. training samples from D, it holds Prx∼D

[
sign(NT (x)) ̸= f(x)

]
≤ ϵ .

Theorem 9 follows from the bound on the number of nonzero SGD updates:

Theorem 10. If σ ≤ C/d for sufficiently small C > 0, n ≥ Ω(d4) and n ≤ poly(d), then, except
with probability 3 exp(−d) over the choice of initialization, the above network trained with batch
size one SGD algorithm on the full parity function on any sequence of samples from {±1}d with
learning rate 0 < γ ≤ O(d−3.5) and the hinge loss Lβ for 0 ≤ β ≤ 16d2nγ, will perform at most
O(d3) nonzero updates.

A crucial consequence of Theorem 4 is that the full parity is linearly separable at initialization:

Lemma 3. If v1 are the output weights after one step of noiseless GD correlation loss algorithm,
and we take v∗ = v1/∥v1∥, then, |v∗i | = 1√

n
for every 1 ≤ i ≤ n and, except with probability

exp(−d), for all x ∈ {±1}d,

fa(x)

n∑
i=1

v∗i σ(wi · x+ bi) ≥
√
n∆

2
. (104)

Proof. By equation 21, except with probability exp(−d) for every x ∈ {±1}d we have

fa(x)N
1(x) = fa(x)

n∑
i=1

v1i σ(wi · x+ bi) ≥
γn∆2

2
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Recall that v1i = γ∆
(a)
d,bi,σ

∏d−a
j=1 wij and let v∗ = v1/∥v1∥. In particular, it follows |v∗i | = 1/

√
n

for every i. We also have ∥v1∥ ≤ γ∆
√
n

fa(x)

n∑
i=1

v∗i σ(wi · x+ bi) ≥
γn∆2

2∥v1∥
≥

√
n∆

2
.

A.6 PROOF OF THEOREM 9

In this proof we will apply the following result about hinge loss SGD:
Lemma 4 (Lemma 4 in Nachum & Yehudayoff (2020)). Let f : X → {−1, 1} be a function from
some finite domain X ⊆ Rd such that ∥x∥ ≤ R for every x ∈ X and some R ≥ 1. Consider a
one layer ReLU neural network at initialization. For x ∈ X , let zx ∈ Rn be the embedding vector
zx,i = ReLU(wi · x+ bi) and assume that ∥zx∥ ≤ Rz for every x ∈ X .

Furthermore, assume that there exists c > 0 and a choice of output layer weights v∗ ∈ Rn with
∥v∗∥ = 1 such that f(x)

∑n
i=1 v

∗
i ReLU(wi · x+ bi) ≥ c for every x ∈ X .

Then, using learning rate 0 < γ ≤ 1
500R · c

2

R2
z

and 0 ≤ β ≤ 4R2
zγ, the batch size one SGD algorithm

using hinge loss L(x, y) = max(0, β−N(x)y) run on any sequence of samples from X will perform
at most 20R2

z/c
2 nonzero updates.

Let X := {±1}d, for all x ∈ X we have ∥x∥ =
√
d. First, let us consider the case of non-perturbed

Rademacher initialization.

For x ∈ X , let zx ∈ Rn be its embedding vector i.e., zx,i = ReLU(wi · x + bi), we have ∥zx∥ ≤
(d + 1)

√
n ≤ 2d

√
n. By Lemma 3 applied for a = 0, (see equation 104), except with probability

exp(−d) over the choice of w, there exists v∗ ∈ Rn with |v∗i | = 1/
√
n such that, for all x ∈ X we

have

f(x)

n∑
i=1

v∗i ReLU(wi · x+ bi) ≥
√
n

18
√
d
. (105)

Now consider the perturbed initialization ReLU((wi + gi) · x + bi), where g ∼ N
(
0, C

2

d2 · I
)

for

some C ≤ 1
72 . Let E1 be the event that there exists 1 ≤ i ≤ n such that ∥gi∥ ≥

√
d and E2 that there

exists x such that
∑n
i=1 |gi · x| ≥

n
36

√
d

. First, let us establish that each of these events occurs with
probability at most exp(−d).

Let us start with E1. Since E∥gi∥2 = C2

d , by subgaussian concentration we have

Pr

[
∥gi∥2 ≥ C2

d
+ t

]
≤ exp

(
−Ω

(
d2t2

C4

))
. (106)

Substituting t = d/2, we have in particular Pr[∥gi∥2 ≥ d] ≤ exp(−Ω(d4)). Taking union bound
over n = poly(d), we have Pr[∃i : ∥gi∥2 ≥ d] ≤ exp(−d).

As for E2, note that E|gi · x| =
√
2C√
πd

≤ 1
72

√
d

. Therefore, again by subgaussian concentration, for
any fixed x,

Pr

[
n∑
i=1

|gi · x| ≥
n

36
√
d

]
≤ Pr

[
n∑
i=1

|gi · x| ≥ E

[
n∑
i=1

|gi · x|

]
+

n

72
√
d

]
≤ exp(−Ω(n)) ,

(107)
which is smaller than exp(−d) for n ≥ Ω(d4).

If neither E1 or E2 happens, then for every x we have

f(x)

n∑
i=1

v∗i ReLU((wi + gi) · x+ bi) ≥ f(x)

n∑
i=1

v∗i ReLU(wi · x+ bi)−
1√
n

n∑
i=1

|gi · x| (108)

≥
√
n

36
√
d
. (109)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Furthermore, for every x and i it holds |(wi + gi) · x + bi| ≤ (∥wi∥ + ∥gi∥)
√
d + 1 ≤ 3d and

consequently ∥zx∥ ≤ 3d
√
n.

Therefore by applying Lemma 4 with R :=
√
d,Rz := 3d

√
n and c :=

√
n

36
√
d

, we conclude that
using learning rate 0 < γ ≤ 1

500
√
d
· 1
9·362d3 = O

(
1
d3.5

)
, the SGD algorithm using the hinge loss

L(y, ŷ) = max{0, β − yŷ}, with 0 ≤ β ≤ 36d2nγ, will perform at most O(d3) nonzero updates
after which all samples will be classified correctly.

A.7 PROOF OF THEOREM 9

First, note that we can choose values of γ = 1/ poly(d) and 0 ≤ β ≤ O(d2nγ) such that Theo-
rem 10 applies. In line with Theorem 10, fix an initialization such that the SGD algorithm running
on i.i.d. samples from D performs at most C0 := Cd3 nonzero updates, where C is a universal
constant.

Let us run the training until there are K := 1
ϵ (ln 1/δ + lnC0) zero updates in a row. As the number

of nonzero updates is at most C0, the algorithm runs for at most C0(1 +K) = poly(d) 1ϵ ln
1
δ steps.

Finally, let us argue that that the classification error does not exceed ϵ except with probability δ. To
that end, define a “bad event” E as follows: There exists t such that:

1. A nonzero update occurs at time t.
2. There are K zero updates in a row immediately following t.
3. Prx∼D[sign(N

t+1(x)) ̸= f(x)] > ϵ.

It should be clear that if E does not occur, then at the final time T it holds Prx∼D[sign(N
T (x)) ̸=

f(x)] ≤ ϵ.

Fix some time t such that the first and third condition above are satisfied. Clearly, if the error
probability exceeds ϵ, then so does the probability of a nonzero update. By independence (and the
fact that only a nonzero update can change the network), the probability that there will be K zero
updates in a row is at most (1− ϵ)K . By union bound over at most C0 nonzero updates,

Pr[E] ≤ C0(1− ϵ)K ≤ δ .

B PROOFS FOR SECTION 5.1

B.1 PROOF OF THEOREM 6

For brevity, we denote the population gradient at θ for a target function f by

Γf (θ) := Ex [∇θL(f(x), θ, x)] . (110)

To prove our results we couple the dynamics of the network’s weights θt with the dynamics of
the ‘Junk-Flow’. The junk-flow is the dynamics of the parameters of a network trained on random
labels. For that purpose let

Γr(θ) := Ex
[
1

2
(∇θL(1, θ, x) +∇θL(−1, θ, x))

]
. (111)

In other words, Γr(θ) is the expected population gradient of random classification problem where
r(x) ∼ Rad(1/2) independently for every input x.
Definition 6 (Junk-Flow). Let us define the junk-flow as the sequence ψt ∈ RP that satisfies the
following iterations:

ψ0 = θ0, (112)

ψt+1 = ψt − γ
(
Γr(ψ

t) + ξt
)
, (113)

where ξt iid∼ N (0, Iτ2) We call γ the learning rate and τ the noise-level of the noisy-GD algorithm
used to train the network NN(x; θ).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

We show that θT and ψT are close in terms of the total variation distance. Let us look at the
total variation distance between the law of θT and ψT , which, by abuse of notation, we denote by
TV(θT ;ψT).

Lemma 5. Let TV(θT ;ψT) be the total variation distance between the law of θT and ψT . Then,

TV(θT ;ψT) ≤ 1

2τ

T−1∑
t=0

√
GALf (ψt). (114)

The proof of Lemma 5 can be found in Section B.2.

Recalling that f : RP → {±1}, we have

P
[
sign(NN(x; θT)) = f(x)

]
≤ P

[
sign(NN(x;ψT)) = f(x))

]
+TV(θT ;ψT) (115)

≤ 1

2
+ TV(θT ;ψT), (116)

≤ 1

2
+

1

2τ

T−1∑
t=0

√
GALf (ψt) . (117)

In equation 116 we used the fact that the initialization is symmetric around 0. Since for the corre-
lation loss Γr(θ) = 0, the junk flow just adds independent Gaussian noise and the distribution of
the output layer weights ψT is also symmetric around 0 (and independent of other weights). There-
fore, the distribution of sign(NN(x;ψT)) is also symmetric around 0 for every fixed x. Finally,
in equation 117 we used Lemma 5.

We are now left with showing that the right-hand-side of equation 114 is small, i.e. that the junk-
flow dynamics does not pick correlation with f along its trajectory. Again, for the correlation loss,
Γr(ψ

t) = 0 for all t, thus for all t, ψt = A+Hσ +
√
tγτH , where H ∼ N (0, IP). Thus, the result

follows by the assumption in equation 5.

B.2 PROOF OF LEMMA 5

This proof follows a similar argument that is used in (Abbe & Sandon (2020); Abbe & Boix-Adsera
(2022)). In the following let us write θ := θT−1 and ψ := ψT−1 for readability. The total variation
distance TV(θT ;ψT) can be bounded in terms of θ and ψ as follows:

TV(θT ;ψT) = TV
(
θ − γ(Γf (θ) + Zt);ψ − γ(Γr(ψ) + ξt)

)
(118)

a)

≤ TV
(
θ − γ(Γf (θ) + Zt);ψ − γ(Γf (ψ) + Zt)

)
(119)

+TV
(
ψ − γ(Γf (ψ) + Zt);ψ − γ(Γr(ψ) + ξt)

)
(120)

b)

≤ TV (θ;ψ) (121)

+ Eψ TV
(
ψ − γ(Γf (ψ) + Zt);ψ − γ(Γr(ψ) + ξt) | ψ

)
(122)

c)

≤ TV(θ;ψ) (123)

+ Eψ

√
1

2
DKL (ψ − γ(Γf (ψ) + Zt)||ψ − γ(Γr(ψ) + ξt) | ψ) (124)

d)

≤ TV
(
θT−1;ψT−1

)
+

1

2τγ
Eψ∥γΓf (ψ)− γΓr(ψ)∥2 (125)

= TV
(
θT−1;ψT−1

)
+

1

2τ
Eψ∥Γf (ψ)− Γr(ψ)∥2 (126)

where in a) we used the triangle inequality, in b) the data processing inequality (DPI) and
triangle inequality again, in c) Pinsker’s inequality. Finally, d) follows since, conditional
on ψ, both distributions in the KL divergence are Gaussian, and due to the known formula

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

DKL(N (µ, σ Id),N (µ′, σ Id)) = ∥µ−µ′∥2

2σ2 . Thus,

TV(θT ;ψT) ≤ 1

2τ

T−1∑
t=0

Eψt∥Γf (ψt)− Γr(ψ
t)∥2 (127)

(a)

≤ 1

2τ

T−1∑
t=0

√
GALf (ψt), (128)

where in (a) we used Cauchy-Schwartz.

B.3 PROOF OF COROLLARY 3

Let us state a claim about Gaussians with slightly different variances:
Claim 7. Let F : RP → R be a function such that 0 ≤ F (x) ≤ R for all x ∈ RP . Let θ ∼
N (µ,D), for some µ ∈ RP and D a diagonal matrix with diagonal entries (σ2

1 , . . . , σ
2
P), and

let ψ ∼ N (µ,D′) for some other diagonal D′ with entries ((σ′
1)

2, . . . , (σ′
P)

2) such that (σ′
i)

2 ≤
σ2
i (1 + 1/P) for every 1 ≤ i ≤ P .

If EF (θ) ≤ ϵ, for some ϵ, then EF (ψ) ≤ (4R+ 1)ϵ1/9.

Proof. LetM > 0 and define the event EM as

√∑P
i=1

(
ψi−µi

σi

)2
> M . By Gaussian concentration

(formula (3.5) in Ledoux & Talagrand (2013), see also MO2 (2020)):

Pr [EM] ≤ 4 exp

− M2

8E
∑P
i=1

(
ψi−µi

σi

)2
 ≤ 4 exp

(
−M2

16P

)
. (129)

At the same time, if
∑P
i=1

(
xi−µi

σi

)2
≤M2, then the density functions φθ and φψ satisfy

φψ(x) =

P∏
i=1

1√
2πσ′

i

exp

(
− (xi − µi)

2

2(σ′
i)

2

)
(130)

≤ exp

(
P∑
i=1

(xi − µi)
2

2σ2
i

· (σ
′
i)

2 − σ2
i

(σ′
i)

2

)
P∏
i=1

1√
2πσi

exp

(
− (xi − µi)

2

2σ2
i

)
(131)

≤ exp

(
M2

2P

)
φθ(x) . (132)

So,

EF (ψ) =
∫
x∈EM

F (x)φψ(x) +

∫
x/∈EM

F (x)φψ(x) (133)

≤ exp

(
M2

2P

)
ϵ+ 4R exp

(
−M2

16P

)
. (134)

Substituting M :=
√

16P
9 ln 1/ϵ, we get the bound.

Let F (θ) := ∥Γf (θ) − Γr(θ)∥22. Conditional on the value of A, the distribution of θ0 is Gaussian
θ0 ∼ N (A, σ2DA) where DA is diagonal with entries (DA)pp = VarAp. Let 0 ≤ λ ≤ γ2τ2T .
Then, the distribution of θ0 + λH for H standard gaussian is θ0 + λH ∼ N (A, σ2DA + λ2IP).
Therefore, by assumption for every 1 ≤ p ≤ P it holds

σ2VarAp + λ2 ≤ σ2VarAp + γ2τ2T ≤ σ2VarAp

(
1 +

1

P

)
. (135)

By Claim 7 (and averaging over A), it follows

GALf (θ
0 + λH) = EF (σ0 + λH) ≤ (4R+ 1)EF (θ0)1/9 = (4R+ 1)GALf (θ

0)1/9 . (136)
Equation 6 now follows directly by applying Theorem 6.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.4 PROOF OF COROLLARY 4

For Corollary 4 we focus on fully-connected networks of bounded depth. For simplicity, we consider
fully connected networks with one bias vector in the first layer, but we believe that, with a more
involved argument, one could extend the proof and include bias vectors in all layers. In particular,
we use the following notation:

x(1)(θ) =W (1)x+ b(1) (137)

x(l)(θ) =W (l)σ(x(l−1)(θ)), l = 2, ..., L, (138)

and we denote the network function as NN(x; θ) = x(L)(θ). We assume that the activation σ
satisfies the H-weak homogeneity assumption of Def. 5. We assume that each parameter of the
network is independently initialized as θ0p ∼ N (0, v2lp), where lp denotes the layer of parameter θp,
for p ∈ [P].

Corollary 4 follows from the following Proposition.

Proposition 3. Let NN(x; θ) be a network that satisfies the assumptions of Corollary 4. Then, if
GALf (θ

0) < ϵ,

GALf (θ
0 + γλH) ≤

L∏
l=1

(
1 +

γ2λ2

v2l

)H
ϵ, (139)

where H ∼ N (0, IP).

B.5 PROOF OF PROPOSITION 3

Recall, that θ0 ∼ N (0, V), where V is a P × P diagonal matrix such that Vpp = v2lp , where lp
is the layer of parameter p, and ψtp ∼ N (0, U), where U is a P × P diagonal matrix such that

Upp = v2lp + tγ2τ2. Thus, U = CV C
T

, where C is a P × P diagonal matrix such that

Cpp =

√
1 +

tγ2τ2

v2lp
. (140)

Definition 7 (C-Rescaling). Let NN(x; θ) be an L-layers network, with parameters θ ∈ RP . Let
C(1), ..., C(L) be L positive constants, and let C be a P ×P diagonal matrix such that Cpp = C(lp)

where lp is the layer of parameter θp. We say that the vector C · θ is a C-rescaling of θ.

Definition 8 (Weak Positive Homogeneity (SPH)). We say that an architecture is H-weakly homo-
geneous (H-SPH) if for all C-rescaling such that minp∈[P] Cpp > 1, it holds:

NN(x;C · θ) =
L∏
l=1

(C(l))H ·NN(x; θ), (141)

∂(Cθ)p NN(x;C · θ) = Dp,H · ∂θp NN(x; θ), (142)

where Dp,H is such that Dp,H ≤
∏lp
l=1

(
C(l)

)H
.

Lemma 6. Let NN(x; θ) be a fully connected network as in equation 137-equation 138. Assume
that the activation σ is H-weakly homogeneous (as defined in Def. 5), with H ≥ 1. Then, NN(x; θ)
is H-SPH.

The proof of Lemma 6 is in Appendix B.6.

If we optimize over the Correlation Loss, i.e. Lcorr(y, ŷ) := −yŷ, then the gradients of interest are
given by:

Γf (θ) = −Ex [f(x) · ∇θ NN(x; θ)] ; (143)
Γr(θ) = 0. (144)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Thus,

Eψt∥Γf (ψt)− Γr(ψ
t)∥22 =

P∑
p=1

EψtEx
[
∂ψt

p
NN(x;ψt) · f(x)

]2
Let C be a P × P matrix such that Cpp =

√
1 + tγ2τ2

v2lp
, where lp is the layer of θ0p. One can verify

that the C-rescaling of θ0 has the same distribution as ψt. We can thus rewrite each term in the sum
above as:

EψtEx
[
∂ψt

p
NN(x;ψt) · f(x)

]2
= ECθ0Ex

[
∂(Cθ0)p NN(x;Cθ0) · f(x)

]2
(a)
= D2

p,H · Eθ0Ex
[
∂θ0p NN(x; θ0) · f(x)

]2
where in (a) we used Lemma 6. Thus,

Eψt∥Γf (ψt)− Γr(ψ
t)∥22 = Eθ0

P∑
p=1

D2
p,HEx

[
∂θ0p NN(x; θ0) · f(x)

]2
(a)

≤ K · Eθ0∥Gf (θ0)∥22,

where K =
∏L
l=1

(
1 + tγ2τ2

v2l

)H
, and where in (a) we used that |Dp,H | ≤ Cp,H .

B.6 PROOF OF LEMMA 6

We proceed by induction on the network depth. As a base case, we consider a 2-layer network. Let
us write explicitly the gradients of the network.

∇
W

(2)
i

NN(x; θ) = σ(x
(1)
i (θ)), (145)

∇
W

(1)
ij

NN(x; θ) =W
(2)
i σ′(x

(1)
i (θ))xj , (146)

∇
b
(1)
i

NN(x; θ) =W
(2)
i σ′(x

(1)
i (θ)). (147)

Notice that the weak homogeneity assumption on the activation σ (Def. 5), we have for l ∈ {1, 2}:

x
(l)
i (C · θ) =

l∏
h=1

(C(h))H · x(l)i (θ), (148)

thus equation 141 holds. Moreover,

∂
W

(2)
i

NN(x;C · θ) = (C(1))H∂
W

(2)
i

NN(x; θ), (149)

∂
W

(1)
ij

NN(x;C · θ) = (C(2))H∂
W

(1)
ij

NN(x; θ), (150)

∂
b
(1)
i

NN(x;C · θ) = (C(2))H∂
b
(1)
i

NN(x; θ). (151)

Therefore, for any parameter θp, p ∈ [P],

∂θp NN(x;C · θ) = Dp,H∂θp NN(x; θ), (152)

with 1 < Dp,H ≤ max{(C(1))H , (C(2))H} ≤
∏2
l=1(C

(l))H .

For the induction step, assume that for a network of depth L− 1, for all parameters θp,

∂θp NN(x;C(θ)) = Dp,H · ∂θp NN(x; θ), (153)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

with 1 < Dp,H ≤
∏L−1
l=1 (C(l))H . Let us consider a neural network of depth L, and let us write the

gradients,

∂
W

(L)
i

NN(x; θ) = σ(x
(L−1)
i (θ)), (154)

∂
W

(l)
ij

NN(x; θ) =

NL−1∑
k=1

W
(L)
k σ′(x

(L−1)
k (θ)) · ∂

W
(l)
ij
x
(L−1)
k (θ), l = 1, ..., L− 1, (155)

∂
b
(1)
i

NN(x; θ) =

NL−1∑
k=1

W
(L)
k σ′(x

(L−1)
k (θ)) · ∂

b
(1)
i
x
(L−1)
k (θ), (156)

where NL−1 denotes the width of the (L − 1)-th hidden layer. One can observe that x(L−1)
k (θ)

corresponds to the output of a fully connected network of depth L − 1, and thus we can use the
induction hypothesis for bounding ∂θpx

(L−1)
k (θ), for all parameters θp in the first L − 1 layers.

Thus,

∂
W

(L)
i

NN(x;C(θ)) = (C(L−1))H ·D
W

(L)
i ,H

· ∂
W

(L)
i

NN(x; θ), (157)

∂
W

(l)
ij

NN(x;C(θ)) =

NL−1∑
k=1

C(L)W
(L)
k σ′(x

(L−1)
k (θ)) ·D

W
(l)
ij ,H

∂
W

(l)
ij
x
(L−1)
k (θ), l = 1, ..., L− 1,

(158)

∂
b
(1)
i

NN(x;C(θ)) =

NL−1∑
k=1

C(L)W
(L)
k σ′(x

(L−1)
k (θ)) ·D

b
(1)
i ,H

∂
b
(l)
i
x
(L−1)
k (θ). (159)

Thus, the result follows.

C SMALL ALIGNMENT FOR GAUSSIAN INITIALIZATION: PROOFS OF
THEOREM 7 AND PROPOSITION 1

In order to establish Proposition 1 and subsequently Theorem 7, we will need two calculations
arising from the gradient formulas.

Definition 9. Let d ∈ N and α ≥ 0 and β be such that α+ |β| ≤ 1. We say that random variables
(k,G1, G2) are (d, α, β)-alternating Gaussians if:

• k ∼ Bin(d, 1/2).

• Conditioned on k, the pair (G1, G2) are joint centered unit variance Gaussians with co-
variance (1− 2k/d)α+ β.

Lemma 7. For each α0 > 0 there exist C ′, C > 0 such that if (k,G1, G2) are (d, α, β)-alternating
Gaussians for α ≥ α0, then

E
[
(−1)k1(G1 ≥ 0)1(G2 ≥ 0)

]
≤ C ′ exp(−Cd) . (160)

Lemma 8. For each α0 > 0 there exist C ′, C > 0 such that if (k,G1, G2) are (d, α, β)-alternating
Gaussians for α ≥ α0, then

E
[
(−1)k ReLU(G1)ReLU(G2)

]
≤ C ′ exp(−Cd) . (161)

A crucial element of both calculations is the following claim:

Claim 8. Let d ∈ N. For all n < d, for any polynomial P of degree n,

d∑
k=0

(−1)k
(
d

k

)
P (k) = 0. (162)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Proof. We prove the statement by induction on n. If n = 0, then

d∑
k=0

(−1)k
(
d

k

)
= (1− 1)d = 0 , (163)

and therefore the sum equation 162 indeed vanishes for every constant polynomial. Assume that the
claim holds for some n ≥ 0. By linearity, it is enough that we only prove

d∑
k=0

(−1)k
(
d

k

)
kn+1 = 0 . (164)

To that end, calculate
d∑
k=0

(−1)k
(
d

k

)
kn+1 =

d∑
k=1

(−1)k
(
d

k

)
k · kn (165)

(a)
= d

d∑
k=1

(−1)k
(
d− 1

k − 1

)
kn (166)

(b)
= −d

d−1∑
k=0

(−1)k
(
d− 1

k

)
(k + 1)n = 0, (167)

where (a) applied
(
d
k

)
·k =

(
d−1
k−1

)
·d and (b) is a change of variables and applying the induction.

C.1 PROPOSITION 1 IMPLIES THEOREM 7

Let 0 ≤ λ2 ≤ γ2τ2T . In order to apply Theorem 6 for A = 0, we need to check the gradient
alignment for initializations θ + λH , where H ∼ N (0, IdP). More precisely, that means we have
initialization with independent coordinates where

wij ∼ N
(
0,

1

d
+ λ2

)
, bi ∼ N

(
0, σ2 + λ2

)
, vi ∼ N

(
0,

1

n
+ λ2

)
. (168)

Let us normalize by dividingw and b by
√
1 + dλ2 and v by

√
1 + nλ2. That gives new initialization

θ̃λ = (w̃, b̃λ, ṽ) such that

w̃ij ∼ N
(
0,

1

d

)
, b̃λ,i ∼ N

(
0,
σ2 + λ2

1 + dλ2

)
, ṽi ∼ N

(
0,

1

n

)
. (169)

In particular, the variance of b̃λ,i is σ2+λ2

1+dλ2 ≤ σ2 + λ2

1+λ2 ≤ σ2 +O(1). By Proposition 1, we have a
uniform bound

GALfa(θ̃λ) ≤ 2C ′nd exp(−Cd) . (170)

By homogenity ReLU(cx) = cReLU(x) for c ≥ 0, it is easy to check that

GALfa(θ + λH) ≤ (1 + dλ2)(1 + nλ2)GALfa(θ̃λ) ≤ exp(−Ω(d)) . (171)

The result now follows directly from Theorem 6.

C.2 LEMMA 7 AND LEMMA 8 IMPLY PROPOSITION 1

Recall that GALfa = Eθ
∥∥ (Exfa(x)∇θ NN(x; θ))

2 ∥∥2. We will estimate the expectation of each
squared coordinate of this vector by O(exp(−Cd)). Then, equation 9 follows by summing up. Let
us first write the neural network gradients for all types of weights θ = (w, b, v):

∇wij
NN = vi1(wi · x+ bi ≥ 0)xj , (172)

∇bi NN = vi1(wi · x+ bi ≥ 0) , (173)
∇vi NN = ReLU(wi · x+ bi) . (174)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

The square of the expected gradient (Exfa(x)∇θiNN(x; θ)2 can be also written as the expectation
over two independent input samples x, x′. In particular, in the case of wij from equation 172, we
have

Eθ
(
Exfa(x)∇wij

NN
)2

= Ex,x′

(
d−a∏
ℓ=1

xℓx
′
ℓ

)(
Eviv2i

)
(Ewi,bi1(wi · x+ bi ≥ 0)1(wi · x′ + bi ≥ 0))xjx

′
j .

(175)

Consider the set S := {1, . . . , d − a}△{j}, where △ denotes the symmetric difference. Abusing
notation, let us write x = (y, z) and x′ = (y′, z′) where y, y′ containt the coordinates in S and
z, z′ the coordinates from [d] \ S. Let k be the Hamming distance k := dH(y, y′). Note that the
distribution of k is binomial k ∼ Bin(|S|, 1/2). Then, continuing from equation 175,

Eθ
(
Exfa(x)∇wij

NN
)2

=
1

n
Ez,z′,k

[
(−1)kEwi

[1(wi · x+ bi ≥ 0)1(wi · x′ + bi ≥ 0)]
]
.

(176)

Fix some values of z, z′ and k. LetG1 := wi ·x+bi andG2 := wi ·x′+bi. Notice that, conditionally
on k, z, z′, random variablesG1 andG2 are joint centered Gaussian with VarG1 = VarG2 = 1+σ2

and

Cov[G1, G2] =
1

d
(d− 2k − 2dH(z, z′)) + σ2 . (177)

Let G̃i := Gi/
√
1 + σ2 for i = 1, 2. Then, G̃1 and G̃2 are two joint centered unit variancce

Gaussians with correlation

Cov[G̃1, G̃2] =
1

d(1 + σ2)
(d− 2k − 2dH(z, z′)) +

σ2

1 + σ2
(178)

=

(
1− 2k

|S|

)
|S|

d(1 + σ2)
+
d− |S| − 2dH(z, z′) + dσ2

d(1 + σ2)
. (179)

Therefore, conditioned on z and z′, random variables (k,G1, G2) are (d, α, β)-alternating Gaussians
for α = |S|

d(1+σ2) ≥ 1
3(1+σ2

0)
> 0. It is also easy to check that α + |β| ≤ |S|+d−|S|+dσ2

d(1+σ2) = 1. By
Lemma 7, for some uniform constant C > 0 it holds

Ek,G1,G2

[
(−1)k1(G1 ≥ 0)1(G2 ≥ 0)

]
= Ek,G̃1,G̃2

[
(−1)k1(G̃1 ≥ 0)1(G̃2 ≥ 0)

]
(180)

≤ C ′ exp(−Cd) . (181)

Plugging this into equation 175 and equation 176, we get the desired bound. The case of the hidden
layer bias bi proceeds by the same argument with S := {1, . . . , d− a}.

Finally, in case of vi we set S := {1, . . . , d− a} and proceed with a similar calculation

Eθ (Exfa(x)∇vi NN)
2
= (1 + σ2)Ez,z′,k

[
(−1)kEG̃1,G̃2

[ReLU(G̃1)ReLU(G̃2)]
]

(182)

≤ (1 + σ2
0)C

′ exp(−Cd) ≤ C ′′ exp(−Cd) , (183)

where in the last line we applied Lemma 8.

C.3 PROOF OF LEMMA 7

It is well-known (see, e.g., Chapter 11 in O’Donnell (2014)), that for two ρ-correlated unit variance
centered joint Gaussians it holds E[1(G1 ≥ 0)1(G2 ≥ 0)] = f(ρ) where f(x) = 1

2−
1
2π arccos (x).

By definition of (k,G1, G2), conditioned on k, random variables G1 and G2 have correlation ρ =
ρ(k) =

(
1− 2k

d

)
α+ β.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Hence, ∣∣E(−1)k1(G1 ≥ 0)1(G2 ≥ 0)
∣∣ = ∣∣Ek(−1)kf(ρ(k))

∣∣ (184)

≤ P(|k − d/2| ≥ d/4) · sup
x∈[−1,1]

|f(x)|+

∣∣∣∣∣∣ 12d
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
f (ρ)

∣∣∣∣∣∣ (185)

(a)

≤ 2 exp(−d/10) +

∣∣∣∣∣∣ 12d
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
f (ρ)

∣∣∣∣∣∣ , (186)

where (a) follows by Hoeffding’s inequality.

It remains to bound the last term in equation 186. Consider the Taylor expansion of f :

f(x) =
1

2
− 1

2π

[
π

2
−

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1

]
(187)

=
1

4
+

1

2π

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1 (188)

=
1

4
+

1

2π

∞∑
n=0

(
2n
n

)
4n(2n+ 1)

x2n+1 (189)

=
1

4
+

∑
2n+1<d

anx
2n+1 +

∑
2n+1≥d

anx
2n+1 , (190)

where an :=
(2nn)

2π4n(2n+1) . For future reference let us note that 0 ≤ an ≤ 1 for every n. So the
second part of the RHS of equation 186 is upper bounded by:

∣∣∣ 1

2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)(
1

4
+

∑
2n+1<d

anρ
2n+1

)
︸ ︷︷ ︸

:=T1

∣∣∣ (191)

+
∣∣∣ 1

2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

) ∑
2n+1≥d

anρ
2n+1

︸ ︷︷ ︸
:=T2

∣∣∣ (192)

We are going to show that |T1| ≤ 2 exp (−d/10) and |T2| ≤ 2
α0

(1 − α0/2)
d. These two bounds

together with equation 186 imply the theorem statement.

Let us start with T2. In the sum in equation 192 we have d/4 ≤ k ≤ 3d/4, and we can check that

|ρ| =
∣∣∣∣(1− 2k

d

)
α+ β

∣∣∣∣ ≤ 1

2
α+ |β| ≤ 1− α0

2
. (193)

Therefore,

|T2| =
∣∣∣ 1
2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

) ∑
2n+1≥d

anρ
2n+1

∣∣∣ (194)

≤ 1

2d
·

⌊3d/4⌋∑
k=⌈d/4⌉

(
d

k

) ∑
2n+1≥d

an

(
1− α0

2

)2n+1

(195)

≤
∑

2n+1≥d

(
1− α0

2

)2n+1

≤ 2

α0

(
1− α0

2

)d
. (196)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

For T1, we follow two steps. First,

|T1| ≤
∑

2n+1<d

∣∣∣ 1
2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2n+1

∣∣∣. (197)

Applying Claim 8 (for this note that ρ is a linear function of k, and therefore ρ2n+1 is a polynomial
in k of degree 2n+ 1):

∣∣∣∣∣∣ 12d
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2n+1

∣∣∣∣∣∣ (198)

≤

∣∣∣∣∣ 12d
d∑
k=0

(−1)k
(
d

k

)
ρ2n+1

∣∣∣∣∣+
∣∣∣∣∣∣ 12d

∑
k:|k−d/2|≥d/4

(−1)k
(
d

k

)
ρ2n+1

∣∣∣∣∣∣ (199)

≤
∑

k:|k−d/2|≥d/4

(
d

k

)
2−d (200)

= P(|k − d/2| ≥ d/4) (201)
≤ 2 exp (−d/10) . (202)

Finally, we substitute into equation 197 and conclude |T1| ≤ 2 exp (−d/10).

C.4 PROOF OF LEMMA 8

In this proof we will use the probabilist’s Hermite polynomials Hk(x) = (−1)k

φ(x)
dk

dxkφ(x), where
φ(x) = 1√

2π
exp(−x2/2) is the standard Gaussian density, see, e.g., Lebedev (1972) for more

details. One property that we will need is that for two centered ρ-correlated unit variance joint
Gaussians G1, G2 it holds

EHm(G1)Hn(G2) =

{
m! if m = n,
0 otherwise.

(203)

We will also make use of the ReLU Hermite expansion, see, e.g., Proposition 6 in Abbe et al.
(2022c). That is, ReLU(x) = 1√

2π
+ 1

2x +
∑∞
m=1 amH2m(x) for am := (−1)m+1

√
2π2m(2m−1)m!

and
consequently, applying equation 203,

EReLU(G1)ReLU(G2) =
1

2π
+

1

4
ρ+

∞∑
m=1

a2m(2m)!ρ2m . (204)

Furthermore, in any case we always have

EReLU(G1)ReLU(G2) ≤ EReLU2(G1) =
1

2
. (205)

As in Lemma 7, conditioned on k, random variables G1, G2 are centered unit variance Gaussians
with correlation ρ = ρ(k) =

(
1− 2k

d

)
α+ β. In particular, by equation 193, as long as d/4 ≤ k ≤

3d/4, then |ρ| ≤ 1− α0

2 . Now we estimate, for d ≥ 2, applying Claim 8 in equation 207 and again

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

in equation 212:∣∣E(−1)k ReLU(G1)ReLU(G2)
∣∣ (206)

=

∣∣∣∣E(−1)k
(
ReLU(G1)ReLU(G2)−

1

2π
− 1

4
ρ

)∣∣∣∣ (207)

≤ Pr[|k − d/2| > d/4] +

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

) ∞∑
m=1

a2m(2m)!ρ2m

∣∣∣∣∣∣ (208)

≤ 2 exp(−d/10) +
∑

2m<d

a2m(2m!)

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣∣ (209)

+
∑

2m≥d

a2m(2m!)

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣∣ (210)

≤ 2 exp(−d/10) +
∑

2m<d

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣∣+
∑

2m≥d

(
1− α0

2

)2m
(211)

≤ C ′ exp(−Cd) +
∑

2m<d

(∣∣∣∣∣
d∑
k=0

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣+ Pr[|k − d/2| > d/4]

)
(212)

≤ C ′ exp(−Cd) . (213)

D SMALL ALIGNMENT FOR PERTURBED INITIALIZATION: PROOF OF
THEOREM 8

D.1 PROPOSITION 2 IMPLIES THEOREM 8

Take σ0, C and C ′ from Proposition 2. Let the setting be as in Theorem 8 i.e. θ = (w, v), with i.i.d.
initialization w = 1√

d
(r + g) where r ∼ Rad(1/2), g ∼ N

(
0, σ2

)
and v ∼ N

(
0, 1

n Idn
)
. Let’s

consider any σ = σ(d) ≥ σ0.

As before, we would like to apply Theorem 6. Let 0 ≤ λ2 ≤ γ2τ2T . Let us check the gradient
alignment for θ + λH , where H ∼ N (0, IdP). So we consider the weights with independent
coordinates where

wλ,ij =
1√
d
(rij + gij) + λhij , vλ,i ∼ N

(
0,

1

n
+ λ2

)
, (214)

where gij ∼ N
(
0, σ2

)
, rij ∼ Rad(1/2) and hij ∼ N (0, 1). Let us rewrite wλ,ij as

wλ,ij =
1√
d
(rij + g̃λ,ij) with g̃λ,ij ∼ N

(
0, σ2 + λ2d

)
. (215)

Also let’s normalize by dividing vλ by
√
1 + nλ2. That gives a new initialization θ̃λ = (wλ, ṽ) such

that ṽi ∼ N
(
0, 1

n

)
. Since we have

√
σ2 + λ2d ≥ σ ≥ σ0, then by Proposition 2

GALf (θ̃λ) ≤ PC ′ exp(−Cd) . (216)

Finally, by gradient formulas and homogenity of ReLU, we have

GALf (θ + λH) ≤ (1 + nλ2)GALf (θ̃λ) ≤ exp(−Ω(d)) . (217)

Therefore the result follows by Theorem 6.

Let g and r be two i.i.d. vectors with n coordinates such that on each coordinate gi ∼ N
(
0, 1d

)
and ri ∼ Rad(1/2). Let’s define two values expressing the gradient alignments for weights in the

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

hidden and output layers, respectively. For µ ≥ 0 and d ∈ N:

GALhid(µ, d) := Eg,r

(Ex [d−1∏
i=1

xi1[(g + µr) · x ≥ 0]

])2
 . (218)

GALout(µ, d) := Eg,r

(Ex [d∏
i=1

xiReLU((g + µr) · x)

])2
 . (219)

Lemma 9. There exists some α0, C > 0 and D0 such that, for d ≥ D0, and µ ≤ α0√
d

, it holds
GALhid(µ, d) ≤ exp(−Cd).
Lemma 10. There exists some α0, C > 0 and D0 such that, for d ≥ D0, and µ ≤ α0√

d
, it holds

GALout(µ, d) ≤ exp(−Cd).

D.2 LEMMA 9 AND LEMMA 10 IMPLY PROPOSITION 2

Let the setting be as in Theorem 8 i.e. wi = 1√
d
(ri + gi), gi ∼ N

(
0, σ2

)
and ri ∼ Rad(1/2). The

gradient formulas for full parity:

∇wij
NN = vi1(wi · x ≥ 0)xj , (220)

∇vi NN = ReLU(wi · x) . (221)

As the gradient has P = nd + n coordinates, it is enough to show the C ′ exp(−Cd) bound on
every coordinate of the gradient. Let us start with hidden weight coordinates. By symmetry, we can
suppose w.l.o.g. that j = d. The alignment of hidden layer is given by:

Eθ
(
Exf(x)∇wij

NN
)2

= Eθ (Exf(x)vi1 (wi · x ≥ 0)xj)
2 (222)

= Evi [v2i]Egi,ri

(Ex d−1∏
ℓ=1

xℓ1

(
1√
d
(ri + gi) · x ≥ 0

))2
 (223)

=
1

n
Egi,ri

(Ex d−1∏
ℓ=1

xℓ1

(
1√
d
(ri + gi) · x ≥ 0

))2
 (224)

=
1

n
Eg̃i,ri

(Ex d−1∏
ℓ=1

xℓ1

(
(

1

σ
√
d
ri + g̃i) · x ≥ 0

))2
 , (225)

where g̃i ∼ N
(
0, 1d

)
. Therefore, by Lemma 9,

Eθ
(
Exf(x)∇wij

NN
)2

=
1

n
GALhid

(
1

σ
√
d
, d

)
≤ C ′ exp(−Cd) (226)

where the constant C ′ compensates for the fact that Lemma 9 holds for d large enough.

Similarly, for the alignments of output layer weights:

Eθ (Exf(x)∇vi NN)
2
= Egi,ri

(Ex d∏
ℓ=1

xℓReLU

(
1√
d
(ri + gi) · x

))2
 (227)

= σ2Eg̃i,ri

(Ex d∏
ℓ=1

xℓReLU

(
(

1

σ
√
d
ri + g̃i) · x

))2
 (228)

= σ2 GALout

(
1

σ
√
d
, d

)
(229)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D.3 CORRELATED GAUSSIAN EXPECTATIONS

We give a general formula for expectation of functions of correlated Gaussians. We will then apply
this formula to the cases of step function and ReLU:
Lemma 11. Let (ck)k and (dk)k be two sequences of power series coefficients with infinite radius
of convergence. Let f(x) :=

∑∞
k=0 ckHk(x) and F (x) :=

∑∞
k=0 ckx

k. Similarly, let g(x) :=∑∞
k=0 dkHk(x) andG(x) :=

∑∞
k=0 dkx

k. Then, for every a, b ∈ R and ρ-correlated joint standard
Gaussians Z,Z ′:

Ef(a+ Z)g(b+ Z ′) =

∞∑
k=0

F (k)(a)G(k)(b)

k!
ρk , (230)

where F (k) denotes the k-th derivative of F .

Proof. Applying the Hermite polynomial identity Hm(a+ b) =
∑m
k=0

(
m
k

)
am−kHk(b):

f(a+ z) =

∞∑
m=0

cmHm(a+ z) =

∞∑
m=0

cm

m∑
k=0

(
m

k

)
am−kHk(z) (231)

=

∞∑
k=0

1

k!
Hk(z)

∞∑
m=k

cm

(
k−1∏
i=0

m− i

)
am−k =

∞∑
k=0

F (k)(a)

k!
Hk(z) (232)

Taking expectation and using EHk(Z)Hk′(Z
′) = 1k=k′k!ρ

k:

Ef(a+ Z)g(b+ Z ′) =

∞∑
k=0

F (k)(a)G(k)(b)

k!
ρk .

Applying Lemma 11 to the case of the step function, we get the two dimensional case of the “tetra-
choric series“ Harris & Soms (1980).
Claim 9. Using the notation above, F (x) = (f ∗ ϕ)(x) = E[f(x+ Z)].

Proof. From the convolution property (f ∗ g)′ = f ′ ∗ g and identity ϕ(k) = (−1)kHkϕ:

(f ∗ ϕ)(k)(0) = (f ∗ ϕ(k))(0) = (−1)k(f ∗ (Hkϕ))(0) =

∫
f(x)Hk(x)ϕ(x)dx (233)

= ckk! = F (k)(0) . (234)
Since the power series coefficients are equal for every k, the claim follows.

Corollary 6. E
[
1a+Z≥01b+Z′≥0

]
= Φ(a)Φ(b) + ϕ(a)ϕ(b)

∑∞
k=0Hk(a)Hk(b)

1
(k+1)!ρ

k+1.

Proof. Using Claim 9 for f(x) = 1x≥0, we get that
F (x) = E[1x+Z≥0] = Φ(x) . (235)

The result follows by applying Lemma 11 and Φ(k) = ϕ(k−1) = (−1)k−1Hk−1ϕ.

Corollary 7. Let R(x) = xΦ(x) + ϕ(x). Then,

E
[
ReLU(a+ Z)ReLU(b+ Z ′)

]
= R(a)R(b) + Φ(a)Φ(b)ρ+ ϕ(a)ϕ(b)

∞∑
k=0

Hk(a)Hk(b)

(k + 2)!
ρk+2 .

(236)

Proof. Applying Claim 9 for f = ReLU we get

F (x) = EReLU(x+ Z) =

∫
(x+ y)1x+y≥0ϕ(y)dy =

∫ ∞

−x
(x+ y)ϕ(y)dy (237)

= xΦ(x) +

∫ ∞

−x
−ϕ′(y)dy = xΦ(x) + ϕ(x) = R(x) . (238)

Again the result follows by Lemma 11 and observing that R′(x) = Φ(x) + xϕ(x) + ϕ′(x) =
Φ(x).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

D.4 PROOF OF LEMMA 9

Let us write µ = α/
√
d, so that by assumption α ≤ α0. We have,

GALhid = Eg,x,x′,r

[∏
i

xix
′
i1[g · x+ µr · x, g · x′ + µr · x′ ≥ 0]

]
(239)

= Ex,x′,r

[∏
i

xix
′
i Pr
g
[g · x+ µr · x, g · x′ + µr · x′ ≥ 0]

]
=: Ex,x′,rF (x, x

′, r) .

(240)

As for every x, x′, r, s ∈ {−1, 1}d we have F (x, x′, r) = F (x⊙ s, x′ ⊙ s, r⊙ s) (where ⊙ denotes
the Hadamard product), it follows

Ex,x′,rF (x, x
′, r) = Ex,x′F (x, x′, 1d) , (241)

so we can rewrite

GALhid = Ex,x′

[∏
i

xix
′
i Pr
g
[g · x+ µ · x, g · x′ + µ · x′ ≥ 0]

]
= Ex,x′F (x, x′, 1d) .

Fix x and assume w.l.o.g. that x = (1d−d
′
,−1d

′
) for some 0 ≤ d′ ≤ d. Furthermore, divide

x′ = (y, z) such that y ∈ {−1, 1}d−d′ and z ∈ {−1, 1}d′ . Assume that d′ ≥ d/2 and fix
y. (If d′ < d/2 we exchange the roles of y and z and proceed with an entirely symmetric argu-
ment.) Let G(x, y, z) = F (x, (y, z), 1d). We want to analyze EzG(x, y, z) so that the bound on
Ex,x′F (x, x′, 1d) = Ex,y,zG(x, y, z) will follow by averaging. Let ρ = 1

dx ·x
′ and k be the number

of −1 entries in z. Note that we have ρ = 1·y+2k−d′
d . Continuing:

|EzG(x, y, z)| =

∣∣∣∣∣∣(−1)d
′
d−d′∏
i=1

yiEz
[
(−1)k Pr

g
[g · x+ µ · x, g · x′ + µ · x′ ≥ 0]

]∣∣∣∣∣∣ (242)

=
∣∣Ek [(−1)kΛρ(µ(d− 2d′), µ(1 · y + d′ − 2k))

]∣∣ (243)

=
∣∣Ek [(−1)kΛρ(µ(d− 2d′),−µ(dρ− 2 · y))

]∣∣ , (244)

where Λρ(a, b) = Prg,g′ [g+ a, g′ + b ≥ 0] = Prg,g′ [g ≤ a, g′ ≤ b], where g, g′ are two standard ρ-
correlated joint Gaussians. Note that the distribution of k is binomial, that is Pr[k = k∗] = 2−d

′(d′
k∗

)
for 0 ≤ k∗ ≤ d′.

In particular, conditioned on x, y, the expectation in equation 244 can be written as |EkG(x, y, z)| =
|
∑d′

k=0(−1)k
(
d′

k

)
W (ρ)| for some function W that depends only on ρ. Since ρ is a linear function

of k, as in the Gaussian case, we will now expand W as a power series and apply Claim 8.

Let

A := µ(d− 2d′) , B := 2µ · y , C := −µd , and w := B + Cρ . (245)

Take some β > 0, where later on we will choose it to be a small enough universal constant (in fact
β = 0.005 will be enough). Let us define two “bad” events: E1 is |ρ| ≥ 1/2 and E2 is |w| ≥ β

√
d

and let F be the complement of E1 ∪ E2.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

First, let us argue that Pr[E1 ∪ E2] ≤ exp(−cβ2d) for some universal c > 0 and d large enough:

Pr [E1 ∪ E2] ≤ Pr [E1] + Pr[E2] (246)

= Pr [|ρ| ≥ 1/2] + Pr
[
|w| ≥ β

√
d
]

(247)

≤ Pr

[∣∣∣∣∣
d∑
i=1

xix
′
i

∣∣∣∣∣ ≥ d

2

]
+ Pr

[
|B| ≥ β

√
d

2

]
+ Pr

[
|Cρ| ≥ β

√
d

2

]
(248)

≤ Pr

[∣∣∣∣∣
d∑
i=1

xix
′
i

∣∣∣∣∣ ≥ d

2

]
+ Pr

∣∣∣∣∣∣
d−d′∑
i=1

yi

∣∣∣∣∣∣ ≥ β
d

4α

+ Pr

[∣∣∣∣∣
d∑
i=1

xix
′
i

∣∣∣∣∣ ≥ βd

2α

]
(249)

≤ 2 exp(−d
8
) + 2 exp

(
− β2d2

32α2(d− d′)

)
+ 2 exp

(
−β

2d

8α2

)
(250)

≤ exp(−cβ2d) , (251)

where equation 250 is by Hoeffding’s inequality. Using equation 244, our bound becomes

GALhid ≤ Ex,y
∣∣Ek(−1)kΛρ(A,w)

∣∣ (252)

≤ Pr[E1 ∪ E2] + Ex,y
∣∣Ek(−1)kΛρ(A,w)1F

∣∣ (253)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)kΛρ(A,w)1F

∣∣ . (254)

To study the expression Λρ(A,w), let us recall some facts about the Gaussians. We have the follow-
ing expansions:

Φ(z) =
1

2
+

1√
2π

∞∑
k=0

(−1)k

2kk!(2k + 1)
z2k+1 (255)

ϕ(z) =
1√
2π

∞∑
k=0

(−1)k

2kk!
z2k , (256)

as well as the tetrachoric series for Λ (convergent for every a, b ∈ R and |ρ| < 1) Harris & Soms
(1980), Vasicek (1998):

Λρ(a, b) = Φ(a)Φ(b) + ϕ(a)ϕ(b)

∞∑
k=0

Hk(a)Hk(b)
1

(k + 1)!
ρk+1 . (257)

Substituting into equation 254,

GALhid ≤ exp(−cβ2d) + Ex,y

∣∣∣∣∣Ek(−1)k1F

(
Φ(A)Φ(w) + ϕ(A)ϕ(w)

∞∑
ℓ=0

Hℓ(A)Hℓ(w)
ρℓ+1

(ℓ+ 1)!

)∣∣∣∣∣
(258)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)k1FΦ(A)Φ(w)

∣∣ (259)

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(A)ϕ(w)Hℓ(A)Hℓ(w)

ρℓ+1

(ℓ+ 1)!

∣∣∣∣ (260)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)k1FΦ(w)

∣∣︸ ︷︷ ︸
=:T1

(261)

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)

ρℓ+1

√
ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T2

, (262)

where in the last line we used the estimate from (Harris & Soms, 1980, proof of Theorem 2),

|Hℓ(A)| ≤ 2 exp(A2/4)
√
ℓ! , (263)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

which implies

|ϕ(A)Hℓ(A)| ≤
√
ℓ! . (264)

For tighter estimates on Hermite polynomials, see also Bonan & Clark (1990).

It remains to show that both T1 and T2 are exponentially small.

Let us start with T1. Recall equation 255 and let aℓ = (−1)ℓ√
2π2ℓℓ!(2ℓ+1)

. Using equation 255 and
triangle inequality,

T1 ≤ Ex,y

∣∣∣∣∣∣Ek(−1)k1F

1

2
+
∑

ℓ<d/10

aℓw
2ℓ+1

∣∣∣∣∣∣+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 (265)

≤ Ex,y

∣∣∣∣∣∣Ek(−1)k

1

2
+
∑

ℓ<d/10

aℓw
2ℓ+1

∣∣∣∣∣∣+ Ex,y

∣∣∣∣∣∣Ek(−1)k1E1∪E2

1

2
+
∑

ℓ<d/10

aℓw
2ℓ+1

∣∣∣∣∣∣
(266)

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 (267)

≤ Pr[E1 ∪ E2]

1

2
+
∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 (268)

≤ exp(−cβ2d)

1

2
+
∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 . (269)

In the right term in equation 265 we used that event F implies |w| ≤ β
√
d. In equation 266, we

apply Claim 8 to the first term. This is valid since w is a linear function of k, and since 2ℓ + 1 <
2d/10 + 1 ≤ d/2 ≤ d′, which holds for d ≥ 4. In bounding the second term in equation 266, we
used a uniform bound |w| = |µx′| ≤ α

√
d.

We will now argue that both terms in equation 269 are exponentially small. Let us start with the
second term:∑
ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 ≤

∑
ℓ≥d/10

(β
√
d)2ℓ+1

ℓ!
≤ β

√
d
∑

ℓ≥d/10

exp(ℓ ln d+ 2ℓ lnβ − ℓ ln ℓ+ ℓ)

(270)

≤ β
√
d
∑

ℓ≥d/10

exp(2ℓ lnβ + ℓ ln 10 + ℓ) (271)

= β
√
d
∑

ℓ≥d/10

(10eβ2)ℓ ≤ β
√
d
∑

ℓ≥d/10

2−ℓ ≤ 2β
√
d2−d/10 ≤ exp(−c′d) ,

(272)
where the first inequality in equation 272 follows if β satisfies 10eβ2 ≤ 1/2.

Now let us move to the left-hand side term in equation 269. It is sufficient to prove 1/2 +∑
ℓ<d/10 |aℓ|(α

√
d)2ℓ+1 ≤ exp(cβ2d/2) and this is what we are going to show. Indeed,∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1 ≤

∑
ℓ<d/10

(α
√
d)2ℓ+1

ℓ!
≤ α

√
d
∑

ℓ<d/10

(eα
√
d)2ℓ

ℓℓ
. (273)

Consider the function f(ℓ) = (eα
√
d)2ℓ

ℓℓ
. We check that its derivative is f ′(ℓ) = f(ℓ)

(
ln
(
(eα)2d

)
−

1− ln ℓ
)
. Therefore, f achieves its maximum at ℓ∗ = α2ed and we have

(eα
√
d)2ℓ

ℓℓ
= f(ℓ) ≤ f(ℓ∗) = exp(eα2d) (274)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

for every ℓ ≥ 0. For α small enough, for example if α2e ≤ cβ2/2, we can substitute into equa-
tion 273 to get

∑
ℓ<d/10 |aℓ|(α

√
d)2ℓ+1 ≤ αd

√
d exp(eα2d) and consequently

1/2 +
∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1 ≤ exp(cβ2d/2) . (275)

In summary, by combining equation 269, equation 272, and equation 275, the inequality T1 ≤
exp(−Ω(d)) is established for large enough d.

We now turn to bounding T2. The idea is essentially the same with a more complicated calculation.
Recall equation 256, let bm := 1√

2π

(−1)m

2mm! and note for later that |bm| ≤ 1/m!. We write down

T2 =

∞∑
ℓ=0

∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣ (276)

≤
∑

ℓ<d/10

∣∣∣∣∣∣Ek(−1)k1F

 ∑
m<d/10

bmw
2m

Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣∣∣︸ ︷︷ ︸
=:T3

(277)

+
∑

ℓ<d/10,m≥d/10

1

m!
Ex,y,k

∣∣∣∣1Fw
2mHℓ(w)√

ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T4

(278)

+
∑

ℓ≥d/10

Ex,y,k
∣∣∣∣1Fϕ(w)Hℓ(w)

ρℓ+1

√
ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T5

. (279)

Let us argue in turns that each of T3, T4, T5 is exponentially small proceeding in the reverse order.
For T5, we use equation 264 and the fact that event F implies |ρ| ≤ 1/2:

T5 ≤
∑

ℓ≥d/10

2−ℓ+1 ≤ 2−d/10 . (280)

For T4, we invoke equation 263 and event F implying |w| ≤ β
√
d:

T4 ≤ 2d exp(β2d/4)
∑

m≥d/10

(β2d)m

m!
≤ 2d exp(β2d/4)

∑
m≥d/10

(10eβ2)m . (281)

If β is chosen such that (10eβ2)1/10 ≤ 1/2 and exp(β2/4) ≤ 1.01, then we can continue and obtain
the desired bound

T4 ≤ 2d(1.01)d2−d ≤ exp(−c′d) . (282)

Finally, we turn to T3:

T3 ≤
∑

ℓ<d/10

Ex,y

∣∣∣∣∣∣Ek(−1)k

 ∑
m<d/10

bmw
2m

Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣∣∣ (283)

+
∑

ℓ<d/10

Ex,y

∣∣∣∣∣∣Ek(−1)k1E1∪E2

 ∑
m<d/10

bmw
2m

Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣∣∣ (284)

≤ 2dPr[E1 ∪ E2] exp(α2d/4)
∑

m<d/10

(α2d)m

m!
(285)

≤ 2d2 exp(−cβ2d) exp(α2d/4) exp(eα2d) ≤ exp(−c′d) . (286)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

The sum in equation 283 is equal zero by Claim 8: Indeed both w and ρ are linear functions of k,
so the expression inside the absolute value is a polynomial of degree at most 2m + ℓ + (ℓ + 1) <

4d/10 + 1 ≤ d/2 ≤ d′. To bound the sum in equation 284, we applied |bm| ≤ 1/m!, |w| ≤ 3α
√
d,

equation 263 and |ρ| ≤ 1. Finally, to bound equation 285 we applied equation 251 and equation 274
and the final inequality follows if we choose α0 small enough so that, e.g., α2/4 + eα2 ≤ cβ2/2
(recall that β is already chosen to be a small enough absolute constant).

Summing up, equation 280, equation 282 and equation 286 substituted into equation 279 give
T2 ≤ exp(−Ω(d)). Together with T1 ≤ exp(−Ω(d)), substituted into equation 262, we estab-
lished GALhid(µ, d) ≤ exp(−Ω(d)), which is what we set out to prove.

D.5 PROOF OF LEMMA 10

This proof follows a similar process as the proof of Lemma 9, so we will skip some details and refer
to Appendix D.4. Let us write µ = α/

√
d, so that by assumption α ≤ α0. We have,

GALout = Eg,x,x′,r

[
d∏
i

xix
′
iReLU(g · x+ µr · x)ReLU(g · x′ + µr · x′)

]
(287)

= Ex,x′,r

[∏
i

xix
′
iEg [ReLU(g · x+ µr · x)ReLU(g · x′ + µr · x′)]

]
:= Ex,x′,rF (x, x

′, r) .

(288)

We still have for every x, x′, r, s ∈ {−1, 1}d, F (x, x′, r) = F (x⊙ s, x′ ⊙ s, r ⊙ s), therefore

GALout = Ex,x′F (x, x′, 1d)

= Ex,x′

[∏
i

xix
′
iEg [ReLU(g · x+ µ · x)ReLU(g · x′ + µ · x′)]

]
.

Let’s recall the notations from Appendix D.4: let’s fix x and assume w.l.o.g. that x = (1d−d
′
,−1d

′
)

for some 0 ≤ d′ ≤ d, x′ = (y, z) such that y ∈ {−1, 1}d−d′ and z ∈ {−1, 1}d′ . Assume that
d′ ≥ d/2 and fix y. Let G(x, y, z) = F (x, (y, z), 1d). We are going to analyze EzG(x, y, z) so that
the bound on Ex,x′F (x, x′, 1d) = Ex,y,zG(x, y, z) will follow by averaging. Let ρ = 1

dx · x′ =
1·y+2k−d′

d , where k be the number of −1 entries in z. We have,

|EzG(x, y, z)| =

∣∣∣∣∣∣(−1)d
′
d−d′∏
i=1

yiEz
[
(−1)kEg [ReLU(g · x+ µ · x)ReLU(g · x′ + µ · x′)]

]∣∣∣∣∣∣
(289)

=
∣∣Ek [(−1)kΛρ(µ(d− 2d′),−µ(dρ− 2 · y))

]∣∣ , (290)

where in this case Λρ(a, b) = Eg,g′ [ReLU(g + a)ReLU(g′ + b)], with g, g′ are two standard ρ-
correlated joint Gaussians. Let

A := µ(d− 2d′) , B := 2µ · y , C := −µd , and w := B + Cρ . (291)

Let us define two “bad” events: E1 is |ρ| ≥ 1/2 and E2 is |w| ≥ β
√
d (for some β that we will set

later) and let F be the complement of E1 ∪ E2.

Using the same argument as in Appendix D.4 (see Equationsequation 246-equation 251), we can
show that Pr[E1 ∪ E2] ≤ exp(−cβ2d) for some universal c > 0 and d large enough. Continuing,

GALout ≤ Ex,y
∣∣Ek(−1)kΛρ(A,w)

∣∣ (292)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)kΛρ(A,w)1F

∣∣ . (293)

From Corollary 7, we have

Λρ(A,w) = R(A)R(w) + Φ(A)Φ(w)ρ+ ϕ(A)ϕ(w)

∞∑
ℓ=0

Hℓ(A)Hl(w)

(ℓ+ 2)!
ρℓ+2 , (294)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

with R(x) = xΦ(x) + ϕ(x). Substituting the above into equation 294

GALhid ≤ exp(−cβ2d) + Ex,y

∣∣∣∣∣Ek(−1)k1F

(
R(A)R(w) + Φ(A)Φ(w)ρ+ ϕ(A)ϕ(w)

∞∑
ℓ=0

Hℓ(A)Hl(w)

(ℓ+ 2)!
ρℓ+2

)∣∣∣∣∣
(295)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)k1FR(A)R(w)

∣∣+ Ex,y
∣∣Ek(−1)k1FΦ(A)Φ(w)ρ

∣∣
(296)

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(A)ϕ(w)Hℓ(A)Hℓ(w)

ρℓ+2

(ℓ+ 2)!

∣∣∣∣ , (297)

≤ exp(−cβ2d) + Ex,y|R(A)|
∣∣Ek(−1)k1FwΦ(w)

∣∣+ Ex,y|R(A)|
∣∣Ek(−1)k1Fϕ(w)

∣∣
(298)

+ Ex,y
∣∣Ek(−1)k1FΦ(w)ρ

∣∣+ ∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)

ρℓ+2

√
ℓ!

∣∣∣∣ , (299)

≤ exp(−cβ2d) + µdEx,y
∣∣Ek(−1)k1FwΦ(w)

∣∣︸ ︷︷ ︸
=:T11

+µdEx,y
∣∣Ek(−1)k1Fϕ(w)

∣∣︸ ︷︷ ︸
=:T12

(300)

+ Ex,y
∣∣Ek(−1)k1FΦ(w)ρ

∣∣︸ ︷︷ ︸
=:T13

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)

ρℓ+2

√
ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T22

, (301)

The bound in equation 300 and equation 301 follow because of equation 264 and the fact that
|R(A)| ≤ 2|A| = 2µ(d− d′) ≤ µd. It remains to show that T11, T12 ,T13 and T22 are exponentially
small. The term T22 differs from T2 in equation 262 by the exponent of ℓ+ 2 in ρ instead of ℓ+ 1.
Thus for d large enough, a similar proof as for T2 will show that T22 is exponentially small. The
process to handle T11, T12 and T13 is the same as in T1. Indeed, for example:

T11 ≤ Ex,y

∣∣∣∣∣∣Ek(−1)k1F

1

2
w +

∑
ℓ<d/10

aℓw
2ℓ+2

∣∣∣∣∣∣+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+2 (302)

≤ exp(−cβ2d)

1

2
α
√
d+

∑
ℓ<d/10

|aℓ|(α
√
d)2ℓ+2

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+2 . (303)

Both of the above terms can be handled similarly as in Appendix D.4.

E EXPERIMENT DETAILS AND ADDITIONAL EXPERIMENTS

E.1 EXPERIMENT DETAILS

All experiments were performed using the PyTorch framework (Paszke et al. (2019)) and they were
executed on NVIDIA Volta V100 GPUs.

Architectures. For the results presented in the main, we used mainly a 4-layer MLP architecture
trained by SGD with the hinge loss. In this Section, we also present some experiments obtained with
a 2-layer MLP trained by SGD with the squared loss.

• 4-layer MLP. This is a fully-connected architecture of 3 hidden layers of neurons of size
512, 512, 64, and ReLU activation.

• 2-layer MLP. This is again a fully-connected architecture, with 1 hidden layer of 512
neurons, and ReLU activation,

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Initializations. We compare few initialization schemes. In the following, dim denotes the input
dimension of the layer of the corresponding parameter. All layers weights and biases are indepen-
dently initialized according to:

• σ-perturbed Rademacher:
(
Rad(1/2) +N (0, σ2)

)
· 1√

dim·(1+σ2)
.

• Gaussian: N (0, 1
dim).

• s-sparsified Rademacher: Ber(1− s) · Rad(1/2) · 1√
dim·(1−s)

.

• Uniform σ-perturbed Rademacher:
(
Rad(1/2) + Unif[−

√
3σ,

√
3σ]
)
· 1√

dim·(1+σ2)
.

• Discrete perturbed Rademacher: Unif{−2,−1, 1, 2} ·
√

2
5·dim .

Training procedure. We consider mainly the hinge loss: Lhinge(ŷ, y) := max(0, 1 − ŷy). In
some experiments we consider the ℓ2 loss: Lℓ2(ŷ, y) := (ŷ − y)2. We train the architectures using
SGD with batch size 64. In the online setting, we sample fresh batches of samples at each iterations.
In the offline setting, we sample batches from a fixed dataset and we stop training when the training
loss is less than 0.01.

Hyperparameter tuning. The primary goal of our experiments is to conduct a fair comparison
of different initialization methods. Thus, we did not engage in extensive hyperparameter tuning.
We tried different batch sizes and learning rates, and we did not observe significant qualitative
difference. We chose to report the experiments obtained for a standard batch size of 64 and a
learning rate of 0.01.

Additional details for Figure 2. In the left plot of Figure 2, we are computing the quan-

tity Ew
[
Ex,r

[
∂L(w,x,f(x))

∂wd
− ∂L(w,x,r)

∂wd

]2]
, where w ∼ N (0, 1d Idd) for one case and w ∼

Rad(1/2) for the other case, f is the full parity, r ∼ Rad(1/2) and L(w, x, y) :=
max (0, 1− yReLU(w.x)) is the hinge loss. For the approximated part we update the weights
according to ψt+1 = ψt − γ (Γr(ψ

t)), with ψ0 ∼ N (0, 1d Idd) and γ = 1, and we calculate

Eψt

[
Ex,r

[
∂L(ψt,x,f(x))

∂ψt
d

− ∂L(ψt,x,r)
∂ψt

d

]2]
.

E.2 ADDITIONAL EXPERIMENTS

1000 5000 10000 40000 70000 100000
Train Size

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

 = 0.0
 = 0.1
 = 1.0

gauss.

10000 40000 70000 100000
Train Size

0.4

0.6

0.8

1.0

1.2

Te
st

 A
cc

ur
ac

y

 = 0.0
 = 0.1
 = 1.0

gauss.

Figure 4: Learning 3-parity (left) and 5-parity (right) with Rademacher, σ-perturbed and Gaussian
initializations, with SGD with the hinge loss on a 4-layer MLP, with d = 50. We plot the test
accuracy, for several training set sizes.

Sparse Parities. In Figure 4 we train a 4-layer MLP with Rademacher initialization and σ-
perturbation (σ ∈ 0.1, 1) on two sparse parities: degree 3 (left) and degree 5 (right). We observe
no significant difference between these initializations, unlike the full parity case. This is because,
for sparse parities, the learning bottleneck lies in recovering the support, which takes dΩ(k) time for

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

0 200000 400000 600000 800000
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ur
ac

y
: 0.0
: 0.1
: 0.2
: 0.3

0 200000 400000 600000 800000
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ur
ac

y

: 0.0
: 0.1
: 0.2
: 0.3

0 200000 400000 600000 800000
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Te

st
 A

cc
ur

ac
y

: 0.0
: 0.1
: 0.2
: 0.3

Figure 5: Learning the full parity with σ-perturbed initialization by SGD with the hinge loss on a
4-layer MLP, with input dimension d = 100 (top-left), d = 150 (top-right) and d = 200 (bottom),
with online fresh samples.

any i.i.d. initialization. Hence, the initial embedding does not play the same role as in the full parity
scenario.

Larger input dimension. In Figure 5, we plot the test accuracy achieved by a 4-layer MLP trained
with the hinge loss on the full parity task, with different σ-perturbed initializations. We report only
the curves for small σ. We observe that for fixed σ, learning becomes hard as d increases.

101 102

input dim.

10 12

10 10

10 8

10 6

10 4

10 2

GA
L

=0(Rad.)
=0.1
=0.15
=0.2
=0.25
=0.3
=0.35

Figure 6: Computing numerically GALf for correlation loss for one-neuron with threshold activa-
tion. We report the estimated GALf for different values of the input dimension, in a log-log plot.

Alignment for correlation loss. Figure 6 completes Figure 2 (right) in the main. Here we plot
the numerically computed GALf for larger values of σ. We observe that the GALf becomes con-

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

sistently smaller as σ increases. Moreover, from the plot the decay seems super-polynomially small
for all σ > 0.

Two-layer MLP and squared loss. In Figure 7 we train a 2-layer MLP with the squared loss and
online fresh samples. In the left plot, we initialize the weights according to σ-perturbed Rademacher,
for different values of σ. In the right plot, we initialize with other perturbations of the Rademacher
initialization, namely a mixture of (continuous) uniform distributions of mean +1 and −1 and stan-
dard deviation σ and s-sparsified Rademacher with s = 1/3. We observe in both plots a similar
behavior as for the 4-layer MLP with the hinge loss.

0 20000 40000 60000 80000 100000
Iterations

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y : 0.0
: 0.1
: 0.2
: 0.3
: 0.4
: 0.5

0 20000 40000 60000 80000 100000
Epochs

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

gauss.
Rad.+Unif., :0.1
Rad.+Unif., :1.0
sparse Rad., s:1/3

Figure 7: Learning the full parity with σ-perturbed Rademacher (left) and uniform and sparse per-
turbed Rademacher (right) with a 2-layer MLP, with input dimension d = 50, trained with the
squared loss, with online fresh samples.

Effect of the Loss. We consider the following Boolean function:

f(x) :=
1

8
x1x2x3 +

3

8
x1x2x4 +

1

4
x1x3x4 +

1

4
x2x3x4. (304)

In (Joshi et al. (2024)), the authors show that this function is learned more efficiently by SGD with
L1-loss than with L2-loss (see Section 7.1 therein). In Figure 8, we observe that such difference is
captured by our loss-dependent notion of Initial Gradient Alignment (GAL). This motivates future
work in comparing our GAL with previously defined measures (e.g. LGA (Mok et al. (2022))) in a
broader setting.

0 5000 10000 15000 20000 25000 30000 35000 40000
Iterations

0.1

0.2

0.3

0.4

0.5

Te
st

 L
os

s

Loss: squared
Loss: l1

101 102

Dimension
10 2

10 1

100

GA
L

Loss: squared
Loss: l1

Figure 8: (left) Learning f (Eq. equation 304) with SGD with the L1 and L2 (squared) loss on a
4-layer MLP, with input dimension d = 50. (right) Initial GAL for f on the same architecture, with
the two losses.

Output Layer Training with Correlation Loss. The purpose of Figure 9 is to empirically verify
our positive theoretical result from Theorem 5. To that purpose, we train a two-layer fully connected
network with Rademacher initialization and clipped-ReLU activation σ(x) = min(1,max(0, x)) on
the full parity task. We train only the output layer, consistently with our positive result, with SGD
with large batch size (1024) with the correlation loss and online fresh samples, until convergence

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

of the test accuracy. We show the test accuracy achieved for different input dimensions (d) and
different widths of the hidden layer (w). Consistently with our theory, with clipped-ReLU d2 hidden
neurons are sufficient to achieve accuracy 1.

60 80 100 120 140 160 180 200
Input Dimension

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y
w = d
w = d
w = d1.5

w = d2

Figure 9: Learning the full parity with a 2-layer network, where only the output layer is trained by
SGD with the correlation loss. We report the test accuracy achieved after training, for clipped-ReLU
activation, for different input dimensions (d) and hidden layer width (w).

47

	Introduction
	Related Work
	Setting and Informal Contributions
	Positive Result for Rademacher Initialization
	GD and SGD with correlation loss
	SGD analysis for hinge loss

	Negative Results
	Negative Results for General Targets
	Negative Results for High-Degree Parities
	Small Alignment for Gaussian Initialization
	Small Alignment for Perturbed Initialization

	Experiments
	Conclusion
	Proofs and details for Section 4
	Proof of Theorem 4
	Proof of thm:positive-sgd
	Proofs of cor:positive-full and cor:positive-almost
	Proof of cor:positive-full
	Proof of cor:positive-almost

	Almost Full Parities d-1 and d-2
	Positive result: SGD for hinge loss
	Proof of thm:positive-hinge
	Proof of Theorem 9

	Proofs for Section 5.1
	Proof of Theorem 6
	Proof of Lemma 5
	Proof of Corollary 3
	Proof of Corollary 4
	Proof of Proposition 3
	Proof of Lemma 6

	Small Alignment for Gaussian Initialization: Proofs of thm:gaussian-no-learning and Proposition 1
	 prop:gaussian-gal implies thm:gaussian-no-learning
	lem:calculation-gaussian-step and lem:calculation-gaussian-relu imply prop:gaussian-gal
	Proof of lem:calculation-gaussian-step
	Proof of lem:calculation-gaussian-relu

	Small Alignment for Perturbed Initialization: Proof of Theorem 8
	Proposition 2 implies Theorem 8
	lem:gal-perturbed-hidden and lem:gal-perturbed-output imply prop:perturbed-gal
	Correlated Gaussian expectations
	Proof of lem:gal-perturbed-hidden
	Proof of lem:gal-perturbed-output

	Experiment Details and Additional Experiments
	Experiment Details
	Additional Experiments

