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ABSTRACT
Federated Graph Learning (FGL) is a distributed machine learn-
ing paradigm that enables collaborative training on large-scale
subgraphs across multiple local systems. Existing FGL studies fall
into two categories: (i) FGL Optimization, which improves multi-
client training in existing machine learning models; (ii) FGL Model,
which enhances performance with complex local models and multi-
client interactions. However, most FGL optimization strategies are
designed specifically for the computer vision domain and ignore
graph structure, presenting dissatisfied performance and slow con-
vergence. Meanwhile, complex local model architectures in FGL
Models studies lack scalability for handling large-scale subgraphs
and have deployment limitations. To address these issues, we pro-
pose Federated Graph Topology-aware Aggregation (FedGTA), a
personalized optimization strategy that optimizes through topology-
aware local smoothing confidence and mixed neighbor features.
During experiments, we deploy FedGTA in 12multi-scale real-world
datasets with the Louvain and Metis split. This allows us to evaluate
the performance and robustness of FedGTA across a range of sce-
narios. Extensive experiments demonstrate that FedGTA achieves
state-of-the-art performance while exhibiting high scalability and
efficiency. The experiment includes ogbn-papers100M, the most
representative large-scale graph database so that we can verify the
applicability of ourmethod to large-scale graph learning. To the best
of our knowledge, our study is the first to bridge large-scale graph
learning with FGL using this optimization strategy, contributing to
the development of efficient and scalable FGL methods.
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1 INTRODUCTION
Graphs are extensively utilized for modeling complex systems, pri-
marily due to their ability to visually represent the relational in-
formation between different entities, which sets them apart from
other types of data. Its growing prevalence in recommendation sys-
tems [20, 53], drug discovery [33, 43], and financial risk control [10,
40] urges the development of a correspondent graph analysis tool.
Graph Neural Networks (GNNs) emerge as a promising approach
to achieve state-of-the-art performance in node-level [23, 48, 58],
edge-level [4, 6, 56], and graph-level [37, 44, 51] downstream tasks.

Researchers in the database community have recently focused
on developing centralized data-driven pipelines of large-scale graph
learning [21, 31]. However, the surge in retrieved graph data for real-
world applications has generated greater interest in the decentral-
ized settings [28, 36, 38] for large-scale graph learning [22, 27, 34].
Specifically, collecting data across different locations and sources
often requires efforts from different institutions, among which in-
formation sharing may be impeded for legal or competitive reasons.
For example, the disease network [39] and online transaction net-
work [15] require the participation of multiple local clients, such
as hospitals and regional institutions.

To address the above issues, one promising solution is Federated
Graph Learning (FGL), a distributed training framework for GNNs.
FGL approaches involve devices training their own local models
using self-collected data, upon which the central server achieves
optimization to obtain a global model. Despite preserving privacy,
FGL can also overcome computational and storage limitations by
dealing with large-scale subgraphs through scalable local models
and effective optimization strategies. In a nutshell, we can summa-
rize the current studies in FGL into the following two types: (i) FGL
Optimization: applying improved federated optimization methods
to the existing graph learning models; (ii) FGL Model: designing
local model architectures and multi-client interactions.

A proper optimization strategy is critical in achieving multi-
client collaborative training. FedAvg [35], a simple yet effective
optimization strategy, which performs weighted model aggregation
based on the proportional weights of the data size of participating
clients against the total combined data size. Although FedAvg is
topology-independent and primarily intended for CNNs or MLP,
many existing FGL Model studies [7, 19, 55] still apply it and en-
hance their performance by well-designed model architectures.
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Figure 1: Empirical analysis on Cora in 10 clients with GCN, which
contains 7 different node labels. (a) The color from white to blue
represents the number of nodes held by different clients in each
class a gradual increase in quantity. (b) The x-axis of the line plot
is the federated training round. "Global" and "Local" represent the
model performance in centralized and siloed settings, respectively.

However, these models have limited scalability, which ultimately re-
stricts their real-world applicability. To illustrate further, we present
an experiment in Fig. 1, which reveals two major FGL limitations:
(i) lack of investigation of federated subgraph distribution; (ii) the
absence of topology-aware optimization strategies.

The first limitation underscores the label Non-independent iden-
tical distribution (Non-iid) problem in FGL as shown in Fig. 1(a),
where we chose Louvain [5] and Metis [26], two widely applied fed-
erated subgraphs simulation methods based on community search.
As the homogeneity assumption suggests formost real-world graphs,
linked nodes are similar in both feature distributions and labels [1,
24, 49]. Such premises lead to the results concluded in Fig. 1(a).
We use different colors to highlight the varying numbers of nodes
distributed through the data simulation in each client. We observe
that each client exhibits distinctive or similar label distributions
(label Non-iid). In FGL, the label distributions held by clients are
often significantly different, and this property requires extra em-
phasis since the aggregation between clients regardless of label
distribution can lead to unsatisfying results. In fact, this is the es-
sential reason for the sub-optimal performance of the existing FGL
Model [3, 7, 11, 47, 55]. To maximize efficiency, we require a person-
alized optimization strategy that selects clients with similar label
distribution instead of applying permutations of all possibilities. To
the best of our knowledge, it has not yet been specifically addressed.

The second limitation is that most currently adopted optimiza-
tion strategies overlook the topology of the graph. In Fig. 1(b),
we conduct a subsequent experiment to detect the label Non-iid
problem illustrated in Fig. 1(a). The results show that methods like
FedProx [30], Scaffold [25], MOON [29], and FedDC [16], which are
applied to solve label Non-iid problems in the computer vision do-
main, do not achieve competitive results compared to FedAvg and
local train. GCFL+ [50] assumes that the graph topology is implic-
itly incorporated into the local model through uploaded gradients,
but this approach fails to fully capture the topology and leads to
sub-optimal performance. These results motivate us to investigate
why conventional methods that perform well in the computer vi-
sion domain fail to replicate their success in FGL. Our conclusion is

that these methods do not directly consider the topology properties,
which are crucial elements in graph studies. In light of this finding,
our main motivation is to design a topology-aware optimization
strategy that specifically targets the label Non-iid problem in the
federated graph collaborative training process.

In this paper, we propose Federated Graph Topology-aware Ag-
gregation (FedGTA), a novel and scalable optimization strategy, for
FGL and present state-of-the-art performance in efficiency. Specifi-
cally, each client calculates topology-aware local smoothing confi-
dence and mixed moments of neighbor features and uploads them
with correspondent model weights to the server. Then, the server is
able to customize the optimization strategy for each participating
client to continue federated training.

In summary, the main contributions of this paper are: (1) Prob-
lem Connection.We introduce a novel perspective for integrating
large-scale graph learning with FGL. (2) NewMethod.We propose
FedGTA, a novel topology-aware optimization strategy for FGL. It
has been formulated into a unified framework that can be applied
to any graph learning model. (3) SOTA Performance.We conduct
experiments on 12 real-world benchmark datasets including the
archetypal large-scale graph dataset, ogbn-papers100M, with preva-
lent GNNs. We demonstrate that FedGTA significantly outperforms
the state-of-the-art baselines on both performance and efficiency.

2 PRELIMINARIES AND RELATEDWORKS
In this section, we first describe the notations and problem formu-
lation in this paper. Then we briefly discuss the difference between
conventional and scalable GNNs and the FGL Optimization/Model
studies. Meanwhile, summarized in Table 1, we present an analysis
on the complexity bounds of existing FGL studies.

2.1 Problem Formulation
Consider a graph 𝐺 = (V, E) with |V| = 𝑛 nodes and |E | = 𝑚

edges, the adjacency matrix (including self-loops) is Â ∈ R𝑛×𝑛 , the
feature matrix is X = {𝑥1, . . . , 𝑥𝑛} in which 𝑥𝑣 ∈ R𝑓 represents
the feature vector of node 𝑣 , and 𝑓 represents the dimension of the
node attributes. Besides, Y = {𝑦1, . . . , 𝑦𝑛} is the label matrix, where
𝑦𝑣 ∈ R |Y | is a one-hot vector and |Y| represents the number of
the classes. The semi-supervised node classification task is based
on the topology of labeled setV𝐿 and unlabeled setV𝑈 , and the
nodes inV𝑈 are predicted with the model supervised byV𝐿 .

2.2 Conventional and Scalable GNNs
Graph Neural Networks (GNNs) adopt spectral graph theory and
deep learning to enable graph learning. Specifically, propagation
operators are defined based on topology, while trainable weights
are applied to learn node attributes. In this study, we present two
standards of GNNs that differ in model architecture design and their
corresponding implications in real-world application scenarios.

Conventional GNNs. GCN [46] and GAT [42] are twowidely used
methods that employ coupled message-passing schemes to prop-
agate information across the nodes. However, when dealing with
real-world applications involving large-scale graphs, scalability
becomes a major concern due to their limited capacity.

Scalable GNNs. There are two major approaches to achieving
GNN scalability. One is developing sampling-based GNNs, such as



Table 1: Algorithm analysis for existing FGL Optimization/Model studies. 𝑛,𝑚, 𝑐, and 𝑓 are the number of nodes, edges, classes, and feature
dimensions, respectively. 𝑠 is the number of selected augmented nodes and 𝑔 is the number of generated neighbors. 𝑏 and𝑇 are the batch size
and dynamic training round, respectively. 𝑘 and 𝐾 correspond to the number of times we aggregate features and moments order, respectively.
Besides, 𝑁 is the number of participating clients in each training round. For model-agnostic optimization strategies, we choose SGC as the
local model (𝑘-step feature propagation), and for FGL methods, we adopt the model architecture (𝐿-layer) used in their original paper.

Method Type Client Mem. Server Mem. Inference Mem. Client Time. Server Time. Inference Time

FedAvg Optim. 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑁 + 𝑁 𝑓 2 ) 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 ) 𝑂 (𝑁 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 )
FedProx Optim. 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 2𝑓 2 ) 𝑂 (𝑁 + 𝑁 𝑓 2 ) 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 + 𝑓 2 ) 𝑂 (𝑁 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 )
Scaffold Optim. 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 2𝑓 2 ) 𝑂 (𝑁 + 2𝑁 𝑓 2 + 𝑓 2 ) 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 + 𝑓 2 ) 𝑂 (𝑁 + 𝑁 𝑓 2 + 𝑓 2 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 )
MOON Optim. 𝑂 ( (3𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑁 + 𝑁 𝑓 2 ) 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 + 2𝑛𝑓 ) 𝑂 (𝑁 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 )
FedDC Optim. 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 4𝑓 2 ) 𝑂 (𝑁 + 2𝑁 𝑓 2 ) 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 + 4𝑓 2 ) 𝑂 (𝑁 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 )
GCFL+ Optim. 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑁 + 𝑁 𝑓 2 +𝑇𝑁 𝑓 2 ) 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 ) 𝑂 (𝑁 + 𝑁 2 (log(𝑁 ) +𝑇 2 𝑓 2 ) ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 )
FedGL Model 𝑂 (𝐿𝑛𝑓 + 𝐿𝑓 2 + 𝑛2 ) 𝑂 (𝑁 + 𝑁𝐿𝑓 2 ) 𝑂 (𝐿𝑛𝑓 + 𝐿𝑓 2 + 𝑛2 ) 𝑂 (𝐿𝑚𝑓 + 𝐿𝑛𝑓 2 + 𝑛2 𝑓 ) 𝑂 (𝑁 ) 𝑂 (𝐿𝑚𝑓 + 𝐿𝑛𝑓 2 + 𝑛2 𝑓 )

FedSage+ Model 𝑂 (𝐿 (𝑛 + 𝑠𝑔) 𝑓 + 3𝐿𝑓 2 ) 𝑂 (𝑁 + 3𝑁𝐿𝑓 2 ) 𝑂 (𝐿 (𝑛 + 𝑠𝑔) 𝑓 + 3𝐿𝑓 2 ) 𝑂 (𝐿 (𝑚 + 𝑠𝑔) 𝑓 + 𝐿 (𝑛 + 𝑠𝑔) 𝑓 2 ) 𝑂 (𝑁 ) 𝑂 (𝐿 (𝑚 + 𝑠𝑔) 𝑓 + 𝐿 (𝑛 + 𝑠𝑔) 𝑓 2 )
FedGTA (ours) Optim. 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 + 𝑘𝐾𝑐 ) 𝑂 (𝑁 + 𝑁 𝑓 2 + 𝑁𝑘𝐾𝑐 ) 𝑂 ( (𝑏 + 𝑘 ) 𝑓 + 𝑓 2 ) 𝑂 (𝑘𝑚 (𝑓 + 𝑘𝑛𝑐 ) + 𝑛 (𝑓 2 + 𝑐 ) ) 𝑂 (𝑁 + 𝑁𝑘𝐾𝑐 ) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 )

GraphSAGE [18] randomly samples neighbors for computation in
each mini-batch, Fast-GCN [8] samples a fixed number of nodes at
each layer, and Cluster-GCN [12] is implemented based on graph-
level clustering. However, recent studies [13, 57, 58] emphasize a
decoupled mechanism due to its simple operative mechanism and
superior performance. For example, SGC [48] reduces GNNs into a
linear model operating on 𝑘-layers propagated features X(𝑘 ) :

X(𝑘 ) = Ã𝑘X(0) , Ã = D̂𝑟−1ÂD̂−𝑟 , Y = softmax
(
𝚯X(𝑘 )

)
, (1)

where X(0) = X, D̂ is the degree matrix of Â, 𝑟 ∈ [0, 1] denotes the
propagation kernel coefficient, and W represents weight matrix.
By default 𝑟 = 0.5, we can get the symmetric normalization adja-
cency matrix D̂−1/2ÂD̂−1/2 [17]. As the propagated features X(𝑘 )
can be precomputed, SGC is easy to scale to large graphs. Inspired
by it, SIGN [14] proposes to concatenate the learnable propagated
features:

[
X(0)W0, . . . ,X(𝑘 )W𝑘

]
. S2GC [59] proposes to average

the spectral features: X(𝑘 ) =
∑𝑘
𝑙=0 Ã

𝑙X(0) . GBP [9] further utilizes
the 𝛽 weighted averaging: X(𝑘 ) =

∑𝑘
𝑙=0𝑤𝑙 Ã

𝑙X(0) ,𝑤𝑙 = 𝛽 (1 − 𝛽)𝑙 .
GAMLP [58] achieves information aggregation based on the atten-
tion mechanisms X(𝑘 ) = Ã𝑘X(0) ∥∑𝑘−1

𝑙=0 𝑤𝑙X
(𝑙 ) , where attention

weight𝑤𝑙 has multiple calculation versions.

2.3 FGL Optimization
FedAvg [35] is the most widely used optimization strategy for FL. It
implements model aggregation by using a simple weighted average
of the model parameters received from each participating client.
The weights are proportional to the training data size. Its generic
form with 𝑁 participating clients and learning rate 𝜂 is defined as

W̃𝑡 =

𝑁∑︁
𝑖=1

𝑛𝑖

𝑛
W𝑡−1

𝑖 , ∀𝑖,W𝑡−1
𝑖 = W̃𝑡−1 − 𝜂∇𝑓 ,

W𝑡
𝑖 = W̃𝑡 − 𝜂∇𝑓

(
W̃𝑡 , (A𝑖 ,X𝑖 ,Y𝑖 )

)
= W̃𝑡 + 𝜂

∑︁
𝑖∈V𝑙

∑︁
𝑗

Y𝑖 𝑗 log
(
softmax(Ŷ)𝑖 𝑗

)
,

(2)

where 𝑛𝑖 and 𝑛 represent the 𝑖-th client and the global data size,
∇𝑓 (·) represents the gradients. It can be obtained by any reasonable
loss function that evolves with downstream tasks. W𝑡

𝑖
and W̃𝑡

represent the local model weights held by the 𝑖-th client in round 𝑡
and the aggregated model weights received from the server.

Despite its effectiveness, FedAvg fails to solve the weight-shifting
problem caused by Non-iid data. To address this challenge, several
methods have been proposed, but they largely focus on the com-
puter vision domain rather than on the graphs. FedProx [30] limits
the deviation of the local model from the global model. Scaffold [25]
introduces server and client control variables to control the model’s
updated direction. MOON [29] introduces model-contrastive loss
in the local training. FedDC [16] utilizes learnable local drift vari-
ables to bridge the above gap. GCFL+ [50] utilizes weight clustering
techniques to custom model aggregation in graph classification.

2.4 FGL Model
Graph data has been demonstrated to be superior in multiple ap-
plications. Recently, FGL [19, 32, 45] has received a lot of attention
due to its unique advantage in training GNNmodels collaboratively
without sharing collected data for safety concerns.

As mentioned in Section 1, there are two main strategies for
improving FGL studies. The first strategy involves optimizing the
FGL process and applying it to existing GNNs. We discussed some
previous works related to this in Section 2.3. The second strategy
involves improving the model architectures and using FedAvg as
the default method, presented by FedSage, FedGNN, and FedGL.
FedSage+ [55] implements local subgraph augmentation via the
missing neighbor generator. FedGNN [47] attempts to propose a
federated graph recommendation model with security guarantees.
FedGL [7] proposes to use the overlapping subgraph nodes to im-
plement global supervision among multi-clients.

To further illustrate, we provide the algorithmic complexity of
each method in Table 1, where "Optim." represents FGL Optimiza-
tion and "Model" denotes FGL Models. For the 𝑘-layer SGC model
with batch size 𝑏, the precomputed results are bounded by a space
complexity of 𝑂 ((𝑏 + 𝑘) 𝑓 ). The overhead for linear regression is
𝑂 (𝑓 2). For the server performing FedAvg, it needs to receive the
model weights and the number of samples participating in this
round. Its space complexity and time complexity are bounded as
𝑂 (𝑁 +𝑁 𝑓 2) and𝑂 (𝑁 ). As discovered by previous studies [9, 57, 58],
the dominating term is𝑂 (𝑘𝑚𝑓 ) or𝑂 (𝐿𝑚𝑓 ) when the graph is large
since feature learning can be accelerated by parallel computation.
The full large-graph propagation becomes extremely difficult and
thus, FedGL and FedSage+ lead to unacceptable space-time over-
head because of the 𝑂 (𝑛2) term and 𝑂 (𝑚 + 𝑛 + 2𝑠𝑔) term.
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Figure 2: Overview of our proposed FedGTA framework. The different colors of the nodes represent the different labels.

3 FEDGTA FRAMEWORK
As an optimization strategy, FedGTA provides a novel perspective
that integrates both large-scale graph learning and FGL into its
design as shown in Fig. 2. To begin with, on the Client-side, par-
ticipating clients encode topology and node attributes. After that,
they calculate the local smoothing confidence and mixed moments
of neighbor features, which are then uploaded to the server. On the
Server-side, FedGTA performs personalized model aggregation for
each client based on the mixed moments of neighbor features and
uses the local smoothing confidence as the aggregation weights.

Local Smoothing Confidence. Since GNNs trained by the smooth-
ing graph are more confident with their prediction [17, 24, 57], we
grant it with higher contribution in the model aggregation process.

Mixed Moments of Neighbor Features. By using the mixed mo-
ments of neighbor features to measure the distribution of subgraphs,
we can limit the model aggregation process to only those clients
with similar subgraph distributions.

3.1 The Proposed FedGTA
To encode topology and node attributes, we introduce 𝑘-step Non-
parameters Label Propagation (Non-param LP), which establishes
relationships among the current node and its 𝑘-hop neighbors

Ŷ = Softmax (Encoder(A,X)) ,

Ŷ𝑘 (𝑣𝑖 ) = 𝛼Ŷ0 (𝑣𝑖 ) + (1 − 𝛼)
∑︁
𝑗∈N𝑖

1√︃
𝑑𝑖𝑑 𝑗

Ŷ𝑘−1 (𝑣 𝑗 ), (3)

whereEncoder(·, ·) represent any embeddingmodel and Ŷ ∈ R𝑛×|Y |
denotes the soft label matrix. We follow the approximate calcula-
tion of the personalized PageRank [17], where N𝑖 represents the
one-hop neighbors of 𝑖 . We default set 𝛼 = 1/2, 𝑘 = 5 to encode
deep structural information. Then, we obtain the topology-aware
soft label matrix. Based on this, each client calculates the quantita-
tive metrics to perform model optimization on the server side. The
complete algorithm can be obtained as described in Algorithm1.

Client-Local Smoothing Confidence.The key insight is to quantify
smoothness by the entropy of local predictions

𝐻 =

|V |∑︁
𝑖=1

|Y |∑︁
𝑗=1

D𝑖𝑖
(
𝑒−1 −

(
−Ŷ𝑘𝑖 𝑗 log Ŷ

𝑘
𝑖 𝑗

))
. (4)

Since the model based on the smoothing subgraph tends to pro-
duce clearer predictions with a lower entropy value, modification

Algorithm 1 FedGTA-Client Update
1: for each communication round 𝑡 = 1, ...,𝑇 do
2: for each local model update 𝑒 = 1, ..., 𝐸 do
3: Update local model weightsW according to the Eq (2);
4: end for
5: Calculate the topology-aware label distribution by Eq (3);
6: Local Smoothing Confidence:
7: Calculate the entropy of soft label predictions;
8: Execute smoothness quantification 𝐻 based on the Eq (4);
9: Mixed Moments of Neighbor Features:
10: Calculate the 𝐾-order momentsM based on the Eq (5);
11: Each client uploads the relevant 𝐻 , M, and model weight𝑊 ;
12: end for

Algorithm 2 FedGTA-Server Aggregation
1: for each communication round 𝑡 = 1, ...,𝑇 do
2: for each client 𝑖 = 1, . . . , 𝑁 do
3: Calculate the set of model aggregation for the current

client 𝑖 based onM, 𝜖 , and Eq (6);
4: Execute federated model optimization based on the model

aggregation sets I𝑖 , 𝐻𝑖 , and Eq (7) to get W̃𝑖 ;
5: Server sends global model W̃𝑖 to each local client 𝑖;
6: end for
7: end for

is needed as we want to represent higher confidence figuratively.
Therefore we subtract it from the theoretical maximum 𝑒−1, and
then we obtain 𝐻 by considering both the local neighbors and the
number of samples, with the addition of the degree matrix D𝑖𝑖 .

Client-Mixed Moments of Neighbor Features. Here we introduce
the mixed moments of neighbor features, which is used to gener-
alize local subgraph. Specifically, we compute the 𝐾-order mixed
moments of 𝑘-step propagated soft labels M ∈ R(𝑘×𝐾 )× |Y | . We
present the formal representation of central moments as an example

M(𝑦𝑘𝑖 ) = E
((
𝑦1𝑖 − 𝜇

1
𝑖

)1)
| | . . . | |E

((
𝑦𝑘𝑖 − 𝜇

𝑘
𝑖

)𝐾 )
,

E

((
𝑦𝑘𝑖 − 𝜇

𝑘
𝑖

)𝐾 )
=
©­­«𝛼𝑦0𝑖 + (1 − 𝛼)

∑︁
𝑗∈N𝑖

1√︃
𝑑𝑖𝑑 𝑗

𝑦𝑘−1𝑗 − 1
|Y|

∑︁
𝑦𝑘𝑖

ª®®¬
𝐾

,

(5)



where ·| |· is concatenation and 𝜇1
𝑖
denotes the mean value of 𝑦1

𝑖
.

Due to the differences in the subgraphs held by clients, it becomes
imperative to employ appropriate quantification metrics, guiding
the server toward performing model aggregation tailored to each
client. Recognizing the significance of topology in graphs and its
potential correlation with features, we utilize the mixed moments
of neighbor features to realize topology-aware quantification of dis-
crepancies among multi-client subgraphs. After that, participating
clients upload their metrics and model weights to the server.

Server-Model Aggregation. Based on the abovemetrics, the server
computes the similarity of the mixed moments of neighbor features
and utilizes a data-driven context threshold to obtain the set of other
clients for which the current client performs model aggregation.
The intuition is to avoid clients with high variability interfering
with each other during the federated collaborative training process.
The computation process is formally defined as

I𝑖 = { 𝑗 |sim(𝑖, 𝑗) ≥ 𝜖} ∪ 𝑖, ∀𝑖, 𝑗 ∈ Set(𝑁 ), 𝑗 ≠ 𝑖,

sim(𝑖, 𝑗) =
∑𝑘×𝐾
𝑝=1 M𝑝

𝑖
·M𝑝

𝑗√︃∑𝑘×𝐾
𝑝=1 (M

𝑝

𝑖
)2
√︃∑𝑘×𝐾

𝑝=1 (M
𝑝

𝑗
)2
,

(6)

where 𝜖 denotes the threshold and I𝑖 represents the model aggre-
gation set for client 𝑖 . Set(𝑁 ) represents the set of all participating
clients in the current round. In fact, the cosine similarity in Eq (6)
can be replaced with any reasonable metric. Based on this, the
server performs personalized weighted model aggregation for each
participating client based on the local smoothing confidence

∀𝑖, W̃𝑡+1
𝑖 ←

∑︁
𝑗,𝑘∈I𝑖

𝐻𝑖∑
𝐻 𝑗

W𝑡
𝑗 , W

𝑡
𝑗 ← W̃𝑡

𝑗 − 𝜂∇𝑓 . (7)

Notably, with the involvement of mixed moments of neighbor fea-
tures, the model aggregation process based on the comparison of
local smoothing confidence can become more accurate and efficient
as it will only consider the client with similar subgraph distribution.
The complete algorithm can be referred to as Algorithm2.

3.2 Complexity Analysis
We provide the complexity analysis of our proposed FedGTA and
other FGL Optimization/Model studies in Table 1. For the client side
of FedGTA, the computation complexity for calculating the entropy
for each row of soft label Ŷ ∈ R𝑛×𝑐 is 𝑂 (𝑛𝑐), and the computa-
tion complexity for moments is 𝑂 (𝑘2𝑚𝑛𝑐). On the server side, the
computation complexity for calculating the cosine similarity of 𝑁
clients’ moments is 𝑂 (𝑁𝑘𝐾𝑐). The computation complexity of our
method only depends on the training-independent model-agnostic
sparse matrix multiplication, while other FGL optimization strate-
gies adopt coupled training mechanisms, whose additional loss
terms lead to excessive computation cost accompanied by the local
training process. More analysis and experiments of algorithmic
complexity can be referred to Section 4.5.

4 EXPERIMENTS
In this section, we conduct a wide range of experiments to verify
the effectiveness of FedGTA. To begin with, we introduce 12 graph
benchmark datasets as the global graph and two subgraph simu-
lation strategies widely used in the FGL. Then, we introduce the

baseline backbone GNNs and FGL approaches and detailed experi-
mental setup. After that, we aim to answer the following questions:
Q1: Compared with other state-of-the-art FGL Optimization/Model
studies, can FedGTA achieve better performance? Q2: What is the
generalization ability of FedGTA in the field of FGL? Q3: Where
does the performance gain of FedGTA come from? Q4: How does
FedGTA perform in terms of efficiency and scalability?

4.1 Experimental Setup
Datasets. For a comprehensive comparison, we evaluate FedGTA
and other baselines under both transductive and inductive settings.
For transductive settings, we conduct experiments on 3 small-scale
citation networks (Cora, Citeseer, PubMed) [52], 2 medium-scale
user-item datasets (Amazon Computer, Amazon Photo), 2 medium-
scale Coauthor datasets (Coauthor CS, Coauthor Physics) [41],
and 3 large-scale OGB datasets (ogbn-arxiv, ogbn-products, ogbn-
papers100M) [22]. For inductive settings, we conduct experiments
on 2 datasets of medium and large scales: Flickr and Reddit [54].
More details about the above datasets can be found in Table 2. Based
on this, we provide Louvain [5] and Metis [26] split, which are
widely used in FGL [3, 19, 45, 55]. Specifically, we apply Louvain on
the global graph to assign discovered communities to multi-clients.
In the Metis split, we assign nodes to each client based on the given
number of clients. Notably, since the ogbn-papers100M dataset con-
tains a large number of unlabeled nodes, we only perform Louvain
split on it. This is because we can control the amount of labeled
data contained by each client by assigning communities.

Baselines. For FGL Optimization, we compare FedGTA with
FedAvg [35], FedProx [30], Scaffold [25], MOON [29], FedDC [16],
and GCFL+ [50]. For FGL Model, we conduct comparisons on re-
cently proposed FedGL [7] and FedSage+ [55]. For local models,
we utilize simple and scalable GCN [46], GraphSage [18], SGC [48],
SIGN [14], S2GC [59], GBP [9], and GAMLP [58]. Based on this,
the results we present are calculated by 10 runs. Unless otherwise
stated, we adopt GAMLP as the local model and employ all datasets
with Louvain 10 clients split, except for ogbn-papers100M, which
is divided into 500 clients. Notably, we experiment with multiple
existing scalable GNN models in separate modules to validate the
generalizability of our optimization strategy and avoid complex
charts, making the results more reader-friendly.

Hyperparameters. The hyperparameters in the local model
are set according to the original paper if available. Otherwise, we
perform automatic hyperparameter optimization via the Optuna
toolkit [2]. Specifically, we explore the optimal values for feature
propagation steps (𝑘) and model layers (𝐿) within the ranges of 2
to 20 and 2 to 6. Regarding the percentage of selected augmented
nodes and the number of generated neighbors, we conduct a grid
search from {0.01, 0.05, 0.1, 0.5} and {2, 5, 10} respectively. The
hidden dimension for the small dataset is set to 64 with the number
of local epochs set to 3. For medium or large-scale datasets, we
set 256, and 5, respectively. We default perform 100 rounds, and
the coefficient of the gradient regularization terms is determined
through a grid search with values {0.001, 0.01, 0.1}. The optimal
window size of gradient dynamic clustering ranges from 2 to 10. For
our proposed FedGTA, the order of moments (𝐾 ) and the similarity
threshold (𝜖) are explored within the ranges of 2 to 20 and 0 to 1.



Table 2: The statistical information of the experimental datasets.

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test #Task Description

Cora 2,708 1,433 5,429 7 20%/40%/40% Transductive citation network
CiteSeer 3,327 3,703 4,732 6 20%/40%/40% Transductive citation network
PubMed 19,717 500 44,338 3 20%/40%/40% Transductive citation network

Amazon Photo 7,487 745 119,043 8 20%/40%/40% Transductive co-purchase graph
Amazon Computer 13,381 767 245,778 10 20%/40%/40% Transductive co-purchase graph

Coauthor CS 18,333 6,805 81,894 15 20%/40%/40% Transductive co-authorship graph
Coauthor Physics 34,493 8,415 247,962 5 20%/40%/40% Transductive co-authorship graph

ogbn-arxiv 169,343 128 2,315,598 40 60%/20%/20% Transductive citation network
ogbn-products 2,449,029 100 61,859,140 47 10%/5%/85% Transductive co-purchase graph

ogbn-papers100M 111,059,956 128 1,615,685,872 172 1200k/200k/146k Transductive citation network

Flickr 89,250 500 899,756 7 44k/22k/22k Inductive image network
Reddit 232,965 602 11,606,919 41 155k/23k/54k Inductive social network

Table 3: Transductive performance on FGL Optimization/Model studies. "OOM" stands for out-of-memory error. "Global" represents the training
and inference using the complete global graph under centralized conditions. The best result is bold. The second result is underlined.

Model Optimization Cora CiteSeer PubMed Amazon
Photo

Amazon
Computer

Coauthor
CS

Coauthor
Physics

ogbn
arxiv

ogbn
products

ogbn
papers100M

GCN

Global 84.6±0.3 72.1±0.2 90.3±0.1 92.8±0.3 84.3±0.4 92.5±0.2 93.1±0.6 73.8±0.3 76.3±0.2 OOM
FedAvg 80.7±0.3 68.4±0.3 85.9±0.1 89.6±0.5 80.3±0.4 87.4±0.3 88.5±0.5 66.7±0.4 71.7±0.2 58.4±0.3
FedProx 80.5±0.2 68.7±0.3 85.8±0.1 88.8±0.7 80.5±0.6 87.5±0.6 88.6±0.7 67.1±0.5 72.6±0.3 58.7±0.4
Scaffold 81.3±0.4 68.3±0.3 85.7±0.2 89.5±0.8 80.4±0.5 86.1±0.5 89.3±0.7 66.9±0.7 72.4±0.3 58.8±0.5
MOON 80.7±0.4 69.0±0.3 85.8±0.1 89.3±0.8 80.2±0.5 87.7±0.5 89.2±0.7 67.3±0.5 72.3±0.2 58.2±0.5
FedDC 81.0±0.2 68.4±0.2 86.2±0.2 89.7±0.6 80.8±0.5 87.8±0.5 89.1±0.7 67.5±0.5 72.0±0.2 58.8±0.6
GCFL+ 80.5±0.1 68.1±0.2 85.0±0.1 89.9±0.4 79.4±0.3 87.4±0.2 88.6±0.3 66.8±0.2 71.7±0.2 58.0±0.2
FedGTA 82.1±0.3 70.6±0.3 88.0±0.1 91.4±0.7 82.7±0.5 90.0±0.2 91.2±0.5 70.3±0.4 74.8±0.3 60.6±0.3

GAMLP

Global 85.7±0.5 75.9±0.4 91.1±0.1 93.1±0.5 86.0±0.6 93.7±0.4 93.6±1.0 80.5±0.6 84.2±0.3 68.8±0.1
FedAvg 82.2±0.3 70.7±0.4 86.9±0.1 90.4±0.4 80.6±0.3 89.3±0.4 89.2±0.5 71.4±0.7 79.0±0.3 62.1±0.2
FedProx 82.0±0.8 70.6±0.6 86.8±0.1 90.3±0.6 80.7±0.5 88.7±0.5 89.3±1.0 72.3±1.1 78.8±0.5 63.2±0.3
Scaffold 82.6±0.7 71.1±0.5 86.5±0.2 89.8±0.8 80.8±0.8 88.6±0.6 89.4±0.9 71.6±0.8 79.2±0.5 63.1±0.4
MOON 81.9±0.4 70.9±0.4 87.2±0.2 90.5±0.7 80.5±0.7 89.2±0.5 90.0±0.8 72.5±0.9 79.3±0.5 62.7±0.3
FedDC 83.0±0.5 70.8±0.5 87.0±0.1 89.6±0.7 80.8±0.6 88.8±0.6 89.8±1.0 71.9±0.8 78.9±0.5 63.0±0.3
GCFL+ 82.7±0.7 71.6±0.3 86.5±0.1 90.5±0.4 80.4±0.3 89.5±0.3 89.2±0.4 71.5±0.3 78.5±0.2 63.0±0.2
FedGTA 83.8±0.6 74.3±0.6 88.4±0.1 91.5±0.5 83.9±0.4 91.2±0.4 91.8±0.5 74.3±0.7 81.6±0.4 66.5±0.3

FedGL FedAvg 81.1±0.6 70.6±0.6 86.5±0.4 89.7±1.0 81.7±0.8 88.4±0.8 88.8±1.2 71.4±1.5 OOM OOM
FedSage+ FedAvg 82.7±0.9 72.0±1.0 87.1±0.5 90.7±1.3 82.4±1.5 89.2±1.4 90.0±1.6 71.1±1.8 OOM OOM

Experiment Environment. The experiments are conducted on
the machine with Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz,
and NVIDIA GeForce RTX 3090 with 24GB memory and CUDA
11.8. The operating system is Ubuntu 18.04.6 with 216GB memory.

4.2 Performance Comparison
To answer Q1, we report the transductive performance in Table 3,
where FedGTA outperforms other baselines. Specifically, compared
to the second result, FedGTA achieves an average improvement of
2.33% and 2.54% when using GCN and GAMLP. While FedGL and
FedSage+ outperform methods using GCN as the local model in
some cases, they cannot achieve more competitive results and even
fail to handle large-scale scenarios due to their limited scalability.

The experiment results in Table 4 show that FedGTA consistently
outperforms all the baselines under the inductive setting. Compared
to the most competitive MOON and FedDC, FedGTA has a lead of
more than 3.5% and 2.2%, respectively. Notably, we only compare
FedGTA with other FGL optimization studies (bold or underline).

4.3 Generalization
To answer Q2, we demonstrate that FedGTA can be applied to a
large variety of GNN variants: GCN, GAMLP, SIGN, S2GC, SGC,
GraphSAGE, and GBP are shown in Table 3, Table 4, and Table 6.
Building upon the above backbone GNNs, to test the effective-
ness of our proposed FedGTA, we evaluate it on both coupled
and sampling-based GNN models, which differ in the orderings of
feature propagation and transformation. Through the above experi-
ments, we observe that FedGTA consistently outperforms the other
FGL optimization baselines in both GNN categories.

As we claimed, FedGTA is an optimization strategy suitable for
FGL, and a natural idea is to combine it with the existing FGLModel
studies. In Table 5, we present the experimental results of combin-
ing FedGTA and other competitive strategies with the FGL Model
studies. As shown in the Tabel5, the test accuracy of FedGTA could
improve FedGL and FedSage+ by an average of more than 2.5% on
three datasets. Therefore, we conclude that FedGTA can generalize
to different types of GNNs and existing FGL Model studies well.



Table 4: Inductive performance under 10 clients Metis split.

Model Optimization Flickr Reddit

SIGN

FedAvg 48.10±0.31 91.31±0.10
FedProx 48.58±0.27 91.15±0.12
Scaffold 48.98±0.32 90.58±0.08
MOON 49.34±0.27 91.37±0.11
FedDC 48.76±0.20 91.46±0.05
GCFL+ 48.58±0.16 90.54±0.07
FedGTA 50.89±0.18 93.79±0.06

S2GC

FedAvg 48.75±0.30 92.31±0.09
FedProx 48.81±0.18 92.67±0.07
Scaffold 48.65±0.29 92.39±0.13
MOON 49.36±0.26 92.65±0.07
FedDC 48.91±0.26 93.30±0.12
GCFL+ 49.24±0.14 93.06±0.03
FedGTA 51.32±0.19 95.07±0.08

Table 5: Performance gain in FGL Model under 10 clients Metis split.

Model Optimization ogbn-arxiv Flickr Reddit

FedGL
FedAvg 70.5±1.2 47.9±0.3 89.1±0.3
MOON 70.9±1.4 48.1±0.4 88.7±0.3
FedDC 70.3±1.9 47.8±0.5 89.3±0.5
FedGTA 72.3±0.9 50.5±0.3 92.0±0.2

FedSage+
FedAvg 69.8±1.9 48.1±0.5 90.2±0.3
MOON 70.4±1.7 48.5±0.5 90.2±0.3
FedDC 69.8±2.1 48.2±0.7 90.4±0.5
FedGTA 72.5±1.4 51.4±0.4 92.9±0.3

Table 6: Ablation study on three scalable GNN models.

Model Component ogbn-products Reddit
Louvain Metis Louvain Metis

SGC
w/o Mom. 72.9±0.3 71.8±0.3 91.4±0.1 91.9±0.1
w/o Conf. 73.6±0.2 73.1±0.1 92.5±0.1 92.6±0.1
FedGTA 74.2±0.1 73.6±0.2 93.0±0.1 93.1±0.1

GBP
w/o Mom. 77.1±0.5 77.7±0.5 92.4±0.1 92.4±0.1
w/o Conf. 77.5±0.3 78.1±0.4 93.3±0.1 93.0±0.1
FedGTA 78.2±0.3 78.7±0.4 93.7±0.1 93.4±0.1

SAGE
w/o Mom. 73.8±0.5 73.1±0.3 88.4±0.1 88.0±0.1
w/o Conf. 75.5±0.2 75.6±0.3 90.2±0.1 89.9±0.1
FedGTA 76.8±0.1 76.2±0.3 90.7±0.1 90.2±0.1

4.4 Method Interpretability
To answer Q3, we focus on the implementation of FedGTA on
the client and server side. Specifically, we present the ablation
experiments shown in Table 6 to investigate the contribution of local
smoothing confidence and mixed moments of neighbor features
computed on the client side. Subsequently, their efficacy hinges on
the server’s ability to perform efficient model aggregation, thereby
achieving optimized federated training. The visualization of server-
side model aggregation based on our method is presented in Fig. 3.
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Figure 3: The visualization of model aggregation in Amazon Photo
with 10 clients split, which contains 8 different node labels. The
circle size corresponds to aggregation weight, from large to small.

In the ablation study, we use "Mom." and "Conf." to represent the
mixed moments of neighbor features and local smoothing confi-
dence. We also use "SAGE" to refer to the GraphSage model. Ac-
cording to the experimental results shown in Table 6, we observe
that both Mom. and Conf. contribute to the improvement of the
optimization process significantly. Furthermore, the combination
of them reduces the variance during the federated training process.

In the visualization part, we analyze the model aggregation pro-
cess by referring to the label distributions of each client as shown in
Fig. 3. Based on our design, we aim to achieve personalized aggre-
gation for each client only combines with those with similar label
distribution while the smoothness of each subgraph determines the
aggregation weight. Clearly, for the local subgraph, the steeper the
label distribution, the more likely it has a smooth topology. This
is because connected nodes are more likely to have similar feature
distributions or the same label. In Fig. 3(b), we select the best aggre-
gation round for presentation. According to the circle categories
in multi-clients, we observe that FedGTA successfully customizes
the model aggregation targets for each client. To further clarify, the
circle sizes of clients reflect both their local smoothing confidence
and corresponding aggregation weights. This demonstrates the
efficiency of our method, as subgraphs with more smoothing play
a dominant role in the model aggregation process.

4.5 Efficiency and Scalability Analysis
To answerQ4, we report the running time in Fig. 4 and Fig. 5, which
includes both local training and model aggregation on the server.
Notably, FedGL and FedSage+ consume an extended amount of
running time due to their complex local model architectures and
additional cross-client interactions. In contrast, FGL optimization
strategies based on scalable GNNs are more efficient. Among these
optimization studies, FedGTA exhibits the most stable and superior
performance as evidenced by the curve and shaded trends in Fig. 4.

According to Table 1, the time complexity of FedGTA is mainly
related to the model-agnostic sparse matrix multiplication of soft
labels (𝑐 ≪ 𝑓 ): 𝑂 (𝑘2𝑚𝑛𝑐) and 𝑂 (𝑁𝑘𝐾𝑐), which is not dependent
on the local training process. In contrast, in the client-side model
training, FedProx and Scaffold introduce a gradient regularization
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Figure 4: Convergence curves of our proposed FedGTA and baseline models on 4 large-scale benchmark graph datasets. Curves represent the
local model training phase and model aggregation phase on the server side. The shaded area is the result range of multiple runs.
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Figure 5: Training efficiency with different numbers of clients.
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Figure 6: Performance with different clients participating.

term 𝑂 (𝑓 2), MOON and FedDC rely on the outputs from differ-
ent federated rounds to construct additional model-contrastive loss
𝑂 (2𝑛𝑓 ) and model-drift loss𝑂 (4𝑓 2). Due to this reason, as the local
data scale increases and the models become complex, the training
cost becomes larger, leading to an increase in the time complex-
ity and unstable performance of the aforementioned optimization
methods. This is validated in Fig. 4 and Fig. 5 of our study. On
the server side, Scaffold introduces additional time complexity of
𝑂 (𝑁 𝑓 2 + 𝑓 ) for updating global control variables. The time com-
plexity term of GCFL+ 𝑂 ((𝑁 2 (log(𝑁 ) +𝑇 2 𝑓 2)) becomes sensitive
to the window size 𝑇 used for dynamic gradient clustering and
the number of participating clients 𝑁 . The above inference is also
confirmed with Fig. 5. Although FGL optimization strategies, in-
cluding our methods, share similar inference efficiency, we include
the additional experiment discussing the differences in inference
efficiency between various GNN models on the ogbn-arxiv dataset
with 10-clients Louvain split(time reported in second). For FGL
Model studies, FedGL(1.10±0.12) and FedSage(1.73±0.18) proved to
be the least efficient and unapplicable for solving scalability. While
decoupled GNN models such as SGC(0.12±0.03), SIGN(0.19±0.07),
and GAMLP(0.25±0.08) demonstrate less time cost.

In practical scenarios of FGL, there are often a large number of
clients, which makes it necessary to select a subset of clients to
participate in each round to reduce communication and time-space
costs. This amounts to performing Louvain 50 clients split for ogbn-
products and 500 clients split for ogbn-papers100M. In Fig. 6, we
present the experimental results. According to the experimental re-
sults, we conclude that the accuracy level of model and embeddings
comparison-based approaches, such as MOON and FedDC, signifi-
cantly dropped due to the high heterogeneity of subgraphs when
the participation ratio is small. In contrast, personalized strategies,
such as FedGTA and GCFL+, exhibit robustness. However, com-
pared with FedGTA, the implicit utilization of structural topology
in GCFL+ causes its inability to produce competitive performance.

5 CONCLUSION
This paper presents the first integration of large-scale graph learn-
ing with FGL, motivated by the need for analyzing real-world ap-
plications. Large-scale graph learning can be computationally in-
tensive and space-consuming, which can be effectively solved with
FGL due to its decentralized structure. In this paper, we first dis-
cuss the flaws of existing FGL approaches. Specifically, FGL Model
studies lack scalability due to complex models, and most FGL opti-
mization strategies adopted by FGL fail to recognize the topology.
To address the above issues, we propose FedGTA, which is the first
topology-aware optimization strategy for FGL. Experimental results
demonstrate that FedGTA significantly outperforms competitive
baselines in terms of model performance and generalizability.

FedGTA incorporates Non-param LP, which allows for the ex-
plicit consideration of both model prediction and topology in each
client. This strategy is straightforward and user-friendly. However,
a promising avenue for improvement is to leverage additional infor-
mation provided by local models during training, such as 𝑘-layer
propagated features. Moreover, we employ personalized model ag-
gregation based on mixed moments of neighbor features’ similarity,
which has shown effectiveness in a data-driven context. Never-
theless, there is potential for exploring an adaptive aggregation
mechanism that considers the impact of topology on the FGL.
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