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Domain Generalization-Aware Uncertainty Introspective
Learning for 3D Point Clouds Segmentation

ABSTRACT
Domain generalization 3D segmentation aims to learn the point
clouds with unknown distributions. Feature augmentation has been
proven to be effective for domain generalization. However, each
point of the 3D segmentation scene contains uncertainty in the
target domain, which affects model generalization. This paper pro-
poses the Domain Generalization-Aware Uncertainty Introspec-
tive Learning (DGUIL) method, including Potential Uncertainty
Modeling (PUM) and Momentum Introspective Learning (MIL), to
deal with the point uncertainty in domain shift. Specifically, PUM
explores the underlying uncertain point cloud features and gener-
ates the different distributions for each point. The PUM enhances
the point features over an adaptive range, which provides various
information for simulating the distribution of the target domain.
Then, MIL is designed to learn generalized feature representation
in uncertain distributions. The MIL utilizes uncertainty correlation
representation to measure the predicted divergence of knowledge
accumulation, which learns to carefully judge and understand di-
vergence through uncertainty introspection loss. Finally, extensive
experiments verify the advantages of the proposed method over
current state-of-the-art methods. The code will be available.

KEYWORDS
Domain Generalization, Point Clouds, 3D Semantic Segmentation,
Uncertainty Introspective Learning

ACM Reference Format:
. 2024. Domain Generalization-Aware Uncertainty Introspective Learning
for 3D Point Clouds Segmentation. In Proceedings of Make sure to enter the
correct conference title from your rights confirmation emai (MM’24). ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Point clouds semantic segmentation uses LiDAR to perceive the
scene distribution of the three-dimensional world and has a wide
range of applications, such as autonomous driving [5, 10, 19], ro-
botics [4, 15] and medicine [35]. Currently, semantic segmentation
of point clouds can achieve high accuracy under normal environ-
mental conditions [39]. However, 3D segmentation will inevitably
reduce the reliability of environmental perception under adverse
conditions. For example, someweather conditions such as fog, snow,
and rain will also occur in autonomous driving scenarios. Therefore,
improving the generalization of 3D semantic segmentation of point
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(a) Manual Design Based Feature Augmentation

(b) Ours: Uncertainty Based Feature Augmentation
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Figure 1: Feature augmentation methods essentially aim to
simulate the unknown distribution of the target domain dur-
ing training based on priors. (a) Manually designed priors
provide some preset directions for enhancement. (b) The pro-
posed method focuses on the uncertainty of the points and
performs uncertain introspective learning, which provides a
broad scope for enhancement and can expand the simulated
domain distribution.

clouds under adverse conditions has become an indispensable task
with growing significance.

Previous 3D point cloud methods utilize some prior informa-
tion of the target domain point cloud data to adapt the model to
a specified distribution [23, 29, 38]. CoSMix [23] proposes to mix
samples from the labeled source domain and the pseudo-labeled tar-
get domain to increase the sample space. PolarMix [29] enriches the
distribution of point clouds through enhanced strategies of scene-
level swapping and instance-level rotation and pasting. SVCN [38]
proposes a sparse voxel completion network that assigns semantic
labels from the recovered underlying 3D surface in a two-stage
manner. Domain adaptation methods can alleviate the domain shift
of point cloud segmentation models. Some domain adaptation meth-
ods [28, 40] project point cloud data to images to reduce domain
shift.

The above methods transfer the model to a distribution using
domain-specific data augmentation. However, there are often un-
seen domains in real-world scenarios, which degrades the general-
ization and reliability of the model under some extreme conditions.
PointDR [31] leverages domain generalization to randomize the geo-
metric style of point clouds and aggregate embeddings to improve
model generalization under adverse weather. 3DLabelProp [24] uses
past sequences to propagate labels for newly registered scans. Kim
et al. [11] perform domain enhancement by randomly subsampling
point cloud data to simulate the unseen domain. Although feature
enhancement through domain random is an effective way, carefully
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manually designed feature augmentation has a limited scope, as
shown in Figure 1 (a).

Furthermore, the point cloud is essentially a collection of phys-
ical points, and each point has uncertainty in the real collection.
Failure to take this uncertainty into account will harm generaliza-
tion performance in unseen target domains. For example, in extreme
weather, raindrops and snowflakes will appear at any point in the
target domain [31]. Point cloud data under adverse conditions may
be missing or occluded, making the model highly uncertain for
these samples. Specifically, the data collection process of a point
cloud usually uses flight time and target distance information to
calculate the three-dimensional coordinates and point cloud charac-
teristics of the target surface [5]. However, the process of collecting
spatial structure information usually suffers from sampling bias,
which makes the spatial structure information contain great uncer-
tainty. Especially in extreme weather conditions, the active LiDAR
pulse system is easily affected by scattering media such as rain-
drop particles and snow [2]. This will lead to uncertainty such as
weakened echo intensity, offset in the measurement distance, and
missing points [34]. The uncertainty problem further affects the
domain generalization of the point cloud segmentation model.

In this paper, a Domain Generalization-Aware Uncertainty In-
trospective Learning (DGUIL) framework is proposed for point
cloud segmentation. The proposal focuses on the uncertainty of
points in domain shift to improve the feature generalization. As
shown in Figure 1 (b), our advantage over previous methods is
that it provides a broad scope for feature augmentation, which is
beneficial to expanding the simulation diversity of unknown distri-
bution target domains. Specifically, Potential Uncertainty Modeling
(PUM) is proposed to explore the underlying uncertain point cloud
features and generate the different distribution for each point. The
PUM enhances the point features over an adaptive range, which
provides various information for simulating the distribution of the
target domain. Second, the model needs to introspectively learn
universally applicable features from the uncertainty distribution.
Therefore, Momentum Introspective Learning (MIL) is proposed to
learn generalized feature representation in uncertain distributions.
The MIL utilizes uncertainty correlation representation to measure
the prediction difference of knowledge accumulation. MIL learns to
carefully judge and understand divergence through uncertainty in-
trospection loss, which further improves the domain generalization
ability.

Our main contributions can be summarised as follows:

• The Domain Generalization-Aware Uncertainty Introspec-
tion Learning (DGUIL) framework is proposed for 3D point
cloud segmentation, which addresses the point uncertainty
in domain shift to improve feature generalization.

• The Potential Uncertainty Modeling (PUM) is proposed to
explore the underlying uncertain point cloud features and
enhance the point feature with different potential distribu-
tions.

• Momentum Introspective Learning (MIL) is proposed to learn
generalization features from uncertain distributions with
uncertainty introspection loss.

• The performance of this method reaches the current state-
of-the-art, verifying the effectiveness of the proposal.

2 RELATEDWORK
2.1 3D Point Clouds Segmentation
3D semantic segmentation aims to assign each point in 3D point
cloud data to its corresponding semantic category [3]. Unlike 2D im-
age semantic segmentation [8], which focuses on processing pixel
information in images, 3D semantic segmentation needs to deal
with the discreteness and irregularity of point clouds [18]. There-
fore, 3D segmentation faces more complex spatial modeling and
data processing challenges. In recent years, mainstream methods
have used deep learning models to learn feature representations in
point clouds, which has greatly improved the performance of point
clouds. Some methods [12, 32] based on 2D segmentation project
3D point clouds onto images from various viewpoints. However,
dimensionality reduction will lose a lot of information. Point-based
methods [21, 22] take raw uneven point clouds as input, which
require extensive computation. In addition, the voxel-based method
[17] divides the three-dimensional space into multiple grids accord-
ing to a certain scale. The voxel method combined with the recent
sparse convolution SparseConvNet [26] can efficiently segment
point clouds.

Although a large number of methods have been proposed to im-
prove the accuracy of point cloud semantic segmentation, current
methods still have insufficient accuracy when dealing with complex
environments. For example, scene segmentation in autonomous
driving environments often fails under adverse weather conditions,
which poses a great safety risk to the recognition algorithm. There-
fore, the proposed method focuses on domain generalization of 3D
semantic segmentation to adapt to actual complex scenes.

2.2 Generalized Semantic Segmentation
Domain Generalization (DG) refers to generalizing the model to
unseen target data from different domains or environments when
training the model. The DG model maintains efficient semantic seg-
mentation performance in new domains by learning the robustness
of data distribution. Therefore, DG is more challenging than the
domain adaptation [6, 13, 14] problem that only needs to adapt to a
specific target domain. Generalized 2D semantic segmentation can
usually perform style randomization in the input layer, or enhance
diverse representations based on visual priors [7]. However, 3D
point clouds are unordered and unstructured, with more complex
spatial geometry than flat image data [9]. The texture and geo-
metric features of scenes and objects are condensed in the form
of point cloud data. Under adverse conditions, the complexity is
further exacerbated, making generalized point cloud segmentation
more challenging [40]. Domain enhancement-based methods can
improve model generalization by mining diverse point cloud fea-
tures. Kim et al. [11] perform domain augmentation by randomly
subsampling point cloud data to simulate unseen domains. 3DLa-
belProp [24] uses past sequences to propagate labels for newly
registered scans. PointDR [31] leverages domain generalization to
randomize the geometric styles of point clouds and aggregate their
embeddings to improve model generalization in adverse weather.

However, point cloud data under adverse conditions have high
uncertainties. The transmission of point cloud data may be lost
or obscured. Typically in unfavorable weather, rain or snow can
block part of the laser, and fog may blur the sample. If the impact
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Figure 2: Overview of the uncertainty introspective learning framework for domain generalized 3D segmentation. The Potential
Uncertainty Modeling (PUM) explores the underlying uncertain point cloud features and generates the different distributions
for each point. Momentum Introspective Learning (MIL) learns generalized feature representation through uncertainty
introspection loss. The exponential moving average (EMA) is utilized to update the momentum network.

of uncertainty is ignored during training, this will make unknown
target domain data more confusing to the model. Therefore, the
proposed method strives to focus on the uncertainty problem to
improve the generalization of 3D point cloud segmentation.

2.3 Uncertainty Estimate
Uncertainties in 3D point cloud models are mainly due to data
noise, missingness, incompleteness, and the model’s limited ability
to model complex environments[25, 33]. Uncertainty estimation
methods can be used to reduce noise interference [16, 42]. PointRas
[41] improves predictions at multiple resolutions using uncertainty
selection criteria. HPAL[33] proposes active learning based on hier-
archical points to improve semi-supervised point cloud segmenta-
tion performance by using uncertainty estimation. 3DPC-CISS [36]
propagates labels within local neighborhoods to eliminate noise in
uncertain pseudo-labels, and improve class-incremental learning
on 3D point clouds through uncertainty-aware pseudo-labels.

Different from previous methods, the proposed method explores
the potential of uncertainty estimation in improving model domain
generalization performance. This is challenging because the target
domain is unknown. Therefore, we try to expand the distribution
range of the simulated target domain as much as possible, which
enhances point features differently within a reasonable range. In
addition, momentum introspective learning can further explore the
generalization characteristics under uncertain distributions.

3 UNCERTAINTY INTROSPECTIVE
LEARNING

This section introduces the proposed uncertainty introspective
learning to improve the generalization of point cloud segmentation
domains. Section 3.1 explains the basic issues of domain general-
ization for point cloud semantic segmentation, and introduces the
design concept and framework of the proposed method. Section 3.2
details the proposed Potential Uncertainty Modeling to improve the
model representation capacity. Section 3.3 expresses the proposed
Momentum Introspective Learning to learn generalization features
from uncertain distributions.

3.1 Problem Definition and the Framework
Generalized point cloud segmentation models are expected to be
effectively implemented in unseen scene distributions. Set S =

{(𝑥𝑠𝑛, 𝑦𝑠𝑛)}𝑁𝑛=1 as the source domain point cloud data, where 𝑁 is
the number of point clouds, 𝑥𝑠𝑛 ∈ R4 is the point spatial location
information of 3D coordinate and the properties of points, 𝑦𝑠𝑛 ∈
{1, 2, ...,𝐶} is the corresponding semantic label and𝐶 is the number
of semantic categories. The target domain point clouds are T =

{𝑥𝑡𝑛}𝑁
′

𝑛=1, where𝑁
′ is the number of unseen target point clouds. The

goal of point cloud domain generalization is to learn a generalized
mapping function 𝜃 : R4 → {1, 2, ...,𝐶} by using source domain

2024-04-13 05:17. Page 3 of 1–9.
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data. This function aims to accurately predict the semantic label of
each point for an arbitrarily distributed target domain.

The 3D semantic segmentation usually includes an encoder F𝜃
and a decoder G𝜃 . Thus the segmentation result can be expressed
as 𝒑 = G𝜃 (F𝜃 (𝑥𝑠 )), where 𝑝 ∈ R𝑁 . The segmentation loss L𝑆𝐸𝐺
for the point cloud calculated by the cross-entropy loss:

L𝑆𝐸𝐺 = − 1
𝑁

𝑁∑︁
𝑛=1

𝐶∑︁
𝑐=1

𝑦𝑠(𝑛,𝑐 ) log
(
𝑝 (𝑛,𝑐 )

)
. (1)

In addition to fitting the segmentation loss of the source-only model,
further strategies, such as feature augmentation, need to be de-
signed to improve generalization capabilities.

The framework of the proposed method is shown in Figure 2,
which focuses on point uncertainty to enhance the feature represen-
tation of the domain. The Potential Uncertainty Modeling (PUM)
explores uncertain domain distribution for generating different
point features. In addition, the model needs to learn generally ap-
plicable features in uncertain distributions. Therefore, Momentum
Introspective Learning (MIL) utilizes the momentum network of
encoder F𝜙 and decoder G𝜙 for predicted Divergence, which com-
bines with the introspective metric to learn generalizing features.
The following sections will introduce PUM and MIL in detail.

3.2 Potential Uncertainty Modeling
PUM models the underlying uncertain point cloud features and
enhances the point feature with different potential distributions.
Usually, processing point cloud data requires continuous fusion of
underlying features to restore spatial structure information, which
is usually implemented using U-Net-like architecture. Therefore,
We model uncertainty for each feature level and fuse it into the
encoded features, which allows the model to learn the underlying
data distribution top-down. In addition, aligning statistics from
the source domain to the target domain allows the model to per-
form knowledge transfer [28], since feature statistics represent the
distribution pattern of point cloud features.

Therefore, PUM is designed to model potential uncertainty with
the statistics, as shown in Figure 3. Assume 𝑓𝑖 ∈ R𝑁𝑖×𝐾𝑖 is the
𝑖-th feature layer, where 𝑁𝑖 is the sample number of the 𝑖-th layer
and 𝐾𝑖 is the dimension of the layer. First, the uncertainty factor
U𝑠
𝑖
is obtained by calculating the statistic 𝑠𝑖 of each feature layer.

Secondly, the point distribution O𝑠
𝑖
varies within the uncertainty

rangeU𝑠
𝑖
by randomly generated 𝛼𝑖 . Finally, 𝑓 ′𝑖 is generated through

scale and shift by the random statistical factor 𝑠U
𝑖
, and concatenated

with the 𝑗-th decoder feature 𝑔 𝑗 to obtain 𝑔′
𝑗
for the next decoder

layer.
More specifically, the uncertainty values of statistics can be ob-

tained by calculating the variance. And the statistical vectors of the
𝑖-th feature layer are the mean 𝜇𝑖 and variance Σ𝑖 . Therefore, the
uncertainty factors U𝜇

𝑖
and UΣ

𝑖
can be estimated as:

U
𝜇

𝑖
= 𝑉𝑎𝑟 (𝜇𝑖 ), UΣ𝑖 = 𝑉𝑎𝑟 (Σ𝑖 ) . (2)

Then, the point distributions O𝜇
𝑖
and OΣ

𝑖
can vary randomly

within the uncertainty factors U𝜇
𝑖
and UΣ

𝑖
, which can be expressed

as:
O
𝜇

𝑖
= 𝛼𝑖 ⊗ U𝜇𝑖 , O

Σ
𝑖 = 𝛼𝑖 ⊗ UΣ𝑖 , (3)
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Figure 3: Overview of the potential uncertainty modeling.
The PUM is designed to generate the different potential dis-
tributions for each point and augment the point features.

where 𝛼𝑖 is a random vector and 𝛼𝑖 ∈ R𝑁𝑖×𝐾𝑖 . 𝛼𝑖 takes a random
value from the standard normal distribution during each forward
propagation. Therefore, the different potential distributions for each
point can be generated by random 𝛼𝑖 .

The random statistics 𝜇U
𝑖
and ΣU

𝑖
can be centered on the original

statistics 𝜇𝑖 and Σ𝑖 of the feature. And take different values with
the point distributions O𝜇

𝑖
and OΣ

𝑖
:

𝜇U𝑖 = 𝜇𝑖 + O𝜇𝑖 , ΣU𝑖 = Σ𝑖 + OΣ𝑖 . (4)

Then the uncertain augmentation feature 𝑓 ′
𝑖
of the 𝑖-th layer can

be generated by the random statistics 𝜇U
𝑖
and ΣU

𝑖
:

𝑓 ′𝑖 = ΣU𝑖 𝑓𝑖 + 𝜇
U
𝑖 , (5)

where 𝑓𝑖 is the normalized feature of 𝑓𝑖 , which can be obtained by
𝑓𝑖 = (𝑓𝑖 − 𝜇𝑖 )/Σ𝑖 . Eq.5 enables the feature enhancement direction
of 𝑓 ′

𝑖
controlled within the adaptive range. Each point feature is

enhanced to the different distribution and varies within the uncer-
tainty range. This provides richer features than manually designed
methods, which augment features in limited directions.

The uncertainty augmentation feature 𝑓 ′
𝑖
of each layer needs

to be integrated into the decoding features to learn invariance.
Therefore, the decoder feature 𝑔 𝑗 of 𝑗-th layer is upsampled to the
same feature size as 𝑓 ′

𝑖
and concatenated, then the formula of 𝑔′

𝑗
is:

𝑔′𝑗 = 𝐶𝑜𝑛(𝑓
′
𝑖 ,𝑈 𝑝 (𝑔 𝑗 )) . (6)

In this way, PUM can model the uncertainty in the network
from top to bottom, which learns the underlying distribution of the
point cloud data. PUM supplements the training process with the
underlying target domain distribution, enabling the model to adapt
to various point cloud distribution information.

3.3 Momentum Introspective Learning
In order to introspectively learn generally applicable features from
the uncertainty distribution, MIL needs to be designed to compare
differences in uncertainty distributions and feedback to the model
to carefully judge and understand the divergence. Specifically, the
model utilizes the PUM module to obtain the results:

𝑝𝜃 = G𝜃 (𝑃𝑈𝑀 ( F𝜃 (𝑥𝑠 )) ). (7)

where 𝑝𝜃 ∈ R𝑁×𝐶 is the segmentation result based on uncer-
tainty features. Assuming that the semantic difference is 𝐷 , which
can be intuitively measured using source domain labels 𝐷 (𝑝𝜃 , 𝑦𝑠 ).
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However, the optimization of the segmentation loss already con-
strains 𝑝𝜃 to approximate 𝑦𝑠 , and the optimization process cannot
reflect the discrepancy in different distributions during the train-
ing process. Therefore, we utilize the knowledge of momentum
accumulation to reflect the uncertainty difference.

Specifically, assuming that the update weight of the momentum
network is 𝛿 , the encoder F𝜙 and decoder G𝜙 can be expressed as:

F𝜙 = 𝛿F𝜙 + (1 − 𝛿)F𝜃 ,
G𝜙 = 𝛿G𝜙 + (1 − 𝛿)G𝜃 .

(8)

By inserting PUM into the momentum network, differential results
of knowledge accumulation can be generated:

𝑝𝜙 = G𝜙 (𝑃𝑈𝑀 ( F𝜙 (𝑥𝑠 )) ), (9)

where 𝑝𝜙 has different potential distributions with 𝑝𝜃 , which is
helpful to compare the predicted divergence under uncertainty.

The divergence between 𝑝𝜙 and 𝑝𝜃 can be measured by:

𝐷 (𝑝𝜃 , 𝑝𝜙 ) = ∥𝑝𝜃 − 𝑝𝜙 ∥1, (10)

where ∥∥1 denotes the L1-norm. A straightforward method is to
reduce 𝐷 (𝑝𝜃 , 𝑝𝜙 ). However, the predicted divergence incorporates
the underlying distribution established by PUM, and the uncertain
differences should be carefully considered. Therefore, we used the
prediction variance Σ(𝑝𝜃 ) to measure the predicted divergence.
Besides, considering the semantic differences and ambiguity of
point cloud results, when the uncertainty value of the model output
is high, the model is expected to ignore the bias. That is, the model
needs an introspective metric to carefully judge and understand
the divergence.

Therefore, we validly map uncertainty into an introspective
metric. First, the metric factor should be resolved as a negative
correlation of uncertainty, with values in the valid positive domain.
Therefore, 𝑒−Σ(𝑝𝜃 ) is designed as the metric, thus avoiding a poten-
tial division by zero for stable training. Besides, it is worth noting
that the model may predict larger variances to reduce the impact of
differences. Therefore, Σ(𝑝𝜃 ) requires simultaneous regularization
to optimize for introspective metrics. All in all, the model can be
optimized with uncertainty introspective loss L𝑈 𝐼 , which can be
expressed as:

L𝑈 𝐼 = 𝑒−Σ(𝑝𝜃 ) ∥𝑝𝜃 − 𝑝𝜙 ∥1 + Σ(𝑝𝜃 ). (11)

By minimizing L𝑈 𝐼 , the model selectively ignores the consistent
bias when the uncertainty value of the model output is high, which
avoids false pulls on ambiguous information. Therefore, assuming
the loss balance parameter is 𝜆, the overall training objective can
be formulated as:

min
𝜃

L𝑆𝐸𝐺 + 𝜆L𝑈 𝐼 . (12)

Training in this way can adapt to the underlying uncertainty dis-
tribution through PUM, and learn generalization features through
MIL. Therefore, the inference process can directly use F𝜃 and G𝜃
to generate prediction results for the target domain.

4 EXPERIMENTS AND ANALYSIS
4.1 Datasets and Implement Details
4.1.1 Data Set Description. We utilize three datasets based on the
previous benchmarks: Normal weather to adverse weather and vir-
tual to real-world data distribution. SemanticKITTI [1] is point
cloud data collected by LiDAR sensors in urban scenes under normal
weather conditions. We use the training split with 19 point-level
semantic category annotations as source data. SynLiDAR [30] is a
synthetic LiDAR dataset collected from multiple virtual environ-
ments. The dataset is rich in scenes and layouts, which consists of
more than 19 billion points. We also select the training set labeled
with 19 categories as the source data. SemanticSTF [31] is a point
cloud dataset of urban scenes collected under adverse weather con-
ditions. Extreme weather includes fog, snow, and rain. We utilize
SemanticSTF as the target domain.

4.1.2 ImplementationDetails. The proposedmethod is implemented
on the PyTorch [20] platform. Following the previous work [31],
we use the widely used MinkowskiNet [3] with sparse convolu-
tion [26] as the backbone for all models. The stochastic gradient
descent (SGD) with a momentum of 0.9 is used as the optimizer to
train the model. The batch size is set to 4, and the initial learning
rate is 0.24 with a decay factor of 0.0001. The update parameter
𝛿 of the momentum network in Eq.8 is set to 0.999. The balance
parameter 𝜆 of Eq.12 is set to 3e-4, which is set according to the
experimental results in Table 7. For the training processing of the
source domain data, we use random data enhancement such as
rotation from [−𝜋, 𝜋], scaling from [0.95, 1.05], dropout with 0.2
rates, flipping, noise, and jitter to prevent overfitting.

4.2 Compared with the State-of-the-arts
The proposed method is compared with state-of-the-art methods
on generalized point cloud benchmarks. Table 1 is the quantitative
comparison on SemanticKITTI → SemanticSTF benchmark. Our
method outperforms the current state-of-the-art domain general-
ization point cloud segmentation method by 6.9% in mIou, reaching
35.5%. PolarMix [29] mixes cross-scans of point clouds for data
enhancement. PCL [37] uses a proxy to align positive samples from
different domains. Maximum mean difference (MMD) is used in
[13] to align distributions between different domains. PointDR
[31] utilizes domain randomization technology for data enhance-
ment. These methods enrich the distribution of source domain point
clouds with manually designed feature enhancements. Our method
performs better because we control the feature enhancement di-
rection within an adaptive range, which has richer features than
simply using a manually designed data enhancement method. Fur-
thermore, the proposed method learns generalized features from
the uncertainty in point cloud data, which facilitates generalization
to unseen target domains.

Table 2 is the quantitative comparison on SemanticKITTI →
SemanticSTF benchmark. SynLiDAR is a generated virtual street
view data, which causes distribution differences with the real scene.
Therefore, the generalization effect of the methods is slightly worse
than the methods trained with the real-world scene source domain.
Even so, our method exceeds the current state-of-the-art methods,
achieving a mIoU of 21.1%. This is because the proposed method
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Table 1: Comparison of domain generalization on SemanticKITTI→ SemanticSTF.

Model car bi.cle mt.cle truck oth-v. pers. bi.clst mt.clst road parki. sidew. oth-g. build. fence veget. trunk terra. pole traf. mIou

Noise-aug [31] 74.4 0.0 0.0 23.3 0.6 19.7 0.0 0.0 60.3 10.8 33.9 0.7 72.0 45.2 58.7 17.5 42.4 22.1 9.7 25.9

PolarMix [29] 57.8 1.8 3.8 16.7 3.7 26.5 0.0 2.0 65.7 2.9 32.5 0.3 71.0 48.7 53.8 20.5 45.4 25.9 15.8 26.0

PCL [37] 65.9 0.0 0.0 17.7 0.4 8.4 0.0 0.0 59.6 12.0 35.0 1.6 74.0 47.5 60.7 15.8 48.9 26.1 27.5 26.4

MMD [13] 63.6 0.0 2.6 0.1 11.4 28.1 0.0 0.0 67.0 14.1 37.9 0.3 67.3 41.2 57.1 27.4 47.9 28.2 16.2 26.9

PointDR [31] 67.3 0.0 4.5 19.6 9.0 18.8 2.7 0.0 62.6 12.9 38.1 0.6 73.3 43.8 56.4 32.2 45.7 28.7 27.4 28.6

Ours 77.9 10.6 19.1 26.0 9.7 46.3 6.0 9.3 69.1 18.0 38.6 9.4 73.3 51.2 60.8 30.9 50.8 31.8 22.3 35.5

Table 2: Comparison of domain generalization on SynLiDAR→ SemanticSTF.

Model car bi.cle mt.cle truck oth-v. pers. bi.clst mt.clst road parki. sidew. oth-g. build. fence veget. trunk terra. pole traf. mIou

MMD [13] 25.5 2.3 2.1 13.2 0.7 22.1 1.4 7.5 30.8 0.4 17.6 0.2 30.9 19.7 37.6 19.3 43.5 9.9 2.6 15.1

Noise-Aug [31] 27.1 2.3 2.3 16.0 0.1 23.7 1.2 4.0 27.0 3.6 16.2 0.8 29.2 16.7 35.3 22.7 38.3 17.9 5.1 15.2

PCL [37] 30.9 0.8 1.4 10.0 0.4 23.3 4.0 7.9 28.5 1.3 17.7 1.2 39.4 18.5 40.0 16.0 38.6 12.1 2.3 15.5

PolarMix [29] 39.2 1.1 1.2 8.3 1.5 17.8 0.8 0.7 23.3 1.3 17.5 0.4 45.2 24.8 46.2 20.1 38.7 7.6 1.9 15.7

PointDR [31] 37.8 2.5 2.4 23.6 0.1 26.3 2.2 3.3 27.9 7.7 17.5 0.5 47.6 25.3 45.7 21.0 37.5 17.9 5.5 18.5

Ours 43.3 2.8 2.6 23.2 3.2 31.3 2.5 4.4 34.3 9.2 17.9 0.3 57.1 27.6 50.0 24.2 41.5 19.0 6.1 21.1

Table 3: Comparison of the SemanticKITTI → {Dense fog,
Light fog, Rain, Snow}, which is domain generalization from
normal to adverse weather in real street scenes.

Method D-fog L-fog Rain Snow Mean

PolarMix [29] 29.7 25.0 28.6 25.6 27.2

Noise-Aug [31] 29.3 25.6 29.4 24.8 27.3

PCL[37] 28.9 27.6 30.1 24.6 27.8

MMD [13] 30.4 28.1 32.8 25.2 29.1

PointDR [31] 31.3 29.7 31.9 26.2 29.8

Ours 36.3 34.5 35.5 33.3 34.8

can adaptively model uncertainty based on data characteristics and
learn generalization features in uncertain-aware comparisons.

Table 3 is a quantitative comparison of the SemanticKITTI →
{dense fog, light fog, rain, snow} benchmark, which verifies the gen-
eralization of the proposed method under different severe weather
conditions. The proposed method outperforms the current state-
of-the-art algorithms in all four weather conditions. This shows

that adverse weather conditions bring uncertainty to the recogni-
tion. The proposed method can effectively complement the feature
distribution under different conditions.

In addition, we visualized the point cloud segmentation results
under different weather conditions, as shown in Figure 4. It can be
seen that the segmentation results of our method are more similar
to ground truth, which can further demonstrate the effectiveness of
the proposed method through qualitative comparative experiments.

4.3 Ablation study and Analysis
In order to verify the effectiveness of the proposedmodules, ablation
experiments were conducted on the SemanticKITTI→ Semantic-
STF benchmark, as shown in Table 4.

The model trained with only cross-entropy loss is set as the
baseline, and we supplemented the PUM and MIL modules, respec-
tively, to prove the impact of the modules. The results show that
adding PUM alone can greatly improve the baseline method by
2.7%, reaching a mIoU of 34.1%. This is because uncertainty in the
data limits the model from learning the generalization distribution.
PUM improves model representation by modeling the underlying
uncertainty of features at each layer.

Adding MIL alone can increase mIoU by 0.9%, and mIoU reaches
32.3%. This is because the results generated by the momentum net-
work can use accumulated knowledge to guide the current results
to a certain extent. Adding MIL under the uncertainty distribution
established by PUM can increase mIoU by 1.4% and reach 35.5%.
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Figure 4: Qualitative comparison of domain generalization from normal conditions (SemanticKITTI) to adverse weather (Dense
fog, Light fog, Rain, and Snow).

Table 4: Ablation study with different combination modules.

Method PUM MIL mIoU

Baseline - - 31.4

Baseline + PUM ✓ - 34.1

Baseline + MIL - ✓ 32.3

Baseline + PUM + MIL ✓ ✓ 35.5

This shows that the proposed MIL can allow the model to per-
form introspective learning in the uncertainty distribution, which
is beneficial to further improving the feature generalization ability.

4.3.1 The impact of Uncertainty Perception. In order to further ver-
ify the impact of uncertainty on domain generalization of point
cloud segmentation, we compared other feature augmentation

Table 5: The impact of different feature enhancement meth-
ods on results.

Method DataAug Dropout Uncertainty

mIoU 32.8 29.8 35.5

methods under the same settings and framework in Table 5. DataAug
means that two networks learn different feature representations
under data augmentation. In addition, we also compare the method
that utilizes dropout layers to generate different results with Bayesian
posterior probabilities. Experimental results show that the proposed
uncertainty-aware method has better performance. This is because
the feature enhancement direction is controlled within the adap-
tive range, which can produce richer features than simply using
manually designed data enhancement methods.
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Table 6: The impact of adding PUM on different levels of
feature layers.

L.5 L.4 L.3 L.2 L.1 mIoU

(a) - - - - - 32.3

(b) ✓ - - - - 33.1

(c) ✓ ✓ - - - 34.3

(d) ✓ ✓ ✓ - - 34.5

(e) ✓ ✓ ✓ ✓ - 35.5

(f) ✓ ✓ ✓ ✓ ✓ 33.1

Table 7: The influence of the parameter 𝜆 of the uncertainty
introspection loss on experimental results.

𝜆 5e-3 1e-3 5e-4 3e-4 1e-4

mIoU 31.6 34.8 35.1 35.5 33.5

4.3.2 The level of Uncertainty Modeling. Additional experiments
further validate the impact of different uncertainty levels modeled
in PUM, as shown in Table 6. L5 to L1 indicates modeling uncer-
tainty on the feature layer of the corresponding level, whereas L5
means modeling uncertainty on the deepest semantic features. It
can be seen that modeling uncertainty on relatively deep feature
layers is beneficial to improving accuracy. This is because the un-
certainty established by deep features can be effectively learned by
subsequent feature layers. On the contrary, the uncertain model-
ing of the shallow feature L1 affects the further improvement of
mIoU. This is because the L1 features are close to the output, and
enhancement will interfere with the distribution of classification
features. Experiments have proven that modeling uncertainty on
L5 to L2 can achieve the best performance.

4.3.3 The Effect of Momentum Introspective Learning. The impact
of MIL on the results can be tested by adjusting the weight of the
uncertainty introspective loss, as shown in Table 7. The value of 𝜆
between [5e-3,1e-4] has large fluctuations in the results. It can be
seen from the experiment that excessive weight makes the model
excessively introspective, which is not conducive to the model
itself fitting the data distribution. Experiments show that when the
parameter is 3e-4, the model can achieve the best performance.

4.3.4 The Effect of Different Distance Measures. Table 8 compares
the impact of different distance measurement methods on the re-
sults. Manhattan Distance intuitively considers the distance be-
tween two variables. Therefore, when there is great uncertainty in
the prediction results, the Manhattan distance is more robust than
the Euclidean distance and is less susceptible to outliers. Addition-
ally, cosine distance measures the direction of a variable, which
means that differences in values are not fully taken into account.

Table 8: The impact of different distance measures on exper-
imental results.

𝐷 (𝑝𝜃 , 𝑝𝜙 ) Formula mIoU

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑜𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∥𝑝𝜃 − 𝑝𝜙 ∥1 35.5

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

√︃
(𝑝𝜃 − 𝑝𝜙 )2 34.6

𝐶𝑜𝑠𝑖𝑛𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑝𝜃 𝑝𝜙√︃
𝑝2
𝜃
×
√︃
𝑝2
𝜙

34.7

(a) Baseline                                                    (b) Ours

Figure 5: Features visualized by t-SNE. Clusters of different
colors represent projections of different classes.

Therefore, the Manhattan distance measurement method is more
suitable for the proposed method.

4.3.5 Features Visualized. Figure 5 provides the qualitative analysis
of features via t-SNE [27]. We compared feature embeddings before
and after uncertainty perception. It can be seen that the proposed
method is more cautious in feature embedding than the baseline
method. Our method slightly pulls clusters of the same category
together, which can prevent the impact of point uncertainty domain
shift.

5 CONCLUSIONS AND DISCUSSION
In this paper, a Domain Generalization-Aware Uncertainty Intro-
spection Learning (DGUIL) method is proposed for 3D point cloud
segmentation, which addresses the point uncertainty in domain
shift to improve feature generalization. Potential Uncertainty Mod-
eling (PUM) and Momentum Introspective Learning (MIL) are pro-
posed to model and learn the uncertainty distributions. PUM ex-
plores the underlying uncertain point cloud features and enhances
the point feature with different potential distributions. MIL learns
generalization features from uncertain distributions with uncer-
tainty introspection loss. Experiments demonstrate the advantages
of our method. Furthermore, the point cloud is the collection from
real-world 3D space, and its distribution conforms to objective
physical phenomena. Future work can incorporate physical priors
to learn point cloud geometric distribution and use interpretable
theorems to improve generalization.
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