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Abstract

We propose a novel gradient-based framework for learning parameterized quantum
circuits (PQCs) in the presence of Pauli noise in gate operation. The key innovation
in our framework is the simultaneous optimization of model parameters and learn-
ing of an inverse noise channel, specifically designed to mitigate Pauli noise. Our
parametrized inverse noise model utilizes the Pauli-Lindblad equation and relies
on the principle underlying the Probabilistic Error Cancellation (PEC) protocol
to learn an effective and scalable mechanism for noise mitigation. In contrast to
conventional approaches that apply predetermined inverse noise models during ex-
ecution, our method systematically mitigates Pauli noise by dynamically updating
the inverse noise parameters in conjunction with the model parameters, facilitat-
ing task-specific noise adaptation throughout the learning process. We employ
proximal stochastic gradient descent (proximal SGD) to ensure that updates are
bounded within a feasible range to ensure stability. This approach allows the model
to converge efficiently to a stationary point, balancing the trade-off between noise
mitigation and computational overhead, resulting in a highly adaptable quantum
model that performs robustly in noisy quantum environments.

1 Introduction

Quantum systems offer the potential to solve computationally hard problems in simulation, optimiza-
tion, and machine learning. However, they pose significant challenges on NISQ devices [22]. The
presence of quantum noise, which leads to errors in state preparation, gate operation, and measure-
ment [12, 20], severely constrains the performance of variational quantum algorithms (VQAs) and
quantum machine learning (QML) tasks. A major contributor to quantum noise in NISQ devices
is gate noise, commonly modeled as Pauli noise [29]. Pauli noise occurs when unintended Pauli
operators (X , Y , Z) are applied to quantum states during gate operations. These disruptions degrade
the fidelity of quantum circuits and, in turn, the performance of parameterized quantum circuits
(PQCs) commonly used in optimization and machine learning. Effective noise mitigation techniques
are necessary to realize the potential of quantum computations on NISQ devices.

Pauli noise mitigation strategies, such as zero noise extrapolation (ZNE) and probabilistic error
cancellation (PEC), have several practical drawbacks. ZNE mitigates Pauli noise by purposely
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amplifying it, either by stretching gate durations or by adding noisy operations [11]. It then estimates
zero-noise results through carefully designed cancellation strategies. This approach relies on precise
calibration based on the hardware’s noise characteristics. To find the zero-noise result, ZNE runs
circuits repeatedly at different noise levels, which introduces overhead for complex circuits or
highly stochastic noise profiles. PEC utilizes detailed noise characterization, often by full or partial
tomography to construct inverse noise operations [26]. For this reason, it is hard to implement for
large systems [5] and highly variable noise profiles.

Van Den Berg’s Sparse Pauli Lindblad Method [28] provides an efficient approach to model and
mitigate Pauli noise by utilizing sparse representations of Lindblad operators. It puts forth a principled
framework for modeling quantum noise by integrating the dynamics of open quantum systems.
This approach eliminates the need for resource-intensive full-noise tomography but relies on the
careful selection of dominant noise terms, which requires domain expertise. It also presumes stable
noise profiles and has limited adaptability to rapidly changing noise environments. This limits its
applicability for NISQ hardware, where noise is unpredictable and dynamic. All of these methods
aim to mitigate noise while being oblivious to the specific quantum task/ operator.

In this paper, we propose a novel gradient-based framework to mitigate Pauli noise in PQCs addressing
the challenges of adaptivity, efficiency, and efficacy. Unlike conventional approaches, our method
tightly integrates the process of learning parameterized inverse noise models, constructed using a
sparse Lindblad-based formulation [28], with the optimization of PQCs in the training process.
This simultaneous learning approach allows our framework to adapt dynamically to task-specific
objectives and noise characteristics. We present detailed derivations and theoretical foundations
of our method, establishing its superiority, and demonstrate its performance in the context of real-
world quantum machine learning scenarios. Our findings demonstrate that adaptive noise mitigation
improves accuracy compared to state of the art baselines. Our integrated learning approach improves
the reliability of quantum machine learning on NISQ hardware.

Main Contributions: We propose a joint gradient-based framework that optimizes parameterized
quantum circuits (PQCs) while mitigating Pauli noise arising during unitary gate operations, thereby
enabling noise-aware training. As with all gradient-based approaches, efficient gradient computation
is essential to our method. While gradients w.r.t. PQC parameters can be efficiently estimated using
the parameter shift rule [17], estimating gradients for inverse noise parameters is more challenging due
to exponential scaling with the qubit count. To address this, we introduce a novel and efficient gradient
estimation method tailored to inverse noise parameters enabling scalable and robust optimization of
PQCs.

The remainder of the paper is organized as follows: Section 2 introduces the necessary background.
Section 2.3 presents our proposed integrated framework for PQC optimization. Section 3.2.1 focuses
on gradient derivation while Section 3.2.2 describes our quantum algorithm to estimate gradients of
all model parameters, including the inverse noise parameters, a key component of our efficient joint
optimization approach. Sample complexity and convergence results are discussed in Section 3.2.3
and Section 3.3, respectively. Numerical results are presented in Section 4, with related work and
concluding remarks in Section 5 and Section 6.

2 Preliminaries

2.1 Parameterized quantum Circuit (PQC)

A PQC is a crucial element in the design of Variational Quantum Algorithms (VQAs). It is represented
as a parameterized unitary operator U−→

b
(
−→
θ ) defined by:

U−→
b
(
−→
θ ) =

L∏
l=1

Ul,bl , Ul,bl =

{
Ul(θl) bl = 1

Vl o.w.
(1)

where Ul(θl) = exp {iθlGl} is a parameterized quantum gate generated by a Pauli string Gl ∈
{I,X, Y, Z}⊗n, θl are learnable parameters, Vl are non-Pauli constant unitaries, and

−→
b ∈ {0, 1}L is

a constant binary vector.
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2.2 Noise Model

Pauli noise is a form of quantum noise frequently observed in quantum computing and quantum
information processing. It originates from stochastic errors in quantum gate operations, where each
qubit in a quantum system may experience a noise process characterized by one of the Pauli operators.
This type of noise can be described as a probabilistic application of Paulis— X , Y or Z to a qubit,
each occurring with a certain probability. Since any Markovian noise can be approximated using Pauli
noise via Pauli twirling [8], the dominant noise affecting gate operations can be effectively modeled
as Pauli noise. Based on this observation, we adopt the Pauli-Lindblad noise model introduced in
[28] to define the noise model over a noise-free quantum state ρ as:

Λ(•)(ρ) =
(
⃝k∈K

(
ωkI • I + (1− ωk)Pk • P †

k

))
(ρ)

where ωk = (1 + exp {−2λk})/2, λk ≥ 0.
(2)

Here, • serves as a placeholder indicating that the map is applied to ρ, i.e., Λ(•)(ρ) = Λ(ρ). The
notation⃝k∈K represents the composition of maps where each map corresponds to a noise model
term in K associated with a Pauli string Pk ∈ {I,X, Y, Z}⊗n, and a model coefficient λk. These
model terms reflect various noise interactions in the quantum system.

By definition, the non-physical inverse noise model to mitigate the aforementioned noise can be
written as:

Λ−1(•)(ρ) =
(
γ⃝k∈K

(
qkI • I − (1− qk)Pk • P †

k

))
(ρ)

where, qk = (1 + exp {−2σk})/2, γ = exp

{
2
∑
k∈K

σk

}
, σk ≥ 0.

(3)

Here, values of σk correspond to the coefficients of inverse noise model w.r.t. Paulis Pk.
Remark 2.1. Throughout this paper, the notation for nested map composition⃝L

j=1fj(•) is defined
as

fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1(•) = fL(fL−1(· · · f2(f1(•))))

for any collection of maps f1, · · · , fL.

2.3 Noise-Mitigated PQCs

A noise-mitigated parameterized quantum circuit (nmPQC) is an augmentation of the PQC, as
described in Equation (1). It is carefully designed to minimize the adverse impact of noise. In contrast
to the conventional design where each layer contains only unitary transformations, each layer of the
nmPQC consists of the gate Ul,bl , the noise model Λl and its corresponding inverse noise model Λ−1

l ,
as illustrated in Figure 1. With this design, the noise Λl can be mitigated by the inverse noise operator
Λ−1
l , thereby improving the performance of the PQC.

Formally, an L-layer nmPQC, denoted by UR is defined as follows:

UR(•) =⃝L
l=1Λ

−1
l ◦ Λl ◦ AdUl,bl

(•) (4)

where AdUl,bl
(•) = Ul,bl • U

†
l,bl

, Ul,bl is the l-th gate unitary. Additionally, Λl and Λ−1
l represent

the noise and inverse noise models at gate l, as defined in Equation (2) and Equation (3), respectively.
The noise model Λl is parameterized by unknown noise parameters λl,k, while the inverse noise
model Λ−1

l is parameterized by learnable inverse noise parameters σl,k w.r.t. Paulis P (l)
k , associated

with each unitary Ul,bl .

3 Integrated Learning Framework for nmPQC

In this section, we propose a gradient-based framework to train a parameterized quantum circuit
on noisy quantum hardware, where the noise is modeled by a Pauli–Lindblad model. We begin by
formalizing the learning objective and outlining the assumptions underlying our analysis.
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l-th layer of Noise Mitigated PQCl-th layer of PQC

Figure 1: The diagram above illustrates a single layer of the nmPQC. The complete nmPQC is
constructed by concatenating L such blocks of this structure.

3.1 Problem Statement and Assumptions

Let (ρt, yt) be elements of the data set D =
{
(ρt, yt) ∈ B(CN )× {−1, 1}

}|D|
t=1

, where N = 2n. We
assume that (ρt, yt) are independent and identically distributed (i.i.d.) samples drawn from a known
distribution. In order to train the model UR defined in Equation (4), we formulate the following
optimization problem:

min
−→σ ,

−→
θ ∈R|(−→σ ,

−→
θ )|
L(−→σ ,

−→
θ ) + G(−→σ ,

−→
θ ) (5)

where the loss function L : R
∣∣∣(−→σ ,

−→
θ )

∣∣∣ → R is defined as :

L(−→σ ,
−→
θ ) =

1

|D|

|D|∑
t=1

Lt(
−→σ ,
−→
θ ) =

1

|D|

|D|∑
t=1

(yt − tr (MUR(ρt)))2 (6)

which follows a squared loss formulation and tr (MUR(ρt)) denotes the predicted measurement

outcome corresponding to the observableM. The function G : R
∣∣∣(−→σ ,

−→
θ )

∣∣∣ → R ∪ {+∞} enforces
constraints on the learnable parameters by restricting −→σ and

−→
θ to predefined domains. Specifically,

Xsigma constrains the inverse noise parameters −→σ for each gate, while Xtheta bounds the variational
PQC parameters

−→
θ , ensuring they lie within a specified range and preserve parameter feasibility

during optimization. The constraint sets are defined by Xsigma =
∏L

l=1

∏
k∈Kl

[0,B(l,k)], Xtheta =∏L
l=1
bl=1

[B
(l)
0 ,B

(l)
1 ], B(l,k) ∈ R≥0, and B

(l)
0 ,B

(l)
1 satisfy −∞ < B

(l)
0 ≤ B

(l)
1 <∞.

Using these definitions, G(−→σ ,
−→
θ ) can be written as:

G(−→σ ,
−→
θ ) =

{
0 −→σ ,

−→
θ ∈ Xsigma ×Xtheta

+∞ o.w.
(7)

In this framework, the learning task is comprised of: (i) optimizing the standard PQC parameters that
define the unitary transformations; and (ii) learning the inverse noise parameters σl,k, which mitigate
the unknown noise effect of Λl. The PQCs are restricted to c-local Pauli operators, ensuring that each
unitary Ul,bl acts on at most c qubits. As a result, the number of inverse noise parameters σl,k per
unitary is constrained to at most 4c, reflecting the overall number of Pauli strings in a c-qubit system.

To ensure feasibility and facilitate problem formulation, we make the following assumptions:
Assumption 3.1. The noise parameters λl,k are constrained within the domainXsigma, which ensures
that each λl,k lies within the interval [0,B(l,k)] ⊆ R≥0.
Assumption 3.2. The single-qubit Paulis, I , X , Y , and Z, are considered noiseless.
Assumption 3.3. The State Preparation and Measurement (SPAM) noise is absent.
Assumption 3.4. M is Hermitian with eigenvalues 1 and -1.

3.2 Gradient and its Estimation

As discussed in the previous section, obtaining the gradient of the objective function is essential
for all gradient-based methods. In this subsection, we derive the gradient of the objective function
defined in Equation (6) and present a quantum algorithm for its estimation.
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3.2.1 Derivation of Gradient

First of all, we derive gradients of the per-sample loss function, Lt(
−→σ ,
−→
θ ) = (yt − tr (MUR(ρt)))2.

Using the parameter shift rule as described in [17], we compute the partial derivative of Lt(
−→σ ,
−→
θ )

w.r.t. the PQC parameter θj (from Appendix A.2.2) as:

∂Lt(
−→σ ,
−→
θ )

∂θj
= −2 (yt − tr (MUR(ρt))) · tr

(
MUt,>j

(
Λ−1
j ◦ Λj ◦ Uj,π2

(
ρ
(j−1)
t

)))
. (8)

Here, we denote Uj,a = 1
2AdUj(θj+a) − 1

2AdUj(θj−a) for a ∈ R, and introduce the intermediate

result ρ(j−1)
t defined by: ρ(j−1)

t =
(
⃝j−1

l=1Λ
−1
l ◦ Λl ◦ AdUl,bl

)
(ρt).

Next, differentiating Lt(
−→σ ,
−→
θ ) w.r.t. an inverse noise parameter σj,q yields (see Appendix A.2.1):

∂Lt(
−→σ ,
−→
θ )

∂σj,q
= −4 (yt − tr (MUR(ρt))) · tr

MUt,>j

Λ−1
j

 ∑
g∈G

(j)
g

αj,gg



 . (9)

where G(j)
q =

{
g ∈ {I,X, Y, Z}⊗n

∣∣∣{P (j)
q , g

}
= 0
}

is the subset of Pauli strings that anti-commute

with P (j)
q , and the terms within the innermost parentheses arise from the Pauli decomposition of the

Hermitian matrix ρt,j = Λj ◦ AdUj,bj
◦
(
⃝j−1

l=1Λ
−1
l ◦ Λl ◦ AdUl,bl

)
(ρt). Plugging in the identity

stated in Proposition A.14, we simplify further to arrive at:

∂Lt(
−→σ ,
−→
θ )

∂σj,q
= −4 (yt − tr (MUR(ρt))) · tr

(
MUt,>j

(
Λ−1
j ◦ UP (j)

q
(ρt,j)

))
, (10)

where U
P

(j)
q

(•) = 1
2

(
I • I − P (j)

q • (P (j)
q )†

)
.

3.2.2 Universal Estimation Algorithm

By examining equations Equation (8) and Equation (10), it becomes clear that the primary
computational challenge in evaluating these partial derivatives arises from estimating the
trace terms. These trace terms can be categorized into three distinct types: tr (MUR(ρt)),
tr
(
MUt,>j

(
Λ−1
j ◦ Ad

P
(j)
q

(ρt,j)
))

, and tr
(
MUt,>j

(
AdU(θj+a) (ρt,j)

))
. To facilitate the esti-

mation of the relevant trace terms, we reduce each one to a standard form and present the derivations
in Equation (28), Equation (29), and Equation (30). Upon analysis of these expressions, we observe a
common structural form across them:

tr
(
M⃝L

l=1 Λ
−1
l ◦ AdWl

◦ Λl ◦ AdUl
(ρ)
)
, (11)

where Wl is a Pauli string and Ul is an unitary. Building on this observation, we introduce the
universal estimation algorithm, described in Algorithm 2, designed to unbiasedly approximate the
expression in Equation (11) (see Lemma A.16 for details). The corresponding quantum circuit
implementation is illustrated in Figure 2.

Figure 2: (1) The quantum circuit implementing the universal estimation algorithm: operator Wl

corresponds to a fixed Pauli string, while Ul are constant or parameterized (variational) c-local
non-Pauli quantum operations. (2) Note that the inverse channels Λ−1

l are non-physical and cannot
be directly realized on quantum hardware. Consequently, the implementation of the circuit requires
classical preprocessing. Further details are provided in Appendix A.3.1.
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Importantly, this quantum-classical hybrid algorithm enables unbiased estimation of these trace terms
on noisy quantum hardware without requiring explicit acquisition of the structure of noise channels
Λl, which is typically computationally expensive.

3.2.3 Sample Complexity

The universal estimation algorithm serves as the fundamental building block for the partial derivative
estimation procedures defined in Algorithm 3 and Algorithm 4, corresponding to the partial derivatives
of Lt given in Equation (8) and Equation (10). In essence, the universal estimation algorithm is
executed repeatedly to obtain unbiased approximations of the quantities defined in Equation (8)
and Equation (10), up to a prescribed accuracy (see Proposition A.17 for details). Ultimately, by
iteratively applying Algorithm 3 and Algorithm 4, we obtain an approximation of the gradient of Lt

at a given point (
−→
θ ,−→σ ).

A natural question arises regarding sample complexity: how many measurements are required to
obtain a reliable estimate of the gradient at (−→σ ,

−→
θ )? Referring to Lemma A.22, we observe that,

with probability at least 1− δ, the number of measurements (or number of runs) required to estimate

a single partial derivative within an additive error ε is no less than 322

2((Γ−1
−→σ )2·ε)

2 ln

(
2
∣∣∣(−→σ ,

−→
θ
)∣∣∣

δ

)
,

where Γ−→σ = exp
{
2
∑L

l=1

∑
k∈Kl

σl,k

}
. This expression shows that the sample complexity (or the

measurement complexity) can grow rapidly if ε or δ is too small or if the number of parameters∣∣∣(−→σ ,−→θ )∣∣∣ becomes large, making scalability a significant challenge.

To address the scalability challenge, we incorporate two key techniques. First, in each update round,
we randomly select a subset of coordinate directions to update, where each direction is independently
chosen with probability 1/p for some integer p ≥ 1 (see Algorithm 5). This sampling strategy reduces
the number of estimations required per iteration. The resulting sample complexity is summarized in
the following theorem:
Theorem 3.1 (Informal Version of Theorem A.23). Under Assumption 3.2 - Assumption 3.4, The
expected sample complexity (measurement complexity) required for Algorithm 5 to obtain a estimation
of the gradient with additive error ε > 0 with probability at least 1− δ, where δ ∈ (0, 1) is at least∣∣∣(−→σ ,−→θ )∣∣∣

p
· 322

2
(
(Γ−1

−→σ )2 · ε
)2 ln

2
∣∣∣(−→σ ,−→θ )∣∣∣

δp


Second, when the current parameters (−→σ ,

−→
θ ) are far from a stationary point, we relax the estimation

accuracy to prioritize correct gradient directions over high precision. Concretely, we set the error
tolerance to ε = Γ2−→σ κ for some κ ∈ (0, 1). In particular, by applying the bound established in

Theorem 3.1, the expected total number of measurements per update round is at least

∣∣∣(−→σ ,
−→
θ
)∣∣∣

p ·

322

2κ2 ln

(
2
∣∣∣(−→σ ,

−→
θ
)∣∣∣

δp

)
. This adaptive strategy ensures that early-stage updates remain computationally

efficient while preserving convergence behavior.

3.3 Optimization and Convergence

To train the model introduced in Equation (4), we consider the optimization problem defined in
Equation (5). Specifically, we optimize the objective function in Equation (5) using the proximal
stochastic gradient descent (proximal SGD) method, as described in Algorithm 1. Unlike standard
SGD, proximal SGD updates the parameters according to the rule

(−→σ (t+1),
−→
θ (t+1))← proxG

(
(−→σ (t),

−→
θ (t))− η(t)∇̃(t)

−→σ ,
−→
θ
Lit

)
, (12)

where ∇̃(t)
−→σ ,

−→
θ
Lit denotes the estimated gradient of Lit , generated by Algorithm 5 at the point (−→σ ,

−→
θ )

for a randomly selected index it ∈ [|D|], and proxG denotes the proximal operator associated with G.
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The proximal operator is defined as

proxG(σ
(t), θ(t)) = argmin

(σ(t′),θ(t′))∈X

(
G(σ(t′), θ(t

′)) +
1

2
∥(σ(t′), θ(t

′))− (σ(t), θ(t))∥2
)
.

where X ≡ Xsigma × Xtheta is the search space. This construction ensures that every element of

the sequence
{
(−→σ (t),

−→
θ (t))

}T

t=1
generated by the update rule in Equation (12) remains within X ,

guaranteeing feasibility throughout the optimization process.

Algorithm 1 Learning Algorithm

Dataset: D = {(ρt, yt)}
Input: nmPQC (number of layers L,

−→
b ∈ RL), MeasurementM, Total iterations T, Learning rate

schedule
{
η(t)
}T
t=1

, Number of shots Ñ ∈ (2Z)≥0, and positive integer p.
{The non-increasing learning rate schedule η(t) is such that η(t) ∈ (0, 1), and

∑T
t=0 η

(t) is finite}

Initialization: ∀l ∈
[∥∥∥−→b ∥∥∥

0

]
, θl ∼ Uniform(B

(l)
0 ,B

(l)
1 ); ∀l ∈ [L] , k ∈ Kl , σl,k ← 0.

for t = 1, . . . , T do
it ∼ uniform(1, . . . , |D|) {Sample a random index}
−→p t ∼ (Bernoulli(1/p))

∣∣∣(−→σ ,
−→
θ
)∣∣∣

∇̃(t)
−→σ ,

−→
θ
Lit ←gradient_estimator

(
it,M,−→σ (t),

−→
θ (t), yit , Ñ ,

−→p t

)
{Algorithm 5}

(−→σ (t+1),
−→
θ (t+1))← proxG

(
(−→σ (t),

−→
θ (t))− η(t)∇̃(t)

−→σ ,
−→
θ
Lit

)
end for

We now analyze the convergence of the learning algorithm defined in Algorithm 1. To begin,
we present several key properties of the objective function and the estimated gradient. First, in
Lemma A.28, we show that the function L is locally Lipschitz continuous over the compact set X , a
key property for ensuring convergence. Next, in Lemma A.29, we demonstrate that L+ G is lower
bounded, thereby ensuring the existence of an optimizer. Finally, in Proposition A.30, we prove that
the estimated gradient produced by Algorithm 5 satisfies the bounded variance condition, which
is a necessary requirement for bounded convergence behavior. Building on these properties, we
summarize the convergence rate of the learning algorithm in the following theorem:
Theorem 3.2 (Informal Version of Theorem A.31). Under Assumption 3.1, for the non-convex
objective function L+ G defined in Equation (6), the convergence rate of the Algorithm 1 satisfies(

1∑T
t=1 ηt

T∑
t=1

ηtE [L(wt)]

)
− L(w) ≤

p · ∥w0 − w∥22
2
∑T

t=1 ηt
+

3LX
∑T

t=1 ηtBmax

2
∑T

t=1 ηt
+
p
∑T

t=1 η
2
tV

2
∑T

t=1 ηt
,

where w0 =
(−→σ (0),

−→
θ (0)

)
is the initial point, w = (−→σ ,

−→
θ ) denotes a stationary point, and

wt = (−→σ (t),
−→
θ (t)) are the iterates generated by proximal SGD. The step size η(t) ∈ (0, 1) forms a

monotonically decreasing sequence such that
∑∞

t=0 ηt <∞. The constants V and Bmax are defined
in Theorem A.31.

Remark 3.3. The factor p in the bound above arises from the random selection strategy employed
in Algorithm 5. A larger value of p leads to a sparser estimated gradient ∇̃(t)

−→σ ,
−→
θ
Lit , which in turn

results in a slower convergence rate.

4 Numerical Results

4.1 Experimental Setup and Evaluation

We evaluate our learning algorithm (Algorithm 1) on a binary classification task on the standard
MNIST dataset as in prior related efforts [3, 30], focusing on digits 3 and 6. The data is preprocessed
via principal component analysis (PCA) to reduce dimensionality, then normalized and encoded into
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Figure 3: A sample HEA layer features a 6-qubit RX +RY +RZ +CNOT design. Here, Λ and Λ−1

are gate-specific; one-qubit noise and its inverse are applied to RX , RY and RZ , while two-qubit
noise models are used for the non-parameterized CNOT gates.

quantum states using amplitude encoding, with binary labels: −1 for digit 3 and 1 for digit 6. A total
of 5000 input-label pairs are generated, which are randomly shuffled and split into 80% for training
and 20% for testing. To isolate training-time noise and mitigation, we directly initialize the simulator
to the amplitude-encoded PCA state (i.e., no explicit state-preparation circuit). For the nmPQC, we
employ a noisy 6-qubit hardware-efficient ansatz (HEA), as illustrated in Figure 3, consisting of
two layers of parameterized single-qubit rotation gates RX , RY , and RZ , combined with circular
entangling CNOT gates as the base PQC. At the end of the circuit, all qubits are measured in Z-basis.
We determine the initial learning rate, η(1), via a coarse-to-fine search: a wide log-spaced grid sweep
to localize a promising interval, followed by a binary search within that interval to refine the value.
During training, we maintain a monotonically decreasing learning-rate schedule. The framework is
simulated on a multi-core CPU computing cluster, and the simulation is implemented using Qiskit
[10].

To assess the effectiveness of the proposed mitigation framework which augments the PQC with
nmPQC (as in Figure 3), we compare it with the following configurations: (1) A noiseless PQC,
serving as a best-case performance benchmark. (2) A noisy PQC without mitigation, serving as a
baseline. (3) A mitigated PQC using a probabilistic quantum noise model, adapted from Van Den
Berg et al. [28]. We pre-estimate noise parameters using their procedure and fix them as inverse noise
parameters during training. While their method is not originally intended for variational optimization,
we adapt it as a benchmark, referring to it as “Van Den Berg et al.’s mitigation approach”. For training
we use proximal SGD to optimize the model parameters along with the inverse noise parameter(for
our method). Model performance is evaluated by accuracy, while noise mitigation efficacy is assessed
using mean squared error (MSE) over training epochs.

4.2 Experimental Results
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(a) Training loss comparison across
noiseless, noisy and mitigated
scenarios under static noise.
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(b) Training loss comparison
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Figure 4: Training performance of the binary classification using MNIST dataset in the quantum
noise context. Each epoch summarizes 50 iterations of the training process.

We evaluate the effectiveness of our proposed method by comparing its training loss and testing
accuracy against alternative configurations in the trivial scenario (i.e., full gradient estimation). Each
experiment is repeated three times per setting, and the standard deviation is used to report variability.
Figure 4a shows the convergence behavior of different methods over epochs under a static noise
setting, where all CNOT gates in the noisy and mitigated models are assigned fixed error rates. The
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noiseless model serves as a best-case reference. As expected, the noiseless PQC achieves the lowest
training loss. The noisy PQC without any mitigation mechanism exhibits significantly higher loss,
highlighting the effects of quantum noise. Both mitigation strategies– our proposed method and
that of Van Den Berg et al.[28] achieve an improved reduction in training loss compared to the
noisy baseline. The Van Den Berg et al. approach pre-estimates noise models using the random
benchmarking technique [9] and applies their inverses using the learned noise parameters during
training, yielding an initial advantage. In contrast, our method learns the inverse noise parameters
during training, eliminating the need for noise pre-characterization and calibration, and enabling
streamlined, task-specific adaptive mitigation. We observe that Van Den Berg et al.’s approach
achieves lower training loss initially, but as training continues, our method surpasses it, ultimately
achieving slightly better overall performance. Table 1 summarizes the experimental accuracies of
different approaches, showing that our method outperforms the baseline noisy PQC and Van Den
Berg et al.’s.

To evaluate adaptability, we simulate dynamic noise by slightly increasing error rates of three CNOT
gates shortly after training begins for mitigated methods only. While Van Den Berg et al.’s approach
continues using its static pre-estimated noise model, our method dynamically updates the inverse
noise parameters during training. As shown in Figure 4b, our method effectively learns the inverse
noise parameters in response to dynamic changes and ultimately achieves lower MSE than the method
of Van Den Berg et al.

Table 1: Classification accuracies across Different methods

ACCURACY

NOISELESS PQC 94.13± 0.31
NOISY PQC (BASELINE) 79.69± 3.70
MITIGATED PQC (VAN DEN BERG ET.AL) 85.37± 3.44
OURS 86.43± 3.14

In addition, we investigate the trade-off between gradient estimation cost and optimization per-
formance by evaluating the convergence behavior of our learning algorithm (Algorithm 1) under
probabilistic subsampling (see Appendix A.3.3). This experiment uses the same static noise profile
as in Figure 4a. In this setting, for a fixed parameter p, each coordinate direction (i.e., parameter)
is selected independently with probability 1

p during each gradient update step. The case p = 1

corresponds to full gradient estimation, while larger p values introduce sparsity in the gradient
estimates.

Figure 4c depicts the convergence behavior for various p values over 50 epochs. For p = 1, we
observe faster and smoother convergence, with a steady decline in loss and minimal fluctuations,
demonstrating the benefit of full gradient estimation. As p increases, convergence slows, and the
loss curve becomes noisier with higher overall loss levels, reflecting the impact of sparser gradient
updates.
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Figure 5: Training performance of the binary classification using Fashion-MNIST dataset (Pullover
vs Shirt) in the quantum noise context. Each epoch summarizes 50 iterations of the training process.
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Additional results. We repeat the same protocol on the Fashion-MNIST dataset (Pullover vs.
Shirt) [32]; trends mirror MNIST under static (Figure 5a) and dynamic (Figure 5b) noise, and
probabilistic subsampling behaves similarly (Figure 5c). Additional experimental details and the
accuracy table appear in Appendix A.6.1. Furthermore, under the same dynamic-noise protocol
across both datasets, we compare PEC and ZNE against our method (see Appendix A.6.2); in our
experiments, our framework adapts online and attains the best final metric (lower loss/MSE).

5 Related Work

PQCs are central to many quantum machine learning models, particularly in VQAs [2], originally
introduced for ground state preparation [21]. VQAs adopt a hybrid quantum-classical loop, where a
quantum circuit evaluates an objective and a classical optimizer adjusts parameters. This framework
supports applications such as quantum chemistry [15], combinatorial optimization [6], and quantum
neural networks (QNNs) [24, 23, 1].

Despite their flexibility, PQCs are susceptible to quantum noise, including decoherence, gate noise,
and SPAM errors [22]. Quantum Error Correction (QEC) offers robust protection [27], but its
overhead remains prohibitive for NISQ devices. Instead, Quantum Error Mitigation (QEM) methods
such as ZNE [14, 26] aim to reduce noise without heavy resource demands.

Pauli noise, a common model of gate errors, can exponentially suppress gradients in VQAs, impeding
training [8, 31]. Several approaches have emerged to address this. PEC techniques model noise
as an invertible stochastic process, correcting it via probabilistic sampling [26]. Learning-based
strategies such as those by Strikis et al. [25] and Czarnik et al. [4] train on auxiliary circuits to
estimate mitigated expectations. Van den Berg et al. [28] propose incorporating Lindblad-modeled
noise directly into the optimization. A recent diffusion-inspired approach [19] mitigates noise via
learned forward-backward dynamics.

6 Discussions

We propose a gradient-based framework for jointly learning parameterized quantum circuits (PQCs)
and inverse noise operators, enabling noise parameter estimation during training. This approach
supports rapid recalibration when the noise model changes, thereby avoiding full retraining and
improving adaptability on near-term devices. A parameter-shift–like rule is introduced for scalable,
hardware-efficient gradient estimation with respect to inverse noise parameters, ensuring robustness
under Pauli noise. While effective, the method faces challenges: parameter growth under low locality
(e.g., c > Ω(log n)) can increase computational cost, and the reliance on simple measurement may
limit broader applicability. Future work will focus on reducing the complexity of inverse noise
operators and extending applicability to general measurement schemes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction point out the major contribution and scope of
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work is mentioned in Section 6. Besides, the assumptions
are also discussed in Section 2.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provides complete proof for the theoritical results along with the
assumptions where necessary.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Source code with reproduction instruction is provided as supplementary
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code is made available along with the submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: They required information are provided along with the source code as a
markdown file.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars are denoted as shadows in the figures for experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The required information is provided along with the source code as supple-
mentary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have made a concerted effort to comply with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is not expected to have any direct societal impact, to the best of our
understanding.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As far as we can tell, the paper does not involve any identifiable risks as
mentioned above.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The dataset used in this work along with the code for generating existing
Linblad noise mitigation techniques have been cited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code and relevant information are made available.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve research involving human subjects or crowdsourc-
ing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

In the following appendices, we provide additional technical details that complement the findings
presented in the main manuscript. In Appendix A.1, we offer a concise overview of key concepts in
quantum computing and properties of the Pauli-Lindblad noise model. In Appendix A.2, we present a
detailed derivation of the gradient of the loss function. In Appendix A.3, we describe the algorithms
used for gradient estimation. In Appendix A.4, we discuss the sample complexity of the quantum
algorithm. Finally, in Appendix A.5, we characterize the convergence behavior of the proposed
quantum learning approach and provide an analysis of its performance.

A.1 Preliminary

A.1.1 Overview

We present a brief overview of some key concepts and definitions in quantum computing.
Definition A.1 (Space of Linear Operators). If H be a finite-dimensional Hilbert space, then let
B(H) be the set of all linear operators onH, that is:

B(H) = {A : H → H} .

Remark A.2. In this paper, we assumeH = CN , where N = 2n and n is the number of qubits in the
system. In other words, B(CN ) is the set of all linear operators from CN to CN .
Definition A.3 (c-local). If a Hamiltonian H is supported on at most c of the n ≥ c qubits (i.e., H
acts on qubits in S ⊆ [n], where |S| = c), it is called a c-local Hamiltonian (on n qubits).
Remark A.4. In this paper, we say the locality is high when c = O(log n), where n is the number of
qubits.
Theorem A.5 (Quantum Channel [20]). A map E : B(H)→ B(H) is a quantum channel if and only
if E satisfies the following three conditions:

1. (Trace Preserving) tr (E(ρ)) = 1 for all mixed states ρ onH.

2. (Convex) E (
∑

i piρi) =
∑

i piE(ρi), where {pi} is a probability distribution.

3. (Completely Positive) For all positive Hermitian operators A ∈ B(H), E(A) is also a
positive operator.

A.1.2 Pauli Matrices and Pauli Strings

The Pauli matrices I,X, Y, Z are defined as the following 2-by-2 traceless complex matrices:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

A Pauli string P of length n is an element in {I,X, Y, Z}⊗n. Since I = 1 · (X)0(Z)0, X =

1 · (X)1(Z)0, Y = i · (X)1(Z)1, and Z = 1 · (X)0(Z)1, any Pauli string P ∈ {I,X, Y, Z}⊗n can
be uniquely expressed as follows:

P = ξ

n⊗
j=1

(X)
−→x (j)(Z)

−→z (j),

where ξ ∈ {±1,±i}, −→x ,−→z ∈ {0, 1}n are binary vectors, and −→x (j) (−→z (j)) represents the j-th
component of the vector −→x (−→z ). Given this observation, we can now define the symplectic inner
product between two Pauli strings.

Definition A.6 (Symplectic Inner Product (Less General)). If P1 = ξ1
⊗n

j=1(X)
−→x 1(j)(Z)

−→z 1(j) and
P2 = ξ2

⊗n
j=1(X)

−→x 2(j)(Z)
−→z 2(j) are any two Pauli strings, the symplectic inner product between

P1 and P2, denoted by (P1, P2)sp is defined by:

(P1, P2)sp = (−→x 1 · −→z 2 +
−→z 1 · −→x 2) mod 2.
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The following proposition is a direct application of Definition A.6.

Proposition A.7. Let P1 = ξ1
⊗n

j=1(X)
−→x 1(j)(Z)

−→z 1(j) and P2 = ξ2
⊗n

j=1(X)
−→x 2(j)(Z)

−→z 2(j) be
any two Pauli strings. Then,

P1P2 = (−1)(P1,P2)spP2P1.

Sketch Proof of Proposition A.7. First, we note that for any b1, b2 ∈ {0, 1},

(X)b1(Z)b2 = (−1)b1b2(Z)b2(X)b1

Using the properties of Pauli matrices and Kronecker product, we obtain

P1P2

=

ξ1 n⊗
j=1

(X)
−→x 1(j)(Z)

−→z 1(j)

ξ2 n⊗
j=1

(X)
−→x 2(j)(Z)

−→z 2(j)


=ξ1ξ2

n⊗
j=1

(X)
−→x 1(j)(Z)

−→z 1(j)(X)
−→x 2(j)(Z)

−→z 2(j)

=ξ1ξ2

n⊗
j=1

(−1)
−→z 1(j)·−→x 2(j) · (−1)

−→x 1(j)·−→z 2(j)(X)
−→x 2(j)(Z)

−→z 2(j)(X)
−→x 1(j)(Z)

−→z 1(j)

=ξ1ξ2(−1)
∑n

j=1
−→z 1(j)·−→x 2(j) · (−1)

∑n
j=1

−→x 1(j)·−→z 2(j)
n⊗

j=1

(X)
−→x 2(j)(Z)

−→z 2(j)(X)
−→x 1(j)(Z)

−→z 1(j)

=ξ1ξ2(−1)
−→z 1·−→x 2+

−→x 1·−→z 2

n⊗
j=1

(X)
−→x 2(j)(Z)

−→z 2(j)(X)
−→x 1(j)(Z)

−→z 1(j)

=ξ1ξ2(−1)(
−→z 1·−→x 2+

−→x 1·−→z 2) mod 2
n⊗

j=1

(X)
−→x 2(j)(Z)

−→z 2(j)(X)
−→x 1(j)(Z)

−→z 1(j)

=(−1)(P1,P2)spP2P1.

The following corollary follows immediately from Proposition A.7.
Corollary A.8. Two Pauli strings commute if and only if their symplectic inner product is 0.

A.1.3 Pauli-Lindblad Noise Model

As suggested in [28], the Pauli-Lindblad equation with no internal Hamiltonian dynamics can be
written as:

∂

∂t
ρ(t) = Lρ(t), where L(ρ) =

∑
k∈K

λk(PkρPk − ρ) (13)

and the noise model derived from Equation (13) can be expressed as the following quantum channel:

Λ(ρ) =⃝k∈K

(
ωkρ+ (1− ωk)PkρP

†
k

)
for some K ⊆ [4n − 1], where ωk = (1 + exp {−2λk})/2. To construct the inverse channel, [28]
used the probabilistic error cancellation (PEC) protocol. The PEC approach allows for the application
of an inverse noise channel to correct the errors introduced by the noise channel. The inverse channel
is typically constructed by taking a probabilistic approach to undo the effects of the noise. The inverse
noise model is by definition is a non physical map and expressed as:

Λ−1(ρ) = γ⃝k∈K

(
ωkρ− (1− ωk)PkρP

†
k

)
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with γ = exp
{∑

k∈K 2λk
}

represents sampling overhead. For each k ∈ K the identity is sampled
with probability ωk or the Pauli Pk is applied. The number of non-identity Paulis are counted and
the final Paulis are computed as the product of sampled terms. This process is repeated for all layers
and the corresponding number of non-identity Paulis is recorded along with the sampling overhead.
For layer i = 1 · · ·L, let the respective count be mi and overhead be γi, then the final measurement
outcome is multiplied by

∏L
i=1(−1)miγi to get an unbiased expectation value on average.

For our purpose, we reiterate some useful properties of the operator (aI • I + bPk •P †
k ) for any Pauli

string Pk and a, b ∈ R.

Proposition A.9. Let Pk be any Pauli string. Then, (aI • I + bPk • P †
k ) is linear .

Sketch Proof of Proposition A.9. Let A,B ∈ B(H) be any two linear operators. Let c, d ∈ R. Then,

(aI • I + bPk • P †
k )(cA+ dB)

=aI(cA+ dB)I + bPk(cA+ dB)P †
k

=caIAI + cbPkAP
†
k + daIBI + dbPkBP

†
k

=c(aI • I + bPk • P †
k )(A) + d(aI • I + bPk • P †

k )(B).

Proposition A.10. Let Pk1
, Pk2

be any two Pauli strings. Let a, b, c, d ∈ R be any real values. Then,
aI • I + bPk1 • P

†
k1

and cI • I + dPk2 • P
†
k2

commute.

Sketch Proof of Proposition A.10. The proof is basically the same as the one used in [28]. First, we
write aI • I + bPk1

• Pk1
and cI • I + dPk2

• Pk2
in their matrix form as the follows:

aI ⊗ I + bPk1
⊗ (P †

k1
)T ,

and

cI ⊗ I + dPk2
⊗ (P †

k2
)T .

Then, by applying Proposition A.7, we obtain(
aI ⊗ I + bPk1 ⊗ (P †

k1
)T
)(

cI ⊗ I + dPk2 ⊗ (P †
k2
)T
)

=ac(I ⊗ I)(I ⊗ I) + ad(I ⊗ I)
(
Pk2 ⊗ (P †

k2
)T
)

+ bc
(
Pk1 ⊗ (P †

k1
)T
)
(I ⊗ I) + bd

(
Pk1 ⊗ (P †

k1
)T
)(

Pk2 ⊗ (P †
k2
)T
)

=ac(I ⊗ I)(I ⊗ I) + ad(I ⊗ I)
(
Pk2 ⊗ (P †

k2
)T
)

+ bc
(
Pk1
⊗ (P †

k1
)T
)
(I ⊗ I) + bd(−1)2(Pk1

,Pk2)sp
(
Pk2
⊗ (P †

k2
)T
)(

Pk1
⊗ (P †

k1
)T
)

=
(
cI ⊗ I + dPk2

⊗ (P †
k2
)T
)(

aI ⊗ I + bPk1
⊗ (P †

k1
)T
)
.

Remark A.11. The composite map Λ−1 ◦ Λ can be physical under specific conditions. Using the
definitions of Λ and Λ−1 (defined in Equation (2) and Equation (3)), together with the commuting
property (Proposition A.10), we can rewrite the composite as:

Λ−1 ◦ Λ =⃝k∈{1,··· ,4c}

(
1 + e2(σk−λk)

2
I · I + 1− e2(σk−λk)

2
Pk · Pk

)
,

where λk are noise parameters and σk are inverse noise parameters. It follows that Λ−1 ◦ Λ is
implicitly a valid quantum channel if σk ≤ λk for all k ∈ K. Unfortunately, verifying this inequality
without prior knowledge of λk may require exponential effort.
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A.2 Gradient

A.2.1 Derivation of ∂tr(MUR(ρt))
∂σj,q

Using the linearity of UR and operator ∂
∂σj,q

, we can show that

∂tr (MUR(ρt))
∂σj,q

= tr
(
M∂UR(ρt)

∂σj,q

)
= tr

(
M

∂Ut,>j

(
Λ−1
j (ρt,j)

)
∂σj,q

)
(14)

where ρt,j = Λj ◦ AdUj,bj
◦
(
⃝j−1

l=1Λ
−1
l ◦ Λl ◦ AdUl,bl

)
(ρt) and Ut,>j(•) =(

⃝L
l=j+1Λ

−1
l ◦ Λl ◦ AdUl,bl

)
(•).

Proposition A.12. Let c1, c2, c3, c4 ∈ R be any constant real values. Let P be any complex matrix.
Suppose A : R→ CN×N is any function depending on the variable x ∈ R. Then,

∂

∂x

(
(c1 + c2)I • I + (c3 + c4)P • P †) (A(x))

=
(
(c1 + c2)I • I + (c3 + c4)P • P †)( ∂

∂x
A(x)

)
.

Proof of Proposition A.12. Plugging in the matrix A(x) into
(
(c1 + c2)I • I + (c3 + c4)P • P †)

on the left-hand side, we obtain:(
(c1 + c2)I • I + (c3 + c4)P • P †) (A(x)) = (c1 + c2)A(x) + (c3 + c4)PA(x)P

†.

Taking the derivative with respect to x, we get,

∂

∂x

(
(c1 + c2)A(x) + (c3 + c4)PA(x)P

†) = (c1 + c2)

(
∂A(x)

∂x

)
+ (c3 + c4)P

(
∂A(x)

∂x

)
P †,

which is exactly the same as the expression on the right-hand side.

Using Proposition A.12, it is straightforward to verify that operator Ut,>j commutes with ∂
∂σj,q

.
Therefore, Equation (14) simplifies to

tr

(
M

∂Ut,>j

(
Λ−1
j (ρt,j)

)
∂σj,q

)
= tr

(
MUt,>j

(
∂Λ−1

j (ρt,j)

∂σj,q

))
. (15)

Next, applying the Pauli decomposition of ρt,j , we obtain

ρt,j =
∑

g∈{I,X,Y,Z}⊗n

αj,gg. (16)

Combining Equation (15), Equation (16), and Proposition A.9, we arrive at

∂tr (MUR(ρt))
∂σj,q

=
∑

g∈{I,X,Y,Z}⊗n

αj,gtr

(
MUt,>j

(
∂Λ−1

j (g)

∂σj,q

))
. (17)

To proceed, we need to compute the partial derivative,
∂Λ−1

j (g)

∂σj,q
. First, let us simplify Λ−1

j (g) using
the following proposition.
Proposition A.13. If P, g are any two Pauli strings, then(

aI • I + bP • P †) (g) = {(a+ b)g [P, g] = 0

(a− b)g o.w,

for any a, b ∈ R.
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Proof of Proposition A.13. By definition, we have(
aI • I + bP • P †) (g) = a · g + b · PgP †

Considering two cases:

• Case 1: If [P, g] = 0, then

a · g + b · PgP † = a · g + b · gPP † = (a+ b)g.

• Case 2: If [P, g] ̸= 0, then by Proposition A.7 we know gP = (−1)Pg, which implies:

a · g + b · PgP = a · g − b · gPP † = (a− b)g.

Using Proposition A.13, we deduce, for all g ∈ {I,X, Y, Z}⊗n,

Λ−1
j (g) =γj ⃝k∈Kj

(
qj,k · I • I + (qj,k − 1)P

(j)
k • (P (j)

k )†
)
(g)

=γj ·


∏
k∈Kj(

P
(j)
k ,g

)
sp

=0

(2qj,k − 1) ·
∏
k∈Kj(

P
(j)
k ,g

)
sp

=1

1

 g

=γj ·
∏
k∈Kj(

P
(j)
k ,g

)
sp

=0

(2qj,k − 1) g.

Recall that γj = exp
{
2
∑

k∈Kj
σj,k

}
and qj,k =

1+exp{−2σj,k}
2 . Substituting the corresponding

terms, we obtain

γj ·
∏
k∈Kj(

P
(j)
k ,g

)
sp

=0

(2qj,k − 1) g

=exp

2
∑
k∈Kj

σj,k

 · ∏
k∈Kj(

P
(j)
k ,g

)
sp

=0

(
2 · 1 + exp {−2σj,k}

2
− 1

)
g

=exp

2
∑
k∈Kj

σj,k

 · ∏
k∈Kj(

P
(j)
k ,g

)
sp

=0

exp {−2σj,k} · g

=exp

2
∑
k∈Kj

σj,k

 · ∏
k∈Kj

exp

{
−2σj,k · I

[(
P

(j)
k , g

)
sp

= 0

]}
g

=exp

2
∑
k∈Kj

σj,k −

2
∑
k∈Kj

σj,k · I
[(
P

(j)
k , g

)
sp

= 0

] g.
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Here, I[·] is the indicator function. By splitting 2
∑

k∈Kj
σj,k into 2

∑
k∈Kj(

P
(j)
k ,g

)
sp

=0

σj,k and

2
∑

k∈Kj(
P

(j)
k ,g

)
sp

=1

σj,k and rearranging terms, we obtain

Λ−1
j (g) = exp


2

∑
k∈Kj(

P
(j)
k ,g

)
sp

=0

σj,k − σj,k


exp


2

∑
k∈Kj(

P
(j)
k ,g

)
sp

=1

σj,k


g

=exp

2
∑
k∈Kj

σj,k

(
P

(j)
k , g

)
sp

 g. (18)

Next, applying chain rule to compute the partial derivative of Λ−1
j (g) w.r.t. σj,q , we get:

∂Λ−1
j (g)

∂σj,q
=

∂

∂σj,q
exp

2
∑
k∈Kj

σj,k ·
(
P

(j)
k , g

)
sp

 g

=exp

2
∑
k∈Kj

σj,k ·
(
P

(j)
k , g

)
sp

 · 2(P (j)
q , g

)
sp
g. (19)

Combining Equation (17), Equation (18), and Equation (19), we have

∂tr (MUR(ρt))
∂σj,q

(20)

=
∑

g∈{I,X,Y,Z}⊗n

αj,gtr

MUt,>j

exp

2
∑
k∈Kj

σj,k ·
(
P

(j)
k , g

)
sp

 · 2(P (j)
q , g

)
sp
· g


=

∑
g∈{I,X,Y,Z}⊗n

αj,g · 2
(
P (j)
q , g

)
sp

tr

MUt,>j

exp

2
∑
k∈Kj

σj,k ·
(
P

(j)
k , g

)
sp

 · g


=
∑

g∈{I,X,Y,Z}⊗n

(P (j)
q ,g)

sp
=1

2αj,gtr

MUt,>j

exp

2
∑
k∈Kj

σj,k ·
(
P

(j)
k , g

)
sp

 · g


=
∑

g∈{I,X,Y,Z}⊗n

(P (j)
q ,g)

sp
=1

2αj,gtr
(
MUt,>j

(
Λ−1
j (g)

))

=2tr

MUt,>j

Λ−1
j


∑

g∈{I,X,Y,Z}⊗n

(P (j)
q ,g)

sp
=1

αj,gg



 . (21)

The expression presented in Equation (21) is impractical for direct use. To address this, we consider
the following observation.

Proposition A.14. If P ∈ {I,X, Y, Z}⊗n is any Pauli string, then∑
g∈{I,X,Y,Z}⊗n

(P,g)sp=1

αj,gg =
1

2

(
ρt,j − Pρt,jP †) .
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Proof of Proposition A.14. Again, applying Proposition A.7 the linearity of the adjoint operator, we
obtain

Pρt,jP
† =

∑
g∈{I,X,Y,Z}⊗n

(P,g)sp=0

αj,gg −
∑

g∈{I,X,Y,Z}⊗n

(P,g)sp=1

αj,gg. (22)

Combining Equation (16) and Equation (22), we have

1

2
(ρt,j − Pρt,jP )

=
1

2


 ∑

g∈{I,X,Y,Z}⊗n

αj,gg

−
 ∑

g∈{I,X,Y,Z}⊗n

(P,g)sp=0

αj,gg −
∑

g∈{I,X,Y,Z}⊗n

(P,g)sp=1

αj,gg




=
1

2

 ∑
g∈{I,X,Y,Z}⊗n

(P,g)sp=0

αj,gg +
∑

g∈{I,X,Y,Z}⊗n

(P,g)sp=1

αj,gg



− 1

2

 ∑
g∈{I,X,Y,Z}⊗n

(P,g)sp=0

αj,gg −
∑

g∈{I,X,Y,Z}⊗n

(P,g)sp=1

αj,gg



=
1

2
· 2 ·

 ∑
g∈{I,X,Y,Z}⊗n

(P,g)sp=1

αj,gg

 =
∑

g∈{I,X,Y,Z}⊗n

(P,g)sp=1

αj,gg

By applying Proposition A.14, we are able to reformulate Equation (21) into a form analogous to the
parameter-shift rule. Specifically, we obtain:

∂tr (MUR(ρt))
∂σj,q

= 2 · 1
2
·
[
tr
(
MUt,>j

(
Λ−1
j (ρt,j)

))
− tr

(
MUt,>jΛ

−1
j

(
P (j)
q ρt,j(P

(j)
q )†

))]
.

A.2.2 Derivation of ∂tr(MUR(ρt))
∂θj

We include both parameterized gate and constant gates in the PQC using Equation (1), therefore, we
have to make sure that gradient calculation is exclusively performed for parameterized gates, i.e.,
model parameters only. As a result, we derive the expression for ∂tr(MUR(ρt))

∂θj
for all 1 ≤ j ≤ L such

that bj = 1 to ensure gradient calculation for appropriate model parameters.

Using the definition and linearity property (Proposition A.12), we express the partial derivative as
follows:

∂tr (MUR(ρt))
∂θj

=tr
(
MUt,>j

(
Λ−1
j ◦ Λj

(
∂

∂θj

(
AdUj,bj

(
ρ
(j−1)
t

)))))
=tr
(
MUt,>j

(
Λ−1
j ◦ Λj

(
∂

∂θj

(
AdUj(θj)

(
ρ
(j−1)
t

)))))
=tr
(
MUt,>j

(
Λ−1
j ◦ Λj

(
∂

∂θj

(
Uj(θj)ρ

(j−1)
t U†

j (θj)
))))

.
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where ρ(j−1)
t =

(
⃝j−1

l=1Λ
−1
l ◦ Λl ◦ AdUl,bl

)
(ρt). The partial derivative ofUj(θj)ρ

(j−1)
t U†

j (θj) with
respect to θl is given by

∂Uj(θj)ρ
(j−1)
t U†

j (θj)

∂θj
=
∂Uj(θj)

∂θj
ρ
(j−1)
t U†

j (θj) + Uj(θj)ρ
(j−1)
t

∂U†
j (θj)

∂θj

=iGjUj(θj)ρ
(j−1)
t U†

j (θj)− iUj(θj)ρ
(j−1)
t U†

j (θj)Gj

=i
[
Gj , Uj(θj)ρ

(j−1)
t U†

j (θj)
]
.

Applying the parameter-shift rule given in [17], we obtain:

∂Uj(θj)ρ
(j−1)
t U†

j (θj)

∂θj

=
1

2

(
Uj

(
θj +

π

2

)
ρ
(j−1)
t U†

j

(
θj +

π

2

))
− 1

2

(
Uj

(
θj −

π

2

)
ρ
(j−1)
t U†

j

(
θj −

π

2

))
.

Altogether, ∂tr(MUR(ρt))
∂θj

is given by:

∂tr (MUR(ρt))
∂θj

=
1

2
tr
(
MUt,>j

(
Λ−1
j ◦ Λj ◦ AdUj(θj+π

2 )

(
ρ
(j−1)
t

)))
− 1

2
tr
(
MUt,>j

(
Λ−1
j ◦ Λj ◦ AdUj(θj−π

2 )

(
ρ
(j−1)
t

)))
.

A.2.3 The Gradient of Loss Function

Given the observations above, applying the chain rule, we obtain:

∂ (yt − tr (MUR(ρt)))2

∂σj,q
= −4 (yt − tr (MUR(ρt))) · tr

(
MUt,>j

(
Λ−1
j ◦ UP (j)

q
(ρt,j)

))
, (23)

where U
P

(j)
q

= 1
2AdI − 1

2Ad
P

(j)
q

, and:

∂ (yt − tr (MUR(ρt)))2

∂θj
= −2 (yt − tr (MUR(ρt))) · tr

(
MUt,>j

(
Λ−1
j ◦ Λj ◦ Uj,π2

(
ρ
(j−1)
t

)))
(24)

, where Uj,a = 1
2AdUj(θj+a) − 1

2AdUj(θj−a) for a ∈ R.

A.3 Estimation of Gradient

A.3.1 Universal Estimation Algorithm

In this section, we introduce the universal estimation algorithm, a quantum-classical hybrid method
designed to estimate the quantity

tr
(
M⃝L

l=1 Λ
−1
l ◦ AdWl

◦ Λl ◦ AdUl
(ρ)
)
. (25)

Here, M denotes a Hermitian observable, ρ is a density operator, Wl is a Pauli string, and Ul

represents an arbitrary (non-Pauli) quantum operator. By construction, each composition AdWl
◦

Λl ◦ AdUl
defines a valid quantum channel, and can therefore be implemented directly on quantum

hardware. The primary challenge lies in the realization of the non-physical inverse channels Λ−1
l .

Fortunately, a simple classical preprocessing step enables their indirect implementation. Recall that
each Λ−1

l is defined as a linear combination of identity and conjugation by a Pauli operator, i.e.,
qk,l • −(1 − qk,l)P (l)

k • P
(l)
k , where qk,l ∈ (0, 1). To realize Λ−1

l , we sample from the Bernoulli
distribution Bernoulli(1− qk,l). If the outcome is 0, we apply the identity operation; if the outcome is
1, we apply the Pauli string P (l)

k and record a classical multiplier of−1. After measuring the quantum
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state at the final stage of the algorithm, we multiply the final result by (−1)S , where S is the number
of such −1 recorded during the run. The detailed implementation is presented in Algorithm 2.

Algorithm 2 Universal Estimation Algorithm
(universal_estimator)

Input: t ∈ [|D|], MeasurementM, Parameters −→σ ∈ Xsigma,
−→
θ ∈ Xtheta.

Input: A set of constant Pauli strings (W1, · · · ,WL) {By assumption 3.2, all Wl are noiseless}
S ← 0
Prepare the quantum state ρt
for l = 1 to L do

{Apply the inverse channel Λ−1
l }

ρt ← AdWl
◦ Λl ◦ AdUl

(ρ) {Evolve the Quantum State}
{Here, for AdUl

, we look up the corresponding parameter θ in
−→
θ when Ul is parameterized.}

for k ∈ Kl do
ql,k ← 1+exp(−2σl,k)

2
bl,k ∼ Bernoulli(1− ql,k)
if bl,k = 0 then
ρt ← ρ {Apply Identity}

else
ρt ← P

(l)
k ρ(P

(l)
k )† {Apply P (l)

k }
S ← S + 1

end if
end for

end for
Measure the quantum state ρ onM and let O be the outcome of the measurement.
Return exp

(
2
∑

l∈[1,L],k∈Kl
σ
(t)
l,k

)
· (−1)S ·O

Remark A.15. By construction, the universal estimation algorithm does not impose stringent require-
ments on the locality of the quantum operations involved (see Remark A.4). However, when the
locality is too low—for instance, when c = n—the structure of the inverse channel Λ−1

l can become
significantly more complex. In such cases, the cardinality of the corresponding index set Kl may
grow exponentially with the number of qubits n, rendering the algorithm computationally intractable.

We now proceed to show that Algorithm 2 yields an unbiased estimator of the quantity
tr
(
M⃝L

l=1 Λ
−1
l ◦ AdWl

◦ Λl ◦ AdUl
(ρt)

)
.

Lemma A.16. universal_estimator (Algorithm 2) provides an unbiased estimation of
tr
(
M⃝L

l=1 Λ
−1
l ◦ AdWl

◦ Λl ◦ AdUl
(ρt)

)
, whereM is a Hermitian and ρt is a density operator.

Proof of Lemma A.16. Let (bl,k) ∈ {0, 1}|
−→σ | be a set of independent Bernoulli random variables

with parameter 1− ql,k = 1− 1+exp(−2σl,k)
2 . We denote by ρ(bl,k), the quantum state right before

the measurementM, which depends on the choice of bl,k. From the algorithm definition, we note
that (−1)S and ρ(bl,k) are random variables depending on bl,k, and they can be re-written as follows:

(−1)S = (−1)
∑

l,k bl,k ,

and

ρ(bl,k) =⃝
L
l=1

(
⃝k∈Kl

Ad
(P

(l)
k )bl,k

)
◦ AdWl

◦ Λl ◦ AdUl
(ρt). (26)

Here, AdA(•) = A •A† is the adjoint map and the bullet • stands as a placeholder. For clarity, we
re-express Equation (26) by vectorizing it using the identity, vec [ABC] = (A ⊗ CT )vec [B]. We
then obtain:

vec
[
ρ(bl,k)

]
=

(
1∏

l=L

(∏
k∈Kl

(
P

(l)
k ⊗

(
(P

(l)
k )†

)T)bl,k
)
Nl

)
vec [ρt] ,
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where Nl is defined by:

(∏
k∈Kl

(
(ωl,k)I ⊗ I + (1− ωl,k)P

(l)
k ⊗

(
(P

(l)
k )†

)T))(
Wl ⊗

(
W †

l

)T)(
Ul,bl ⊗

(
U†
l,bl

)T)
.

Taking expectation over bl,k, we arrive at:

E
bl,k

[
(−1)

∑
l,k bl,k · vec

[
ρ(bl,k)

]]
= E

bl,k

[
(−1)

∑
l,k bl,k ·

(
1∏

l=L

(∏
k∈Kl

(
P

(l)
k ⊗

(
(P

(l)
k )†

)T)bl,k
)
Nl

)
vec [ρt]

]

= E
bl,k

[(
1∏

l=L

(∏
k∈Kl

(
−P (l)

k ⊗
(
(P

(l)
k )†

)T)bl,k
)
Nl

)
vec [ρt]

]
.

Since bl,k are independent, it follows that the terms
(
−P (l)

k ⊗
(
(P

(l)
k )†

)T)bl,k

are also independent.

Moreover, Λl and ρt do not depend on bl,k. Therefore, applying properties of expected value, we
obtain:

E
bl,k

[
(−1)

∑
l,k bl,k · vec

[
ρ(bl,k)

]]
=

(
1∏

l=L

(∏
k∈Kl

E
bl,k

[(
−P (l)

k ⊗
(
(P

(l)
k )†

)T)bl,k
])
Nl

)
vec [ρt]

=

(
1∏

l=L

(∏
k∈Kl

(
qlk ·

(
−P (l)

k ⊗
(
(P

(l)
k )†

)T)0

+(1− ql,k) ·
(
−P (l)

k ⊗
(
(P

(l)
k )†

)T)1
))
Nl

)
vec [ρt]

=

(
1∏

l=L

(∏
k∈Kl

(
qlk · I ⊗ I − (1− ql,k) · P (l)

k ⊗
(
(P

(l)
k )†

)T))
Nl

)
vec [ρt] . (27)

Re-writing Equation (27), we express the expectation as:

E
bl,k

[
(−1)

∑
l,k bl,k · ρ(bl,k)

]
=
(
⃝L

l=1

(
⃝k∈Kl

(
qlkAdI − (1− ql,k)Ad

P
(l)
k

))
◦ AdWl

◦ Λl ◦ AdUl

)
(ρt)

=

(
⃝L

l=1

(
1

γl
· γl⃝k∈Kl

(
qlkAdI − (1− ql,k)Ad

P
(l)
k

))
◦ AdWl

◦ Λl ◦ AdUl

)
(ρt)

=

(
⃝L

l=1

(
1

γl
Λ−1
l

)
◦ AdWl

◦ Λl ◦ AdUl

)
(ρt),

where γl = exp
{
2
∑

k∈Kl
σl,k
}

. For a fixed bl,k, one can easily verify that ρ(bl,k) is a density
operator. Using the property of quantum measurement, we note that the expected measurement
outcome O is given by tr

(
Mρ(bl,k)

)
. Combining these results, the expected value of the output of
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the universal estimation algorithm is given by:

E

exp
2

∑
l∈[1,L],k∈Kl

σ
(t)
l,k

 · (−1)S ·O


=exp

2
∑

l∈[1,L],k∈Kl

σ
(t)
l,k

 · E [(−1)∑l,k bl,k ·O
]

=exp

2
∑

l∈[1,L],k∈Kl

σ
(t)
l,k

 · E
bl,k

[
E
[
(−1)

∑
l,k bl,k ·O

∣∣∣bl,k]]

=exp

2
∑

l∈[1,L],k∈Kl

σ
(t)
l,k

 · E
bl,k

[
(−1)

∑
l,k bl,k · tr

(
Mρ(bl,k)

)]

=exp

2
∑

l∈[1,L],k∈Kl

σ
(t)
l,k

 · tr(M · E
bl,k

[
(−1)

∑
l,k bl,k · ρ(bl,k)

])

=

(
1∏

l=L

γl

)
· tr
(
M
(
⃝L

l=1

(
1

γl
Λ−1
l

)
◦ AdWl

◦ Λl ◦ AdUl

)
(ρt)

)
=tr
(
M
(
⃝L

l=1

(
γl ·

1

γl
Λ−1
l

)
◦ AdWl

◦ Λl ◦ AdUl

)
(ρt)

)
=tr
(
M⃝L

l=1 Λ
−1
l ◦ AdWl

◦ Λl ◦ AdUl
(ρt)

)
.

This algorithm serves as a foundational component in the estimation of partial derivatives, as discussed
in the following section. There, we will show how the partial derivative estimation problem can be
reduced to the trace estimation problem stated in Equation (25).

A.3.2 Estimation of Partial Derivative with the Universal Estimation Algorithm

To estimate the partial derivatives with respect to specific parameters, we first require effi-
cient estimations of the trace terms: tr (MUR(ρt)), tr

(
MUt,>j

(
Λ−1
j ◦ Ad

P
(j)
q

(ρt,j)
))

, and

tr
(
MUt,>j

(
AdU(θj+c) (ρt,j)

))
. To facilitate their estimation, we first reformulate them. In particu-

lar, the term tr (MUR(ρt)) can be expressed as

tr
(
M⃝L

l=1 Λ
−1
l ◦ AdI ◦ Λl ◦ AdUl,bl

(ρt)
)

(28)

the term tr
(
MUt,>j

(
Λ−1
j ◦ Ad

P
(j)
q

(ρt,j)
))

as

tr
(
M
(
⃝L

l=j+1Λ
−1
l ◦ AdI ◦ Λl ◦ AdUl,bl

)
◦
(
Λ−1
j ◦ Ad

P
(j)
q
◦ Λj ◦ AdUj,bj

)
◦
(
⃝j−1

l=1Λ
−1
l ◦ AdI ◦ Λl ◦ AdUl,bl

)
(ρt)

)
,

(29)

and the term tr
(
MUt,>j

(
AdU(θj+c) (ρt,j)

))
as

tr
(
M
(
⃝L

l=j+1Λ
−1
l ◦ AdI ◦ Λl ◦ AdUl,bl

)
◦
(
Λ−1
j ◦ AdI ◦ Λj ◦ AdUj(θj+c)

)
◦
(
⃝j−1

l=1Λ
−1
l ◦ AdI ◦ Λl ◦ AdUl,bl

)
(ρt)

)
.

(30)

Building on the transformations described above, we can efficiently estimate the three trace terms
using the universal estimation algorithm presented in Algorithm 2. To estimate the partial derivatives
defined in Equation (23) and Equation (24), integrating the observations discussed above, we introduce
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two estimators: sigma_grad_est and theta_grad_est, explicitly detailed in Algorithm 3 and
Algorithm 4, respectively.

Algorithm 3 Estimation of ∂(yt−tr(MUR(ρt)))
2

∂σj,q
(sigma_grad_est)

Input: t ∈ [|D|], Measurement M, Parameters −→σ (t) ∈ Xsigma,
−→
θ (t) ∈ Xtheta, true label yt,

j ∈ [L], q ∈ Kj , and positive integers Ñ (j,q)
1 , Ñ

(j,q)
2 .

O(1)
t ,O(2,σj,q)

t ← 0, 0

for α = 1 to Ñ (j,q)
1 do

o
(1)
α ← universal_estimator

(
t,M,−→σ ,

−→
θ , (I, · · · , I)

)
{Algorithm 2}

O(1)
t ← O(1)

t + o
(1)
α

end for
for α = 1 to Ñ (j,q)

2 do
b ∼ Bernoulli( 12 )
if b = 1 then
o
(2,σj,q)
α ← universal_estimator

(
t,M,−→σ ,

−→
θ , (I, · · · , I)

)
else
o
(2,σj,q)
α ← (−1) · universal_estimator

(
ρt,M,−→σ ,

−→
θ ,
(
I, · · · , I, P (j)

q , I, · · · , I
))

{Here,
(
I, · · · , I, P (j)

q , I, · · · , I
)

is a L-tuple of identity except the one at (j)}
end if
O(2,σj,q)

t ← O(2,σj,q)
t + o

(2,σj,q)
α

end for
Return −4

(
yt − 1

Ñ
(j,q)
1

O(1)
t

)
· 1

Ñ
(j,q)
2

O(2,σj,q)
t

Algorithm 4 Estimation of ∂(yt−tr(MUR(ρt)))
2

∂θj
(theta_grad_est)

Input: t ∈ [|D|], Measurement M, Parameters −→σ (t) ∈ Xsigma,
−→
θ (t) ∈ Xtheta, true label yt,

j ∈
[∣∣∣−→θ ∣∣∣], and a positive integers Ñ (j)

1 , Ñ
(j)
2 .

O(1)
t ,O(2,θj)

t ← 0, 0

for α = 1 to Ñ (j)
1 do

o
(1)
α ← universal_estimator

(
t,M,−→σ ,

−→
θ , (I, · · · , I)

)
{Algorithm 2}

O(1)
t ← O(1)

t + o
(1)
α

end for
for α = 1 to Ñ (j)

2 do
b ∼ Bernoulli( 12 )
if b = 1 then
o
(2,θj)
α ← universal_estimator

(
t,M,−→σ ,

−→
θ + π

2
−→e j , (I, · · · , I)

)
{Here, −→e j ∈ RL is the vector that has 1 in the jth component and 0 elsewhere.}

else
o
(2,θj)
α ← (−1) · universal_estimator

(
ρt,M,−→σ ,

−→
θ − π

2
−→e j , (I, · · · , I)

)
end if
O(2,θj)

t ← O(2,θj) + o
(2,θj)
α

end for
Return −2

(
yt − 1

Ñ
(j)
1

O(1)
t

)
· 1

Ñ
(j)
2

O(2,θj)
t
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We proceed to demonstrate that both algorithms produce unbiased estimators, as stated in the
following proposition.

Proposition A.17. sigma_grad_est (Algorithm 3) and theta_grad_est (Algorithm 4) provide
unbiased estimators of ∂(yt−tr(MUR(ρt)))

2

∂σj,q
and ∂(yt−tr(MUR(ρt)))

2

∂θj
, respectively.

Proof of Proposition A.17. We will show that Algorithm 3 is an unbiased estimator of
∂(yt−tr(MUR(ρt)))

2

∂σj,q
. Then, by applying a similar reasoning, one can demonstrate that the estimation

produced by Algorithm 4 is also unbiased.

To start, let us show E
[
−4
(
yt − 1

Ñ
(j,q)
1

O(1)
t

)]
= −4 (yt − tr (MUR(ρt))). Let o(1)α and o(2,σj,q)

α

be the random variables defined in Algorithm 3. Applying linearity of expectation, we obtain:

E

[
−4

(
yt −

1

Ñ
(j,q)
1

O(1)
t

)]
= −4

yt − 1

Ñ
(j,q)
1

Ñ
(j,q)
1∑
α=1

E
[
o(1)α

] .

Applying Lemma A.16, we know E
[
o
(1)
α

]
= tr (MUR(ρt)). Hence,

E

[
−4

(
yt −

1

Ñ
(j,q)
1

O(1)
t

)]
= −4 (yt − tr (MUR(ρt))) .

Continuing, we show that,

E

[
1

Ñ
(j,q)
2

· O(2,σj,q)
t

]

=
1

2
·
(

tr
(
MUt,>j

(
Λ−1
l

(
ρ
(j−1)
t

)))
− tr

(
MUt,>j

(
Λ−1
l

(
P (j)
q ρt,j(P

(j)
q )†

))))
.

Applying again linearity of expectation and incorporating the definition of o(2,σj,q)
α , we arrive at:

E

[
1

Ñ
(j,q)
2

· O(2,σj,q)
t

]

=
1

Ñ
(j,q)
2

Ñ
(j,q)
2∑
α=1

E
[
o(2,σj,q)
α

]

=
1

Ñ
(j,q)
2

Ñ
(j,q)
2∑
α=1

(
1

2
E
[
universal_estimator

(
ρt,M,−→σ ,

−→
θ , (I, · · · , I)

)]
− 1

2
E
[
universal_estimator

(
ρt,M,−→σ ,

−→
θ ,
(
I, · · · , I, P (j)

q , I, · · · , I
))])

.
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By Lemma A.16, we know that,

E

[
1

Ñ
(j,q)
2

· O(2,σj,q)
t

]

=
1

Ñ
(j,q)
2

Ñ
(j,q)
2∑
α=1

(
1

2
tr
(
MUt,>j

(
Λ−1
l

(
ρ
(j−1)
t

)))
− 1

2
tr
(
MUt,>j

(
Λ−1
l

(
P (j)
q ρt,j(P

(j)
q )†

))))

=
1

2

 1

Ñ
(j,q)
2

Ñ
(j,q)
2∑
α=1

tr
(
MUt,>j

(
Λ−1
l

(
ρ
(j−1)
t

)))
− 1

2

 1

Ñ
(j,q)
2

Ñ
(j,q)
2∑
α=1

tr
(
MUt,>j

(
Λ−1
l

(
P (j)
q ρt,j(P

(j)
q )†

)))
=
1

2
tr
(
MUt,>j

(
Λ−1
l

(
ρ
(j−1)
t

)))
− 1

2
tr
(
MUt,>j

(
Λ−1
l

(
P (j)
q ρt,j(P

(j)
q )†

)))
.

Since −4(yt −O(1)
t ) and O(2,σj,q)

t are independent, combining results above, we obtain:

E

[
−4

(
yt −

1

Ñ
(j,q)
1

· O(1)
t

)
·

(
1

Ñ
(j,q)
2

· O(2,σj,q)
t

)]

=E

[
−4

(
yt −

1

Ñ
(j,q)
1

· O(1)
t

)]
· E

[
1

Ñ
(j,q)
2

· O(2,σj,q)
t

]

=− 4 (yt − tr (MUR(ρt))) · tr
(
MUt,>j

(
Λ−1
j ◦

(
1

2
AdI −

1

2
Ad

P
(j)
q

)
(ρt,j)

))

A.3.3 Gradient Estimation via Probabilistic Subsampling: Algorithm and Approximation
Lemma

By the definition of Algorithm 1, each step involves estimating the gradient of Lt at (−→σ ,
−→
θ ) for

a given t ∈ [|D|]. To this end, we introduce the following estimation algorithm, which leverages
stochastic sampling to estimate gradient w.r.t. both the inverse noise parameters −→σ and PQC
parameters

−→
θ .
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Algorithm 5 Gradient Estimator (gradient_estimator)

Input: Positive Integer t, MeasurementM, Parameters −→σ (t) ∈ Xsigma,
−→
θ (t) ∈ Xtheta, true label

yt, an even positive integer Ñ , and a binary vector (· · · , p(l,k), · · · , p(l), · · · ) of length
∣∣∣(−→σ ,−→θ )∣∣∣.

Assumption: Assumption 3.2 - Assumption 3.4
for l ∈ [L] do

for k ∈ Kl do
if p(l,k) = 1 then(
∇̃Lt

(−→σ ,−→θ ))σ
l,k
← sigma_grad_est(t,M,−→σ ,

−→
θ , yt, l, k, Ñ/2, Ñ/2)

else(
∇̃Lt

(−→σ ,−→θ ))σ
l,k
← 0

end if
end for

end for
for l ∈

[∣∣∣−→θ ∣∣∣] do

if p(l) = 1 then(
∇̃Lt

(−→σ ,−→θ ))θ
l
← theta_grad_est(t,M,−→σ ,

−→
θ , yt, l, Ñ/2, Ñ/2)

else(
∇̃Lt

(−→σ ,−→θ ))θ
l
← 0

end if
end for
Return

(
· · · ,

(
∇̃Lt

(−→σ ,−→θ ))σ
l,k
, · · · ,

(
∇̃Lt

(−→σ ,−→θ ))θ
l
, · · ·

)

In the following lemma, we demonstrate that Algorithm 5 produces an expected (1/p)-approximation
of the true gradient of Lt at (−→σ ,

−→
θ ).

Lemma A.18. Let p ∈ Z≥1. gradient_estimator (Algorithm 5) is a (1/p)-approximation of the
true gradient of Lt(

−→σ ,
−→
θ ) in expectation.

Proof of Lemma A.18. For simplicity, define w = (−→σ ,−→σ ) and |w| to be the length of w. Let
−→p ∼ (Bernoulli(1/p))|w| be a random binary vector in {0, 1}|w|. By the definition of Algorithm 5,
we note that its output can be represented by a random vector −→p ⊙ ∇̃Lt (w), where ⊙ is the element-
wise vector multiplication and ∇̃Lt (w) is the estimation of the true full gradient ∇Lt (w) generated
by Algorithm 3 and Algorithm 4.

Taking the expected value conditioned on −→p , we get:

E
[−→p ⊙ ∇̃Lt (w)

∣∣∣−→p ] = (· · · , (−→p )α · E [(∇̃Lt (w)
)
α

]
, · · ·

)
.

Here,
(
∇̃Lt (w)

)
α

is the αth component of the vector ∇̃Lt (w). From Proposition A.17, we know

that ∇̃Lt (w) is unbiased, meaning that,

E
[−→p ⊙ ∇̃Lt (w)

∣∣∣−→p ] = (· · · , (−→p )α · (∇Lt (w))α , · · · ) =
−→p ⊙∇Lt (w) .
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Taking the full expectation,

E
[−→p ⊙ ∇̃Lt (w)

]
=

∑
−→p ∈{0,1}|w|

E
[−→p ⊙ ∇̃Lt (w)

∣∣∣−→p ] · Pr [−→p ]
=

∑
−→p ∈{0,1}|w|

(−→p ⊙∇Lt (w)) · Pr [−→p ]

=

 ∑
−→p ∈{0,1}|w|

Pr [−→p ] · −→p

⊙∇Lt (w)

= (· · · ,E [(−→p )α] , · · · , )
T ⊙∇Lt (w)

= (· · · ,Pr [(−→p )α = 0] · 0 + Pr [(−→p )α = 1] · 1, · · · )T ⊙∇Lt (w)

= (1/p, · · · , 1/p)T ⊙∇Lt (w)

=
1

p
· ∇Lt (w) .

Here, (•)α is the αth component of the input vector.

Remark A.19. The scalar p ∈ Z≥1 must not exceed the total number of parameters (inverse noise
parameters and PQC parameters) being optimized in order to guarantee that the expected density
of the estimation given by E

[∥∥∥−→p t ⊙ ∇̃Lt

(−→σ ,−→θ )∥∥∥
0

]
is not 0. In particular, if p = 1, −→p t is,

by definition, an all-ones vector. Consequently, gradient_estimator (Algorithm 5) provides an
unbiased estimate of the full gradient of Lt at (−→σ ,

−→
θ ).

A.4 Sample Complexity

A review of Algorithm 5 indicates that it employs a stochastic selection strategy to reduce the overall
sample complexity. In the remainder of this section, we show that the total sample complexity
decreases by a factor of 1/p in expectation. We begin by demonstrating that a mapping of the form
C
(
y − 1

n

∑n
i=1 Xi

) (
1
n

∑2n
i=n+1 Xi

)
satisfies the bounded difference property.

Proposition A.20. Let n ∈ Z>0 be some positive number. Let X1, · · · ,X2n ∈ {−1, 1}
be 2n independent random variables. Define F : {−1, 1}2n → R by F (X1, · · · ,X2n) =

C
(
y − 1

n

∑n
i=1 Xi

) (
1
n

∑2n
i=n+1 Xi

)
for some constant C ∈ R and y ∈ {−1, 1}. Then, for all

1 ≤ j ≤ 2n,

max
Xj ,X′

j∈{−1,1}

∣∣F (X1, · · · ,Xj , · · · ,X2n)− F (X1, · · · ,X′
j , · · · ,X2n)

∣∣ ≤ |4C|
n
.

Proof of Proposition A.20. By the definition of F , we consider the following two cases:
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• Case 1: Suppose 1 ≤ j ≤ n. Then, for any Xj ,X′
j ∈ {−1, 1}, we obtain:∣∣F (X1, · · · ,Xj , · · · ,Xn, · · · ,X2n)− F (X1, · · · ,X′

j , · · · ,Xn, · · · ,X2n)
∣∣

=

∣∣∣∣∣∣∣C
y − 1

n

n∑
i=1
i̸=j

Xi −
Xj

n

( 1

n

2n∑
i=n+1

Xi

)

−C

y − 1

n

n∑
i=1
i ̸=j

Xi −
X′

j

n

( 1

n

2n∑
i=n+1

Xi

)∣∣∣∣∣∣∣
=
|C|
n
·
∣∣X′

j − Xj

∣∣ · ∣∣∣∣∣
(
1

n

2n∑
i=n+1

Xi

)∣∣∣∣∣
≤|C|
n
·
∣∣X′

j − Xj

∣∣ · 1
n

2n∑
i=n+1

|Xi| (triangle inequality)

≤|C| · 2
n2

·
2n∑

i=n+1

1 =
2|C|
n
.

• Case 2: Suppose n+ 1 ≤ j ≤ 2n. Again, for any Xj ,X′
j ∈ {−1, 1}, we obtain:∣∣F (X1, · · · ,Xn, · · · ,Xj , · · ·X2n)− F (X1, · · · ,Xn, · · · ,X′

j , · · · ,X2n)
∣∣

=

∣∣∣∣∣∣∣∣C
(
y − 1

n

n∑
i=1

Xi

) 1

n

2n∑
i=n+1
i ̸=j

Xi −
Xj

n



−C

(
y − 1

n

n∑
i=1

Xi

) 1

n

2n∑
i=n+1
i ̸=j

Xi −
X′

j

n


∣∣∣∣∣∣∣∣

=|C| ·

∣∣∣∣∣y − 1

n

n∑
i=1

Xi

∣∣∣∣∣ ·
∣∣∣∣Xj

n
−

X′
j

n

∣∣∣∣
≤|C| ·

(
|y|+ 1

n

n∑
i=1

|Xi|

)
· 2
n

(triangle inequality)

≤|C| · (1 + 1) · 2
n
=

4|C|
n
.

Together, we get

max
Xj ,X′

j∈{−1,1}

∣∣F (X1, · · · ,Xj , · · ·X2n)− F (X1, · · · ,X′
j , · · · ,X2n)

∣∣ ≤ max

{
2|C|
n
,
4|C|
n

}
=

4|C|
n
.

A.4.1 Probabilistic Bound on Estimation Error for Gradient Estimators

In the following lemma, we establish a probabilistic bound for estimating a partial derivative of Lt

with deviation ε > 0.

Lemma A.21. Let ∂̃σj,q
Lt

(−→σ ,−→θ ) and ∂̃θjLt

(−→σ ,−→θ ) denote the estimated partial derivative of

Lt with respect to σj,q and θj at (−→σ ,
−→
θ ), which are generated by Algorithm 3 or Algorithm 4, re-

spectively. Similarly, let ∂σj,qLt

(−→σ ,−→θ ) and ∂θjLt

(−→σ ,−→θ ) denote the corresponding true partial
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derivatives. Then, for all ε > 0, the probabilities Pr
[∣∣∣∂̃σj,q

Lt

(−→σ ,−→θ )− ∂σj,q
Lt

(−→σ ,−→θ )∣∣∣ ≥ ε∣∣∣t]
and Pr

[∣∣∣∂̃θjLt

(−→σ ,−→θ )− ∂θjLt

(−→σ ,−→θ )∣∣∣ ≥ ε∣∣∣t] are both upper-bounded by

2 exp

{
−2((Γ−1

−→σ )2·ε)
2
Ñ

322

}
, where Γ−1

−→σ = exp
{
−2
∑L

l=1

∑
k∈Kl

σl,k

}
and Ñ is a positive

even integer.

Proof of Lemma A.21. We begin by establishing the bound for
Pr
[∣∣∣∂̃σj,qLt

(−→σ ,−→θ )− ∂σj,qLt

(−→σ ,−→θ )∣∣∣ ≥ ε∣∣∣t]. Since Γ−1
−→σ > 0, we have∣∣∣∂̃σj,q

Lt

(−→σ ,−→θ )− E
[
∂̃σj,q
Lt

(−→σ ,−→θ )]∣∣∣ ≥ ε
⇐⇒ (Γ−1

−→σ )2 ·
∣∣∣∂̃σj,q

Lt

(−→σ ,−→θ )− E
[
∂̃σj,q
Lt

(−→σ ,−→θ )]∣∣∣ ≥ (Γ−1
−→σ )2 · ε.

Thus, the probability can be written as:

Pr
[∣∣∣∂̃σj,qLt

(−→σ ,−→θ )− E
[
∂̃σj,qLt

(−→σ ,−→θ )]∣∣∣ ≥ ε∣∣∣t]
=Pr

[
(Γ−1

−→σ )2 ·
∣∣∣∂̃σj,qLt

(−→σ ,−→θ )− E
[
∂̃σj,qLt

(−→σ ,−→θ )]∣∣∣ ≥ (Γ−1
−→σ )2 · ε

∣∣∣t]
=Pr

[∣∣∣(Γ−1
−→σ )2 · ∂̃σj,q

Lt

(−→σ ,−→θ )− (Γ−1
−→σ )2 · E

[
∂̃σj,q
Lt

(−→σ ,−→θ )]∣∣∣ ≥ (Γ−1
−→σ )2 · ε

∣∣∣t] .
Next, we aim to show that the random variable (Γ−1

−→σ )2 · ∂̃σj,qLt

(−→σ ,−→θ ) satisfies the bounded

difference property. From the definitions in Algorithm 3, we observe that ∂̃σj,q
Lt

(−→σ ,−→θ ) can be

re-written as a random map from {−Γ−→σ ,Γ−→σ }
Ñ to R defined as the following:(

∂̃σj,qLt

(−→σ ,−→θ ))(o(1)1 , · · · , o(1)
Ñ/2

, o
(2,σj,q)
1 , · · · , o(2,σj,q)

Ñ/2

)
=(−4)

yt − 1

Ñ/2

Ñ/2∑
β=1

o
(1)
β

 1

Ñ/2

Ñ∑
β=Ñ/2+1

o
(2,σj,q)
β

 .

From the definitions in Algorithm 2, we observe that both o(1)β and o(2,σj,q)
β are in the set {−Γ−→σ ,Γ−→σ }.

This implies that the random variables Γ−1
−→σ · o

(1)
β and Γ−1

−→σ · o
(2,σj,q)
β lie within {−1, 1}. Consequently,

(Γ−1
−→σ )2 ·

(
∂̃σj,qLt

(−→σ ,−→θ )) becomes a random map from {−1, 1}Ñ to R. For convenience, let us

re-express (Γ−1
−→σ )2 ·

(
∂̃σj,q
Lt

(−→σ ,−→θ )) as a mapping F : {−1, 1}Ñ → R, defined as follows:

F
(
Y(F )

1 , · · · ,Y(F )

Ñ/2
, · · · ,Y(F )

Ñ

)
= (−4)

Γ−1
−→σ · yt −

1

Ñ/2

Ñ/2∑
β=1

Y(F )
β

 1

Ñ/2

Ñ∑
β=Ñ/2+1

Y(F )
β

 .

where Y(F )
β = Γ−1

−→σ · o
(1)
β for 1 ≤ β ∈ Ñ/2, and Y(F )

β = Γ−1
−→σ · o

(2,σj,q)
β for Ñ/2 + 1 ≤ β ∈ Ñ . By

applying Proposition A.20, we observe the following bound on the difference when changing a single
input:

max
Y(F )

ζ ,(Y(F )
ζ )′∈{−1,1}

∣∣∣F (Y(F )
1 , · · · ,Y(F )

ζ , · · · ,Y(F )

Ñ

)
− F

(
Y(F )

1 , · · · , (Y(F )
ζ )′, · · · ,Y(F )

Ñ

)∣∣∣
≤ 16

Ñ/2
=

32

Ñ
.

This shows that changing a single input alters the value of (Γ−1
−→σ )2 ·

(
∂̃σj,q
Lt

(−→σ ,−→θ )) by at most

32

Ñ
, meaning that (Γ−1

−→σ )2 ·
(
∂̃σj,qLt

(−→σ ,−→θ )) satisfies the bounded differences property. As a result,
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by applying McDiarmid’s inequality [16], we know that for any ε > 0, we deduce,

Pr
[∣∣∣(Γ−1

−→σ )2 · ∂̃σj,qLt

(−→σ ,−→θ )− (Γ−1
−→σ )2 · E

[
∂̃σj,qLt

(−→σ ,−→θ )]∣∣∣ ≥ (Γ−1
−→σ )2 · ε

∣∣∣t]
≤2 exp

−2 ((Γ−1
−→σ )2 · ε

)2
/

 Ñ∑
i=1

(
32/Ñ

)2
=2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
.

By Proposition A.17, we note that

E
[
∂̃σj,q
Lt

(−→σ ,−→θ )] = ∂σj,q
Lt

(−→σ ,−→θ ) .
Therefore, we obtain the following probability bound:

Pr
[∣∣∣∂̃σj,qLt

(−→σ ,−→θ )− ∂σj,qLt

(−→σ ,−→θ )∣∣∣ ≥ ε∣∣∣t] ≤ 2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
.

Using similar arguments as above, we identify (Γ−1
−→σ )2 · ∂̃θjLt

(−→σ ,−→θ ) as a random mapping from

{−1, 1}Ñ to R. From Proposition A.20, we observe that changing a single input alters the value
of (Γ−1

−→σ )2 · ∂̃θjLt

(−→σ ,−→θ ) by at most 16

Ñ
< 32

Ñ
. Again, by applying McDiarmid’s inequality and

Proposition A.17, we obtain:

Pr
[∣∣∣∂̃θjLt

(−→σ ,−→θ )− ∂θjLt

(−→σ ,−→θ )∣∣∣ ≥ ε] ≤ 2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
.

Now returning to the context of Algorithm 1, in each update round, exactly one −→p is sampled and
passed into Algorithm 5. For simplicity, we define −→p ⊙ ∇̃Lt

(−→σ ,−→θ ) as the vector of estimated

partial derivatives generated by Algorithm 5. Given a particular update round t and −→p , the αth entry
of −→p ⊙ ∇̃Lt

(−→σ ,−→θ ) ̸= 0 only when the αth entry in −→p is 1. Thus, to quantify the estimation error,

it suffices to measure the deviation between the non-zero entries of −→p ⊙ ∇̃Lt

(−→σ ,−→θ ) and their
corresponding true partial derivative.

Let −→p ⊙ ∇Lt

(−→σ ,−→θ ) denote the vector of the corresponding true partial derivatives. Here,

∇Lt

(−→σ ,−→θ ) is the full true gradient of Lt at
(−→σ ,−→θ ), and the value of each entry in −→p ⊙

∇Lt

(−→σ ,−→θ ) is determined according to the entries of −→p . In the following lemma, we estab-

lish a probabilistic bound for
∥∥∥−→p ⊙ ∇̃Lt

(−→σ ,−→θ )−−→p ⊙∇Lt

(−→σ ,−→θ )∥∥∥
2

with deviation ε > 0

conditioned on −→p and t.

Lemma A.22. Let p ≤
∣∣∣(−→σ ,−→θ )∣∣∣ be a positive integer. For all ε > 0 and Ñ ∈ (2Z)>0,

Pr
[∥∥∥−→p ⊙ ∇̃Lt

(−→σ ,−→θ )−−→p ⊙∇Lt

(−→σ ,−→θ )∥∥∥
2
≥ ε
∣∣∣t,−→p ]

≤∥−→p ∥0 · 2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
,

where Γ−1
−→σ = exp

{
−2
∑L

l=1

∑
k∈Kl

σl,k

}
and −→p ∈ {0, 1}

∣∣∣(−→σ ,
−→
θ
)∣∣∣.
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Proof of Lemma A.22. For simplicity and clarity, we now denote
(−→σ ,−→θ ) by w and the length of w

by |w|.
First, using the fact ∥x∥∞ ≤ ∥x∥2, we note that ∥x∥∞ ≥ ε =⇒ ∥x∥2 ≥ ε, which implies that:

Pr
[∥∥∥−→p ⊙ ∇̃Lt (w)−−→p ⊙∇Lt (w)

∥∥∥
2
≥ ε
∣∣∣t,−→p ]

≤Pr
[∥∥∥−→p ⊙ ∇̃Lt (w)−−→p ⊙∇Lt (w)

∥∥∥
∞
≥ ε
∣∣∣t,−→p ]

=Pr

 max
α=1,··· ,|w|
(−→p )α ̸=0

∣∣∣(∇̃Lt (w)
)
α
− (∇Lt (w))α

∣∣∣ ≥ ε
∣∣∣∣∣∣∣t,−→p


≤Pr

[
∃α ∈ I−→p :

∣∣∣(∇̃Lt (w)
)
α
− (∇Lt (w))α

∣∣∣ ≥ ε∣∣∣t,−→p ] ,
where I−→p = {α ∈ [|w|]|(−→p )α ̸= 0}. Applying the union bound, we have:

Pr
[
∃α ∈ I−→p :

∣∣∣(∇̃Lt (w)
)
α
− (∇Lt (w))α

∣∣∣ ≥ ε∣∣∣t,−→p ]
≤
∑

α∈I−→p

Pr
[∣∣∣(∇̃Lt (w)

)
α
− (∇Lt (w))α

∣∣∣ ≥ ε∣∣∣t]
Then, since

(
∇̃Lt (w)

)
α

are generated by either Algorithm 3 and Algorithm 4, by applying the
Lemma A.21, we derive:

Pr
[∣∣∣(∇̃Lt (w)

)
α
− (∇Lt (w))α

∣∣∣ ≥ ε∣∣∣t] ≤ 2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
.

Combining all of the results above, we obtain:

Pr
[∥∥∥−→p ⊙ ∇̃Lt (w)−−→p ⊙∇Lt (w)

∥∥∥
2
≥ ε
∣∣∣t,−→p ] ≤ ∑

α∈I−→p

2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}

=2
∣∣I−→p ∣∣ · exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
.

By definition of I−→p , we note that
∣∣I−→p ∣∣ = ∥−→p ∥0. Therefore,

Pr
[∥∥∥−→p ⊙ ∇̃Lt (w)−−→p ⊙∇Lt (w)

∥∥∥
2
≥ ε
∣∣∣t,−→p ] ≤2 ∥−→p ∥0 · exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
.

(31)

A.4.2 Expected Bound on the Total Number of Measurements

In the following theorem, we present an expected bound for the total number of measurements
required to ensure that the deviation

∥∥∥−→p ⊙ ∇̃Lt

(−→σ ,−→θ )−−→p ⊙∇Lt

(−→σ ,−→θ )∥∥∥
2

remains within ε

with probability at least 1− δ over the distribution of −→p .

Theorem A.23. Given a positive integer p ≤
∣∣∣(−→σ ,−→θ )∣∣∣, ε > 0, and δ ∈ (0, 1), the expected total

number of measurements required for Algorithm 5 to estimate the gradient of Lt with deviation at
most ε and probability 1− δ over the distribution of −→p is at least∣∣∣(−→σ ,−→θ )∣∣∣

p
· 322

2
(
(Γ−1

−→σ )2 · ε
)2 ln

2
∣∣∣(−→σ ,−→θ )∣∣∣

δp


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Proof of Theorem A.23. For simplicity, we again denote
(−→σ ,−→θ ) by w, where |w| represents its

length. Taking the expected value of Equation (31) over the distribution of −→p , we observe:

Pr
[∥∥∥−→p ⊙ ∇̃Lt (w)−−→p ⊙∇Lt (w)

∥∥∥
2
≥ ε
∣∣∣t]

=
∑

−→p ∈{0,1}|w|

Pr
[∥∥∥−→p ⊙ ∇̃Lt (w)−−→p ⊙∇Lt (w)

∥∥∥
2
≥ ε
∣∣∣t,−→p ] · Pr [−→p ]

≤2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
·

 ∑
−→p ∈{0,1}|w|

∣∣I−→p ∣∣ · (1− 1

p

)|w|−|I−→p |
·
(
1

p

)|I−→p |


=2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
·

 |w|∑
k=0

k ·
(
|w|
k

)
·
(
1− 1

p

)|w|−k

·
(
1

p

)k


Next, Using the identity
∑n

i=0 i ·
(
n
i

)
(1 − 1/p)n−i(1/p)i = n/p for all n ∈ Z≥1 and p ≥ 1, we

arrive at:

Pr
[∥∥∥−→p ⊙ ∇̃Lt (w)−−→p ⊙∇Lt (w)

∥∥∥
2
≥ ε
∣∣∣t] ≤ 2 exp

{
−2
(
(Γ−1

−→σ )2 · ε
)2
Ñ

322

}
· |w|
p

(32)

Then, let us determine the expected number of measurements required to estimate each selected
partial derivative (i.e., Ñ ) over the distribution of −→p . Setting right hand side of Equation (32) to at
most δ and solving for Ñ , we obtain:

Ñ ≥ 322

2
(
(Γ−1

−→σ )2 · ε
)2 ln

(
2|w|
δp

)
Moreover, since each entry of −→p is sampled from a Bernoulli(1/p) distribution, we know that
E [∥−→p ∥0] =

|w|
p . In other words, there are |w|/p number of selected partial derivatives in expectation.

Combining the above results, we conclude that over the distribution of −→p , the expected total number
of measurements (i.e., (|w|/p) · Ñ ) required is at least:

|w|
p
· 322

2
(
(Γ−1

−→σ )2 · ε
)2 ln

(
2 |w|
δp

)
(33)

Remark A.24. Equation (33) suggests that a small ε results in an exponential sample size. To mitigate
this, one approach is to select ε large enough to determine the direction of the gradient reliably.

To determine an appropriate value for ε, we consider the value of the partial derivatives at
(−→σ ,−→θ ).

From Equation (3), Equation (8), and Equation (10), we observe that the partial derivatives are
asymptotically equal to Θ(Γ2−→σ x) for some x ∈ [−1, 1] when

(−→σ ,−→θ ) is not too close to a stationary
point. Moreover, their directions are determined by x.

Thus, selecting ε as Γ2−→σ · κ for some κ ∈ (0, 1) suffices to ensure a reliable determination of the
gradient direction. Consequently, the expected total number of measurements required becomes at
least:

|w|
p
· 32

2

2κ2
ln

(
2 |w|
δp

)
(34)

A.5 Convergence

A.5.1 Preliminary

We begin with a review of fundamental results in calculus.
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Proposition A.25 (Extreme Value Theorem [18]). Let F : X → Y be continuous, where Y is an
ordered set in the order topology. If X is compact, then there exist points c and d in X such that
F (c) ≤ F (x) ≤ F (d) for every x ∈ X .
Proposition A.26 (Estimation of Lipschitz constant on C1 functions [13]). Let U ⊆ Rn be an open
subset, and suppose F : U → Rm is of class C1. Then F is Lipschitz continuous on every compact
convex subset K ⊂ U . The Lipschitz constant can be taken to be supx∈K ∥∇F (x)∥2, where ∇F (x)
is the Jacobian matrix.
Lemma A.27 (Decent Lemma). If F : Rd → R is of class of C1 and K is any compact and convex
subset of Rd, then:

F (y) ≤ F (x) +∇F (x)(y − x) + LK

2
∥y − x∥22 ,

for all x, y ∈ K, where LK is the Lipschitz constant.

Sketch Proof of Lemma A.27. By applying Proposition A.26, we know that F is Lipschitz continuous
on K. Furthermore, the Lipschitz constant LK is bounded by supx∈K ∥∇F (x)∥. Then, using the
inequality established in the proof of Lemma 2.25 in [7], for any x, y ∈ K, we know that:

F (y) ≤ F (x) + (∇F (x))T (y − x) +
∫ 1

0

∥∇F (x+ t(y − x))−∇F (x)∥2 · ∥y − x∥2 dt.

Since K is convex, we know that x + t(y − x) ∈ K for all t ∈ [0, 1]. By the definition of local
Lipschitz continuous, we can write:

∥∇F (x+ t(y − x))−∇F (x)∥2 ≤ LK ∥x+ t(y − x)− x∥2 = LKt ∥y − x∥2 ,
for all t ∈ [0, 1]. Together, we conclude that:

F (y) ≤F (x) + (∇F (x))T (y − x) +
∫ 1

0

LKt ∥y − x∥22 dt

=F (x) + (∇F (x))T (y − x) + LK ∥y − x∥22

(∫ 1

0

tdt

)
=F (x) + (∇F (x))T (y − x) + LK

2
∥y − x∥22 .

Based on the results above, we present the following two properties of our objective function:
Lemma A.28 and Lemma A.29.

A.5.2 Properties of the Objective Function and Estimated Gradient

In this section, we present several important properties of the objective functions L and L+G, defined
in Section 3, as well as the properties of the estimated gradient obtained from Algorithm 5.

Lemma A.28. Let L(−→σ ,
−→
θ ) be the function defined in Equation (6). On the compact set X =

Xsigma ×Xtheta, L is Lipschitz continuous.

Proof of Lemma A.28. The proof of this lemma directly follows from Proposition A.26. Since maps
∂L

∂σj,q
given in Equation (10) and ∂L

∂θj
given in Equation (8) are defined on R

∣∣∣(−→σ ,
−→
θ
)∣∣∣, we know L is

of class C1. Then, applying Proposition A.26, we know L is Lipschitz continuous on X .

Lemma A.29. L(−→σ ,
−→
θ ) + G(−→σ ,

−→
θ ) is lower-bounded on R

∣∣∣(−→σ ,
−→
θ )

∣∣∣.
Proof of Lemma A.29. Given the definition of L(−→σ ,

−→
θ ) and G(−→σ ,

−→
θ ), we know that L(−→σ ,

−→
θ ) +

G(−→σ ,
−→
θ ) is finite and well-defined when (−→σ ,

−→
θ ) ∈ X . So, it suffices to check L(−→σ ,

−→
θ )+G(−→σ ,

−→
θ )

is lower bounded on X . Given the definition of L and G, we know that L(−→σ ,
−→
θ ) + G(−→σ ,

−→
θ ) =

L(−→σ ,
−→
θ ) on X . Since L(−→σ ,

−→
θ ) is continuous and X is compact, by the extreme value theorem

(Proposition A.25), we know L(−→σ ,
−→
θ ) is lower-bounded, which implies L(−→σ ,

−→
θ ) + G(−→σ ,

−→
θ ) is

lower-bounded.
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Proposition A.30. Let −→p t ⊙ ∇̃Lit

(−→σ ,−→θ ) be an estimation of gradient of Lit at

some fixed point
(−→σ ,−→θ ) generated by Algorithm 5, where it ∼ uniform {1, · · · , |D|}

and −→p t ∼ (Bernoulli(1/p))
∣∣∣(−→σ ,

−→
θ
)∣∣∣. Then, V

[−→p t · ∇̃Lit

(−→σ ,−→θ )] =

E
[∥∥∥−→p t · ∇̃Lit

(−→σ ,−→θ )− 1
p · ∇L

(−→σ ,−→θ )∥∥∥2
2

]
is bounded.

Proof of Proposition A.30. For clarity, let w denote
(−→σ ,−→θ ). First, by taking the full expectation of

−→p t ⊙ ∇̃Lit

(−→σ ,−→θ ) using Lemma A.18, we obtain:

E
[−→p t ⊙ ∇̃Lit (w)

]
=

1

|D|

|D|∑
it=1

E
[−→p t ⊙ ∇̃Lit (w)

∣∣∣it] = 1

|D|

|D|∑
it=1

1

p
· ∇Lit (w) =

1

p
∇L (w) ,

(35)

which leads to:

E
[∥∥∥−→p t ⊙ ∇̃Lit (w)− E

[−→p t ⊙ ∇̃Lit (w)
]∥∥∥2

2

]

=E

 |w|∑
α=1

((−→p t ⊙ ∇̃Lit (w)
)
α
−
(
1

p
∇L (w)

)
α

)2


=

|w|∑
α=1

E

[((−→p t ⊙ ∇̃Lit (w)
)
α
−
(
1

p
∇L (w)

)
α

)2
]

=

|w|∑
α=1

var
[(−→p t ⊙ ∇̃Lit (w)

)
α

]
.

Here, (·)α represents the αth component of the input vector. From the observation of Algorithm 3,

Algorithm 4, and Algorithm 5, we note that
(−→p t ⊙ ∇̃Lit (w)

)
α
: {−Γ−→σ ,Γ−→σ }

Ñ → R defined by(−→p t ⊙ ∇̃Lit (w)
)
α

(
o1, · · · , oÑ/2, oÑ/2+1, · · · , oÑ

)
=− (−→p t)α · C

yit − 1

Ñ/2

Ñ/2∑
β=1

oβ

 1

Ñ/2

Ñ∑
β=Ñ/2+1

oβ

 ,

where C is 2 or 4 and Γ−→σ = exp
{∑

j,k σj,k

}
and Ñ is an even number. Since the mapping(−→p t ⊙ ∇̃Lit (w)

)
α

has a finite domain, we note that:

max
oβ ,o′β∈{−Γ−→σ ,Γ−→σ }

∣∣∣(−→p t ⊙ ∇̃Lit (w)
)
α

(
o1, · · · , oβ , · · · , oÑ

)
−
(−→p t ⊙ ∇̃Lit (w)

)
α

(
o1, · · · , o′β , · · · , oÑ

)∣∣∣
is finite for all it and −→p t. Define

U = max
oβ ,o

′
β∈{−Γ−→σ ,Γ−→σ }

−→p t∈{0,1}|w|

it=1,··· ,|D|

∣∣∣(−→p t ⊙ ∇̃Lit (w)
)
α

(
o1, · · · , oβ , · · · , oÑ

)
(36)

−
(−→p t ⊙ ∇̃Lit (w)

)
α

(
o1, · · · , o′β , · · · , oÑ

)∣∣∣ .
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Using the Efron-Stetin inequality, we obtain

var
[(−→p t ⊙ ∇̃Lit (w)

)
α

]
≤1

2

Ñ∑
β=1

E
[((−→p t ⊙ ∇̃Lit (w)

)
α

(
o1, · · · , oβ , · · · , oÑ

)
−
(−→p t ⊙ ∇̃Lit (w)

)
α

(
o1, · · · , o′β , · · · , oÑ

))2]

≤1

2

Ñ∑
β=1

U2 =
Ñ · U2

2
.

Together, we have

V
[−→p t ⊙ ∇̃Lit (w)

]
≤ |w| · Ñ · U

2

2
<∞.

A.5.3 Convergence bound of the Learning Algorithm

We now present the convergence bound in the following theorem.

Theorem A.31. Let L(−→σ ,
−→
θ ) + G(−→σ ,

−→
θ ) be the objective function, where L and G are defined

in Equation (6) and Equation (7). Let
{
wt =

(−→σ (t),
−→
θ (t)

)
, t = 1, · · · , T

}
be a sequence of

parameters generated by the proximal-SGD (Algorithm 1). Suppose w0 and w are the initial point
and a stationary point in X = Xsigma ×Xtheta, respectively. Let {ηt|0 < ηt < 1, t = 0, · · · , T} be
a sequence such that

∑∞
t=0 ηt <∞. Then,(

1∑T
t=1 ηt

T∑
t=1

ηtE [L(wt)]

)
− L(w) ≤

p · ∥w0 − w∥22
2
∑T

t=1 ηt
+

3LX
∑T

t=1 ηtBmax

2
∑T

t=1 ηt
+
p
∑T

t=1 η
2
tV

2
∑T

t=1 ηt
,

where V = supwt
V
[−→p t ⊙ ∇̃Lit (wt)

]
, p is a positive integer, LX is the local Lipschitz constant,

and Bmax =
∑L

l=1

∑
k∈Kl

(
B(l,k)

)2
+
∑

l=1
bl=1

(
B

(l)
1 −B

(l)
0

)2
.

Proof of Theorem A.31. For simplicity and clarity, we define wt =
(−→σ t,

−→
θ t

)
, X = Xsigma ×

Xtheta, and −→p t ⊙ ∇̃Lit (wt) denotes the gradient estimation for Lit(wt) = (yit − tr (MUR(ρit)))
2

generated by Algorithm 5. Here, it ∼ uniform {1, 2, · · · , |D|} and −→p t ∼ (Bernoulli(1/p))|wt|. By
definition, we know wt+1 = proxG

(
wt − ηt−→p t ⊙ ∇̃Lit (wt)

)
, which implies that wt ∈ X for all

t = 0, · · · , T . Applying lemma 8.17 from [7], we obtain the following result:

∥wt+1 − w∥22 =
∥∥∥proxG

(
wt − ηt−→p t ⊙ ∇̃Lit (wt)

)
− proxG (w)

∥∥∥2
2

≤
∥∥∥wt − ηt−→p t ⊙ ∇̃Lit (wt)− w

∥∥∥2
2
.

Using the fact ∥x− y∥22 = (x − y)T (x − y) = ∥x∥22 − 2xT y + ∥y∥22, we can expand the squared
norm as below:∥∥∥wt − ηt−→p t ⊙ ∇̃Lit (wt)− w

∥∥∥2
2

= ∥wt − w∥22 − 2ηt

(−→p t ⊙ ∇̃Lit (wt)
)T

(wt − w) + η2t

∥∥∥−→p t ⊙ ∇̃Lit (wt)
∥∥∥2
2
.

Together, we have

∥wt+1 − w∥22 − ∥wt − w∥22 ≤ −2ηt
(−→p t ⊙ ∇̃Lit (wt)

)T
(wt − w) + η2t

∥∥∥−→p t ⊙ ∇̃Lit (wt)
∥∥∥2
2
.
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Now, taking the expectation conditioned on wt, we get

E
[
∥wt+1 − w∥22 − ∥wt − w∥22

∣∣∣wt

]
≤E

[
−2ηt

(−→p t ⊙ ∇̃Lit (wt)
)T

(wt − w) + η2t

∥∥∥−→p t ⊙ ∇̃Lit (wt)
∥∥∥2
2

∣∣∣∣wt

]
=− 2ηtE

[(−→p t ⊙ ∇̃Lit (wt)
)T

(wt − w)
∣∣∣∣wt

]
+ η2tE

[∥∥∥−→p t ⊙ ∇̃Lit (wt)
∥∥∥2
2

∣∣∣∣wt

]
. (37)

For the first term in Equation (37), using Proposition A.17 and linearity of gradient, we arrive at:

E
[(−→p t ⊙ ∇̃Lit (wt)

)T
(wt − w)

∣∣∣∣wt

]

=
∑

−→p t∈{0,1}|wt|

 1

|D|

|D|∑
it=1

E
[(−→p t ⊙ ∇̃Lit (wt)

)T
(wt − w)

∣∣∣∣wt, it,
−→p t

] · Pr [−→p t]

=
∑

−→p t∈{0,1}|wt|

 1

|D|

|D|∑
it=1

(−→p t ⊙∇Lit (wt))
T
(wt − w)

 · Pr [−→p t]

=
∑

−→p t∈{0,1}|wt|

(−→p t ⊙∇L (wt))
T
(wt − w) · Pr [−→p t]

=

 ∑
−→p t∈{0,1}|wt|

−→p t · Pr [−→p t]

⊙∇L (wt)

T

(wt − w)

=
1

p
· (∇L (wt))

T
(wt − w).

For the second term in Equation (37), by Proposition A.30, we know that the value

V
[−→p t ⊙ ∇̃Lit (wt)

]
conditioned on wt is bounded. This implies that E

[∥∥∥−→p t ⊙ ∇̃Lit (wt)
∥∥∥2
2

∣∣∣∣wt

]
is also bounded, and specifically we have the inequality:

E
[∥∥∥−→p t ⊙ ∇̃Lit (wt)

∥∥∥2
2

∣∣∣∣wt

]
≤ V

[−→p t ⊙ ∇̃Lit (wt)
]
.

Therefore, we have

E
[
∥wt+1 − w∥22 − ∥wt − w∥22

∣∣∣wt

]
≤ −2ηt

p
(∇L (wt))

T
(wt − w) + η2tV

[−→p t ⊙ ∇̃Lit (wt)
]
.

By combining all the above and taking the full expectation, we get:

E
[
∥wt+1 − w∥22 − ∥wt − w∥22

]
=E

[
E
[
∥wt+1 − w∥22 − ∥wt − w∥22

∣∣∣wt

]]
≤E

[
−2ηt

p
(∇L(wt))

T
(wt − w)

]
+ η2tE

[
V
[−→p t ⊙ ∇̃Lit (wt)

]]
≤E

[
−2ηt

p
(∇L(wt))

T
(wt − w)

]
+ η2tV,

where V = supwt
V
[−→p t ⊙ ∇̃Lit (wt)

]
. Telescoping the both sides, we obtain:

T∑
t=1

E
[
∥wt − w∥22 − ∥wt−1 − w∥22

]
=E

[
∥wT − w∥22 − ∥w0 − w∥22

]
≤−

T∑
t=1

2ηt
p

E
[
(∇L(wt))

T
(wt − w)

]
+

T∑
t=1

η2tV

=

T∑
t=1

2ηt
p

E
[
(∇L(wt))

T
(w − wt)

]
+

T∑
t=1

η2tV. (38)
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Next, let us bound (∇L(wt))
T
(w − wt). Using the fact that xT y = ∥x∥ ∥y∥ cos θ for any x, y, we

observe that:

(∇L(wt)−∇L(w))T (w − wt) ≤ ∥∇L(wt)−∇L(w)∥2 · ∥w − wt∥2 .

On the left-hand side, we have:

(∇L(wt)−∇L(w))T (w − wt) = (∇L(wt))
T
(w − wt)− (∇L(w))T (w − wt).

On the right hand side, since L is locally Lipschitz continuous on X , by definition, we know that:

∥∇L(wt)−∇L(w)∥2 · ∥w − wt∥2 ≤ LX ∥w − wt∥22 .

Combining and re-arranging terms, we get:

(∇L(wt))
T
(w − wt) ≤ (∇L(w))T (w − wt) + LX ∥w − wt∥22 .

Furthermore, applying the decent lemma (Lemma A.27), we have:

(∇L(wt))
T
(w − wt) ≤ L(w)− L(wt) +

3LX

2
∥w − wt∥22 . (39)

Now, combining Equation (38) and Equation (39), we obtain:

E
[
∥wT − w∥22 − ∥w0 − w∥22

]
≤

T∑
t=1

2ηt
p

E
[
L(w)− L(wt) +

3LX

2
∥w − wt∥22

]
+

T∑
t=1

η2tV,

which is equivalent to

T∑
t=1

2ηt
p

(E [L(wt)]− L(w))

≤∥w0 − w∥22 − E
[
∥wT − w∥22

]
+

3LX

p

T∑
t=1

ηtE
[
∥w − wt∥22

]
+

T∑
t=1

η2tV

≤∥w0 − w∥22 +
3LX

p

T∑
t=1

ηtE
[
∥w − wt∥22

]
+

T∑
t=1

η2tV. (40)

Since wt and w are both in X and X is a hyper-rectangle, we know that:

∥w − wt∥22 ≤
L∑

l=1

∑
k∈Kl

(
B(l,k)

)2
+
∑
l=1
bl=1

(
B

(l)
1 −B

(l)
0

)2
= Bmax.

Thus, Equation (40) can be written as:

T∑
t=1

2ηt
p

(E [L(wt)]− L(w)) ≤ ∥w0 − w∥22 +
3LX

p
·

T∑
t=1

ηtBmax +

T∑
t=1

η2tV.

Finally, dividing both sides of the inequality by 2
∑T

t=1 ηt

p , we obtain:(
1∑T

t=1 ηt

T∑
t=1

ηtE [L(wt)]

)
− L(w) ≤

p · ∥w0 − w∥22
2
∑T

t=1 ηt
+

3LX
∑T

t=1 ηtBmax

2
∑T

t=1 ηt
+
p
∑T

t=1 η
2
tV

2
∑T

t=1 ηt
.

A.6 Additional Experiments

A.6.1 Evaluation on Fashion-MNIST Dataset

We evaluate our approach on the Fashion-MNIST dataset [32] (Pullover vs. Shirt; 5000 training
samples; standard test split; three seeds). Each 28× 28 image is standardized, reduced by PCA to a
compact feature vector (64 dimensions for our 6-qubit scenario), and ℓ2-normalized to unit length.
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In simulation, we directly initialize the statevector to the corresponding amplitude encoded state
|ψ(x)⟩, then apply a 6-qubit, two-layer HEA with parameterizedRX , RY , RZ rotations and a circular
CNOT entangler as in Figure 3. The labels are assigned to −1 (shirt) and +1 (pullover). This direct
initialization avoids extra state preparation depth and associated gate noise, so our comparisons isolate
training-time noise and mitigation effects. Besides, the initial learning rate (η(1)) is selected using
grid search across a wide range and then refined with binary search for better precision. Subsequently,
the learning rate is annealed monotonically.

Under static noise, our inverse learning method initially lags Van den Berg et al.’s pre-characterized
approach but surpasses it mid-training, achieving a lower final loss (Figure 5a). The noiseless PQC
provides the best-case reference, while the baseline noisy PQC yields the highest error, confirming
that both mitigation strategies effectively reduce noise impact. Consistent with these trends, Table 2
summarizes the test accuracies of the compared approaches. Under dynamic noise, we emulate
hardware drift by slightly increasing the error rates of three CNOT gates early in training. While Van
den Berg et al.’s method retains its fixed calibration, our approach updates the inverse parameters
online and achieves lower MSE by tracking the drift (Figure 5b). This highlights the practical
advantage of adaptive inverse learning over pre-calibrated approaches in realistic quantum hardware
conditions. Finally, probabilistic subsampling analysis using the same static noise profile as Figure 5a,
reveals the expected convergence degradation with increased sparsity (p = 1 > p = 2 > p = 4), with
denser sampling providing more stable optimization, consistent with the MNIST results (Figure 5c).

Table 2: Classification accuracies across Different methods for Fashion-MNIST dataset

ACCURACY

NOISELESS PQC 78.87±1.32
NOISY PQC (BASELINE) 69.57 ± 3.35
MITIGATED PQC (VAN DEN BERG ET.AL) 72.37± 2.53
OURS 74.23± 2.84

A.6.2 Additional Results—PEC and ZNE under Dynamic Noise
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(a) Using MNIST dataset (3 vs 6)
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(b) Using Fashion-MNIST dataset (Pullover vs Shirt)

Figure 6: Training loss comparison among PEC, ZNE and our mitigation framework for binary
classification task under dynamic noise. Here, each epoch summarizes 50 iterations of the training
process.

Under dynamic noise, our adaptive inverse noise learning method updates the inverse noise parameters
at every iteration and consistently achieves the lowest final MSE on both MNIST (Figure 6a) and
Fashion-MNIST (Figure 6b). PEC often looks competitive because it applies the full inverse from a
pre-calibrated noise map, but it has practical limits: (i) it is measurement intensive: the shot demand
multiplies across mitigated gates, leading to an effective exponential growth with circuit depth; (ii)
it does not track drift without recalibration; and (iii) it loses accuracy as the device moves further
away from the calibration point. ZNE performs worst on average with higher variance, because
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extrapolation assumes stable noise scaling, which breaks under time-varying noise. The convergence
of our method across both datasets supports the conclusion that adaptive inverse noise learning is
important for stable optimization on realistic, drifting hardware- capabilities that neither fixed PEC
calibrations nor ZNE’s static extrapolation provide without manual intervention.
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