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Abstract—1 The unprecedented advancement of artificial in-
telligence enables the development of increasingly autonomous
robots. These robots hold significant potential, particularly in
moving beyond engineered factory settings to operate in the
unstructured environments inhabited by humans. However, this
possibility also generates a relevant autonomy-alignment problem
to ensure that robots’ autonomous learning processes still focus
on acquiring knowledge relevant to accomplish human practical
purposes, while their behaviour still aligns with their broader
purposes (e.g., related to security and ethical constraints inter-
ference). The literature has only begun to address this problem,
and a conceptual, terminological, and formal framework is still
lacking. Here we address one of the most challenging instances
of the problem: autonomous open-ended learning (OEL) robots,
capable of cumulatively acquiring new skills and knowledge
through direct interaction with the environment, guided by
self-generated goals and intrinsic motivations. In particular, we
propose a computational framework, first introduced qualita-
tively and then formalised, to support the design of OEL robot
architectures that balance autonomy and control. The framework
pivots on the novel concept of purpose. A human purpose
specifies what humans (e.g., designers or users) want the robot
to learn, do or not do, within a certain boundary of autonomy
and independently of the domains in which it operates. The
framework decomposes the autonomy-alignment problem into
more tractable sub-problems: the alignment of ‘robot purposes’
with human purposes, either by hardwiring or through learning;
the arbitration between multiple purposes; the grounding of
purposes into specific domain-dependent robot goals; and the
competence acquisition needed to accomplish these goals. The
framework and its potential utility are further elucidated through
the discussion of hypothetical example scenarios framed within
it.
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purpose, autonomy, arbitration, alignment, goals, grounding,
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I. INTRODUCTION

Current advances in artificial intelligence (AI) and robotics
are yielding applications of significant value. These devel-
opments are largely driven by deep neural networks, the
increased availability of data through widespread societal
digitalisation, and the exponential growth of computational
power [1]. This progress has spurred remarkable successes in
fields such as computer vision [2], natural language processing
and translation, and multimodal systems [3], [4]. Concurrently,
AI advancements are enhancing the autonomous learning
capabilities of robots, fostering a synergy between these fields
[5]–[7].

Fig. 1: The key elements of the autonomy-alignment problem.

This technological progress facilitates a significant transi-
tion: moving robots from predictable, engineered industrial
settings to deployments within unstructured, real-world en-
vironments inhabited by humans, such as homes, offices,
shops, and hospitals [8]–[10]. In these dynamic contexts,
autonomous learning becomes crucial, enabling robots to
acquire the knowledge needed to navigate challenges that
are inherently unpredictable at design time. However, this
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increasing autonomy simultaneously heightens the importance
and complexity of the AI alignment problem.

Section VIII provides an overview of key topics within the
AI alignment literature [11]. This review indicates that re-
search predominantly addresses two main facets: prescriptive
aspects of alignment –ensuring that AI systems pursue desired
objectives and perform intended behaviors– and proscriptive
aspects of alignment –preventing systems from exhibiting un-
desirable or harmful behaviors. This prescriptive/proscriptive
distinction finds grounding in ethical philosophy concerning
the nature of rules and norms [12]. While crucial, the existing
literature offers comparatively less investigation into how
the autonomy of robots can be effectively managed within
these prescriptive and proscriptive boundaries, a challenge
recognised in works on human-automation interaction and safe
autonomy [13], [14].

We introduce the term alignment-autonomy problem to
denote the set of challenges arising from the interplay between
the need for robust alignment and the operational opportunities
afforded by autonomy. This problem bears analogy to the clas-
sic exploration-exploitation dilemma in reinforcement learning
[15], where an agent must balance exploiting known optimal
behaviors against exploring potentially better, unknown alter-
natives. The alignment-autonomy problem, however, manifests
at a higher level, concerning the selection and pursuit of
objectives and overarching behavioral strategies, rather than
just action selection within a fixed objective.

The alignment-autonomy problem requires trading-off mul-
tiple aspects (Figure 1). AI systems and robots must ensure
alignment with human intentions and values, which involves
adhering to both prescriptive goals and proscriptive constraints
[16], [17]. Firstly, they should follow prescriptive objectives by
actively pursuing objectives and performing behaviors desired
by humans. Secondly, they must adhere to proscriptive con-
straints by avoiding objectives and behaviors deemed undesir-
able or harmful. Simultaneously, these systems should leverage
the freedom afforded by their autonomy to best serve human
interests. This includes pursuing objectives and performing
behaviors that, while perhaps not explicitly prescribed or pro-
hibited, are instrumentally beneficial for achieving overarching
human goals. Importantly, for learning agents, this involves the
capacity to autonomously discover novel objectives or acquire
new skills that are instrumental to human-prescribed aims,
or that serve an epistemic purpose by acquiring knowledge
potentially useful for future goal achievement.

In this work, we address the alignment-autonomy problem
by focusing on open-ended learning (OEL) robots [18]–[20].
The reasons for this focus are twofold. First, OEL robots
represent a important class of autonomous robots, so address-
ing them covers a relevant portion of the overall problem.
Second, OEL arguably presents the most difficult instance of
the autonomy-alignment problem. Indeed, OEL robots self-
generate goals under the drive of intrinsic motivations —-
algorithms purposefully designed to foster autonomous explo-
ration and learning in the absence of human guidance (e.g.,
demonstrations, externally assigned tasks, goals, or reward
functions). By design, these robots have the highest propensity
to explore and acquire behaviors that may misalign with

human goals and values. Preventing such misalignment, with-
out sacrificing the potential advantages of autonomy, poses a
major challenge. Thus, knowledge gained by addressing the
alignment of OEL robots can provide a valuable foundation
for building frameworks and solutions applicable to other types
of autonomous robots.

The core contribution of this work is the proposal of a com-
putational framework for addressing the autonomy-alignment
problem. The framework pivots on the novel concept of
‘purpose’. A human purpose specifies what humans (e.g.,
designers and users) want the robot to learn, do or not do,
within a certain boundary of autonomy and independently of
the domains in which it operates. For example, a purpose
of a designer may require that the robot, regardless of its
deployment, must not harm people or damage objects. Another
purpose, from a user, may want the robot to accomplish a
specific operational goal, such as ‘discard rotten fruit from
the shop bench’. Yet another purpose, from another user,
may require the robot to ‘learn to manipulate fruit’ for later
assignment of more specific purposes.

The general idea is that designers and users can use purposes
to specify particular tasks (prescriptive objectives), the generic
boundaries within which robots should autonomously explore
and acquire knowledge, or proscriptive constraints. To achieve
this, the robot must encode each human purpose into an
internal representation, the robot purpose. A key feature of the
framework is that both human and robot purposes are domain-
independent. This enables robots to pursue purposes across
domains that are a priori unknown to them, and possibly
even to their designers and users. Subsequently, within a given
domain, robots can autonomously discover domain-dependent
robot goals that fulfill the purposes, for example the purpose
‘eliminate damaged fruits’ could involve the acquisition of
different goals depending on the types of fruits, containers,
and contextual conditions.

The purpose-based framework also accommodates address-
ing ethical issues, specifically the need to prevent robots from
behaving in ways that conflict with human values or social
conventions, for example ‘do not harm humans’, ‘do not break
objects’, ‘do not interrupt people during conversations’ [21],
[22]. The domain independent nature of purposes might be
useful in some cases. For example, the purpose ‘do not cause
harm to living beings’ could protect animal species going
beyond those known by the designer prescribing it. While the
detailed treatment of these ethical aspects is out of reach for
this work, we will outline how the purpose framework can be
extended to incorporate such constraints, since purposes, and
their arbitration, can specify outcomes and behaviors to be
avoided.

The framework developed so far pivots mainly on objec-
tives, understood as either abstract purposes or specific goals,
each corresponding to particular states in the environment.
This focus simplifies the broader reality that objectives may
also involve more complex structures such as maintenance of
states or ongoing processes, which are not considered here
for simplicity and focus, and as end-state objectives are most
common [23].

Overall, this work presents three novel contributions:
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1) A conceptual and terminological framework identifying
the fundamental elements for understanding and address-
ing the autonomy-alignment problem for OEL.

2) A formalisation of the framework and its concepts,
paving the way for future mathematical analyses (the-
orem proving) and the development of specific robotic
algorithms.

3) The use of the framework to decompose the broader
alignment-autonomy problem into four specific, more
tractable sub-problems involving purpose arbitration,
human-robot alignment, purpose-goal grounding, and
competence acquisition.

The remainder of the article is organised as follows. Sec-
tion II reviews open-ended learning and the literature relevant
for the autonomy-alignment problem. Section III introduces
the concept of purpose and related notions (e.g., goals, align-
ment, grounding) in a qualitative form. Section IV presents the
mathematical formalisation of the framework. Section V ex-
pands different possible types of purposes. Section VII analy-
ses qualitatively an illustrative scenario through the framework
to show it application. Section VI considers more in depth the
four main sub-problems into which the autonomy-alignment
problem can be decomposed. Section VIII overviews the
main issues currently addressed in the literature on alignment.
Finally, Section IX summarises the main contributions and
outlines directions for future work. The Appendix illustrates
the origin in cognitive sciences, of some concepts and terms
employed in the framework.

II. OPEN-ENDED LEARNING

A. Open-ended learning and limitations addressed here

In robotics and machine learning, OEL refers to a system’s
capacity to continuously acquire new knowledge and skills
without predetermined tasks, enabling autonomous exploration
and learning over time [18], [19], [24]. While machine learning
approaches commonly train models on fixed datasets, OEL
allows robots to acquire sensorimotor abilities in environments
unknown at design time by progressively refining skills as new
experience is gathered.

OEL shares similarities with lifelong learning, which also
emphasises continuous knowledge acquisition, but with a
higher focus on preventing catastrophic forgetting while new
knowledge is acquired [25]. Continual learning is another
related approach, where a system learns from a sequential
data stream, although OEL remains more general by accom-
modating a wider variety of data sources [26]. Curriculum
learning is another relevant method, focusing on externally
structured task sequences to build capabilities. It differs from
OEL as the agents commonly self-generate experience (hence
the ’curriculum’) based on their current lack of knowledge
[27].

In OEL, the system is seen as maximising knowledge
and skill acquisition, rather than optimising for task-specific
rewards. A possible way to formalise this idea is to attempt
to specify OEL objective function. One way to do this [24]
is to assume that the robot explores the environment in a first
’intrinsic phase’. In a second ’extrinsic phase’, the robot uses

the acquired knowledge to maximise the performance across a
set of externally assigned tasks unknown during the intrinsic
phase:

θ∗ = argmax
θ

Eg∼τ(g)

(
Eπ(a|s,g,θ)R(g)

)
(1)

where θ represents the robot controller parameters, g are goals
’drawn’ from the environment, R(g) is the reward function,
and π(a|s, g, θ) denotes the goal-conditioned policy acquired
by the robot during the intrinsic phase. The idea here is that the
robot should be capable of autonomously acquiring knowledge
and skills during the intrinsic phase to be ready to possibly
solve any task in the environment that is assigned to it in the
extrinsic phase. A strategy to support the robot’s autonomous
learning during the intrinsic phase is to employ intrinsic
motivations, algorithms able to detect the acquisition of new
knowledge and skills based on mechanisms such as novelty,
surprise, competence improvement, mutual information, or
empowerment [18], [28]–[31].

A notable limitation of OEL is that these autonomous
learning processes are possibly ’too open’ as they are agnostic
to the actual purposes for which the user intends to employ
the robots. So, one important risk is that the robots spend a
lot of time and resources to acquire knowledge that is not
useful for the users [32]. In addition, the robots may engage
in behaviours diverging from user expectations, raising the
need for frameworks that aligns autonomous learning with
user purposes. The proposal of this work represents such a
framework usable to develop OEL systems that, although still
endowed with a remarkable degree of autonomy, tend to focus
their learning processes towards the acquisition of knowledge
and skills more aligned with the users’ purposes.

III. QUALITATIVE OVERVIEW OF THE PURPOSE
FRAMEWORK

The purpose framework adopts terminology rooted in cogni-
tive science (see Appendix). It is structured across three levels:
the designer/user level, the robot level, and the domain level
(Figure 2). The designer/user and robot levels each comprise
two sub-levels. The designer/user and domain levels are ex-
ternal to the robot. Throughout the framework presentation,
the term ‘objective’ is used neutrally, while more specific
terms (e.g., robot purposes, robot goals, and domain goals) are
introduced within each level to capture their distinct properties.

The first level concerns the designer/user, subdivided into
the human purpose and human goal sub-levels. The hu-
man purpose sub-level encodes representations of objectives
intended for robotic achievement in the environment. An
example is ‘sorting fruits into different containers’.

The human goal sub-level represents domain-specific instan-
tiations of purposes. Human goals are internal representations
of desired states in a given domain (level three). For example,
human goals might specify ‘bananas in a basket and pineapples
in a crate’ in one domain, and ‘apples in a pot and pears on
a plate’ in another.

The second level concerns the robot, with sub-levels for
robot purposes and robot goals. Robot purposes are domain-
independent robot internal representations of human purposes.
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Fig. 2: Main elements of the purpose framework. The framework is structured into three levels. Level 1 involves humans
(acting as a designer or a user), who possess domain-independent purposes and domain-dependent goals. Level 2 concerns the
robot, endowed with domain-independent purposes –either hardwired (needs) or learned (missions)– and domain-dependent
goals. Level 3 comprises the domains, each characterised by state-goals corresponding to robot and human goals. A triangular
alignment (alignment for short) occurs when a human purpose and its corresponding human goal, and a robot purpose and its
corresponding robot goal, converge on the same state goal, indicating coherent alignment between human and robot objectives.

This abstraction enables generalisation across domains and un-
derpins the robot’s learning processes including the acquisition
of goals, skills, and world models.

Robot purposes can be hardwired by designers, in which
case they are termed needs. Needs mirror phylogenetic moti-
vations in biological systems. Examples include a homeostatic
need such as ‘maintain battery charge’ or an epistemic need
such as ‘acquire fruit images’ for training internal classifiers.
In general, needs can be seen as designer-encoded purposes.

Alternatively, robot purposes can be autonomously acquired
by the robot through learning, aiming to align with human
purposes. Such purposes are termed missions. An example of
mission is ‘sort fruits into different containers.’ The acqui-
sition of missions can be guided by internal criteria derived
from designer purposes. Such guidance may be implemented
as hardwired needs or encoded within the robot’s learning
architecture, for example, mechanisms promoting interaction
with users to infer and internalise their purposes.

The robot-goal sub-level encodes robot goals: observation-
based representations of robot purposes instantiated within
specific domains. Robot goals specify desired domain states.

The third level is the domain level, comprising the robot’s
external physical/social environment and its sensorimotor
body. Each robot goal corresponds to a specific domain state
termed state-goal. Similarly, human goals correspond to state
goals across domains. When a robot purpose aligns with a
human purpose, both yield corresponding state goals across
domains, a condition termed triangular alignment (or simply
‘alignment’).

Figure 3 schematically illustrates the framework. At the
human level, purposes are domain-independent, with possible
domain-specific user-goals. At the robot level, robots possess
a motivational space formed by robot purposes correspond-
ing to human purposes. This space may include: a learned
mission (e.g., ‘sort fruits into containers’), an epistemic need
(e.g., ‘learn to manipulate fruit’), and a homeostatic need
(e.g., ‘maintain battery charge’). For instance, robot 1 seeks
fruits and is curious, while robot 2 seeks fruits and energy
maintenance. Each robot purpose is depicted along one dimen-
sion, although purposes are typically multidimensional. Robot
purposes are associated with utility functions (blue-to-red
gradients), potentially peaking at an ideal set-point (marked
by a smiley face). Robots also possess an observation space
encoding domain-specific robot goals linked to the related
purposes. At the domain level, multiple state-goals can satisfy
the same mission. Examples include filling containers with
pears (state-goal 1.1), apples (state-goal 1.2), bananas (state-
goals 2.1 and 2.2), or pineapples (state-goal 2.3).

The framework allows to decompose the autonomy-
alignment problem in relevant sub-problems:

• Human-robot alignment: how to ensure that robot needs
or autonomously learned missions are aligned with hu-
man purposes.

• Purpose arbitration: how to prioritise among multiple
concurrent purposes.

• Purpose-goal grounding: how to enable robots to acquire
domain-specific goals that optimally fulfill purposes;

• Competence acquisition: How to ensure that robots ac-
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Fig. 3: Illustrative example of the purpose framework. See text for details.

quire the skills needed to accomplish the goals.

IV. FORMALISATION OF THE PURPOSE FRAMEWORK

This section formalises the purpose framework and its
core constructs. Figure 4 summarises the main elements. The
formalism adopts the perspective of an external observer (e.g.,
a researcher) observing designers and users of robots, the robot
controller, and the world comprising different domains (here,
domains include both the robot’s sensorimotor body and its
external environment).

We frame the formalisation from a goal-based perspec-
tive [33], [34], grounded in the formalism of Markov Decision
Processes (MDPs) used in reinforcement learning (RL) [15].

a) Notation: Lowercase letters denote elements of sets,
capital letters denote sets. Subscripts indicate indexing (e.g.,
Oc is robot c’s observation set). Superscripts specify symbols
(e.g., UE is the utility over an encoding space E). Functions
are denoted with f , with superscripts indicating their domain
and codomain (e.g., fO−P maps observations to purposes).
Given a discrete set S, ∆(S) denotes the probability simplex
over S. Sets are sometimes referred to as spaces to highlight
internal structure (e.g., an observation space O with similarity
relations).

Table I summarises the symbols used in the formalisation.

b) Core elements: Different humans (designers/users) are
indexed by h ∈ H; different robots (or ‘cobots’ –collabroative
robots) by c ∈ C; different domains by d ∈ D.

c) Domains: Time is discretised as t ∈ {0, 1, 2, ...}. Each
domain d ∈ D is characterised by states sd ∈ Sd, where Sd

is the domain state space. The domain transition function is:

fSA−S
d,c : Sd ×Ac → ∆(Sd),

defining the probability of transitioning from sd,t to sd,t+1

under action ac,t ∈ Ac chosen by robot c.
d) Human encoding spaces and purposes: Each human

h possesses multiple encoding spaces Eh,i, indexed by i,
comprising points eh,i ∈ Eh,i.

A purpose Ph,i ⊂ Eh,i is defined as:

Ph,i = {eh,i ∈ Eh,i | fE−U
h,i (eh,i) ̸= 0},

where fE−U
h,i : Eh,i → UE

h,i ⊆ R is the purpose utility
function. Humans may have multiple purposes Ph,i ∈ Ph.
Avoidance purposes, based on negative utilities, can be defined
to encode undesired outcomes, critical for safety and ethical
alignment.

The human observation-encoding function is:

fO−E
h,i : Oh → Eh,i.
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that for effective service, robot-goals should align with user-goals at the level of state-goals.

e) Human observation space and goals: Each human h
has an observation space Oh, populated via:

fS−O
h : Sd → ∆(Oh).

Each purpose Ph,i induces a different human goal in each
domain d:

Gh,i,d = {oh ∈ Oh | fO−E
h,i (oh) ∈ Ph,i}.

Each observation inherits the purpose utility:

fO−U
h,i (gh,i) = fE−U

h,i (fO−E
h,i (gh,i)).

Each human goal corresponds to a state-goal:

Gi,d = {sd ∈ Sd | fS−O
h (sd) ∈ Gh,i,d}.

f) Robot encoding spaces and purposes: Each robot c
has multiple encoding spaces Ec,i, with ec,i ∈ Ec,i.

A robot purpose Pc,i ⊂ Ec,i can be either a hardwired need
Nc,i, or a learned mission Mc,i.

Robot needs are defined based on a hand-crafted utility
function:

Nc,i = {ec,i ∈ Ec,i | fE−U
c,i (ec,i) ̸= 0},

where fE−U
c,i : Ec,i → UE

c,i ⊆ R.

Robot missions are defined through an alignment function:

fE−E
h,c,i : Ec,i → Eh,i,

such that:

Mc,i = {mc,i ∈ Ec,i | fE−E
h,c,i (mc,i) ∈ Ph,i}.

Utilities propagate from human ones as:

fE−U
c,i (mc,i) = fE−U

h,i (fE−E
h,c,i (mc,i)).

The robot observation-encoding function is:

fO−E
c,i : Oc → Ec,i.

g) Robot observation space and goals: Each robot c has
an observation space Oc, populated via:

fS−O
c : Sd → ∆(Oc).

Each robot purpose Pc,i induces a different robot goal in
each domain d:

Gc,i,d = {oc ∈ Oc | fO−E
c,i (oc) ∈ Pc,i},

with inherited utility:

fO−U
c,i (gc,i) = fE−U

c,i (fO−E
c,i (gc,i)).

Each robot-goal corresponds to a state-goal:

Gi,d = {sd ∈ Sd | fS−O
c (sd) ∈ Gc,i,d}.
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TABLE I: Summary of main symbols used in the purpose
framework formalisation.

Symbol Description
h ∈ H Human designer or user
c ∈ C Collaborative robot (cobot)
d ∈ D Domain (including body and environment)
t Discrete time step
i A specific encoding/purpose/goal/domain-g.
Sd State space of domain d
sd ∈ Sd State of domain d
Ac Action set of robot c
ac,t ∈ Ac Action executed by robot c at time t

fSA−S
d,c State transition function, domain d, robot c

Oh, Oc Observation spaces of human h and robot c
oh ∈ Oh, oc ∈ Oc Observations of human h and robot c
fS−O
h , fS−O

c Observation functions from domain state to
observations, of human h and robot c

Eh,i, Ec,i Encoding spaces of human h and robot c
eh,i ∈ Eh,i, ec,i ∈ Ec,i Points in encoding spaces
fO−E
h,i , fO−E

c,i Observation-encoding mappings
Ph,i ⊂ Eh,i Purpose of human h in encoding space i
Pc,i ⊂ Ec,i Purpose of robot c
Ph, Pc Set of purposes of human h and robot c
Nc,i Hardwired need of robot c
Mc,i Learned mission of robot c
fE−U
h,i , fE−U

c,i Utility functions over encoding spaces
fE−E
h,c,i Human-robot encoding spaces alignment f.

Gh,i,d, Gc,i,d Human and robot goals in domain d
Gi,d State-goal in domain d

fO−U
h,i , fO−U

c,i Utility functions over observations
Mc Motivational space of robot c
fM−U
c Utility function over the motivational space

∆(S) Probability simplex over set S

h) Arbitration of purposes, priorities, and motivational
space: Robot purposes may have different priorities.

One approach is to establish a hard hierarchy, where high-
priority purposes (e.g., safety) must be satisfied before others
(e.g., missions encoding operational objectives for users).

Alternatively, a motivational space can be used to aggregate
the robot multple purposes:

Mc = Ec,1 × Ec,2 × · · · × Ec,n,

with associated utility:

fM−U
c : Mc → UM

c ⊆ R.

The motivational space enables soft arbitration across multiple
purposes.

i) Triangular alignment.: Triangular alignment (or sim-
ply ‘alignment’) is achieved when human and robot state goals,
related to a certain human/robot purpose and filtered by their
observation functions, coincide.

V. TAXONOMY OF PURPOSES

A. Primitive and learned robot purposes

We have seen that two main classes of robot purposes can
be distinguished, based on their origin: primitive needs and
learned missions. These are now analysed in more detail.

a) Primitive robot purposes: needs: Primitive purposes,
or needs, are hardwired by the designer prior to the robot’s
deployment.

A first category consists of implicit needs, embedded in
hardwired algorithms of the robot architecture (e.g., obstacle
avoidance reflexes).

A second category includes explicit needs, represented
within robot encoding spaces Ec,i and associated with a utility
function fE−U

c,i : Ec,i → UE
c,i. Explicit needs define utility-

bearing subsets Nc,i ⊂ Ec,i:

Nc,i = {ec,i ∈ Ec,i | fE−U
c,i (ec,i) ̸= 0}.

An example is the need to maintain a high battery level.
Importantly, certain needs can instantiate meta-purposes,

such as leading the robot to interact with users to acquire
missions and associated utility/prioritisation structures.

Finally, explicit or implicit needs can encode ethical and
safety constraints, often assigned a high priority over oper-
ational missions to ensure compliance with human-centered
values.

b) Learned robot purposes: missions: Missions are pur-
poses acquired autonomously during the robot’s operational
life.

A first class of missions involves the encoding of human
purposes learned via explicit interactions (e.g., verbal instruc-
tions, demonstrations).

A second class concerns instrumental self-generated mis-
sions, created to support the fulfillment of pre-existing needs
or missions. These involve the autonomous generation of:

• new encoding spaces Ec,j ,
• new missions Mc,j ⊂ Ec,j ,
• and corresponding utility functions fE−U

c,j .
The self-generation of encoding spaces is nontrivial. A

promising approach is to employ highly expressive general-
purpose representation spaces, such as language, processed for
example via large language models (LLMs).

B. Taxonomies of purposes related to motivation classes
Purposes can also be classified according to the traditional

taxonomy of motivations in OEL in the literature [35], distin-
guishing extrinsic and intrinsic motivations.

a) Extrinsic purposes related to human purposes: Ex-
trinsic purposes aim to produce desired effects in the external
(physical or social) environment.

• Operational extrinsic purposes involve missions or needs
whose goals directly satisfy human purposes through en-
vironmental changes (e.g., sorting fruits, tidying spaces).

• Social extrinsic purposes involve modifying social or
psychological states (e.g., serving food to people, enter-
taining children).

These purposes are typically associated with encoding
spaces Ec,i defined over physical, social, or psychological
environmental features.

b) Extrinsic purposes related to homeostatic needs:
A second class of extrinsic purposes addresses homeostatic
needs, essential for self-preservation and operational continu-
ity. Examples include maintaining battery charge, protecting
mechanical integrity, and ensuring functional sensorimotor
capacities. Such needs are encoded in multidimensional spaces
Ec,i (e.g., battery level, wheel health, gripper health) with a
purpose utility function fE−U

c,i driving maintenance behaviors.
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c) Intrinsic purposes: Intrinsic purposes are epistemic
drives leading the robot to acquire new knowledge, skills,
and improved models of the world, independent of immediate
external goals. For instance, an intrinsic need might involve
an encoding space Ec,i over:

• skill competence measures,
• environmental novelty indicators,

with a utility function rewarding reductions in uncertainty
or increases in model accuracy. For example, within an
information-theoretic formulation, intrinsic needs are often
formalised via expected information gain or entropy reduc-
tion [31], [36], [37]:

fE−U
c,i (ec,i) ∝ E [∆H(model | ec,i)] ,

where H denotes entropy of the internal model.

VI. FOUR IMPORTANT SUB-PROBLEMS OF THE
AUTONOMY-ALIGNMENT PROBLEM

The purpose framework highlights four major sub-problems
into which the autonomy-alignment problem can be decom-
posed. These are discussed below, along with possible strate-
gies for addressing them.

A. Arbitration of purposes: motivational utility functions

a) Problem: How can a robot arbitrate between compet-
ing purposes, possibly by the use of priorities? In particular,
how should it balance the importance associated with multiple
purposes when this are incompatible (cannot be pursued at the
same time) or compatible?

b) Strategies towards solutions: Let us consider first a
situation of incompatible purposes. A simple solution involves
static, hardwired priority weights πc,i assigned to each purpose
Pc,i, with rigid hierarchical arbitration. Purposes with higher
priority are pursued first.

Alternatively, a more flexible approach dynamically adjusts
priorities based on factors such as current feasibility or recent
success rates. The robot could select purposes probabilistically
through a softmax function over priority-weighted utilities:

Prob(i) =
eβπc,iUc,i∑
j e

βπc,jUc,j
,

where β is a temperature parameter and Uc,i the current utility
of purpose i.

If purposes are compatible, it is possible to define a unique
motivational space Mc, already discussed, where purposes are
weighted with priorities to form a whole space over which
to define a unique utility function. Formally, the total utility
Utotal(µc) over the motivational space is defined as:

UM(µc) =
∑
i

πc,i · fE−U
c,i (ec,i),

where µc ∈ Mc is a point in the motivational space, ec,i =
fO−E
c,i (oc) is the encoding of the robot’s observation oc along

dimension (purpose) i, fE−U
c,i (ec,i) is the utility associated

with encoding ec,i, πc,i ∈ R+ is the priority weight assigned
to purpose i.

In this context, it is important to assign distinct roles
to priorities and utility functions. The arbitration between
purposes should primarily operate over purpose priorities πc,i

rather than altering utility functions fE−U
c,i . Indeed, priorities

are suitable for regulating the relative importance between
purposes, whereas utility functions to establish the relative
desirability of points internal to a purpose. Thus, acting
on utilities to arbitrate between different purposes would
introduce distortions on the relative importance of the points
forming a purpose.

Another important use of priorities is to dynamically adjust
the relative importance of purposes during operation, as robots
may need to modulate their focus across different purposes
depending on context (e.g., different users, different environ-
ments). As argued above, such adjustments should rely on
changing purpose priorities πc,i rather than altering utility
functions fE−U

c,i . This preserves the internal structure of each
purpose while allowing flexible arbitration between them to
adapt to changing conditions.

B. The human-robot alignment problem

a) Problem: How can we ensure that robot purposes
(missions) correspond to human purposes?

b) Strategies towards solutions: At least three main
alignment strategies can be envisaged:

• Hardwired needs: Encoding spaces Ec,i, utility functions
fE−U
c,i , and priorities πc,i of needs Nc,i are predefined at

design time. The main challenge is to ensure that hard-
wired needs accurately reflect the corresponding human
purposes (see Section VIII).

• Top-down mission acquisition via shared encoding
spaces: Missions Mc,i are transmitted through shared
general-purpose encoding spaces Eh,i ≈ Ec,i (e.g.,
language-based representations). The key difficulty is
aligning human and robot semantic groundings of pur-
poses, given the inherent ambiguity and subjectivity of
language, which may necessitate extensive human feed-
back.

• Bottom-up mission acquisition via goal instances: Mis-
sions Mc,i are inferred by observing multiple examples
of user-satisfying domain goals gi,d ∈ Gh,i,d, or through
autonomous goal discovery followed by human valida-
tion. Challenges include the feedback cost for the user
and the difficulty of generalising from finite experience
samples to broader purpose structures.

c) Two key classes of alignment challenges: Regarding
alignment, an important distinction involves extrinsic versus
intrinsic purposes. Given their importance for the autonomy-
alignment problem, and for OEL, we now focus on them.

Extrinsic alignment problem. This case, generating a RL-like
alignment problem, involves cases where the user is satisfied
if the robot discovers at least one state-goal sgc,i,d that fulfils
the purpose, and the robot is able to accomplish it with a
competence above a certain threshold. This condition can be
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Fig. 5: Illustrative scenario of user-driven adjustment of mission utilities and priorities. A robot has two purposes: a
homeostatic need related to energy, and a mission related to proximity to a human. The robot performs a series of trials in
a domain including a human, a battery charger, and alternating daytime and nighttime conditions. (A) Initially, the mission
assigned by the user (e.g., via language) promotes visiting the human during the day, reflected as a positive utility along the
mission dimension (x-axis). The mission’s assigned priority is so high relative to the homeostatic need (y-axis) that the robot
risks depleting its battery by solely visiting the human (Trials 1 and 2). At night, the mission utility is neutral and its priority
is zero, so only battery recharging drives behaviour (Trial 3); occasional visits to the human occur by chance (Trial 4). (B)
Based on the observed undesired behaviour, the user updates the mission: the mission priority is set to 5 (with the homeostatic
need hardwired at priority 2), and a negative utility is assigned for visiting the human at night. The updated configuration leads
to better behaviour: during the day, the robot correctly prioritises visiting the human (Trial 5) but also recharges if necessary
(Trial 6); at night, it focuses exclusively on battery recharging and avoids disturbing the human (Trials 7 and 8).

formalised as follows (assuming for simplicity that any point
of the purpose has the same utility for the user):

∃ sgc,i,d :
(
fO−E
h,i (fS−O

h,i,d (sgc,i,d)) ∈ Ph,i

)
∧(

R(fS−O
c (sgc,i,d)) > thc,i,d

)
(2)

where R(fS−O
c (sgc,i,d)) is a reward function indicating the

robot competence on the robot goal.
A possible objective function that captures the RL-like

alignment problem for a certain domain is one for which the

robot is able to achieve a domain state that represents a robot
goal point for which it has the highest performance. Formally:

θ∗ = maxθ

(
f1(oc,i,d ∈ Gc,i,d) ·R(oc,i,d)

)
(3)

where θ are the robot’s control parameters to be optimised,
oc,i,d is an observation that is assumed to be producible by
the robot’s controller in the environment, f1(oc,i,d ∈ Gc,i,d)
is the function that returns 1 if oc,i,d ∈ Gc,i,d and zero
otherwise, and R(oc,i,d) ∈ [0, 1] is a function that returns
the robot’s competence level (e.g., the probability that the
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robot’s controller produces oc,i,d within a ‘trial’ lasting a
certain length of time).

Intrinsic purpose. The second case, closer to OEL scenarios,
involves situations where the user is satisfied if the robot can
accomplish, with high competence, every point of the state
goal that fulfills the purpose, or in general as many as possible.
This might be for example relevant if the user wants the robot
to learn to accomplish a large number of results of a certain
type, but s/he will assign specific goal instances (points) only
in a later stage. This condition can be represented as follows:

∀ sgc,i,d :
(
fO−E
h,i (fS−O

h,i,d (sgc,i,d)) ∈ Ph,i

)
∧(

R(fS−O
c (sgc,i,d)) > thc,i,d

)
(4)

A possible objective function that captures OEL-like pur-
pose problems for a certain domain can be expressed as the
ratio between the integral over all observations that correspond
to accomplishing the goal, each weighted by the robot’s
competence for it; and the integral over all observations that
correspond to accomplishing the same goal. Formally:

θ∗ = maxθ

∫
Oc,i,d

f1(oc,i,d ∈ Gc,i,d) ·R(oc,i,d) doc,i,d∫
Oc,i,d

f1(oc,i,d ∈ Gc,i,d) doc,i,d
(5)

where θ are the parameters of the robot controller to be
optimised, f1(oc,i,d ∈ UO

c,i,d) is the function returning 1 in
correspondence to the element oc,i,d belonging to the robot
goal OU

c,i,d and 0 otherwise, and R(oc,i,d) is a function that
returns the robot’s competence level, ranging in [0, 1], when
it accomplishes the observation oc,i,d.

C. The purpose-goal grounding problem

a) Problem: Purposes are defined in domain-independent
encoding spaces, whereas goals must be instantiated within
specific domains.

Thus, the robot must map abstract purposes to domain-
specific goals corresponding to concrete domain states.

b) Strategies towards solutions: The robot may:
• Perceive domain objects via segmentation and object

recognition.
• Identify relevant entities involved in the purpose (e.g.,

fruits, containers).
• Generate candidate goal states satisfying the abstract

purpose (e.g., arranging fruits into containers).
This mapping can be based on probabilistic inference,

simulation, or planning.

D. The competence acquisition problem

a) Problem: How can the robot learn to achieve the
grounded goals associated with its purposes?

b) Strategies towards solutions: The robot can learn
policies using reward functions Rc,d : Oc × Ac × Oc → R,
associating rewards with successful transitions towards goal
observations.

Utility functions fE−U
c,i evaluate static desirability over

observations or encodings, while reward functions R assess
state transitions. Both serve complementary roles.

Goals Gc,i,d, defined as desirable subsets of observations,
allow the generation of pseudo-reward functions:

R(oc,i,d) =

{
1, if oc,i,d ∈ Gc,i,d,

0, otherwise.

The robot may further estimate expected utility functions:

• In encoding space Ec,i, weighting distances to purpose
points.

• In observation space Oc, guiding policy learning via state
desirability gradients.

Expected utility functions can be learned through reinforce-
ment learning [15], possibly with initial shaping based on prior
knowledge.

VII. ILLUSTRATIVE SCENARIO

This section provides a concrete illustration of the purpose
framework. We present a scenario where a user progressively
refines the purposes assigned to an OEL robot based on
its observed behaviour. Figure 5 shows two sequences of
four trials each, involving a human, a battery charger, and
alternating day/night conditions.

The robot has two purposes (Figure 5A): a homeostatic
need (battery recharging) and a mission (being near a smiling
human during daytime). The robot’s motivational space is two-
dimensional:

• Mission dimension (x-axis): positive utility when near a
smiling human during day.

• Energy dimension (y-axis): utility increasing as battery
level decreases when in contact with a charger.

a) Purposes and motivational utilities: Utilities associ-
ated with different purposes are combined to form a whole
motivational space. The overall motivational utility is then
computed as the sum of the priority-weighted utilities across
all purposes.

b) First phase - initial mission assignment: Initially, the
mission assigned by the user (e.g., via language) promotes
visiting humans during the day, reflected as a positive utility
along the mission dimension (x-axis) and a very high priority
πc,1 = 10. At night, the mission assigned utility is neutral and
its priority is πc,closeness = 10, so only battery recharging
drives behaviour. The battery charging need has a hardwired
utility positively related with charge and having a default
hadwired priority πc,energy = 2. As a consequence of this
assignment, the robot robot exhibits this behaviour in four
putative trials:

• Trial 1-2 (daytime): The robot explores and successfully
reaches humans, achieving high mission utility but ne-
glecting energy needs.

• Trial 3 (nighttime): With no mission utility, the robot
charges its battery, driven by homeostatic need.

• Trial 4 (nighttime): the robot passes a sleeping human
and reaches a battery charger.

While the mission is satisfied, the robot risks battery depletion
during daytime, and disturbs a sleeping human.
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c) Second phase - refined robot mission and behaviour:
The user modifies the purpose configuration: (a) Assigns
mission priority πc,energy = 5 and maintains homeostatic
need at πc,energy = 2; (b) Introduces a negative utility for
approaching humans at night.

The robot now exhibits a refined behaviour:
• Trial 5-6 (daytime): The robot balances visiting the

human (positive mission utility) and recharging when
battery is low.

• Trial 7-8 (nighttime): The robot avoids humans (due to
penalisation) and focuses solely on battery maintenance.

Thus, the updated motivational structure leads to improved,
user-aligned behaviour.

d) Domain-specific goals and learning: During explo-
ration, the robot encodes experienced high-utility states as
domain-specific goals Gc,i,d, inheriting utilities from the corre-
sponding purposes. Goals can subsequently drive skill acqui-
sition through reinforcement learning [38], [39] or planning
strategies [40].

For instance, reaching a human might yield a pseudo-reward
proportional to the positive mission utility, reinforcing goal-
directed actions:

r(oc) = fE−U
c,i (fO−E

c,i (oc))

This facilitates open-ended autonomous skill acquisition
aligned with evolving human purposes, and also seeking
to accomplish pre-conditions for effectively doing so (e.g.,
learning to open doors to navigate the house).

VIII. MAIN ISSUES ADDRESSED BY THE LITERATURE ON
ALIGNMENT

The alignment problem in AI and robotics refers to the
challenge of ensuring that increasingly autonomous systems
pursue goals and behave in ways that are consistent with
human values and intentions. As AI capabilities advance,
misalignment could lead to unintended, harmful, or even
catastrophic outcomes. The specific issues addressed by the
growing research on alignment can be summarised as follows
(cf. [11]).

a) Value specification and misalignment: A core chal-
lenge of alignment lies in correctly specifying the objectives,
values, or reward functions that AI systems should optimise
[41]. Indeed, accurately formulating goals that perfectly cap-
ture human intent is greatly difficult. Even minor deviations
or underspecifications in the objective functions could lead
the AI to exploit loopholes or engage in unintended behaviors
that satisfy the literal specification but violate the underlying
intent, a phenomenon known as specification gaming or reward
misspecification (e.g., [42]). This problem relates fundamen-
tally to the outer alignment challenge, for which aligning
the specified objective function with the true goals of the AI
human designers is difficult if not impossible [43].

b) Learning human preferences, and their inconsistency:
Given the difficulty of direct specification, a significant re-
search avenue focuses on methods for AI systems to learn
or infer human preferences and values indirectly. Techniques

often involve learning from demonstrations, corrections, com-
parisons, or other forms of feedback within human-in-the-
loop frameworks [44]. For example, Inverse Reinforcement
Learning (IRL) aims to recover the underlying reward function
that leads to an observed behavior [45]. A further challenge
of this approach, however, is that human preferences are
often inconsistent, ambiguous, context-dependent, and poorly
articulated, posing substantial challenges for robust preference
inference [46].

c) Robustness and distributional shift: Ensuring reliable
and safe behavior requires AI systems to be robust not only
to variations within their training data distribution but also to
novel or unforeseen situations encountered during deployment
(out-of-distribution generalisation) [47]. Systems trained via
machine learning, particularly deep learning, can be surpris-
ingly brittle, exhibiting unexpected failures when faced with
inputs slightly different from those seen during training, such
as adversarial examples [48]. Safe exploration techniques are
also crucial to allow agents to learn in new environments
without causing harm during the learning process itself [42].

d) Interpretability and explainability: The increasing
complexity of AI models, especially deep neural networks,
often results in black box systems whose decision-making pro-
cesses are opaque to human users. This lack of transparency
hinders trust, debugging, verification, and the ability to ensure
that the system’s reasoning aligns with human expectations
[49]. Research in Explainable AI (XAI) seeks to develop
methods for generating human-understandable explanations
for AI predictions or decisions, using techniques like feature
attribution or model approximation [50], [51].

e) Corrigibility and error recovery: Aligned AI systems
should ideally be amenable to correction or shutdown by
human operators if they begin to behave undesirably. However,
a goal-directed agent might develop instrumental incentives
to resist interventions that could prevent it from achieving
its specified objective [41], [43]. Designing systems that
remain corrigible, that is, do not actively resist shutdown or
modification, is a non-trivial challenge [52]. Research explores
mechanisms for safe interruptibility, ensuring agents can be
paused without learning to prevent such interruptions [53].

f) Scalable oversight: As AI systems tackle increasingly
complex tasks, direct human supervision of every action or
decision becomes impractical or impossible. The challenge
of scalable oversight concerns how to effectively guide and
verify the behavior of powerful AI systems with limited human
attention [54]. Techniques like reward modeling (training a
separate model to predict human judgments of behavior) [44],
recursive approaches, or methods like AI safety via debate
aim to amplify limited human feedback to supervise complex
behaviors [55].

g) Multi-agent and social alignment: Alignment is not
solely a single-agent problem, it extends to scenarios involving
multiple interacting AI systems, as well as AI systems inter-
acting with humans in complex social contexts. Ensuring co-
operation, coordination, and norm-adherence among multiple
agents, potentially with diverse or conflicting goals, presents
unique challenges [56]. Issues include avoiding negative-sum
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outcomes in social dilemmas [57] and establishing beneficial
emergent conventions or norms [58].

h) Ethical and legal compliance: Beyond functional
correctness, AI systems are increasingly expected to operate
within intricate frameworks of societal norms, ethical prin-
ciples, and legal regulations. Encoding and operationalising
these constraints is difficult, as ethical considerations are often
abstract, contested, context-dependent, and evolve over time
[59]. Research in machine ethics explores how to imbue
systems with ethical reasoning capabilities [60], [61], but
achieving robust normative alignment remains a significant
hurdle.

i) Reward hacking and instrumental convergence: AI
systems optimising a proxy objective or reward function may
discover unintended ‘hacks’ or shortcuts to maximise their
reward without fulfilling the intended spirit of the goal [42].
This reward hacking can lead to perverse or unsafe behaviors.
Relatedly, the theory of instrumental convergence posits that
highly capable goal-directed agents are likely to develop cer-
tain sub-goals, such as self-preservation, resource acquisition,
and resisting modification, as these are instrumentally useful
for achieving a wide range of final goals [43], [62]. Managing
or preventing the emergence of these instrumental drives is
critical for long-term safety.

j) Long-term and open-ended behavior: The research on
alignment that most closely addresses the issues tackled, re-
lated to ensuring alignment while leaving space for harvesting
autonomy benefits, is the one that studies systems that learn
continuously over long time horizons, adapt their goals, or
even engage in self-modification. A system initially aligned
might drift away from intended objectives as it learns and
interacts with the world. This includes the challenge of inner
alignment: ensuring that the internal goals learned by the agent
–its mesa-objectives– match the intended base objectives spec-
ified by the designers, especially under distributional shift or
further training [63]. Early concepts like instrumental conver-
gence suggest, as considered above, that agents might develop
potentially problematic sub-goals, like resource acquisition
over the long term [42], [62]. These analyses are extremely
important but do not address the autonomy-alignment problem
extensively as done in this work.

IX. CONCLUSIONS

This work gives a theoretical contribution related to open-
ended learning (OEL) robots. These are robots able to au-
tonomously acquire skills and knowledge through a direct
interaction with the environment, in particular by relying on
the guidance of intrinsic motivations and self-generated goals.
OEL robots have a notable application relevance as they can
use the autonomously acquired knowledge to accomplish tasks
relevant for human users. However, an important problem of
OEL is that robots explore any possible experience deemed
interesting thus acquiring a shallow knowledge on all skills
that is of little utility for accomplishing specific classes of
user’s tasks.

Here we proposed a possible solution to this problem that
pivots on the novel concept of ‘purpose’. Purposes indicate

what the designer and/or user wants from the robot, for exam-
ple the accomplishment of specific goals or all possible goals
of a certain class. The robot learns an internal representation
of the users’ purposes (‘missions’). Missions allow the robot
to focus its open-ended exploration towards the acquisition of
knowledge relevant to accomplish the purposes. In addition
to learned missions, the robot can also be endowed with
hardwired ‘needs’ by its designer. Needs can ensure that
the robot fulfils other important objectives while it pursues
its missions, e.g. homeostatic and social needs, for instance
keeping its battery charged and avoid damaging humans and
itself during actions. Missions and needs are called ‘desires’
and together they form the robot’s ‘motivational space’ that
regulates its behaviour and learning.

Thus, we first formalised the concept of purpose by propos-
ing a three-level motivational hierarchy that involves: (a)
the externally imposed user/designer purposes, corresponding
to specific different user-goals in different domains; (b) the
domain-independent robot internal representations of objec-
tives (‘desires’), some learned based on the purpose and others
hardwired (e.g., homeostatic, epistemic, social needs): these
correspond to different robot-goals in different domains; (c)
specific domain-dependent state-goals that should correspond
to purposes and desires that are ‘aligned’.

Second, we highlighted key challenges that emerge by em-
ploying the purpose framework in robots, and started to discuss
how these could be addressed. The ‘human-robot alignment
problem’ requires to ensure that the needs and missions are
aligned with their related purposes. The ‘purpose grounding
problem’ requires the robot to acquire goals in different
domains to accomplish purposes. The ’purpose-based attention
and exploration’ should ensure that the robot performs active
perception and exploration maximising the acquisition speed
of relevant information. The ‘arbitration of purposes’ should
dynamically ensure a suitable prioritisation of different pur-
poses. The ‘multi-robot problem’ should provide for different
robots to suitably coordinate to collectively accomplish the
same purpose.

Overall, the approach enables robots to learn, in an au-
tonomous but also focused way, domain-specific goals and
skills that meet the purposes of the designer/user. Future
work should now leverage the framework to develop specific
means to address each of the challenges highlighted by the
framework.
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APPENDIX

Origin from cognitive science of some terms and concepts used
in the framework

The framework, introduced in Figure 2, uses some terms
drawn from cognitive sciences, and it is useful to highlight
some elements of the related concepts retained in the purpose
framework. The concepts mainly refer to human motivation, its
relation to high-level cognitive processes, and the underlying
brain systems.

Purpose refers to the overarching sense of direction or
intentionality that drives an individual’s long-term behaviour
and choices. It is often linked to a person’s broader under-
standing of life meaning and self-fulfillment. Viktor Frankl’s
seminal work emphasised that having a purpose is crucial for
psychological well-being, particularly in coping with adversity
[64]. Psychology developed the concept and now considers
purpose as one of the three pillars, alongside ‘coherence’ and
‘significance’, for feeling own life meaningful [65]. Neuro-
scientific research has further explored how purpose engages
higher-level cognitive functions, with studies showing that a
greater sense of meaning in life is associated with stronger
connectivity between default and limbic brain regions, possibly
indicating a more intense internal direction and higher control
of emotions [66]. In contrast to short-term goals, purpose
is understood as a broader and more abstract construct that
shapes behaviour across diverse contexts. In this respect,
within the framework purposes denote domain-independent
objectives. Psychologically, while a strong sense of personal
ownership often accompanies purpose, it frequently encom-
passes goals that extend ‘beyond the self,’ commonly found
within the realms of spirituality and universalism. In the
present framework, this notion is taken to its extreme, as
robots’ purposes are entirely derived from their designers and
users.
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Needs refer to fundamental biological or psychological
requirements that must be satisfied for an organism’s survival
or well-being. Abraham Maslow’s hierarchy of needs [67]
outlines how human needs progress from basic physiologi-
cal needs, such as for food, water, and shelter, to higher-
level psychological needs, like belonging, esteem, and self-
actualisation. Neuroscientifically, needs are closely tied to
homeostatic processes in the brain, especially in the hypothala-
mus, which regulates hunger, thirst, and other survival needs
[68]. Fulfilling needs is essential for maintaining homeosta-
sis, and unmet needs often trigger stress responses, driving
motivated behaviours and rewards to restore balance [69].
In the framework, needs indicate ‘innate’ desires directly
programmed into the robot by the designers to reflect their
or other human’s purposes.

Missions in psychology are related to a sense of calling
or vocation which organises and prioritises purposes [70].
In organisational psychology, mission statements are used
to express the values, purposes, focus, identity and value
proposition guiding private and public organisations [71]. In
this context, a relevant aspect of missions is often that they
refer to the exclusive features of the products or services
offered to target stakeholders. In the framework, missions
are ‘learned desires’ that should reflect the users’ purposes
and that are acquired by interacting with them or with other
processes.

Goals are specific outcomes that individuals or organisations
aim to achieve. According to Locke and Latham’s goal setting
theory, goals serve as clear targets that focus attention, mo-
bilise effort, sustain persistence, and self-determination [72].
Neuroscientific research on goal-directed behaviour highlights
the role of the brain prefrontal cortex and basal ganglia in
encoding, selecting, and using goals to guide downstream
motor areas [73], [74]. Unlike purposes and desires, which
are broad and enduring, goals typically represent more specific
and time-bound objectives.
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