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Abstract

In dynamic multi-player games, an effective way to exploit an opponent’s weak-1

nesses is to build a perfectly accurate opponent model. This renders the learning2

problem a single-agent optimization which can be solved by typical reinforcement3

learning. However, naive behavior cloning may not suffice to train an exploiting4

policy because opponents’ behaviors are often non-stationary due to their adapta-5

tions in response to other agents’ strategies. On the other hand, overfitting to an6

opponent (i.e., exploiting only one specific type of opponent) makes the learning7

player easily exploitable by others. To address the above problems, we propose8

a method named Exploit Policy-Space Opponent Model (EPSOM). In EPSOM,9

we model an opponent’s non-stationarity as a series of transitions among different10

policies, and formulate such a transition process through Bayesian non-parametric11

methods. To account for the trade-off between exploitation and exploitability, we12

train a player to learn a robust best response to the opponent’s predicted strategy13

by solving a modified meta-game in policy space. In this work, we consider a14

two-player zero-sum game setting and evaluate EPSOM on Kuhn poker; results15

suggest that our method is capable of exploiting its adaptive opponent, whilst16

maintaining low exploitability (i.e., achieving safe opponent exploitation). Further-17

more, we show that our EPSOM agent has strong performance against unknown18

non-stationary opponents without further training.19

1 Introduction20

In single agent reinforcement learning (SARL), an agent learns to act by iteratively interacting with21

an environment. In such a setting, an agent’s learning objective and its performance evaluation22

are normally clear and straightforward, e.g., its long-term cumulative rewards gained from the23

environment. However, in multi-agent reinforcement learning (MARL), one agent’s performance24

greatly depends on the behavior of other agents. Hence, finding a reliable learning objective and25

evaluation method become non-trivial [3, 9, 31, 48]. Naive solutions of the problem using SARL26

generalize badly [21] and optimizing the joint policy of all agents does not scale. Recent approaches27

combining game theoretical analysis with deep RL have seen some success in large zero-sum28

games [4, 44].29

Game theory offers a mathematical framework to model strategic interactions among players [28].30

Under perfect rationality [12], a central solution concept is Nash equilibrium (NE) where no player31

benefits from deviating from their equilibrium strategy. In a two-player zero-sum game without32

any inherent advantage for either player (e.g. as a first mover), a NE is a safe strategy to play (i.e.,33

playing not to lose) – NE guarantees a tie in the worst case in expectation. However, NE is not the34

most profitable strategy in many cases. In complex competitive games, such as poker, it is common35

that agents encounter opponents with bounded rationality, in the sense that they may at best play an36
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approximate Nash equilibrium strategy and often play dominated actions [5, 33]. Therefore, playing37

a NE can potentially forego significant rewards against sub-optimal opponents. This incentivizes38

players to deviate from the NE and exploit their opponents’ weakness (i.e., playing to win). However,39

the resulting strategy could render itself exploitable should it overfit to the current opponent. Playing40

to win can therefore lead to exploitation by other opponent strategies. In the case of deceptive41

opponents such exploitation is known as the “get taught and exploited” problem [35].42

To better balance the trade-off between playing to win against the current opponents (exploitation) and43

not losing to unknown opponents (exploitability), Johanson et al. [19] proposed a solution concept,44

named Restricted Nash Response (RNR). RNR and its variants [18, 19, 33] assume stationary45

opponents, i.e., the strategies they learn to exploit are unknown but fixed. However, in many real-46

world applications, opponents may adapt and change their strategies on an ongoing basis. For example,47

in Rock-Paper-Scissors when a player learns to best respond by playing Rock to an opponent’s strategy48

which always plays Scissors, the opponent may then learn to best respond to your best response by49

playing Paper. Furthermore, prior RNR approaches only provide one-off solutions in the sense that50

whenever we need to re-adjust the trade-off between exploitation and exploitability or the opponent51

uses a new fixed policy, we need to re-solve the updated game from scratch.52

In this work, we focus on problems with non-stationary opponents. An opponent’s learning process53

can be generally modeled as transitions among a mixture of unknown number of policies. This54

motivates the usage of a Dirichlet process mixture model. As we can only collect trajectories produced55

by the adaptive opponents online, we propose to learn our model in a streaming fashion. Given the56

predicted opponent policy from our model, we provide a general framework for training an agent57

to safely exploit the non-stationary opponent where safe exploitation means exploiting the current58

opponent with a low probability of being exploited by other opponents in future. We empirically59

demonstrate the ability of our approach to safely exploit a non-stationary opponent in Kuhn Poker, a60

simplified Poker game. Furthermore, once trained, our model can produce strong counter strategies61

to unseen opponents without any further training in new tournaments.62

2 Related Works63

A fundamental ability of an effective AI agent is the capacity to interact with other intelligent64

agents. Therefore, the capability of reasoning about other agents’ goals [34], private information [27],65

behavior [13] and other characteristics is crucial. The issue of non-stationarity in multi-agent systems66

resulting from coexisting agents is well-known and well documented [14, 32]. Classical solutions to67

resolve the issue of non-stationarity include centralized training [24], self-play [44], meta-learning [1]68

and opponent modeling [2]. When specifically applied to the issue of non-stationarity, most previous69

works focusing on opponent modeling which switches between different opponent models when a70

change in opponent(s) is detected. A switch of model may be triggered by a drop in opponent model71

prediction accuracy [10] or when performance in terms of reward received for a fixed policy drops72

[15]. Deep BPR+ [49] combines a measure of opponent model accuracy and reward tracking to decide73

when to learn a new policy. Significantly, most of these works limit the opponents’ non-stationarity74

to periodically changing their policies within a finite pre-defined set of stationary policies.75

In this work, we consider non-stationarity during the training stage arising from the opponents’76

concurrent learning dynamics, rather than drawing stationary opponents from a pre-defined set. The77

entire lifetime of an opponent can generally be modeled as a mixture of an unknown (possibly infinite)78

number of policies. This motivates the usage of a Dirichlet Process (DP) mixture model [6, 42] which79

can infer the number of mixture components from data and provide incremental model capacity80

on demand. Various approximate inference methods are reported for DP mixture models, such as81

Markov chain Monte Carlo [17] and variational inference [6, 16, 45]. However, these inference82

methods either do not adapt to an online setting or truncate the number of clusters to a finite value.83

Recently proposed streaming inference algorithms [23, 41] enable the DP mixture model to solve84

online non-stationary problems in a truly non-parametric way. Applications have been reported in85

task-free continual learning [22] and model-based reinforcement learning [47]. In this paper, we86

adopt this approach to model and simulate a non-stationary opponent for MARL.87

It is well known that finding a NE is PPAD-hard even in two-player games [8]. An exception is two-88

player zero-sum games where the NE can be tractably solved by a linear program (LP) in polynomial89

time [43]. However, in games with extremely large action spaces, approximate NE solutions, such90
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as fictitious play (FP) [7] and counterfactual regret minimisation (CFR) [50], have to be used. An91

important design principle that underpins NE approximation is the iterative best-response dynamics.92

Two representative methods are Double Oracle (DO) [26] and Policy Space Response Oracle (PSRO)93

[21]. In the dynamics of DO [26], players are initialized with restricted strategy sets; then at each94

iteration, a NE will be computed over the current restricted sets. These sets will be expanded by95

adding the best-response strategy to the NE computed over the full strategy sets. The iterative96

process continues until the best response is in the restricted strategy pool. PSRO approximates DO by97

interleaving empirical game-theoretic analysis (EGTA) with deep RL. In contrast with DO, the game98

with restricted strategy sets has to be estimated through simulation. Furthermore, the exact analytical99

best-response oracle is replaced in PSRO by a deep RL oracle which calculates an approximate best100

response. PSRO is a general self-play framework for MARL and many approaches built upon it have101

been proposed to improve its performance [25, 29, 30, 39]. Our approach, EPSOM, is not limited to102

the self-play setting. In addition, although we favor solutions with low exploitability (i.e. solutions103

close to NE) as PSRO does, our ultimate goal is to find a robust best response to a non-stationary104

opponent rather than solving the game for an (approximate) NE.105

3 Preliminaries106

We consider the decentralized training and decentralized execution (DTDE) setting in zero-sum107

games where we have access to interaction trajectories ⌧ between our agent and the opponenti .108

Whilst our approach can be extended to games with multiple opponents, in this work we focus on109

2-player zero-sum games. Before introducing our algorithm, we present some necessary preliminary110

concepts and notation in the remainder of this section.111

3.1 Meta Normal-Form Game112

We consider opponent modeling in policy space and learn to respond to the predicted distribution113

of the opponents’ policies. We formulate this problem as solving a two-player normal-form game114

(NFG) between our agent and its opponents as a whole with notation adapted to our presentation. We115

denote a 2-player NFG by a tuple (⇧, U,N ) where ⇧i is player i’s set of policies and i 2 N where116

N = {1, 2}. For ease of notation, we take player 1 as the training agent and player 2 as its opponent.117

We use ⇧ =
Q

i2N ⇧i to denote the set of joint policies (strategy profiles). U(⇡) : ⇧ ! <
n is a118

payoff table of utilities for each joint policy ⇡ played by all players. ui(⇡) denotes the utility value119

for player i and joint policy ⇡. A player can choose a policy ⇡i from ⇧i or sample from a mixture120

(meta-strategy) over them �i
2 �

�
⇧i
�

where � is a probability simplex. In the terminology of game121

theory, �i is a mixed strategy and each policy ⇡i is a pure strategy.122

Each player in the game is assumed to maximize their utility. The most well-known steady-state123

concept of a game is the Nash equilibrium (NE). NE is a strategy profile ⇡ such that no player has an124

incentive to deviate from its current strategy given the strategies of the other players. Namely, each125

player’s strategy is a best response to others’ BR(⇡�i) = argmax⇡i ui(⇡i,⇡�i) 8i 2 N . We call a126

set of policies ✏-best responses to a joint opponents’ policy ⇡�i, when there exists an ✏ > 0, such127

that BR✏(⇡�i) = {⇡i : ui(⇡i,⇡�i) � ui(BR(⇡�i),⇡�i)� ✏}. An ✏-Nash equilibrium is a strategy128

profile that satisfies: ui(⇡) � max⇡i0 ui(⇡i0,⇡�i)� ✏ 8i 2 N .129

3.2 Exploitability and Exploitation130

To evaluate our learned policy ⇡1, we use two metrics. An agent’s policy’s ⇡1 exploitation of an131

opponent’s policy ⇡2 is the extra gain obtained by the agent compared to its NE value v1:132

!(⇡1,⇡2) = u1(⇡1,⇡2)� v1.

This measures how much the policy ⇡1 exploits the weakness of the opponent’s policy ⇡2. However,133

in general, there is no guarantee that the learned policy ⇡1 has no weakness. Therefore, we also134

define the exploitability of a policy ⇡1 which measures the loss incurred when the agent faces the135

iA detailed definition of the trajectory in a stochastic game [38] can be found in Appendix A.1.
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best opponent policy ⇡2 = BR(⇡1) compared to the agent’s Nash equilibrium value v1:136

✏(⇡1) = v1 � u1
�
⇡1,BR(⇡1)

�

= max
⇡10

min
⇡2

u1(⇡10,⇡2)�min
⇡2

u1(⇡1,⇡2). (1)

From Equation 1 we can see that the exploitability of a policy is non-negative and represents the137

distance of policy ⇡1 to an equilibrium.138

3.3 Restricted Nash Response (RNR)139

Johanson et al. [19] consider a modified zero-sum game where an opponent has a restricted strategy140

space ⇧2
p,⇡fix

such that it plays a fixed policy ⇡fix with probability p and plays any possible policy141

from the original strategy space ⇧2 with probability 1� p. Given (p,⇡fix), they define a restricted142

Nash equilibrium as a strategy profile (⇡1⇤,⇡2⇤) such that ⇡1⇤
2 BR(⇡2⇤) and ⇡2⇤

2 BRp,⇡fix(⇡
1⇤),143

where: BRp,⇡fix(⇡
1⇤) = argmax⇡22⇧2

p,⇡fix
u2(⇡1,⇡2). It is shown that ⇡1⇤ is the best response to144

⇡fix among strategies which have equal or lower exploitabilities than ⇡1⇤, i.e.: ⇡1⇤ = BR✏(⇡fix),145

where ✏ = ✏(⇡1⇤). Therefore, ⇡1⇤ is called a p-restricted Nash response (RNR) to ⇡fix. An RNR can146

be computed by solving the modified game, we present a linear programming solver implementation147

for NFGs in Appendix A.2.148

4 Dirichlet Process Mixture Opponent Modeling149

This section presents our non-parametric Bayesian method for modeling a non-stationary opponent.150

We consider an opponent’s learning process as consecutive transitions from one policy to another151

such that one opponent can theoretically adopt infinitely many policies during its life-time. Therefore,152

we propose to use a Dirichlet process (DP) mixture to model the learning process as it has the ability153

to model an infinite number of clusters (policies in this case) while inferring the current number of154

policies from the data collected thus far. As our agent interacts with the opponent online, we learn a155

model with a sequential maximum-a-posteriori approach.156

We model an opponent policy as a parameterized function ⇡2
� and denote the parameter space as157

�. To avoid cluttered notation in this section, we use � to represent the modeled opponent’s policy.158

DP(↵H) is a stochastic process with a concentration parameter ↵ and a base distribution H over �.159

A random draw G ⇠ DP(↵H) is itself a distribution over �, satisfying:160

(G(A1), ..., G(Ar)) ⇠ Dirichlet
�
↵H(A1), ...,↵H(Ar)

�

for every finite measurable partition A1, ..., Ar of �. The full graphical model for opponent modeling161

is shown in Figure 1a. It illustrates a generative process where at step m, the opponent first samples a162

policy �̂m ⇠ G and then rolls-out this policy to collect a trajectory ⌧m.163

To facilitate Bayesian inference, two representations of DP are considered. The stick-breaking164

representation in Figure 1b reveals the discrete nature of G. G ⇠ DP(↵H) can be constructed165

as G =
P1

k=1 �k��k where � ⇠ GEM(↵) is an infinite-dimensional random variable sampled166

from the Griffiths-Engen-McCloskey (GEM) distribution and {�k}
1
k=1 are i.i.d. sampled policies167

from H . At step m, the opponent samples a policy index zm ⇠ Categorical(�) and rolls-out the168

policy �zm . Inference with the stick-breaking representation is required in order to handle the infinite169

dimensional �. Therefore, the truncation method [6] is commonly used to limit the model capacity170

to a K mixture and infer the actual number of policies by collapsing redundant ones. This requires171

tracking all K policies simultaneously and does not adapt well to online settings.172

The Chinese restaurant process (CRP) representation in Figure 1c can be obtained by integrating173

out �. This introduces temporal dependencies between the policies, which can be expressed by the174

conditional distribution:175

p
�
zm+1 = k|z1:m

�
=

8
>>><

>>>:

↵

m+ ↵
, k = Km + 1

|k|m
m+ ↵

, 1  k  Km

(2)
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where |k|m =
Pm

i=1 I(zi = k) is the total number of trajectories from the k-th policy and Km is176

the number of realized policies up until step m. Inference with the CRP representation does not177

need to handle the infinite dimensional �. Furthermore, at step m, we only need to track at most m178

policies (Km  m) while all policies beyond Km are independent from the collected trajectories179

⌧1:m, and thus can be discarded from the model. In addition, the temporal dependencies between180

policies introduced by CRP can be used to develop an online learning algorithm.181
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Figure 1: Dirichlet process mixture model

Given sampled trajectories ⌧1:m, the target182

of our opponent model is to assign each183

trajectory to a policy and update existing184

policies with assigned trajectories. This185

can be achieved by seeking maximum-a-186

posteriori (MAP) estimations of z1:m and187

�1:Km . To deal with streaming trajectories,188

the MAP algorithm should operate in an189

online fashion. Therefore, given the CRP190

representation, we decompose the posterior191

into the product of the posterior from the192

last step, the current priors and the likeli-193

hood, which leads to a recursive form:194

p(z1:m,�1:Km |⌧1:m) /

✓Km�1+1Y

k=1

p(�k)

◆
p(z1)p(⌧1|�z1)

✓ mY

i=2

p(zi|z1:i�1)p(⌧i|�zi)

◆
,

/ p(z1:m�1,�1:Km�1 |⌧1:m�1)p(�Km)p(zm|z1:m�1)p(⌧m|�zm),
(3)

where p(�k) = H is the base distribution of the DP.195

The opponent model either assigns the current trajectory ⌧m to a previous policy �k or creates a196

new policy �Km�1+1 to model ⌧m. The choice is made according to the MAP trajectory assignment197

z⇤m = argmaxzm p(zm, z⇤1:m�1|⌧1:m):198

p(zm = k, z⇤1:m�1|⌧1:m) /

(R
�k

↵p(�k)p(⌧m|�k) d�k, k = Km�1 + 1

p(zm = k|z⇤1:m�1)p(⌧m|�m�1
k ) = |k|⇤m�1p(⌧m|�m�1

k ), otherwise
(4)

where |k|⇤m�1 =
Pm�1

i=1 I(z⇤i = k). Here, the hard assignment z⇤m for ⌧m is based on previous199

assignments z⇤1:m�1 and policies �m�1
k , which is equivalent to applying assumed density filtering200

(ADF) [41] to approximate the true posterior in Eq. (3) with a Delta distribution �(z⇤1:m). The hard201

assignment prevents creating a new policy at each step if ⌧m is assigned to an existing policy, which202

significantly reduces the memory usage. Furthermore, the MAP estimations for all existing policies,203

except �z⇤
m

, remain unchanged, which dramatically accelerates the algorithm. We then optimize the204

policy �z⇤
m

by maximizing the likelihood of all trajectories assigned to it:205

�m
z⇤
m
= argmax

�z⇤m

log p(�z⇤
m
)
Y

z⇤
i =z⇤

m

p(⌧i|�z⇤
m
). (5)

Where finding the global optimum is not tractable in non-conjugate cases, we take gradient steps to206

update �n
z⇤
m

as207

�n
z⇤
m
= �m�1

z⇤
m

+ �r�z⇤m
log p(�z⇤

m
)
Y

z⇤
i =z⇤

m

p(⌧i|�z⇤
m
).

The entire algorithm fits into the general expectation-maximization (EM) framework. See Appendix208

A.4 for a detailed derivation.209

The original CRP in Eq. (2) encapsulates a prior that the distribution of the next policy mimics the210

empirical policy distribution from the history. This prior is not consistent with our knowledge of the211

policy evolution process since a new opponent policy is commonly updated from the previous one.212

Therefore, we adopt a sticky variant in Eq. (6) to incorporate the belief that the opponent tends to213
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persist in the latest policy [11, 47].214

p
�
zm = k

��z1:m�1

�
=

8
>>><

>>>:

↵

m� 1 + ↵+ 
, k = Km�1 + 1

|k|m�1 + �̂(Km�1, k)

m� 1 + ↵+ 
, 1  k  Km�1

(6)

where  � 0 is a ‘stickiness’ parameter and �̂ is the Kronecker delta function.215

Following Eq. (4), the probability of creating a new policy for ⌧n is given by:216

p(z⇤m = k) /

Z

�k

↵p(�k)p(⌧m|�k) d�k, (7)

where k = Km�1 + 1. We use a Monte Carlo method to estimate Eq. (7) by sampling new policies217

from p(�k). However, sampling new policies from a data-independent prior p(�k) is likely to yield a218

low trajectory likelihood p(⌧m|�k), which prevents the new policy creation. Therefore, we update the219

sampled policies to increase the likelihood p(⌧m|�k) by taking a few gradient steps before estimating220

the integration in Eq. (7).221

According to Eq. (6), the CRP prior encourages the opponent model to create redundant policies at the222

early stage when the number of trajectories n is small and ↵ dominates. Redundant policies could hurt223

the algorithm’s performance as it incurs extra cost in terms of computation and memory. Trajectories224

from the same ground truth policy could be assigned to different �ks and these assignments never225

revisited. Therefore, an error correction mechanism has to be introduced. Here, we adopt a symmetric226

distance metric between two policies and develop a policy merge procedure based on the metric.227

Given a set of states S, we define d(�k,�j) = Es⇠Uniform(S)

h
JS

⇣
�k(·|s)

���j(·|s)
⌘i

, where228

JS(·||·) is the Jensen–Shannon divergence and �k(·|s) is the action distribution given state s under229

the policy �k. When the distance between two policies is below a pre-defined threshold ⌘, the merge230

procedure simply re-assigns all trajectories of �k to �j .231

With the opponent model developed in this section, at step m, we can construct an opponent policy set232

⇧̃2 = {�m
k }

Km
k=1 and a distribution �̃2 over ⇧̃2. The distribution �̃2(� = �k) / |k|m + �̂(Km, k)233

is essentially the empirical distribution of z⇤1:m altered by the stickiness factor .234

5 Exploit Policy-Space Opponent Model235

In this section, we present how to learn a safe best response to this meta strategy, given a predicted236

distribution �̃2
�

ii over opponent’s policies. The advantages of our approach of focusing on policy space237

are two-fold: first, we do not need to assume the access to the opponent’s learning characteristics such238

as its training algorithm, its neural network’s architecture or its update frequency; we only require past239

trajectories. Additionally, the distribution of the types of opponent policy �̃2 gives us an approximate240

stable overview of the current opponent’s playing behavior compared to the opponent’s current241

policy whose updates greatly depend on the opponent’s learning characteristics and randomness from242

playing (e.g. exploration behavior) and training (e.g. stochastic gradient descent). Therefore, learning243

a response to this meta-strategy �̃2 will rely on less prior knowledge about the opponent’s learning244

characteristics and is more robust to noise.245

However, there is no guarantee that our learned meta strategy �1 has no (or at least low) exploitability.246

It has been shown that overfitting to an opponent strategy �̃2 often renders the resulting learned247

strategy brittle [19, 21, 46]. Such a brittle strategy performs badly when playing against different248

opponent strategies �̃20. Therefore, a more desirable goal is to learn a safe best response to an249

opponent meta-strategy �̃2. RNR solutions consider cases where the game to solve is fixed and250

known and the opponent’s policy is stationary. However, when we consider non-stationary opponent251

exploitation on policy space, the size of the meta-game to solve increases with the number of252

interactions between the training agent and the adaptive opponent. Furthermore, each player is free to253

learn and update its policy at any time point during the process.254

iiTo simplify our notation, we will ignore the subscript � henceforth.
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Algorithm 1: Exploit Policy-Space Opponent Model (EPSOM)
input :Hyper-parameter p,H,E, an adaptive opponent �i
output :Policy ⇡i

1,...,E and meta-policy �i

Initialize learning agent i’s policy ⇡i
0

Initialize a memory buffer B
Initialize opponent meta-policy ��i(·) = 1
for epoch e in {1, 2, . . . , E} do

for episode h 2 {1, 2, . . . , H} do

Play an episode against the opponent with strategy �1
RNR

Collect the trajectory ⌧e,h and save them into B
end

�̃2, ⇧̃2 = opponent_modeling(B)
p̄ = 1

|⇧̃2|
P

j p
j �̃2(j)

Compute missing entries in U ⇧̃ from ⇧̃ = ⇧1
⇥ ⇧̃2 by simulations

_,�2
RNR = RNR_solver(U ⇧̃, p̄, �̃2)

for episode h 2 {1, 2, . . . , H} do

Sample ⇡̃2 from �2
RNR

Train oracle ⇡1 over ⇢ ⇠
�
⇡1, ⇡̃2

�

end

⇧1 = ⇧1
[
�
⇡1
 

Compute missing entries in U ⇧̃ from ⇧̃ = ⇧1
⇥ ⇧̃2 by simulations

�1
RNR, _ = RNR_solver(U ⇧̃, p̄, �̃2)

end

To address the above issues, we combine DO with RNR to solve a meta-game built from EGTA where255

the opponent’s policies are predicted by the opponent model from Section 4. Pseudo-code explaining256

our approach is presented in Algorithm 1. We maintain a utility table U ⇧̃ wherein rows represent257

learned policies for the training agent and columns represent a modeled policy of the opponent258

respectively. An epoch is defined as a fixed amount of episodes of games where we play against the259

opponent holding our strategy �1 fixed. At each epoch, we run our opponent model to predict the260

current distribution �̃2 of the opponent’s policies. If a new policy is detected, we will add it into ⇧̃2.261

Given �̃2, we run a p-RNR solver to obtain the opponent’s RNR meta-strategies �2
RNR which is a262

restricted Nash solution to the current meta-game assuming that the opponent is playing according to263

�̃2 with probability at least p. Then we train an (approximate) best-response policy to �2
RNR and add264

the new policy into ⇧1. We re-run a p-RNR solver to obtain our RNR meta-strategies �1
RNR which265

we use to mix the policies in population ⇧1 for the next epoch’s playing policy.266

When a new type j of modeled policy ⇡2,j is added by our opponent model, we initialize a p-value267

pj = pinit to this type. Its p-value is incremented proportionally to the probability that the opponent268

plays this policy in the following epochs, �̃2(j), and clipped at 1. At each epoch, we calculate the269

average p-value p̄ = 1
|⇧̃2|

P
j p

j �̃2(j) for solving current RNR strategies. In the extreme case where270

p̄ = 0, �i
RNR is the same as the Nash strategy in the current meta game. At another extreme where271

p̄ = 1, �2
RNR = �̃2 and �1

RNR = BR(�̃2). Therefore, when we have low confidence in �̃2 (p̄ is272

low), we learn an approximate best response to opponent’s current Nash mixture which will enlarge273

our current empirical gamescape [3] and thus help to find strategies with lower exploitability. At the274

same time, the training agent becomes risk-adverse and the next epoch strategy �1
RNR becomes a275

strategy closer to the Nash strategy of the current meta game.276

When p̄ is high, it means that our opponent model has high confidence that the opponent is playing �̃2277

and an approximate best counter strategy to �̃2 will be added into our policy population. The training278

agent becomes profit-driven and �1
RNR becomes a strategy closer to BR(�̃2) in the next epoch.279

Therefore, mixing the playing policy by �1
RNR flexibly switches the agent between risk-adverse and280

profit-driven depending on the confidence of the opponent model. In contrast with previous RNR281

solution, EPSOM can always recover a strategy with approximately the lowest exploitability it has282

seen so far as we maintain a population of policies.283
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Figure 2: Exploitability and exploitation of different algorithms against a non-stationary opponent implemented
by PPO in Kuhn Poker.

6 Experiments284

In this section, we empirically investigate whether the proposed method can (1) exploit an unknown285

non-stationary opponent while still maintaining a strategy with low exploitability, (2) improve its286

performance by continued training against different opponents and (3) exploit previously unseen287

opponents without further training. We verify EPSOM’s performance in Kuhn Poker [20], a simplified288

version of poker which importantly retains strategic elements useful for game-theoretic analysis. We289

use an agent learning to play using the PPO [37] algorithm as our opponent, which suffices to provide290

a non-stationary setting. More details about the game and our experiment implementation can be291

found in Appendix A.3.292

Kuhn Poker

PPO TRPO

EPSOM [0.109] 0.023 (0.189) 0.09 (0.180)
CEPSOM [0.080] 0.113 (0.142) 0.140 (0.117)
BC [1.333] �0.559 (0.232) �0.223 (0.134)
PSRO [0.000] 0.052 (0.072) 0.032 (0.058)
PPO [0.477] �0.407 (0.133) �0.372 (0.119)

Table 1: Zero-shot learning exploitation results. Trained agents
(row players) play against adaptive opponents (column players)
without further training. Adaptive opponents are allowed to
update 100 times and a trained agent’s average exploitation are
taken over these 100 updates and 5 random seeds. Values in
square brackets are each trained agent’s exploitability and values
in parentheses are stds taken over 5 random seeds.

Figure 3: Opponent’s learning process mod-
eled by trained CEPSOM: (left) CEPSOM
adjusts playing strategy online; (right) CEP-
SOM plays an approximate Nash strategy.
Each point is 2-D embedding of a modeled
policy to which a trajectory produced by the
opponent is assigned by our opponent model.
Color bar indicates time sequence.

293

We select 3 representative algorithms as baselines. PSRO is a popular algorithm which guarantees the294

convergence to an approximate NE. As PSRO is a self-play algorithm, its is trained before playing295

against any adaptive opponents. Behavior cloning (BC) models the opponent’s policy by taking296

maximum likelihood estimation of history trajectories stored in a sliding-window buffer and learns297

an (approximate) best-response policy to it. PPO represents a canonical choice among many SARL298

algorithms. In our work, as agents and their opponents update asynchronously, we always evaluate299

each algorithm’s performance right after the opponent’s update for a more robust evaluation. The300

following results reported with mean and standard deviation (std) are all obtained by repeating the301

corresponding experiment over 5 random seeds.302

As shown in Figure 2, EPSOM can achieve a safe strategy with relatively low exploitability while still303

being able to exploit its opponent. Though PSRO plays a strategy with the lowest exploitability (⇡ 0)304

it also has very low exploitation against its opponent. In contrast, BC can exploit its opponent to a305

similar extent as EPSOM but it comes with the cost of high exploitability. The PPO algorithm has306

8



large variance and performs badly on average in this non-stationary setting. We also test a continual307

learning version of EPSOM which we name CEPSOM. It is implemented by training an EPSOM agent308

against 5 different opponents without re-initialization thereby building up a richer set of modeled309

opponent policies and a more robust best-response policy population. Its average performance over310

these opponents is also reported in Figure 2. In our experiments, we use an analytical method to311

calculate a best response to a given policy. We obtain similar results for approximate best response312

learned by RL which are reported in Appendix A.5.313

Next, we test these agent’s performance against two adaptive opponents implemented by PPO and314

TRPO [36] without further training and results are presented in Table 1. Relying on an opponent model315

to predict the current opponent’s policy type and flexibly adjusting its playing strategy accordingly,316

CEPSOM achieves the highest average exploitation against adaptive opponents. EPSOM also obtains317

positive average exploitation but with a much lower value, since EPSOM has only ever been trained318

with one opponent. PSRO plays a safe strategy and performs slightly better than EPSOM in terms of319

opponent exploitation. BC and PPO perform badly as they overfit to one opponent, and thus they are320

exploited by other adaptive opponents. Note that, in this zero-shot learning tournament, although we321

do not train EPSOM and CEPSOM, they still need to predict the opponent’s policy and solve the322

meta-game for a RNR solution given the prediction.323

Facing an adaptive opponent, a trained CEPSOM’s opponent model can assign trajectories collected324

during learning into modeled policies it has built. Therefore, we can visualize an opponent’s learning325

process by presenting a sequence of those modeled policies on a 2-dimensional plot. In Figure 3,326

we present two opponent’s visualized learning process when it faces (a) a trained CEPSOM agent327

which adjusts its playing strategy online based on its opponent model prediction, and (b) a trained328

CEPSOM agent which always plays an approximate Nash equilibrium strategy. We can see that in a329

non-stationary environment (left), the opponent’s learning exhibits a cyclic pattern. In contrast, the330

opponent’s learning is much more transitive (i.e., monotonically moving in one direction in the 2D331

space) in a stationary environment (right).332

7 Conclusion333

In this work, we propose a framework for training an agent to safely exploit its opponent. Compared334

to RNR and its variants, our work focuses on non-stationary opponents. We consider the opponent’s335

learning as a series of policy transitions and model such a process by a Dirichlet Process. Safe336

exploitation means that an agent can exploit an opponent’s weakness to maximize our utility while337

simultaneously maintaining a strategy which has low exploitability. This property is desirable as338

naively overfitting to one type of opponent could easily lead to exploitation by other opponents. We339

empirically verify our algorithm’s performance on Kuhn Poker, a simplified version of Poker.340

Opponent modeling based MARL algorithms typically require extra computation for learning a341

good opponent model. This cost often scales dramatically with the number of opponents, action342

space dimensionality and the complexity of the problem. It can be a heavy burden on an agent if343

it learns an opponent model from scratch online. Therefore, a more realistic way for utilizing the344

power of an opponent model is offline training and online prediction. We build CEPSOM based on345

this idea where we train one EPSOM agent across different opponents and aggregate knowledge by346

maintaining a never-reinitialized opponent model and policy population. Our experiment results show347

that CEPSOM can achieve high exploitation against a new adaptive opponent without further training,348

outperforming other representative baselines from SARL and MARL. In complex competitive games,349

a strong player can often encounter sub-optimal opponents and playing a Nash strategy can potentially350

forego significant profit. EPSOM, alongside many prior works, shows the potential of an opponent351

modeling based approach for solving this problem, and our preliminary results from CEPSOM352

demonstrate the possibility of a trained agent beating an as yet unseen adaptive opponent.353

EPSOM is limited by its computation and memory complexity. Naively applying EPSOM to more354

complex problems requires a great amount of resources. To alleviate this problem, we introduce355

policy merge to remove redundant policies in our opponent model. This approach could be improved356

by applying game theoretic analysis to our policy populations (agent’s self policies and modeled357

opponent policies). We leave the study of improving EPSOM’s scalability to future work.358
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