
CraftText Benchmark: Advancing Language Grounding in Complex
Multimodal Open-Ended World

Anonymous ACL submission

Abstract
Grounding language models in multimodal en-001
vironments is a pivotal challenge in AI, en-002
abling agents to link linguistic inputs with sen-003
sory data, such as visual information. Existing004
environments, however, often limit the com-005
plexity of agent behavior due to restricted dy-006
namics or vocabulary. To address these limita-007
tions, we propose a new benchmark based on008
the Craftax environment—a dynamic, stochas-009
tic setting with extensive game mechanics and010
a rich vocabulary. This benchmark is designed011
to evaluate agents on complex tasks involving012
spatial reasoning, logic, and context, offering013
a rigorous platform for advancing multimodal014
AI research.015

1 Introduction016

Grounding language models is one of the key chal-017

lenges in the field of artificial intelligence, aimed018

at enabling intelligent agents to link linguistic en-019

tities with objects from various modalities, such020

as visual data (Carion et al., 2020; Li et al., 2022;021

Radford et al., 2021b). Solving this problem opens022

up opportunities for creating more versatile and023

adaptive AI systems capable of effectively extract-024

ing and integrating features from different types of025

data (Zhang et al., 2022; Wang et al., 2023). This,026

in turn, allows them to make more complex infer-027

ences and build comprehensive models applicable028

in a wide range of contexts.029

Examples of the use of such technologies include030

generating textual descriptions based on images,031

enhancing natural language processing with visual032

cues, and multimodal search, where text queries033

are matched with images or videos. These exam-034

ples highlight the importance of integrating data035

from different sources to achieve more accurate036

and sophisticated results.037

Particular attention in this area is given to de-038

veloping behavioral strategies for agents trained039

with reinforcement learning in multimodal envi-040

ronments (Perez et al., 2018; Lynch et al., 2022;041

Figure 1: Example of an agent executing a task in the
Craftax environment, moving from the starting point to
the northernmost lake to set up a crafting table. A ’Done’
marker confirms the task’s successful completion.

Wang and Narasimhan, 2021). In this context, an 042

agent must be able to formulate low-level action 043

plans based on textual instructions and visual ob- 044

servations. The agent’s task is not only to associate 045

words with objects in the environment but also to 046

adapt its behavior depending on the textual direc- 047

tions received (Zhong et al., 2019). 048

Examples of tasks that can be assigned to such 049

agents vary depending on the environment’s char- 050

acteristics. For instance, in one environment, the 051

agent may need to find a target point by following 052

textual instructions. In more complex scenarios, the 053

instructions might include guidance on selecting 054

specific actions to achieve goals, as well as consid- 055

ering the context of object interactions within the 056

environment. In such cases, the agent must under- 057

stand which objects can be used together to achieve 058

a particular outcome or how specific actions might 059

alter the state of the environment. 060

However, existing multimodal environments of- 061

ten have limitations that affect the complexity of 062

1

behavior expected from the agent: some environ-063

ments may focus more on text comprehension and064

have limited environmental dynamics, while oth-065

ers, with more complex mechanics, may have a066

restricted vocabulary.067

To address these challenges, we propose a new068

benchmark CrafText based on the Craftax envi-069

ronment—a stochastic and dynamic environment070

with a large number of game mechanics (Figure 1).071

Our extension presents a set of complex linguistic072

instructions with a rich vocabulary that requires073

solving spatial, logical, and other tasks formulated074

in natural language, along with a set of evalua-075

tion functions that objectively assess how success-076

fully the agent handles the given instructions. The077

dataset and the code for our extension can be ac-078

cessed in the following repository.1079

2 Related work080

Language Grounding Problem. Addressing the081

challenge of language grounding in intelligent082

agents involves enabling these agents to associate083

objects across different modalities, such as linking084

observations in virtual environments with textual085

instructions. The core task is for an agent to inter-086

pret instructions related to interacting with objects087

within an environment, accurately match the de-088

scriptions to the corresponding objects present, and089

perform the appropriate actions. In multimodal090

environments, existing approaches to policy cre-091

ation can be categorized into three main groups.092

Some studies utilize CLIP (Radford et al., 2021a)093

to connect visual and textual observations (Paischer094

et al., 2024; Lynch et al., 2022). Another group095

of research employs projection layers (Perez et al.,096

2018; Zhong et al., 2019; Wang and Narasimhan,097

2021). In contrast, others leverage cross-attention098

mechanisms or methods that compress data into a099

hidden subspace, where text is not directly associ-100

ated with visual observations, as seen in Dynalang101

(Lin et al., 2023).102

Embodied Environments. Multimodal environ-103

ments used for training agents are characterized by104

their diversity, making them valuable for solving a105

wide range of tasks while also revealing certain lim-106

itations. Environments such as Touchdown (Zhong107

et al., 2021), Alfred (Shridhar et al., 2020), House-108

keep (Kant et al., 2022), and VirtualHome (Savva109

et al., 2019) provide rich visual content, numerous110

1CrafText Repository:
https://anonymous.4open.science/r/CrafText-4FA2/

objects for interaction, and complex textual instruc- 111

tions with extensive vocabularies. Although these 112

environments may lack dynamism, they present 113

agents with challenging tasks that require a high 114

level of interpretation and planning. However, 115

agents operating within these environments often 116

face limitations in developing low-level strategies, 117

which may diminish their flexibility and adapt- 118

ability. Environments like HomeGrid (Lin et al., 119

2023), BabyAI, RTFM (Zhong et al., 2019), and 120

Messenger (Wang and Narasimhan, 2021) stand 121

out for their engaging gameplay mechanics, de- 122

spite having less developed visual components 123

and fewer interactive objects. In these settings, 124

agents are compelled to adapt quickly and make 125

decisions under constrained resources. For exam- 126

ple, HomeGrid includes dynamic elements, while 127

BabyAI presents tasks that require puzzle-solving 128

and strategic thinking. In RTFM and Messenger, 129

the emphasis is on textual interaction and the iden- 130

tification of objects or allies. The IGLU (Kiseleva 131

et al., 2022) environment occupies a unique posi- 132

tion by combining a variety of features, offering 133

agents tasks that involve building structures from 134

blocks based on textual descriptions. This environ- 135

ment is notable for its high combinatorial complex- 136

ity and stochasticity, making it particularly inter- 137

esting for research despite its lack of dynamism. 138

There is a notable shortage of environments that 139

can effectively assess an agent’s ability to perceive 140

diverse language and associate it with real-time 141

events in the environment. While many environ- 142

ments emphasize either the visual or textual com- 143

ponent, few achieve a well-balanced integration of 144

both. 145

3 Craftext 146

In our work, we developed an extension for the 147

open-world environment Craftax (Matthews et al., 148

2024), which we named CrafText. Craftax is a 149

game environment that provides a wide range of 150

tools for creating and exploring virtual worlds. This 151

environment is characterized by high dynamism 152

and stochasticity, making it ideal for creating com- 153

plex game mechanics and interactions. Craftax 154

includes numerous game objects, allowing agents 155

to interact with the virtual space, which can change 156

in real-time. 157

Our goal was to create a goal-oriented version 158

of this environment, where the agent receives tasks 159

through natural language text instructions. This ap- 160

2

https://anonymous.4open.science/r/CrafText-4FA2/

proach not only allows for testing the agent’s ability161

to perform actions in the virtual environment but162

also for evaluating its understanding of various as-163

pects of natural language. To achieve this goal, we164

developed 700 unique game tasks, including spatial165

reasoning tasks, logic puzzles, and tasks related to166

object construction. A detailed description of the167

developed dataset is provided in Chapter 3.1.168

Some of the game instructions were generated169

using modern language models. We pre-defined170

a variety of game scenarios that the agent was re-171

quired to complete, and then used language models172

to create different versions of descriptions for each173

scenario. A detailed description of the process of174

generating scenarios and instructions is provided175

in Chapter 3.3.176

Additionally, for each scenario and game instruc-177

tion, we developed code that allows for the auto-178

matic verification of task completion by the agent179

by analyzing the current state of the game environ-180

ment. A description of the methods and approaches181

for task verification can be found in Chapter 3.2.182

3.1 Dataset Overview and Structure183

The CrafText Dataset (Figure 2) is designed to pro-184

vide a comprehensive testing ground for intelligent185

agents, challenging them to understand and execute186

a variety of instructions. At its core, the dataset is187

organized around several distinct task categories,188

each of which presents unique challenges to the189

agent. These categories are Sequencing, Building,190

and Localization, with an additional Combination191

category that requires the agent to integrate multi-192

ple types of instructions.193

The dataset features a rich and diverse vocabu-194

lary of 756 unique words, spread across different195

categories. This extensive vocabulary is crucial196

for testing the agent’s ability to understand context,197

recognize paraphrased instructions, and handle syn-198

onyms. The large vocabulary ensures that the agent199

is not simply memorizing commands but is truly200

understanding and interpreting the instructions pro-201

vided.202

The data is split into training and test sets, with203

510 training examples and 90 test examples. This204

split allows for rigorous testing of the agent’s per-205

formance on unseen instructions, ensuring that the206

agent’s capabilities are evaluated in a comprehen-207

sive manner. The mean length of the instructions is208

16 words, with the longest instructions extending to209

89 words. This variability in instruction length fur-210

ther tests the agent’s ability to handle both simple 211

and complex tasks. 212

Sequencing 213

In the Sequencing category, the agent is required 214

to understand the sequence of actions it needs to 215

perform and the order in which these actions should 216

be carried out. This category has a vocabulary 217

of 207 unique words and includes 107 training 218

examples and 15 test examples. 219

Example

Instruction: "After collecting coal, the player should
gather wood and then place a stone on the crafting table."

Figure 3: Sequencing Instruction Example

The focus here is on understanding temporal re- 220

lationships between actions (see an example at Fig- 221

ure 3). The agent must recognize words like "after" 222

to correctly sequence the actions. The common 223

vocabulary includes terms like "player," "after," 224

"coal," "place," and "stone," which are integral to 225

these sequences. 226

Building 227

The Building category involves tasks where the 228

agent must construct specific shapes or structures 229

based on verbal instructions. This category has a 230

vocabulary of 286 unique words, with 89 training 231

examples and 31 test examples. 232

Example

Instruction: "Arrange the tables in a square pattern
around the crafting area, and place chests in the four
corners."

Figure 4: Building Instruction Example

This category tests the agent’s spatial reason- 233

ing and ability to translate instructions into precise 234

constructions (see an Example at Figure 4). The 235

common vocabulary includes words like "crafting," 236

"square," "tables," "arrange," and "chests," which 237

are crucial for building tasks. 238

Localization 239

In the Cardinal Direction category, the agent 240

must navigate through a map and complete tasks 241

based on specific directions, such as moving north 242

or south. This category has a vocabulary of 299 243

unique words, with 129 training examples and 21 244

test examples. 245

3

Figure 2: The image presents an infographic of the CrafText dataset, organized into three main sections. Section 1
provides language statistics, showing vocabulary size and word counts for Sequencing, Building, and Localization,
divided between training and testing datasets. Section 2 features bar charts displaying the top 10 most common
words in each category. Section 3 summarizes the combined vocabulary data, including total word counts, and
details on maximum and mean word lengths.

Example

Instruction: "Head north until you reach the southern
crafting station, then turn east and ensure you visit every
map location."

Figure 5: Localization Instruction Example

This category is particularly challenging as it246

requires the agent to integrate directional instruc-247

tions with map-based navigation (see an example at248

Figure 5. The common vocabulary includes words249

like "northern," "southern," "map," and "ensure,"250

which are key to completing these tasks.251

Combination Category252

The Combination category introduces even253

greater complexity by mixing instructions from the254

other three categories. This category challenges255

the agent to handle multi-step, multi-dimensional256

tasks, often requiring it to sequence actions, con-257

struct structures, and navigate directions all within258

the same instruction set. This category tests the259

agent’s holistic understanding and its ability to in-260

tegrate different types of reasoning and planning261

(Figure 6).262

Example

Instruction: "First, gather materials from the north, then
construct a table near the crafting area, and finally, place
it in the square pattern with other tables."

Figure 6: Instructions Combination.

3.2 Scenarios checkers 263

As previously outlined, our extension is composed 264

of a set of instructions and functions designed 265

to validate the completeness of these instructions 266

within the Craftax environment based on the cur- 267

rent game state. To develop this dataset, we be- 268

gin by initializing foundational scenarios for each 269

instruction group: Building, Localization, and Se- 270

quencing. A scenario represents the expected pat- 271

tern of agent behavior when they adhere to the 272

given textual instructions. We have developed ap- 273

proximately 20 scenarios, each of which can be de- 274

scribed in natural language with varying terminol- 275

ogy and parameters, such as the objects the agent 276

must interact with or the specific manner in which 277

they must complete the task. Each scenario is vali- 278

dated by a specific check function that is tailored 279

4

Figure 7: This diagram represents the structure of scenario checks within the Craftax environment. It demonstrates
how variables such as player state, inventory, achievements, and position on the map interact with core functions to
verify the execution of various scenarios.

with appropriate parameters.280

The diagram 7 presents the structure of the281

game mechanics in Craftax, demonstrating how282

the agent’s data and basic verification functions in-283

teract to create various game scenarios. At the core284

of the system is the PlayerState block, which is re-285

sponsible for storing all data related to the player’s286

state. This class is implemented based on the game287

state within the Craftax environment. The state in-288

cludes variables such as the player’s position, level,289

direction of movement, as well as food and wa-290

ter consumption levels. All these variables reflect291

the current situation and the player’s status in the292

game.293

The PlayerState also includes the Game Map,294

which represents the game world map where the295

player interacts with surrounding objects. The map296

is implemented as a multidimensional array that297

stores data about the location of objects in the game298

space. An important part of this map is a function299

that allows determining which objects are around300

a specific point on the map, which is critically im-301

portant for navigation and interaction with the en-302

vironment.303

Another component is the Player Inventory,304

which contains a list of items the player possesses.305

These can be various resources such as wood, stone,306

coal, as well as tools like a pickaxe. These items307

play a crucial role in game scenarios where the308

player can use, combine, or place them in the game309

world. 310

The system also tracks Player Achievements, 311

which are the player’s accomplishments. This may 312

include completing various tasks or achieving cer- 313

tain goals in the game. 314

To process all this data and perform various 315

game tasks, basic verification functions (the Base 316

Functions block) are used. This block includes a 317

multitude of basic functions that can check whether 318

any of the player’s variables have changed, such 319

as their level or position. These functions can also 320

determine whether the player has moved in a cer- 321

tain direction or verify whether certain achieve- 322

ments have been completed. Importantly, these 323

functions can work with both individual variables 324

and more complex conditions, such as checking 325

whether achievements are within a certain radius 326

of the player. 327

Base Functions serve as the foundation for creat- 328

ing more complex scenarios in the game, which are 329

gathered in the Scenarios block. Here, basic func- 330

tions are combined to verify complex conditions 331

and perform more advanced game tasks. For exam- 332

ple, scenarios can determine whether one item was 333

collected after another, whether a certain variable 334

increases after a specific action, or check whether 335

an item was placed next to another. 336

5

Table 1: The table compares CrafText with other environments based on Vocabulary, Instruction Length, Stochastic-
ity, Dynamics, and Game Objects. CrafText offers a balanced mix of features, supporting both stochasticity and
dynamics, with a substantial number of game objects.

Environment Vocabulary Instruction Length Stochasticity Dynamics Game Objects
HomeGrid 100 9 × ✓ 17
BabyAI 200 30 × ✓ 5
RTFM 250 100 × × 4
Messenger 400 100 × × 4
Touchdown 4999 > 100 × × N/A
Alfred 1025 30 N/A N/A > 100
IGLU 400 100 ✓ × 1
CrafText (ours) 756 89 ✓ ✓ > 30

3.3 Instruction generation337

The pipeline for generating instructions in a game338

scenario involves creating a diverse and complex339

set of instructions that a player can give to an340

agent within the game. The instructions are gen-341

erated based on ChatGPT-4and the AskTheCode342

extension, which allows the language model to di-343

rectly analyze a repository with existing check func-344

tions and scenario checkers. In total, for the entire345

dataset, we needed around 200 queries to ChatGPT.346

The prompt for generating instructions for a347

game scenario involves three stages:348

Code Analysis: The first stage is analyzing the349

code where the functions for verifying the execu-350

tion of actions are implemented. Understanding351

these functions is crucial for creating instructions352

that will be correctly interpreted and verified by the353

system.354

Figure 8: Example of generated instructions in the game
scenario pipeline.

Instruction Creation: In the second stage, the355

instructions themselves are created. The language356

model is required to generate instructions that are357

diverse, cover a wide range of actions, and utilize 358

various objects to thoroughly test the agent’s skills 359

and vocabulary. It is important that the instructions 360

align with possible scenarios within the game. 361

Paraphrase Development: After creating the 362

instructions, paraphrases are developed for each 363

one. Paraphrases are alternative formulations of 364

the same task, created using different synonyms 365

and linguistic constructions. This allows testing the 366

player’s ability to understand the same task when 367

presented in different ways. The paraphrases range 368

from simple to complex, providing an opportunity 369

to test the player’s comprehension at various levels. 370

The final stage is the generation of instructions 371

in a specific format, which includes a unique iden- 372

tifier, the main instruction text, a list of objects 373

mentioned in the instruction, a set of paraphrases, 374

and a lambda function for verifying the task’s com- 375

pletion. An example of the generated instructions 376

can be found in the figure 8. 377

3.4 Compression with other environments 378

CrafText distinguishes itself among the environ- 379

ments analyzed (see Table 1) by offering a well- 380

balanced integration of essential features, includ- 381

ing a substantial vocabulary, moderate instruction 382

lengths, and support for both stochasticity and dy- 383

namics. Unlike other environments that focus pri- 384

marily on textual complexity (e.g., Touchdown) 385

or dynamic elements (e.g., HomeGrid), CrafText 386

seamlessly combines these aspects, creating a more 387

comprehensive and enriched setting for training 388

agents. This balance enables CrafText to facilitate 389

the development of both high-level interpretative 390

skills and low-level adaptive strategies, making it a 391

versatile and powerful environment for advancing 392

research in multimodal learning. 393

6

4 Experiments394

In our baseline, our goal is to predict the correct395

sequence of scenarios that an RL agent can exe-396

cute in the environment based on natural language397

instructions. This involves accurately identifying398

the actions (scenarios) the agent needs to perform,399

specifying the correct parameters for those actions,400

and ensuring that the scenarios are predicted in the401

correct execution order (Figure 9).402

Instruction

"Go north until you find a lake, then place a table near
the lake."

High-Level Plan

find_water_source("north") and
place_object_near_target("table",
"water").

Figure 9: This figure shows an example of an instruction
and its corresponding high-level plan.

The key challenge is to ensure the predicted sce-403

narios have the correct actions, parameters, and404

sequence for the agent to execute the task success-405

fully.406

To address the task of scenario prediction, we407

trained the Llama2 and Gemma2-b models using408

specifically tuned parameters. Each model was409

trained over 5 epochs with an initial learning rate of410

0.0002 and gradient accumulation to ensure stable411

weight updates. The batch size for training was412

set to 16, and we applied adaptive dropout along413

with gradient norm clipping to improve the overall414

training quality.415

To further optimize the process and reduce mem-416

ory consumption, we utilized a data compression417

technique that enabled 4-bit computations while418

maintaining high accuracy. This approach allowed419

for faster training with lower resource demands.420

Metrics To evaluate the results, we used two421

key metrics: the success rate of predicted scenarios422

(SR scenarios) and the success rate of predicted sce-423

nario arguments (SR args). For SR Scenarios, we424

compared the sequence of original scenario names425

to determine if the predicted scenarios matched the426

actual ones in both order and composition. For427

SR Arguments, we compared the function param-428

eters to ensure that the arguments were accurately429

predicted. This approach allowed us to precisely430

measure the model’s ability to predict not only the431

correct sequence of actions but also the correct432

inputs for those actions.433

Table 2: Metrics for Llama2 and Gemma-2b

Task Group Success Rate Llama2 Gemma-2b

Building
scenarios 0.96 1.0

args 0.93 0.96

Localization
scenarios 1.0 0.95

args 1.0 0.95

Sequencing
scenarios 1.0 1.0

args 1.0 1.0

Combo
scenarios 0.66 0.66

args 0.6 0.6

Total
scenarios 0.91 0.91

args 0.88 0.88

Results. We evaluated these metrics for the 434

model’s predictions on the test dataset across all 435

task types. The results can be found in Table 2. In 436

the Building task section, Gemma-2b outperformed 437

with a 100% success rate for scenarios and 96% for 438

arguments, while Llama2 achieved a 96% success 439

rate for scenarios and 93% for arguments. This sug- 440

gests that Gemma-2b is better at interpreting and 441

executing building tasks, possibly due to its greater 442

flexibility in understanding various descriptions of 443

object construction. 444

In the Localization task section, Llama2 sur- 445

passes Gemma-2b, showing a 100% success rate in 446

both scenarios and arguments. Gemma-2b achieves 447

a 95% success rate in both metrics. This indicates 448

that Llama2 is more proficient at tasks requiring 449

precise interpretation and execution of directional 450

and placement instructions. 451

In Sequencing tasks, both models demonstrate 452

an equally high level of performance, with a 100% 453

success rate in both scenarios and arguments. This 454

means that both models effectively reconstruct the 455

sequence of task execution based on the text. 456

The Combo category tasks proved to be more 457

challenging, with a 66% success rate for scenarios 458

and 60% for arguments in both models. These 459

tasks involve a complex combination of required 460

scenarios, and judging by the low success rate in 461

scenario prediction accuracy, it can be inferred that 462

the models struggle with determining the correct 463

sequence of scenario execution. 464

Overall, the success rate for scenarios was 91% 465

for both models, and for arguments, it was 88%. 466

Thus, both models demonstrated strong perfor- 467

mance, but their strengths emerged in different 468

aspects. 469

7

5 Conclusion470

In this work, we introduce a new benchmark,471

CrafText, designed to evaluate the capabilities472

of language models in language grounding tasks473

within dynamic environments. The creation of474

CrafText was motivated by the limitations of exist-475

ing environments, which either focus on text com-476

prehension with limited environmental dynamics or477

feature complex mechanics but a restricted vocabu-478

lary. Our benchmark extends the Craftext environ-479

ment, which is already dynamic and includes a va-480

riety of gameplay mechanics. We have added a set481

of instructions and tasks, formulated in natural lan-482

guage, that agents are required to complete, along483

with functions to verify task completion based on484

the game state. This solution addresses the afore-485

mentioned shortcomings, offering a rich and com-486

plex environment capable of testing models on di-487

verse and non-trivial tasks.488

During the implementation of language models,489

challenges related to task accuracy quickly became490

apparent. While models like Llama2 and Gemma-491

2b performed well on certain task types, complex492

combined scenarios revealed limitations in predict-493

ing the sequence of actions and arguments with494

precision. This underscores the complexity of the495

tasks and the need for further research to achieve496

higher performance levels.497

Our future plans include incorporating reinforce-498

ment learning algorithms, which will not only pre-499

dict high-level plans, as is currently done in the500

baseline model, but also execute scenarios directly501

within the environment.502

6 Limitation503

The primary limitation of this study is the absence504

of human-generated instructions in the dataset. Al-505

though AI-generated instructions provide consis-506

tency and scalability, they may lack the depth and507

nuance that human-crafted instructions could offer.508

This limitation could affect the model’s ability to509

generalize to more complex and context-rich tasks,510

which are typical in real-world applications.511

Another important limitation is the current512

framework’s lack of integration with RL agent.513

Without an RL agent, the evaluation is limited514

to static, predefined scenarios, which restricts the515

model’s ability to demonstrate learning and adapta-516

tion in real-time interactions. Future work should517

address this by incorporating an RL agent to enable518

a more comprehensive assessment of the model’s519

capabilities and its potential for dynamic task exe- 520

cution. 521

While the use of ChatGPT raises accessibility 522

concerns, the main focus will be on improving 523

the dataset with human input and integrating RL 524

capabilities to fully explore the model’s potential. 525

References 526

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, 527
Nicolas Usunier, Alexander Kirillov, and Sergey 528
Zagoruyko. 2020. End-to-end object detection with 529
transformers. In European conference on computer 530
vision, pages 213–229. Springer. 531

Yash Kant, Arun Ramachandran, Sriram Yenamandra, 532
Igor Gilitschenski, Dhruv Batra, Andrew Szot, and 533
Harsh Agrawal. 2022. Housekeep: Tidying virtual 534
households using commonsense reasoning. 535

Julia Kiseleva, Alexey Skrynnik, Artem Zholus, 536
Shrestha Mohanty, Negar Arabzadeh, Marc- 537
Alexandre Côté, Mohammad Aliannejadi, Milagro 538
Teruel, Ziming Li, Mikhail Burtsev, Maartje ter 539
Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan 540
Sun, Kavya Srinet, Arthur Szlam, Ahmed Awadallah, 541
Seungeun Rho, Taehwan Kwon, Daniel Wontae Nam, 542
Felipe Bivort Haiek, Edwin Zhang, Linar Abdraza- 543
kov, Guo Qingyam, Jason Zhang, and Zhibin Guo. 544
2022. Interactive grounded language understanding 545
in a collaborative environment: Retrospective on 546
iglu 2022 competition. In Proceedings of the 547
NeurIPS 2022 Competitions Track, volume 220 of 548
Proceedings of Machine Learning Research, pages 549
204–216. PMLR. 550

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, 551
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan 552
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. 553
2022. Grounded language-image pre-training. In 554
Proceedings of the IEEE/CVF Conference on Com- 555
puter Vision and Pattern Recognition, pages 10965– 556
10975. 557

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, 558
P. Abbeel, Dan Klein, and Anca D. Dragan. 2023. 559
Learning to model the world with language. ArXiv, 560
abs/2308.01399. 561

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli 562
Ding, James Betker, Robert Baruch, Travis Arm- 563
strong, and Pete Florence. 2022. Interactive lan- 564
guage: Talking to robots in real time. CoRR, 565
abs/2210.06407. 566

Michael Matthews, Michael Beukman, Benjamin Ellis, 567
Mikayel Samvelyan, Matthew Jackson, Samuel Cow- 568
ard, and Jakob Foerster. 2024. Craftax: A lightning- 569
fast benchmark for open-ended reinforcement learn- 570
ing. In International Conference on Machine Learn- 571
ing (ICML). 572

8

http://arxiv.org/abs/2205.10712
http://arxiv.org/abs/2205.10712
http://arxiv.org/abs/2205.10712
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://api.semanticscholar.org/CorpusID:260438420
https://doi.org/10.48550/ARXIV.2210.06407
https://doi.org/10.48550/ARXIV.2210.06407
https://doi.org/10.48550/ARXIV.2210.06407

Fabian Paischer, Thomas Adler, Markus Hofmarcher,573
and Sepp Hochreiter. 2024. Semantic helm: A574
human-readable memory for reinforcement learning.575
Advances in Neural Information Processing Systems,576
36.577

Ethan Perez, Florian Strub, Harm De Vries, Vincent578
Dumoulin, and Aaron Courville. 2018. Film: Vi-579
sual reasoning with a general conditioning layer. In580
Proceedings of the AAAI conference on artificial in-581
telligence, volume 32.582

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya583
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-584
try, Amanda Askell, Pamela Mishkin, Jack Clark,585
Gretchen Krueger, and Ilya Sutskever. 2021a. Learn-586
ing transferable visual models from natural language587
supervision. In International Conference on Machine588
Learning.589

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya590
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-591
try, Amanda Askell, Pamela Mishkin, Jack Clark,592
et al. 2021b. Learning transferable visual models593
from natural language supervision. In International594
conference on machine learning, pages 8748–8763.595
PMLR.596

Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Ba-597
tra, Abhishek Kadian, Oleksandr Maksymets, Yili598
Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia599
Liu, and Vladlen Koltun. 2019. Habitat: A platform600
for embodied AI research. In 2019 IEEE/CVF In-601
ternational Conference on Computer Vision, ICCV602
2019, Seoul, Korea (South), October 27 - November603
2, 2019, pages 9338–9346. IEEE.604

Mohit Shridhar, Jesse Thomason, Daniel Gordon,605
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke606
Zettlemoyer, and Dieter Fox. 2020. ALFRED: A607
Benchmark for Interpreting Grounded Instructions608
for Everyday Tasks. In The IEEE Conference on609
Computer Vision and Pattern Recognition (CVPR).610

H. J. Austin Wang and Karthik Narasimhan. 2021.611
Grounding language to entities and dynamics for612
generalization in reinforcement learning. ArXiv,613
abs/2101.07393.614

Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xi-615
aohuan Zhou, Jingren Zhou, Xinggang Wang, and616
Chang Zhou. 2023. One-peace: Exploring one gen-617
eral representation model toward unlimited modali-618
ties. arXiv preprint arXiv:2305.11172.619

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang620
Su, Jun Zhu, Lionel M Ni, and Heung-Yeung Shum.621
2022. Dino: Detr with improved denoising anchor622
boxes for end-to-end object detection. arXiv preprint623
arXiv:2203.03605.624

Victor Zhong, Austin W Hanjie, Sida I Wang, Karthik625
Narasimhan, and Luke Zettlemoyer. 2021. Silg:626
The multi-environment symbolic interactive lan-627
guage grounding benchmark. arXiv preprint628
arXiv:2110.10661.629

Victor Zhong, Tim Rocktäschel, and Edward Grefen- 630
stette. 2019. Rtfm: Generalising to novel envi- 631
ronment dynamics via reading. arXiv preprint 632
arXiv:1910.08210. 633

A Traning Hyperparameters 634

Parameter Value
q_lora

lora_r 64
lora_alpha 16
lora_dropout 0.1

bitsandbytes
use_4bit True
bnb_4bit_compute_dtype "float16"
bnb_4bit_quant_type "nf4"
use_nested_quant False

training_args
output_dir "./results"
num_train_epochs 5
per_device_train_batch_size 16
per_device_eval_batch_size 4
gradient_accumulation_steps 1
gradient_checkpointing True
max_grad_norm 0.3
learning_rate 2e-4
weight_decay 0.001
optim "paged_adamw_32bit"
lr_scheduler_type "cosine"
max_steps -1
warmup_ratio 0.03
group_by_length True
save_steps 0
logging_steps 25
fp16 False
bf16 True

sft
max_seq_length None
packing False

Table 3: LLama And Gemma Hyperparameters Config-
uration

B Instruction Generation Prompt 635

The code for checking played scenarios can be 636

found at the following repository link: 637

link/to/code/scenarious.py 638

A scenario consists of instructions given by 639

player 1 to player 2. Player 2 follows these instruc- 640

tions, which are then verified by a corresponding 641

function. For the function scenario.py, please pro- 642

9

https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://doi.org/10.1109/ICCV.2019.00943
https://doi.org/10.1109/ICCV.2019.00943
https://doi.org/10.1109/ICCV.2019.00943
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://api.semanticscholar.org/CorpusID:231639188
https://api.semanticscholar.org/CorpusID:231639188
https://api.semanticscholar.org/CorpusID:231639188

vide realistic examples of instructions that player 1643

might give, along with 5 paraphrases for each.644

Requirements:645

1) When specifying target objects (objects with646

which the player will interact), use different syn-647

onyms in paraphrases to assess the vocabulary648

range of player 2.649

2) Present the target objects in varying orders to650

evaluate how well player 2 understands different651

language structures.652

3) For each set of paraphrases, sort them from653

the simplest language to the most complex.654

4) Ensure the instructions are as varied as possi-655

ble with a broad vocabulary.656

Format your answer as a Python dictionary with657

the following structure:658

instructions = {659
instruction_id: {660

’instruction’: "Example661
instruction here",662

’instruction_paraphrases’: [663
"Paraphrase 1 here",664
"Paraphrase 2 here",665
"Paraphrase 3 here",666
"Paraphrase 4 here",667
"Paraphrase 5 here"668

],669
’check_lambda’: lambda ...:670

scenario_function(...): ...671
Example usage of the672
function673

}674
}675

Replace instruction_id with a unique676

identifier for each instruction, and complete the677

check_lambda to demonstrate how you would678

verify the given instruction using the function.679

10

	Introduction
	Related work
	Craftext
	Dataset Overview and Structure
	Scenarios checkers
	Instruction generation
	Compression with other environments

	Experiments
	Conclusion
	Limitation
	Traning Hyperparameters
	 Instruction Generation Prompt

