CraftText Benchmark: Advancing Language Grounding in Complex
Multimodal Open-Ended World

Anonymous ACL submission

Abstract

Grounding language models in multimodal en-
vironments is a pivotal challenge in Al, en-
abling agents to link linguistic inputs with sen-
sory data, such as visual information. Existing
environments, however, often limit the com-
plexity of agent behavior due to restricted dy-
namics or vocabulary. To address these limita-
tions, we propose a new benchmark based on
the Craftax environment—a dynamic, stochas-
tic setting with extensive game mechanics and
a rich vocabulary. This benchmark is designed
to evaluate agents on complex tasks involving
spatial reasoning, logic, and context, offering
a rigorous platform for advancing multimodal
Al research.

1 Introduction

Grounding language models is one of the key chal-
lenges in the field of artificial intelligence, aimed
at enabling intelligent agents to link linguistic en-
tities with objects from various modalities, such
as visual data (Carion et al., 2020; Li et al., 2022;
Radford et al., 2021b). Solving this problem opens
up opportunities for creating more versatile and
adaptive Al systems capable of effectively extract-
ing and integrating features from different types of
data (Zhang et al., 2022; Wang et al., 2023). This,
in turn, allows them to make more complex infer-
ences and build comprehensive models applicable
in a wide range of contexts.

Examples of the use of such technologies include
generating textual descriptions based on images,
enhancing natural language processing with visual
cues, and multimodal search, where text queries
are matched with images or videos. These exam-
ples highlight the importance of integrating data
from different sources to achieve more accurate
and sophisticated results.

Particular attention in this area is given to de-
veloping behavioral strategies for agents trained
with reinforcement learning in multimodal envi-
ronments (Perez et al., 2018; Lynch et al., 2022;

Instruction:
Find the northernmost lake
and set up a crafting area there.

Figure 1: Example of an agent executing a task in the
Craftax environment, moving from the starting point to
the northernmost lake to set up a crafting table. A *Done’
marker confirms the task’s successful completion.

Wang and Narasimhan, 2021). In this context, an
agent must be able to formulate low-level action
plans based on textual instructions and visual ob-
servations. The agent’s task is not only to associate
words with objects in the environment but also to
adapt its behavior depending on the textual direc-
tions received (Zhong et al., 2019).

Examples of tasks that can be assigned to such
agents vary depending on the environment’s char-
acteristics. For instance, in one environment, the
agent may need to find a target point by following
textual instructions. In more complex scenarios, the
instructions might include guidance on selecting
specific actions to achieve goals, as well as consid-
ering the context of object interactions within the
environment. In such cases, the agent must under-
stand which objects can be used together to achieve
a particular outcome or how specific actions might
alter the state of the environment.

However, existing multimodal environments of-
ten have limitations that affect the complexity of

behavior expected from the agent: some environ-
ments may focus more on text comprehension and
have limited environmental dynamics, while oth-
ers, with more complex mechanics, may have a
restricted vocabulary.

To address these challenges, we propose a new
benchmark CrafText based on the Craftax envi-
ronment—a stochastic and dynamic environment
with a large number of game mechanics (Figure 1).
Our extension presents a set of complex linguistic
instructions with a rich vocabulary that requires
solving spatial, logical, and other tasks formulated
in natural language, along with a set of evalua-
tion functions that objectively assess how success-
fully the agent handles the given instructions. The
dataset and the code for our extension can be ac-
cessed in the following repository.!

2 Related work

Language Grounding Problem. Addressing the
challenge of language grounding in intelligent
agents involves enabling these agents to associate
objects across different modalities, such as linking
observations in virtual environments with textual
instructions. The core task is for an agent to inter-
pret instructions related to interacting with objects
within an environment, accurately match the de-
scriptions to the corresponding objects present, and
perform the appropriate actions. In multimodal
environments, existing approaches to policy cre-
ation can be categorized into three main groups.
Some studies utilize CLIP (Radford et al., 2021a)
to connect visual and textual observations (Paischer
et al., 2024; Lynch et al., 2022). Another group
of research employs projection layers (Perez et al.,
2018; Zhong et al., 2019; Wang and Narasimhan,
2021). In contrast, others leverage cross-attention
mechanisms or methods that compress data into a
hidden subspace, where text is not directly associ-
ated with visual observations, as seen in Dynalang
(Lin et al., 2023).

Embodied Environments. Multimodal environ-
ments used for training agents are characterized by
their diversity, making them valuable for solving a
wide range of tasks while also revealing certain lim-
itations. Environments such as Touchdown (Zhong
et al., 2021), Alfred (Shridhar et al., 2020), House-
keep (Kant et al., 2022), and VirtualHome (Savva
et al., 2019) provide rich visual content, numerous

! CrafText Repository:
https://anonymous.4open.science/r/CrafText-4FA2/

objects for interaction, and complex textual instruc-
tions with extensive vocabularies. Although these
environments may lack dynamism, they present
agents with challenging tasks that require a high
level of interpretation and planning. However,
agents operating within these environments often
face limitations in developing low-level strategies,
which may diminish their flexibility and adapt-
ability. Environments like HomeGrid (Lin et al.,
2023), BabyAl, RTFM (Zhong et al., 2019), and
Messenger (Wang and Narasimhan, 2021) stand
out for their engaging gameplay mechanics, de-
spite having less developed visual components
and fewer interactive objects. In these settings,
agents are compelled to adapt quickly and make
decisions under constrained resources. For exam-
ple, HomeGrid includes dynamic elements, while
BabyALl presents tasks that require puzzle-solving
and strategic thinking. In RTFM and Messenger,
the emphasis is on textual interaction and the iden-
tification of objects or allies. The IGLU (Kiseleva
et al., 2022) environment occupies a unique posi-
tion by combining a variety of features, offering
agents tasks that involve building structures from
blocks based on textual descriptions. This environ-
ment is notable for its high combinatorial complex-
ity and stochasticity, making it particularly inter-
esting for research despite its lack of dynamism.
There is a notable shortage of environments that
can effectively assess an agent’s ability to perceive
diverse language and associate it with real-time
events in the environment. While many environ-
ments emphasize either the visual or textual com-
ponent, few achieve a well-balanced integration of
both.

3 Craftext

In our work, we developed an extension for the
open-world environment Craftax (Matthews et al.,
2024), which we named CrafText. Craftax is a
game environment that provides a wide range of
tools for creating and exploring virtual worlds. This
environment is characterized by high dynamism
and stochasticity, making it ideal for creating com-
plex game mechanics and interactions. Craftax
includes numerous game objects, allowing agents
to interact with the virtual space, which can change
in real-time.

Our goal was to create a goal-oriented version
of this environment, where the agent receives tasks
through natural language text instructions. This ap-

https://anonymous.4open.science/r/CrafText-4FA2/

proach not only allows for testing the agent’s ability
to perform actions in the virtual environment but
also for evaluating its understanding of various as-
pects of natural language. To achieve this goal, we
developed 700 unique game tasks, including spatial
reasoning tasks, logic puzzles, and tasks related to
object construction. A detailed description of the
developed dataset is provided in Chapter 3.1.

Some of the game instructions were generated
using modern language models. We pre-defined
a variety of game scenarios that the agent was re-
quired to complete, and then used language models
to create different versions of descriptions for each
scenario. A detailed description of the process of
generating scenarios and instructions is provided
in Chapter 3.3.

Additionally, for each scenario and game instruc-
tion, we developed code that allows for the auto-
matic verification of task completion by the agent
by analyzing the current state of the game environ-
ment. A description of the methods and approaches
for task verification can be found in Chapter 3.2.

3.1 Dataset Overview and Structure

The CrafText Dataset (Figure 2) is designed to pro-
vide a comprehensive testing ground for intelligent
agents, challenging them to understand and execute
a variety of instructions. At its core, the dataset is
organized around several distinct task categories,
each of which presents unique challenges to the
agent. These categories are Sequencing, Building,
and Localization, with an additional Combination
category that requires the agent to integrate multi-
ple types of instructions.

The dataset features a rich and diverse vocabu-
lary of 756 unique words, spread across different
categories. This extensive vocabulary is crucial
for testing the agent’s ability to understand context,
recognize paraphrased instructions, and handle syn-
onyms. The large vocabulary ensures that the agent
is not simply memorizing commands but is truly
understanding and interpreting the instructions pro-
vided.

The data is split into training and test sets, with
510 training examples and 90 test examples. This
split allows for rigorous testing of the agent’s per-
formance on unseen instructions, ensuring that the
agent’s capabilities are evaluated in a comprehen-
sive manner. The mean length of the instructions is
16 words, with the longest instructions extending to
89 words. This variability in instruction length fur-

ther tests the agent’s ability to handle both simple
and complex tasks.

Sequencing

In the Sequencing category, the agent is required
to understand the sequence of actions it needs to
perform and the order in which these actions should
be carried out. This category has a vocabulary
of 207 unique words and includes 107 training
examples and 15 test examples.

Example

Instruction: "After collecting coal, the player should
gather wood and then place a stone on the crafting table."

Figure 3: Sequencing Instruction Example

The focus here is on understanding temporal re-
lationships between actions (see an example at Fig-
ure 3). The agent must recognize words like "after"
to correctly sequence the actions. The common
vocabulary includes terms like "player,” "after,"
"coal," "place," and "stone," which are integral to
these sequences.

Building

The Building category involves tasks where the
agent must construct specific shapes or structures
based on verbal instructions. This category has a
vocabulary of 286 unique words, with 89 training
examples and 31 test examples.

Example

Instruction: "Arrange the tables in a square pattern
around the crafting area, and place chests in the four
corners."

Figure 4: Building Instruction Example

This category tests the agent’s spatial reason-
ing and ability to translate instructions into precise
constructions (see an Example at Figure 4). The
common vocabulary includes words like "crafting,"
"square," "tables," "arrange," and "chests," which
are crucial for building tasks.

Localization

In the Cardinal Direction category, the agent
must navigate through a map and complete tasks
based on specific directions, such as moving north
or south. This category has a vocabulary of 299
unique words, with 129 training examples and 21
test examples.

1 Language Statistics

2 Top 10 Most Common Words

0 Sequencing

Sequencing Bulding Localization “
vocabulary vocabulary vocabulary & FELEST TS
207 286 299 Bulding
count count count i
train train train
' 52 @ & S e &
e
Localization
test test test i:
) & _\QQ & @ '(?\ I R \{\z 6@ ,\zb
S Total Info Oa&o"é,g«bd@“ “\@’0‘ & & 8 &
count count
train train Max.Length:
89 words
) TOTAL
vocabulary vocabulary)
756 Mean.Length:
536
test test 16 words

Figure 2: The image presents an infographic of the CrafText dataset, organized into three main sections. Section 1
provides language statistics, showing vocabulary size and word counts for Sequencing, Building, and Localization,
divided between training and testing datasets. Section 2 features bar charts displaying the top 10 most common
words in each category. Section 3 summarizes the combined vocabulary data, including total word counts, and

details on maximum and mean word lengths.

Example

Instruction: "Head north until you reach the southern
crafting station, then turn east and ensure you visit every
map location."

Figure 5: Localization Instruction Example

This category is particularly challenging as it
requires the agent to integrate directional instruc-
tions with map-based navigation (see an example at
Figure 5. The common vocabulary includes words
like "northern," "southern,” "map," and "ensure,"
which are key to completing these tasks.

Combination Category

The Combination category introduces even
greater complexity by mixing instructions from the
other three categories. This category challenges
the agent to handle multi-step, multi-dimensional
tasks, often requiring it to sequence actions, con-
struct structures, and navigate directions all within
the same instruction set. This category tests the
agent’s holistic understanding and its ability to in-
tegrate different types of reasoning and planning
(Figure 6).

nn

Example

Instruction: "First, gather materials from the north, then
construct a table near the crafting area, and finally, place
it in the square pattern with other tables."

Figure 6: Instructions Combination.

3.2 Scenarios checkers

As previously outlined, our extension is composed
of a set of instructions and functions designed
to validate the completeness of these instructions
within the Craftax environment based on the cur-
rent game state. To develop this dataset, we be-
gin by initializing foundational scenarios for each
instruction group: Building, Localization, and Se-
quencing. A scenario represents the expected pat-
tern of agent behavior when they adhere to the
given textual instructions. We have developed ap-
proximately 20 scenarios, each of which can be de-
scribed in natural language with varying terminol-
ogy and parameters, such as the objects the agent
must interact with or the specific manner in which
they must complete the task. Each scenario is vali-
dated by a specific check function that is tailored

[GameData]

' PlayerState]

[Player Variable] [

+ player_position
- player_level
+ player_drink ...

- map (np.ndarray)

[Player Achievements] [Player Inventory]

- wood
« stone
+ coal
« iron ...

- achievements

Game Map]

- (===T

input: is_variable_increasing
variable_name is_variable_decreasing output:
start_index did_player_go_north True
end_index was_item_placed... False
input: - find_item_in_inventory output:
variable find_achievement_state List State
v
—

Building

is_square_formed, ...

Localization
is_player_within_place...

do_it_after...

Figure 7: This diagram represents the structure of scenario checks within the Craftax environment. It demonstrates
how variables such as player state, inventory, achievements, and position on the map interact with core functions to

verify the execution of various scenarios.

with appropriate parameters.

The diagram 7 presents the structure of the
game mechanics in Craftax, demonstrating how
the agent’s data and basic verification functions in-
teract to create various game scenarios. At the core
of the system is the PlayerState block, which is re-
sponsible for storing all data related to the player’s
state. This class is implemented based on the game
state within the Craftax environment. The state in-
cludes variables such as the player’s position, level,
direction of movement, as well as food and wa-
ter consumption levels. All these variables reflect
the current situation and the player’s status in the
game.

The PlayerState also includes the Game Map,
which represents the game world map where the
player interacts with surrounding objects. The map
is implemented as a multidimensional array that
stores data about the location of objects in the game
space. An important part of this map is a function
that allows determining which objects are around
a specific point on the map, which is critically im-
portant for navigation and interaction with the en-
vironment.

Another component is the Player Inventory,
which contains a list of items the player possesses.
These can be various resources such as wood, stone,
coal, as well as tools like a pickaxe. These items
play a crucial role in game scenarios where the
player can use, combine, or place them in the game

world.

The system also tracks Player Achievements,
which are the player’s accomplishments. This may
include completing various tasks or achieving cer-
tain goals in the game.

To process all this data and perform various
game tasks, basic verification functions (the Base
Functions block) are used. This block includes a
multitude of basic functions that can check whether
any of the player’s variables have changed, such
as their level or position. These functions can also
determine whether the player has moved in a cer-
tain direction or verify whether certain achieve-
ments have been completed. Importantly, these
functions can work with both individual variables
and more complex conditions, such as checking
whether achievements are within a certain radius
of the player.

Base Functions serve as the foundation for creat-
ing more complex scenarios in the game, which are
gathered in the Scenarios block. Here, basic func-
tions are combined to verify complex conditions
and perform more advanced game tasks. For exam-
ple, scenarios can determine whether one item was
collected after another, whether a certain variable
increases after a specific action, or check whether
an item was placed next to another.

Table 1: The table compares CrafText with other environments based on Vocabulary, Instruction Length, Stochastic-
ity, Dynamics, and Game Objects. CrafText offers a balanced mix of features, supporting both stochasticity and

dynamics, with a substantial number of game objects.

Environment Vocabulary Instruction Length Stochasticity Dynamics Game Objects
HomeGrid 100 9 X 17
BabyAl 200 30 X 5
RTFM 250 100 X X 4
Messenger 400 100 X X 4
Touchdown 4999 > 100 X X N/A
Alfred 1025 30 N/A N/A > 100
IGLU 400 100 X 1
CrafText (ours) 756 89 > 30

3.3 Instruction generation

The pipeline for generating instructions in a game
scenario involves creating a diverse and complex
set of instructions that a player can give to an
agent within the game. The instructions are gen-
erated based on ChatGPT-4and the AskTheCode
extension, which allows the language model to di-
rectly analyze a repository with existing check func-
tions and scenario checkers. In total, for the entire
dataset, we needed around 200 queries to ChatGPT.

The prompt for generating instructions for a
game scenario involves three stages:

Code Analysis: The first stage is analyzing the
code where the functions for verifying the execu-
tion of actions are implemented. Understanding
these functions is crucial for creating instructions
that will be correctly interpreted and verified by the
system.

instructions {
"instruction_1':
{
'instruction’':
"Place a torch to increase the player's health.",

'items_name': ["torch"],

'instruction_paraphrases': [

"Put a lantern to boost the player's vitality.",

"Set a light source to improve the player's health.",
"Position an illuminator to enhance the player's well-being.",
"Install a beacon to raise the player's life points.",

"Place a flame holder so that the player's health increases."

1.
‘check_lambda' :
gt:
did_placing_item_increase_variable(gt, "torch", "player_health")
o
}

Figure 8: Example of generated instructions in the game
scenario pipeline.

Instruction Creation: In the second stage, the
instructions themselves are created. The language
model is required to generate instructions that are

diverse, cover a wide range of actions, and utilize
various objects to thoroughly test the agent’s skills
and vocabulary. It is important that the instructions
align with possible scenarios within the game.

Paraphrase Development: After creating the
instructions, paraphrases are developed for each
one. Paraphrases are alternative formulations of
the same task, created using different synonyms
and linguistic constructions. This allows testing the
player’s ability to understand the same task when
presented in different ways. The paraphrases range
from simple to complex, providing an opportunity
to test the player’s comprehension at various levels.

The final stage is the generation of instructions
in a specific format, which includes a unique iden-
tifier, the main instruction text, a list of objects
mentioned in the instruction, a set of paraphrases,
and a lambda function for verifying the task’s com-
pletion. An example of the generated instructions
can be found in the figure 8.

3.4 Compression with other environments

CrafText distinguishes itself among the environ-
ments analyzed (see Table 1) by offering a well-
balanced integration of essential features, includ-
ing a substantial vocabulary, moderate instruction
lengths, and support for both stochasticity and dy-
namics. Unlike other environments that focus pri-
marily on textual complexity (e.g., Touchdown)
or dynamic elements (e.g., HomeGrid), CrafText
seamlessly combines these aspects, creating a more
comprehensive and enriched setting for training
agents. This balance enables CrafText to facilitate
the development of both high-level interpretative
skills and low-level adaptive strategies, making it a
versatile and powerful environment for advancing
research in multimodal learning.

4 [Experiments

In our baseline, our goal is to predict the correct
sequence of scenarios that an RL agent can exe-
cute in the environment based on natural language
instructions. This involves accurately identifying
the actions (scenarios) the agent needs to perform,
specifying the correct parameters for those actions,
and ensuring that the scenarios are predicted in the
correct execution order (Figure 9).

Instruction

"Go north until you find a lake, then place a table near
the lake."

High-Level Plan

find_water_source ("north") and
place_object_near_target ("table",
"water").

Figure 9: This figure shows an example of an instruction
and its corresponding high-level plan.

The key challenge is to ensure the predicted sce-
narios have the correct actions, parameters, and
sequence for the agent to execute the task success-
fully.

To address the task of scenario prediction, we
trained the Llama2 and Gemma2-b models using
specifically tuned parameters. Each model was
trained over 5 epochs with an initial learning rate of
0.0002 and gradient accumulation to ensure stable
weight updates. The batch size for training was
set to 16, and we applied adaptive dropout along
with gradient norm clipping to improve the overall
training quality.

To further optimize the process and reduce mem-
ory consumption, we utilized a data compression
technique that enabled 4-bit computations while
maintaining high accuracy. This approach allowed
for faster training with lower resource demands.

Metrics To evaluate the results, we used two
key metrics: the success rate of predicted scenarios
(SR scenarios) and the success rate of predicted sce-
nario arguments (SR args). For SR Scenarios, we
compared the sequence of original scenario names
to determine if the predicted scenarios matched the
actual ones in both order and composition. For
SR Arguments, we compared the function param-
eters to ensure that the arguments were accurately
predicted. This approach allowed us to precisely
measure the model’s ability to predict not only the
correct sequence of actions but also the correct
inputs for those actions.

Table 2: Metrics for Llama2 and Gemma-2b

Task Group | Success Rate | Llama2 | Gemma-2b
L scenarios 0.96 1.0
Building
args 0.93 0.96
o scenarios 1.0 0.95
Localization
args 1.0 0.95
. scenarios 1.0 1.0
Sequencing
args 1.0 1.0
scenarios 0.66 0.66
Combo
args 0.6 0.6
scenarios 0.91 0.91
Total
args 0.88 0.88
Results. We evaluated these metrics for the

model’s predictions on the test dataset across all
task types. The results can be found in Table 2. In
the Building task section, Gemma-2b outperformed
with a 100% success rate for scenarios and 96% for
arguments, while Llama2 achieved a 96% success
rate for scenarios and 93% for arguments. This sug-
gests that Gemma-2b is better at interpreting and
executing building tasks, possibly due to its greater
flexibility in understanding various descriptions of
object construction.

In the Localization task section, Llama2 sur-
passes Gemma-2b, showing a 100% success rate in
both scenarios and arguments. Gemma-2b achieves
a 95% success rate in both metrics. This indicates
that Llama?2 is more proficient at tasks requiring
precise interpretation and execution of directional
and placement instructions.

In Sequencing tasks, both models demonstrate
an equally high level of performance, with a 100%
success rate in both scenarios and arguments. This
means that both models effectively reconstruct the
sequence of task execution based on the text.

The Combo category tasks proved to be more
challenging, with a 66% success rate for scenarios
and 60% for arguments in both models. These
tasks involve a complex combination of required
scenarios, and judging by the low success rate in
scenario prediction accuracy, it can be inferred that
the models struggle with determining the correct
sequence of scenario execution.

Overall, the success rate for scenarios was 91%
for both models, and for arguments, it was 88%.
Thus, both models demonstrated strong perfor-
mance, but their strengths emerged in different
aspects.

5 Conclusion

In this work, we introduce a new benchmark,
CrafText, designed to evaluate the capabilities
of language models in language grounding tasks
within dynamic environments. The creation of
CrafText was motivated by the limitations of exist-
ing environments, which either focus on text com-
prehension with limited environmental dynamics or
feature complex mechanics but a restricted vocabu-
lary. Our benchmark extends the Craftext environ-
ment, which is already dynamic and includes a va-
riety of gameplay mechanics. We have added a set
of instructions and tasks, formulated in natural lan-
guage, that agents are required to complete, along
with functions to verify task completion based on
the game state. This solution addresses the afore-
mentioned shortcomings, offering a rich and com-
plex environment capable of testing models on di-
verse and non-trivial tasks.

During the implementation of language models,
challenges related to task accuracy quickly became
apparent. While models like Llama2 and Gemma-
2b performed well on certain task types, complex
combined scenarios revealed limitations in predict-
ing the sequence of actions and arguments with
precision. This underscores the complexity of the
tasks and the need for further research to achieve
higher performance levels.

Our future plans include incorporating reinforce-
ment learning algorithms, which will not only pre-
dict high-level plans, as is currently done in the
baseline model, but also execute scenarios directly
within the environment.

6 Limitation

The primary limitation of this study is the absence
of human-generated instructions in the dataset. Al-
though Al-generated instructions provide consis-
tency and scalability, they may lack the depth and
nuance that human-crafted instructions could offer.
This limitation could affect the model’s ability to
generalize to more complex and context-rich tasks,
which are typical in real-world applications.
Another important limitation is the current
framework’s lack of integration with RL agent.
Without an RL agent, the evaluation is limited
to static, predefined scenarios, which restricts the
model’s ability to demonstrate learning and adapta-
tion in real-time interactions. Future work should
address this by incorporating an RL agent to enable
a more comprehensive assessment of the model’s

capabilities and its potential for dynamic task exe-
cution.

While the use of ChatGPT raises accessibility
concerns, the main focus will be on improving
the dataset with human input and integrating RL
capabilities to fully explore the model’s potential.

References

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer
vision, pages 213-229. Springer.

Yash Kant, Arun Ramachandran, Sriram Yenamandra,
Igor Gilitschenski, Dhruv Batra, Andrew Szot, and
Harsh Agrawal. 2022. Housekeep: Tidying virtual
households using commonsense reasoning.

Julia Kiseleva, Alexey Skrynnik, Artem Zholus,
Shrestha Mohanty, Negar Arabzadeh, Marc-
Alexandre C6té, Mohammad Aliannejadi, Milagro
Teruel, Ziming Li, Mikhail Burtsev, Maartje ter
Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan
Sun, Kavya Srinet, Arthur Szlam, Ahmed Awadallah,
Seungeun Rho, Taehwan Kwon, Daniel Wontae Nam,
Felipe Bivort Haiek, Edwin Zhang, Linar Abdraza-
kov, Guo Qingyam, Jason Zhang, and Zhibin Guo.
2022. Interactive grounded language understanding
in a collaborative environment: Retrospective on
iglu 2022 competition. In Proceedings of the
NeurIPS 2022 Competitions Track, volume 220 of
Proceedings of Machine Learning Research, pages
204-216. PMLR.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jeng-Neng Hwang, et al.
2022. Grounded language-image pre-training. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10965—
10975.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner,
P. Abbeel, Dan Klein, and Anca D. Dragan. 2023.
Learning to model the world with language. ArXiv,
abs/2308.01399.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli
Ding, James Betker, Robert Baruch, Travis Arm-
strong, and Pete Florence. 2022. Interactive lan-
guage: Talking to robots in real time. CoRR,
abs/2210.06407.

Michael Matthews, Michael Beukman, Benjamin Ellis,
Mikayel Samvelyan, Matthew Jackson, Samuel Cow-
ard, and Jakob Foerster. 2024. Craftax: A lightning-
fast benchmark for open-ended reinforcement learn-
ing. In International Conference on Machine Learn-
ing (ICML).

http://arxiv.org/abs/2205.10712
http://arxiv.org/abs/2205.10712
http://arxiv.org/abs/2205.10712
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://proceedings.mlr.press/v220/kiseleva23a.html
https://api.semanticscholar.org/CorpusID:260438420
https://doi.org/10.48550/ARXIV.2210.06407
https://doi.org/10.48550/ARXIV.2210.06407
https://doi.org/10.48550/ARXIV.2210.06407

Fabian Paischer, Thomas Adler, Markus Hofmarcher,
and Sepp Hochreiter. 2024. Semantic helm: A
human-readable memory for reinforcement learning.
Advances in Neural Information Processing Systems,

36.

Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. 2018. Film: Vi-
sual reasoning with a general conditioning layer. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021a. Learn-
ing transferable visual models from natural language
supervision. In International Conference on Machine
Learning.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021b. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748-8763.
PMLR.

Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Ba-
tra, Abhishek Kadian, Oleksandr Maksymets, Yili
Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, and Vladlen Koltun. 2019. Habitat: A platform
for embodied Al research. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November
2, 2019, pages 9338-9346. IEEE.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. ALFRED: A
Benchmark for Interpreting Grounded Instructions
for Everyday Tasks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

H. J. Austin Wang and Karthik Narasimhan. 2021.
Grounding language to entities and dynamics for
generalization in reinforcement learning. ArXiv,
abs/2101.07393.

Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xi-
aohuan Zhou, Jingren Zhou, Xinggang Wang, and
Chang Zhou. 2023. One-peace: Exploring one gen-
eral representation model toward unlimited modali-
ties. arXiv preprint arXiv:2305.11172.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang
Su, Jun Zhu, Lionel M Ni, and Heung-Yeung Shum.
2022. Dino: Detr with improved denoising anchor
boxes for end-to-end object detection. arXiv preprint
arXiv:2203.03605.

Victor Zhong, Austin W Hanjie, Sida I Wang, Karthik
Narasimhan, and Luke Zettlemoyer. 2021. Silg:
The multi-environment symbolic interactive lan-
guage grounding benchmark. arXiv preprint
arXiv:2110.10661.

Victor Zhong, Tim Rocktischel, and Edward Grefen-
stette. 2019. Rtfm: Generalising to novel envi-
ronment dynamics via reading. arXiv preprint
arXiv:1910.08210.

A Traning Hyperparameters

Parameter Value
q_lora
lora_r 64
lora_alpha 16
lora_dropout 0.1
bitsandbytes
use_4bit True
bnb_4bit_compute_dtype "float16"
bnb_4bit_quant_type "nf4"
use_nested_quant False
training_args
output_dir " [results"
num_train_epochs 5

per_device_train_batch_size | 16
per_device_eval_batch_size 4
gradient_accumulation_steps | 1
gradient_checkpointing True
max_grad_norm 0.3

learning_rate 2e-4
weight_decay 0.001
optim "paged_adamw_32bit"
Ir_scheduler_type "cosine"
max_steps -1
warmup_ratio 0.03
group_by_length True
save_steps 0
logging_steps 25
fpl6 False
bfl6 True

sft
max_seq_length None
packing False

Table 3: LLama And Gemma Hyperparameters Config-
uration

B Instruction Generation Prompt

The code for checking played scenarios can be
found at the following repository link:
link/to/code/scenarious.py
A scenario consists of instructions given by
player 1 to player 2. Player 2 follows these instruc-
tions, which are then verified by a corresponding
function. For the function scenario.py, please pro-

https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://doi.org/10.1109/ICCV.2019.00943
https://doi.org/10.1109/ICCV.2019.00943
https://doi.org/10.1109/ICCV.2019.00943
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://api.semanticscholar.org/CorpusID:231639188
https://api.semanticscholar.org/CorpusID:231639188
https://api.semanticscholar.org/CorpusID:231639188

vide realistic examples of instructions that player 1
might give, along with 5 paraphrases for each.

Requirements:

1) When specifying target objects (objects with
which the player will interact), use different syn-
onyms in paraphrases to assess the vocabulary
range of player 2.

2) Present the target objects in varying orders to
evaluate how well player 2 understands different
language structures.

3) For each set of paraphrases, sort them from
the simplest language to the most complex.

4) Ensure the instructions are as varied as possi-
ble with a broad vocabulary.

Format your answer as a Python dictionary with
the following structure:

instructions = {
instruction_id: {

~ N~ 0~ 0~

lambda ...:

scenario_function(...):

Example usage of the
function

Replace instruction_id with a unique
identifier for each instruction, and complete the
check_lambda to demonstrate how you would
verify the given instruction using the function.

10

	Introduction
	Related work
	Craftext
	Dataset Overview and Structure
	Scenarios checkers
	Instruction generation
	Compression with other environments

	Experiments
	Conclusion
	Limitation
	Traning Hyperparameters
	 Instruction Generation Prompt

