
PDE-GCN: Novel Architectures for Graph Neural
Networks Motivated by Partial Differential Equations

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph neural networks are have shown their efficacy in fields such as computer1

vision, computational biology and chemistry, where data are naturally explained by2

graphs. However, unlike convolutional neural networks, deep graph networks do3

not necessarily yield better performance than shallow networks. This behaviour4

usually stems from the over-smoothing phenomenon. In this work, we propose5

a family of architectures to control this behaviour by design. Our networks are6

motivated by numerical methods for solving Partial Differential Equations (PDEs)7

on manifolds, and as such, their behaviour can be explained by similar analysis.8

1 Introduction9

In recent years, Graph Convolutional Networks (GCNs) [1, 2, 3] have drawn the attention of re-10

searchers and practitioners in a variety of domains and applications, ranging from computer vision11

and graphics [4, 5, 6, 7, 8] to computational biology [9, 10, 11], recommendation systems [12]12

and social network analysis [13, 14]. However, GNNs still suffer from being typically shallow, as13

opposed to the concept of deep convolutional neural networks (CNNs) [15, 16]. This shortcoming is14

due to the over-smoothing phenomenon [17, 18, 19], where the node feature vectors become almost15

identical, such that they are indistinguishable, which yields non-optimal performance. Furthermore,16

because many GCNs lack theoretical guarantees, it is difficult to reason about their behaviour. These17

observations motivate us to develop a profound understanding of GNNs and their dynamics.18

To this end, we suggest a novel, universal approach to the design of GCN architectures. Our inspiration19

stems from the similarities and equivalence between Partial Differential Equations (PDEs) and deep20

networks explored in [20, 21, 22]. Furthermore, as GCNs can be thought of as a generalization of21

CNNs, and a standard convolution can be represented as a combination of differential operators on a22

structured grid [22], we adopt this interpretation to explore versions of GCNs as PDEs on graphs or23

manifolds. We therefore call our network architectures PDE-GCN.24

2 Related work25

Graph Convolutional Networks: GCNs are typically divided into spectral [1, 3, 2] and spatial26

[23, 24, 25, 4] categories. Most of those can be implemented using the Message-Passing Neural27

Network paradigm [25], where each node aggregates features (messages) from its neighbours,28

according to some scheme. The works [3, 2] use polynomials of the graph Laplacian to parameterize29

the convolution operator. Works like and [26, 27, 28] propose methods to learn the propagation30

operators in GNNs instead of a Laplacian based operator as previously discussed.31

Submitted to the DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS
2022). Do not distribute.

Several of the methods above suffer from over-smoothing [17, 19], leading to undesired node32

features similarity for deep networks. To overcome this problem, some approaches rely on imposing33

regularization and augmentation as in PairNorm [17] and DropEdge [29], while other methods34

propose by dedicated construction [30, 19] In our work we construct a network that inherently does35

not over-smooth, based on discretized PDEs. Hence, we are able to motivate our choices by well36

studied theory and numerical experiments [31]. On a similar note, the recent DiffGCN [8] also makes37

use of discretized operators. However, DiffGCN is specific for geometric tasks. Also, GRAND [32]38

applies attention mechanism with diffusive dynamics, using several integration schemes. Here we39

propose a network that utilizes the diffusion or hyperbolic layer dynamics and their learnt mixture.40

PDEs and CNNs: In a recent series of works, the connection between PDEs and CNNs was studied41

[20, 21, 22, 33, 34, 35, 36, 37]. It was shown that it is possible to treat a deep neural network as a42

dynamical system driven by some PDE, where each convolution layer is considered a time step of a43

PDE. The connection between PDEs and CNNs was also used to reduce the computational burden44

[38], and here we harness PDE concepts to design and construct GCNs for a variety of applications.45

3 Method46

3.1 Partial Differential Equations on manifolds47

Consider a general manifold M where a vector function f resides, along with its continuous48

differential operators such as the gradient ∇, divergence ∇· and the Laplacian ∆. Given these49

differential operators, one can model different processes on M. In particular, we consider two PDEs50

– the non-linear diffusion and the non-linear hyperbolic equations51

ft = ∇ ·K∗σ(K∇f), f(t = 0) = f0, t ∈ [0, T], (1)

ftt = ∇ ·K∗σ(K∇f), f(t = 0) = f0, ft(t = 0) = 0, t ∈ [0, T], (2)

respectively, equipped with appropriate boundary conditions. Here K is a coefficient matrix that can52

change in time and represents the propagation over the manifold M, K∗ is its conjugate transpose53

and σ(·) is a non-linear activation function. Eq. (1)-(2) define a non-linear operator that takes initial54

feature vectors f0 at time 0 and propagates them to time T , yielding fT that can be used for different55

tasks. We now provide two theorems that characterize Eq. (1)-(2), based on ideas from [22]1.56

Theorem 1. If the activation function σ(·) is monotonically non-decreasing and sign-preserving,57

then the forward propagation through the diffusive PDE in (1) for t ∈ [0,∞) yields a non-increasing58

feature norm, that is,59

∂

∂t
∥f∥2 ≤ 0.

Theorem 2. Assume that the activation function σ(·) is monotonically non-decreasing, sign-
preserving and satisfies |σ(x)| ≤ |x|, and define energy

Enet = ∥ft∥2 + (K∇f, σ(K∇f)) ,

then the forward propagation through the hyperbolic PDE in (2) satisfies Enet ≤ cK , where cK is a60

constant that depends on K but independent of time.61

The outcome of those theorems is that the dynamics described in Eq. (1) is smoothing, while the one62

in Eq. (2) is bounded by a conserving mapping. We demonstrate this behaviour in Fig. 1.63

Many computational models for image segmentation [39], denoising [40] and deblurring are based64

on anisotropic diffusion, similar to the model in Eq. (1). On the other hand, applications that require65

volume/distance preservation as in the dense shape correspondence task [41] and protein folding [11],66

are typically better treated using a hyperbolic equation as in Eq. (2). Those insights motivate us to67

construct GCN layers according to Eq. (1)-(2) using discretized differential operators on graphs.68

3.2 Discretized differential operators on graphs69

A graph can be thought of as a discretization of that manifold to a finite space. Assume we are given70

an undirected graph G = (V, E) where V ∈ M is the set of n vertices of the graph and E is the set of71

1See proofs in Appendix A.

2

Figure 1: Feature evolvement on a mesh
(left). Propagation in time is from left to
right. Hyperbolic and diffusion equation dy-
namics are on the top and bottom row, respec-
tively. While a diffusive layer smooths the
information on the manifold, the hyperbolic
layer yields a non-uniform field.

Figure 2: Graph node-classification.

Figure 3: Dense shape correspondence.

m edges of the graph. Let us denote by fi ∈ Rc the value of the discrete version of f , on the i-th72

node of G. c is the number of channels, which is the width of the neural network. We define G, the73

discrete gradient operator on the graph, also known as the incidence matrix, as follows:74

(Gf)ij = Wij(fi − fj), (3)

where nodes i and j are connected via the (i, j)-th edge, Wij is an edge weight matrix which can be75

learnt, and fi and fj are the features on the i-th and j-th nodes, respectively. Note, that the gradient76

operator is a mapping from the vertex space to the edge space. Given the gradient matrix, it is possible77

to define the divergence matrix [42]. To this end, we define the inner product between an edge feature78

vector q and the gradient of a node feature vector f as79

(q,Gf) = q⊤Gf = f⊤G⊤q. (4)

The divergence is naturally defined as the operator that maps edge operator q to the node space, that80

is ∇· ≈ −G⊤. As usual, the graph Laplacian operator can be obtained by taking the divergence of81

the gradient. In graph theory it is defined as a positive matrix that is, ∆ ≈ G⊤G82

We also define the weighted line integral over an edge. Similarly to Eq. (3)-(4), we define83

(Af)ij =
1

2
Wij(fi + fj), (q,Af) = q⊤Af = f⊤A⊤q. (5)

The operator A approximates the mass operator on the edges. The right equation in Eq. (5) suggests84

that an appropriate averaging operator for edge features is the transpose of the nodal edge average.85

3.3 PDE-GCN: Graph Convolutional Networks by Partial Differential Equations86

In order to use the computational models in Eq. (1)-(2), we form their discrete versions:87

f (l+1) = f (l) − hG⊤K⊤
l σ(KlGf (l)), (6)

f (l+1) = 2f (l) − f (l−1) − h2G⊤K⊤
l σ(KlGf (l)). (7)

Here, in Eq. (6) we use the forward Euler to discretize Eq. (1), and in Eq. (7) we discretize the second88

order time derivative in Eq. (2), using the leapfrog method. In both cases, f (l) are the node features89

and Kl is a 1× 1 trainable convolution of the l-th layer. The hyper-parameter h is the step-size, and90

it is chosen such that the stability of the discretization is kept. We use σ = tanh for the activation91

function as it yields slightly better results in our experiments.Each of Eq. (6)-(7) defines a PDE-GCN92

layer. We denote the former by PDE-GCND and the latter by PDE-GCNH.93

The choice of dynamics. For some applications, anisotropic diffusion is appropriate, while for others94

conservation is more important. However, in some applications this may not be clear. To this end, it95

3

Table 1: Fully-supervised node classification accuracy (%). (L) indicates a L layers network.

Method Cora Cite. Pubm. Cham. Corn. Texas Wisc.

GCN [3] 85.77 73.68 88.13 28.18 52.70 52.16 45.88
GAT [26] 86.37 74.32 87.62 42.93 54.32 58.38 49.41
Geom-GCN [45] 85.27 77.99 90.05 60.90 60.81 67.57 64.12
APPNP [46] 87.87 76.53 89.40 54.30 73.51 65.41 69.02
JKNet [30] 85.25 (16) 75.85 (8) 88.94 (64) 60.07 (32) 57.30 (4) 56.49 (32) 48.82 (8)
JKNet (Drop) [29] 87.46 (16) 75.96 (8) 89.45 (64) 62.08 (32) 61.08 (4) 57.30 (32) 50.59 (8)
Incep (Drop) [29] 86.86 (8) 76.83 (8) 89.18 (4) 61.71 (8) 61.62 (16) 57.84 (8) 50.20 (8)
GCNII [19] 88.49 (64) 77.08 (64) 89.57 (64) 60.61 (8) 74.86 (16) 69.46 (32) 74.12 (16)
GCNII* 88.01 (64) 77.13 (64) 90.30 (64) 62.48 (8) 76.49 (16) 77.84 (32) 81.57 (16)

PDE-GCND (Ours) 88.51 (16) 78.36 (64) 89.6 (64) 64.12 (8) 89.19 (2) 90.81 (8) 90.39 (8)
PDE-GCNH (Ours) 87.71 (32) 78.13 (16) 89.16 (16) 61.57 (64) 89.45 (64) 92.16 (64) 91.37 (16)
PDE-GCNM (Ours) 88.60 (16) 78.48 (32) 89.93 (16) 66.01 (16) 89.73 (64) 93.24 (32) 91.76 (16)

is possible to combine Eq. (1)-(2) to obtain the continuous process96

αftt + (1− α)ft = ∇ ·K∗σ(K∇f), f(t = 0) = f0, ft(t = 0) = 0 t ∈ [0, T], (8)
where α = sigmoid(β), meaning 0 ≤ α ≤ 1, and β is a single trainable parameter. The discretization97

of this PDE leads to the following network dynamics:98

α(f (l+1) − 2f (l) + f (l−1)) + h(1− α)(f (l+1) − f (l)) = −h2G⊤K⊤
l σ(KlGf (l)). (9)

We denote a layer that is governed by Eq. (9) by PDE-GCNM.99

4 Experiments100

In this section we demonstrate our approach by first showing that it is possible to learn the desired101

PDE-dynamics. Then, we show the efficacy of our PDE-GCN on 7 real-world fully-supervised node102

classification datasets. A detailed description of the architectures and hyper-parameters used in our103

experiments are given in Appendicies C–D.104

Learning PDE network dynamics In this experiment, we delve on the ability to learn the ap-105

propriate PDE that better models a given problem. To this end, we use the mixture model from Eq.106

(9) so that the resulting PDE is a combination of the diffusion and hyperbolic dynamics. We use107

a 8 layer mixed PDE-GCN, starting with α = 0.5, such that it is balanced between a PDE-GCND108

and PDE-GCNH. By learning the parameter α in (9), we allow to choose a mixed PDE between a109

purely conservative network and a diffusive one. We consider two problems: semi-supervised node110

classification on Cora, and dense shape correspondence on FAUST [43].111

Our results, reported in Fig. 2–3 suggest that just as in classical works [39, 44], problems like112

node-classification obtain better performance with an anisotropic diffusion like in Eq. (6), and for113

problems involving dense-correspondences like in [41, 11] that tend to conserve the energy of the114

underlying problem, a hyperbolic equation type of PDE as in Eq. (7) is more appropriate.115

Fully-supervised node classification We follow [45] and use 7 datasets: Cora, CiteSeer, PubMed,116

Chameleon, Cornell, Texas and Wisconsin. We also use the same train/validation/test splits of117

60%, 20%, 20%, respectively. We report the average performance over 10 random splits from [45].118

Our results in Tab. 1 read either similar or better than the state-of-the-art models.119

5 Summary120

In this paper we explored new architectures for graph neural networks. Our motivation stems from121

the similarities between graph networks and time dependent partial differential equations that are122

discretized on manifolds and graphs. By adopting an appropriate PDE, and embedding the finite123

graph in an infinite manifold, we are able to define networks that are either diffusive, conservative,124

or a combination of both. We showed that the proposed networks can be made deep without125

over-smoothing and can deliver the state-of-the-art performance.126

4

References127

[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected128

networks on graphs. arXiv preprint arXiv:1312.6203, 2013.129

[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs130

with fast localized spectral filtering. In Advances in neural information processing systems, pages 3844–131

3852, 2016.132

[3] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.133

arXiv preprint arXiv:1609.02907, 2016.134

[4] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M135

Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of136

the IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.137

[5] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.138

Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018.139

[6] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as cnns?140

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9267–9276, 2019.141

[7] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or. Meshcnn: a142

network with an edge. ACM Transactions on Graphics (TOG), 38(4):90, 2019.143

[8] Moshe Eliasof and Eran Treister. Diffgcn: Graph convolutional networks via differential operators and144

algebraic multigrid pooling. 34th Conference on Neural Information Processing Systems (NeurIPS 2020),145

Vancouver, Canada., 2020.146

[9] Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M. Kim. Fast and147

flexible protein design using deep graph neural networks. Cell Systems, 11(4):402 – 411.e4, 2020.148

[10] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy BR149

Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al. Utilising graph machine learning within drug150

discovery and development. arXiv preprint arXiv:2012.05716, 2020.151

[11] Moshe Eliasof, Tue Boesen, Eldad Haber, Chen Keasar, and Eran Treister. Mimetic neural networks: A152

unified framework for protein design and folding. arXiv preprint arXiv:2102.03881, 2021.153

[12] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph154

convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM155

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 974–983, 2018.156

[13] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social influence157

prediction with deep learning. In Proceedings of the 24th ACM SIGKDD International Conference on158

Knowledge Discovery & Data Mining, pages 2110–2119, 2018.159

[14] Chang Li and Dan Goldwasser. Encoding social information with graph convolutional networks forpolitical160

perspective detection in news media. In Proceedings of the 57th Annual Meeting of the Association for161

Computational Linguistics, pages 2594–2604, 2019.162

[15] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural163

networks. Adv Neural Inf Process Syst, 61:1097–1105, 2012.164

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.165

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,166

2016.167

[17] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International Conference168

on Learning Representations, 2020.169

[18] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing170

problem for graph neural networks from the topological view. Proceedings of the AAAI Conference on171

Artificial Intelligence, 34:3438–3445, 04 2020.172

[19] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-173

volutional networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International174

Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages175

1725–1735. PMLR, 13–18 Jul 2020.176

[20] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1),177

2017.178

[21] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible179

architectures for arbitrarily deep residual neural networks. In Thirty-Second AAAI Conference on Artificial180

Intelligence, 2018.181

5

[22] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations. Journal182

of Mathematical Imaging and Vision, pages 1–13, 2019.183

[23] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural184

networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition,185

pages 3693–3702, 2017.186

[24] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convolutional187

neural networks on riemannian manifolds. In Proceedings of the IEEE international conference on188

computer vision workshops, pages 37–45, 2015.189

[25] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message190

passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning-191

Volume 70, pages 1263–1272. JMLR. org, 2017.192

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.193

Graph Attention Networks. International Conference on Learning Representations, 2018.194

[27] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint195

arXiv:2105.14491, 2021.196

[28] Moshe Eliasof, Eldad Haber, and Eran Treister. pathgcn: Learning general graph spatial operators from197

paths. In International Conference on Machine Learning, pages 5878–5891. PMLR, 2022.198

[29] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph con-199

volutional networks on node classification. In International Conference on Learning Representations,200

2020.201

[30] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.202

Representation learning on graphs with jumping knowledge networks. In Jennifer Dy and Andreas Krause,203

editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings204

of Machine Learning Research, pages 5453–5462. PMLR, 10–15 Jul 2018.205

[31] Uri M Ascher. Numerical methods for evolutionary differential equations. SIAM, 2008.206

[32] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele Rossi, and207

Michael M Bronstein. Grand: Graph neural diffusion. arXiv preprint arXiv:2106.10934, 2021.208

[33] E Weinan. A Proposal on Machine Learning via Dynamical Systems. Communications in Mathematics209

and Statistics, 5(1):1–11, March 2017.210

[34] Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillaume Carlier. Deep relaxation:211

partial differential equations for optimizing deep neural networks. Research in the Mathematical Sciences,212

5(3):30, 2018.213

[35] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging214

deep architectures and numerical differential equations. In International Conference on Machine Learning215

(ICML), 2018.216

[36] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential217

equations. In Advances in Neural Information Processing Systems, pages 6571–6583, 2018.218

[37] Eldad Haber, Keegan Lensink, Eran Triester, and Lars Ruthotto. Imexnet: A forward stable deep neural219

network. arXiv preprint arXiv:1903.02639, 2019.220

[38] Jonathan Ephrath, Moshe Eliasof, Lars Ruthotto, Eldad Haber, and Eran Treister. Leanconvnets: Low-cost221

yet effective convolutional neural networks. IEEE Journal of Selected Topics in Signal Processing, 2020.222

[39] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. International journal of223

computer vision, 22(1):61–79, 1997.224

[40] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms.225

Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.226

[41] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quantum227

mechanical approach to shape analysis. In 2011 IEEE international conference on computer vision228

workshops (ICCV workshops), pages 1626–1633. IEEE, 2011.229

[42] J Hyman, J Morel, M Shashkov, and Stanly Steinberg. Mimetic finite difference methods for diffusion230

equations. Computational Geosciences, 6(3):333–352, 2002.231

[43] Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST: Dataset and evaluation for232

3D mesh registration. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),233

Piscataway, NJ, USA, June 2014. IEEE.234

[44] Ross T Whitaker. A level-set approach to 3d reconstruction from range data. International journal of235

computer vision, 29(3):203–231, 1998.236

6

[45] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph237

convolutional networks. In International Conference on Learning Representations, 2020.238

[46] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks with per-239

sonalized pagerank for classification on graphs. In International Conference on Learning Representations,240

2019.241

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint242

arXiv:1412.6980, 2014.243

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor244

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,245

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie246

Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In247

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in248

Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.249

7

A Theorems and proofs250

We repeat the theorems presented in Sec. 3 and provide their proofs below. The theorems hold251

for Neumann boundary conditions, which we use in our implementation—this is achieved by the252

construction of the differential operators. The proofs follow the ones presented in [22].253

Theorem 1. If the activation function σ(·) is monotonically non-decreasing and sign-preserving,254

then the forward propagation through the diffusive PDE in (1) for t ∈ [0,∞) yields a non-increasing255

feature norm, that is,256

∂

∂t
∥f∥2 ≤ 0.

Proof. Let us examine the following inner product following Eq. (1):

(f, ft) = (f,∇ ·K∗σ(K∇f))

From integration by parts it holds that :

1

2

∂

∂t
∥f∥2 = −(∇f,K∗σ(K∇f)) = −(K∇f, σ(K∇f)).

Plugging the definition of an inner product, together with the assumption that σ is a sign-preserving
function, it follows that:

sign(K∇f) = sign(σ(K∇f)).

Therefore, the following is non-positive:

1

2

∂

∂t
∥f∥2 = −(K∇f, σ(K∇f)) ≤ 0

Meaning257

∂

∂t
∥f∥2 ≤ 0.

258

Theorem 2. Assume that the activation function σ(·) is monotonically non-decreasing, sign-
preserving and satisfies |σ(x)| ≤ |x|, and define energy

Enet = ∥ft∥2 + (K∇f, σ(K∇f)) ,

then the forward propagation through the hyperbolic PDE in (2) satisfies Enet ≤ cK , where cK is a259

constant that depends on K but independent of time.260

Proof. Let us define the following energy:

Elin = ∥ft∥2 + (K∇f,K∇f)

This energy is associated with the linear hyperbolic (wave-like) equation:

ftt = ∇ ·K∗K∇f f(t = 0) = f0, , ft(t = 0) = 0 t ∈ [0, T].

Assuming K is constant in time, we obtain:

1

2
∂tElin = (ft, ftt −∇ ·K∗K∇f) = 0

This means that the energy Elin is constant in time, i.e. there exists some cK such that Elin = cK .261

Also, given our assumption that σ is sign-preserving and |σ(x)| ≤ |x| (i.e., it does not increase the262

norm of its input), we show that Enet ≤ Elin:263

Enet = ∥ft∥2 + (K∇f, σ(K∇f))

≤ ∥ft∥2 + (K∇f,K∇f) = Elin
Therefore, we conclude that Enet ≤ cK .264

265

8

Table 2: Statistics of datasets used in our semi-and fully supervised node-classification experiments.

Dataset Cora CiteSeer PubMed Chameleon Cornell Texas Wisconsin

Classes 7 6 3 5 5 5 5
Nodes 2,708 3,327 19,717 2,277 183 183 251
Edges 5,429 4,732 44,338 36,101 295 309 499
Features 1,433 3,703 500 2,325 1,703 1,703 1,703

B Datasets266

We report the statistics of the datasets used in this paper in Tab. 2.267

C Architectures in details268

In this section we elaborate on the specific architectures that were used in our experiments in Sec.269

4. As discussed in Sec. 3.3, all our network architectures are comprised of an opening layer (1× 1270

convolution), a sequence of PDE-GCN layers, and a closing layer (1× 1 convolution), and possibly271

additional final convolution steps which serve as the classifier. In total, we have two types of272

architectures in our experiments, which differ in their classifier layers. Throughout the following273

tables, cin and cout denote the input and output channels, respectively, and c denotes the number274

of features in hidden layers. We denote the number of PDE-GCN blocks by L, and the dropout275

probability by p. We use the Adam [47] optimizer in all experiments, and perform grid search over276

the hyper-parameters of our network. The selected hyper-parameters are reported in Appendix C.277

Our objective function in all experiments is the cross-entropy loss. Our code is implemented using278

PyTorch [48], trained on an Nvidia Titan RTX GPU.279

Our first architecture is described in Tab. 3 and includes only a closing layer as a final step. The280

architecture is used for the fully supervised node classification tasks. Note, the high-level architecture281

is the same as in GCNII [19], and only differs in the employed GCN-block, which is our PDE-GCN.282

Table 3: The architecture used for semi-and fully supervised node classification and inductive
learning.

Input size Layer Output size

n× cin 1× 1 Dropout(p) n× cin
n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× PDE-GCN block n× c
n× c 1× 1 Dropout(p) n× c
n× c 1× 1 Convolution n× cout

The second architecture is used for the dense-shape correspondence task on FAUST is given in Tab. 4.283

In addition to the closing 1× 1 convolution layer, it also includes a layer of a 1× 1 convolution and284

an ELU activation, followed by another final 1× 1 convolution which classifies the point-to-point285

correspondence. In the case of the FAUST dataset, each mesh has n = 6890 vertices.286

D Hyper-parameters details287

We provide the selected hyper-parameters in our experiments. We denote the learning rate of our288

PDE-GCN layers by by LRGCN , and the learning rate of the 1× 1 opening and closing as well as289

any additional classifier layers by LRoc. Also, the weight decay for the opening and closing layers is290

denoted by WDoc. For the PDE-GCN layers, no weight decay is used throughout all experiments.291

9

Table 4: The architecture used for dense-shape correspondence on FAUST.

Input size Layer Output size

n× 4 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× PDE-GCN block n× c
n× c 1× 1 Convolution n× c
n× c ReLU n× c
n× c 1× 1 Convolution n× 512
n× 512 ELU n× 512
n× 512 Fully-Connected n× n

D.1 Learning PDE dynamics292

In this experiment we used a 8 layers mixed PDE-GCNM, starting with α = 0.5, such that it293

is balanced between a PDE-GCND and a PDE-GCNH. We report the hyper-parameters for this294

experiment in Tab. 5.295

Table 5: Learning PDE dynamics hyper-parameters

Dataset LRGCN LRoc LRα WDoc #Channels Dropout h

Cora 1 · 10−4 0.01 0.01 5 · 10−4 64 0.6 0.5

FAUST 0.001 0.01 0.01 0 256 0 0.01

D.2 Fully-supervised node-classification296

The hyper-parameters for this experiment are summarized in Tab. 6.297

Table 6: Fully-Supervised classification hyper-parameters

Dataset LRGCN LRoc WDoc #Channels Dropout h

Cora 4 · 10−5 0.06 1 · 10−4 64 0.6 0.65

CiteSeer 2 · 10−4 0.07 1 · 10−4 64 0.6 0.4

PubMed 5 · 10−5 0.02 3 · 10−4 64 0.5 0.55

Chameleon 40 · 10−4 0.02 8 · 10−5 64 0.6 0.55

Cornell 2.5 · 10−4 0.07 2.5 · 10−4 64 0.5 0.05

Texas 3 · 10−4 0.05 1 · 10−4 64 0.5 0.05

Wisconsin 3 · 10−5 0.07 5 · 10−5 64 0.5 0.054

10

	Introduction
	Related work
	Method
	Partial Differential Equations on manifolds
	Discretized differential operators on graphs
	PDE-GCN: Graph Convolutional Networks by Partial Differential Equations

	Experiments
	Summary
	Theorems and proofs
	Datasets
	Architectures in details
	Hyper-parameters details
	Learning PDE dynamics
	Fully-supervised node-classification

