
D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

Xuanzhou Liu 1 2 † Lin Zhang 2 Jiaqi Sun 1 Yujiu Yang 1 * Haiqin Yang 2 *

Abstract
Subgraph matching is a fundamental building
block for graph-based applications and is chal-
lenging due to its high-order combinatorial na-
ture. Existing studies usually tackle it by combi-
natorial optimization or learning-based methods.
However, they suffer from exponential compu-
tational costs or searching the matching without
theoretical guarantees. In this paper, we develop
D2Match by leveraging the efficiency of Deep
learning and Degeneracy for subgraph matching.
More specifically, we first prove that subgraph
matching can degenerate to subtree matching, and
subsequently is equivalent to finding a perfect
matching on a bipartite graph. We can then yield
an implementation of linear time complexity by
the built-in tree-structured aggregation mecha-
nism on graph neural networks. Moreover, cir-
cle structures and node attributes can be easily
incorporated in D2Match to boost the matching
performance. Finally, we conduct extensive ex-
periments to show the superior performance of
our D2Match and confirm that our D2Match in-
deed exploits the subtrees and differs from ex-
isting GNNs-based subgraph matching methods
that depend on memorizing the data distribution
divergence.

1. Introduction
Subgraph isomorphism, or subgraph matching at the node
level (McCreesh et al., 2018), is a critical yet particularly
challenging graph-related task. It aims to determine whether
a query graph is isomorphic to a subgraph of a large target
graph. It is an essential building block for various graph-
based scenarios, e.g., alignment of cross-domain data (Chen

1Shenzhen International Graduate School, Tsinghua Univer-
sity, Shenzhen, China 2International Digital Economy Academy
(IDEA). †Work done when Xuanzhou was interned at IDEA. Cor-
respondence to: Yujiu Yang <yang.yujiu@sz.tsinghua.edu.cn>,
Haiqin Yang <hqyang@ieee.org>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

et al., 2020), temporal alignment of time series (Zhou &
Torre, 2009), and motif matching (Milo et al., 2002; Peng
et al., 2020), etc.

Existing studies for subgraph matching can be divided into
two main streams: combinatorial optimization (CO)-based
and learning-based methods (Vesselinova et al., 2020). Early
algorithms often formulate subgraph matching as a CO prob-
lem that aims to find all exact matches in a target graph.
Unfortunately, this leads to an NP-complete issue (Ullmann,
1976; Cordella et al., 2004), which suffers from exponential
time costs. To alleviate the computational cost, researchers
have employed approximate techniques to seek inexact so-
lutions (Mongiovı̀ et al., 2010; Yan et al., 2005; Shang et al.,
2008), which yield suboptimal matchings. An alternative
solution is to frame subgraph matching as a supervised learn-
ing problem (Bai et al., 2019; Rex et al., 2020; Bai et al.,
2020), which utilizes the Graph Neural Networks (GNNs).
However, the learning-based or GNN-based methods mainly
aim to optimize the representations in a black-box way. The
lack of theoretical guarantees makes them inexplicable and
often cannot seek the exact match subgraphs.

In order to tackle the above challenges, we propose a white-
box GNN-based solution, D2Match, to leverage the effi-
ciency of Deep GNNs and Degeneracy for subgraph match-
ing. With rigorous theoretical proofs, we provide explain-
able results at each learning step. We first prove that finding
the matched nodes between the query graph and the target
one can degenerate to check whether the corresponding sub-
trees rooted at these two nodes are subtree isomorphic. This
degeneration allows us to check whether a perfect matching
exists on a bipartite graph, which results in a polynomial
time complexity solution. The above two steps convert sub-
graph matching into computing an indicator matrix whose
elements represent the subtree isomorphic relationship be-
tween nodes in the query graph and the target one. Hence,
the matching matrix required by the CO-based methods
for subgraph matching degenerates to seeking an indica-
tor matrix, which is computed by GNNs via its intrinsic
tree-structured aggregation mechanism.

Note that this implementation battles the matching mecha-
nism directly by GNNs rather than optimizing the represen-
tations of GNNs as in the existing work. Our implementa-
tion allows us to reduce the time cost of perfect matching

1

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

from polynomial time to linear time. Moreover, we can
easily incorporate other information, including circle struc-
tures (abstracted as supernodes) and node attributes, into
our D2Match to boost the matching performance.

Our contribution is four-fold: (1) We propose the first white-
box GNN-based model, called D2Match, to leverage deep
learning and degeneracy for subgraph matching. We pro-
vide rigorous theoretical proofs to guarantee that subgraph
matching can degenerate to subtree matching, and finally
perfect matching on a bipartite graph. (2) To the best of our
knowledge, this is the first GNN-based model to tackle sub-
graph matching directly, which degenerates the matching
matrix required by the CO-based methods to an indicator
matrix computed by GNNs via the intrinsic tree-structured
aggregation mechanism. This allows us to compute the in-
dicator matrix in linear time. (3) Our D2Match can easily
include other information, including circle structures and
node attributes to boost the model performance. (4) Exten-
sive empirical evaluations show that D2Match outperforms
state-of-the-art subgraph matching methods by a substantial
margin, and uncovered that learning-based methods tend to
capture the divergence of the data distribution rather than
exploiting graph structures.

2. Related work
Subgraph matching is to check whether a query graph is
subgraph isomorphic to the target one (McCreesh et al.,
2018). Here, we highlight three main lines of related work:

Combinatorial optimization (CO)-based methods first
tackle subgraph matching by only modeling graph struc-
ture (Ullmann, 1976). Some later work starts to facilitate
both graph structure and node attributes (He & Singh, 2008;
Shang et al., 2008; Han et al., 2013; Bhattarai et al., 2019).
These combinatorial optimization methods often rely on
backtracking (Priestley & Ward, 1994), i.e., heuristically
performing matching on each pair of nodes from the query
and the target graphs. Such methods suffer from exponential
computing costs. A mitigated solution is to employ an in-
exact matching strategy. Early methods first define metrics
to measure the similarity between the query graph and the
target graph. Successive algorithms follow this strategy and
propose more complex metrics. For example, Mongiovı̀
et al. (2010) convert the graph matching problem into a set-
cover problem to attain a polynomial complexity solution.
Yan et al. (2005) introduce a thresholding method to filter
out mismatched graphs. Khan et al. (2011) define a metric
based on neighborhood similarity and employ an informa-
tion propagation model to find similar graphs. Kosinov &
Caelli (2002) and Caelli & Kosinov (2004) align the nodes’
eigenspace and project them to the eigenspace via clustering
for matching. However, most of these algorithms cannot
scale to large graphs due to the high computational cost, and
their hand-crafted features make them hard to generalize to

complex tasks.

Learning-based methods typically compute the similarity
between the query and target graphs, e.g., comparing their
embedding vectors. Bai et al. (2019) adopt GNNs to learn
representations of the graphs and employs a neural tensor
network to match the representation of graph pairs. One
immediate challenge is that a single graph embedding vector
cannot capture the partial order of subgraph isomorphism.
Thus, Rex et al. (2020) train a GNN model to represent
graphs while incorporating order embeddings to learn the
partial order. These methods can compute graph-level rep-
resentations, achieving high computational efficiency. How-
ever, they miss the node-level information, which may lose
critical details in subgraph matching. To perform node-level
matching, several methods (Bai et al., 2020; Li et al., 2019)
introduce the node-level representation into the problem.
These methods often adopt different attention mechanisms
to generate pairwise relations. However, abusing the atten-
tion mechanism makes the model lack interpretability and
theoretical guarantee. Others transform the subgraph match-
ing problem into an edge matching problem and generate
prediction results through the matching matrix obtained by
Sinkhorn’s algorithm (Roy et al., 2022), thereby providing
interpretability for the model. The process of turning node
matching into edge matching, however, loses necessary in-
formation about edges’ relation, such as edges’ common
nodes, which hurts the expressibility of the model.

Graph Neural Networks (GNNs) are powerful tech-
niques (Xu et al., 2019; Kipf & Welling, 2017) yielding
breakthroughs in many key applications (Hamilton et al.,
2017b). Graph neural networks mostly iteratively aggregate
information that can be expressed as follows,

H(l+1) = AGGf (A,H(l))

H
(l+1)
i: = ϕ

(
H

(l)
i: , f

({
H

(l)
j: : j ∈ N (i)

})) (1)

where f(·) is the aggregation function such as mean or max;
ϕ is the update function. H(l) is the representation matrix
and its i-th row, denoted by Hi:, is the representation of
node i. Over the last few years, there is considerable
progress in proposing different ways of aggregating. For
example, GraphSAGE (Hamilton et al., 2017b) aggregates
node features with mean/max/LSTM pooled neighboring
information. Graph Attention Network (GAT) (Velickovic
et al., 2018) aggregates neighbor information using learn-
able attention weights. A close work for subgraph matching
is Graph Isomorphism Network (GIN) (Xu et al., 2019),
which converts aggregation as a learnable function based
on the Weisfeiler-Lehman (WL) test to maximize the per-
formance of GNNs. However, the WL test (Xu et al., 2019)
cannot address the subgraph matching problem because it
hashes the tree structure and ignores the partial order infor-
mation for subgraph matching.

2

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

𝑏′ 𝑐′ 𝑑′ 𝑟′

𝑏 1 0 0 0

𝑐 0 1 1 0

𝑑 0 0 1 0

𝑟 0 0 0 1

𝑻
𝒂′
𝒍+𝟏 𝑎′

𝑟′

𝑎′ 𝑎′ 𝑎′ 𝑎′

𝑏′

𝑏′ 𝑏′𝑐′

𝑐′

𝑐′

𝑑′

𝑎′

𝑟′

𝑎′ 𝑎′ 𝑎′ 𝑎′

𝑏′

𝑏′ 𝑏′𝑐′

𝑐′

𝑐′

𝑑′

𝑻
𝒓′
𝒍

𝑻
𝒅′
𝒍

𝑻
𝒄′
𝒍𝑻

𝒃′
(𝒍)

𝑻𝒂
𝒍+𝟏 𝑎

𝑏 𝑐 𝑑 𝑟

𝑎 𝑐 𝑔 𝑓 𝑎 𝑏 𝑏𝑒 𝑎 𝑎 𝑐

𝑻𝒃
𝒍

𝑻𝒄
𝒍

𝑻𝒅
𝒍 𝑻𝒓

𝒍

𝑎

𝑏 𝑐 𝑑 𝑟

𝑎 𝑐 𝑔 𝑓 𝑎 𝑏 𝑏𝑒 𝑎 𝑎 𝑐

𝑑

𝑐

𝑏

𝑟

𝑐′

𝑑′

𝑟′
𝑎′

𝑏′

𝑎

𝑒

𝑓

𝑔

𝑁
(𝑎
)

𝑁(𝑎′)Query

Target

Theorem 4.2 (condition 1&2) Theorem 4.2 (condition 2&3)Theorem 4.1

P
erfect m

atch
in

g

𝑻
𝒃′
(𝒍)

𝑻
𝒄′
(𝒍)

𝑻
𝒅′
(𝒍)

𝑻
𝒓′
(𝒍)

𝑻𝒃
(𝒍)

𝑻𝒄
(𝒍)

𝑻𝒅
(𝒍)

𝑻𝒓
(𝒍)

B
ip

artite g
rap

h

(1) (2) (3) (4)

Figure 1. Illustration of the proposed degeneracy procedure for subgraph matching: the problem of whether node a′ in the query graph
matches node a in the target one degenerate to check whether the constructed (l + 1)-depth subtrees rooted at node a and a′ are subtree
isomorphic. This corresponds to Step (2) and is guaranteed by Theorem 4.1. The procedure is to check whether T (l+1)

a and T
(l+1)

a′ are
subtree isomorphic. As shown in Step (3) and guaranteed by conditions 1&2 in Theorem 4.2, this is equivalent to checking whether
subtree isomorphism holds for every l-depth subtrees rooted in N(a′) to a unique l-depth subtree in N(a), where N(·) is the neighbor set
of a given node. After that, based on conditions 2&3 in Theorem 4.2, the problem of subtree isomorphic is equivalent to checking whether
there is perfect matching on the bipartite graph from every l-depth subtrees rooted in N(a′) and N(a), respectively. This corresponds to
Step (4), where the upper part represents the constructed bipartite graph, and the lower part is its adjacency matrix. By running the Hall’s
marriage algorithm, we can determine the perfect matching, where the selected edges are highlighted by the blue areas. The computation
procedure for this indication matrix is implemented via the intrinsic tree-structured aggregation mechanism on GNNs, which is proved in
Theorem 4.3 and guarantees the linear time cost as analyzed in Sec. 4.3.

3. Preliminary
We define some notations accordingly: Let AQ and AT be
the adjacency matrix of the query graph GQ and the target
graph GT , respectively. N(·) denotes the neighbor set of a
given node or a given set. | · | denotes the cardinality of a
set. T (l)

v defines the subtree whose root is v and expands up
to l-hop neighbors of v (or l-depth of the subtree). In the
paper, the concepts of the l-hop neighbors and the l-depth
subtrees are interchangeable.

Problem Definition: Suppose we are given a query graph,
GQ(VQ, EQ), and a target graph, GT (VT , ET). Here,
(VQ, EQ) and (VT , ET) are the pairs of vertices and edges
related to the query graph and the target graph, respectively.
Besides, the node attributes of the query graph and the target
graph are denoted as XQ ∈ R|VQ|×D and XT ∈ R|VT |×D,
respectively, where D is the dimension of the node attributes.
The problem of subgraph matching is to identify whether
the query graph GQ is subgraph isomorphic to the target
graph GT , i.e. if there exists an injective ξ : VQ → VT such
that ∀u, v ∈ VQ, (u, v) ∈ EQ ⇔ (ξ(u), ξ(v)) ∈ ET .

The injective can be represented by a matching matrix, S ∈
{0, 1}|VT |×|VQ|, where Sij = 1 if and only if node pair(i, j)
is matched, i.e., ξ(j) = i. Therefore, subgraph isomorphism
is equivalent to checking the existence of such a matrix S,

i.e., whether there exists assignment matrix S such that:

SAQS
T = AT , s.t.


∑

i Sij = 1,∀j∑
j Sij ≤ 1,∀i

Sij ∈ {0, 1},∀i, j.
(2)

We denote GQ ⊂ GT if GQ is a subgraph of GT . Here, we
first define several key concepts:

WL Subtree: The Weisfeiler-Lehman (WL) test is an ap-
proximate solution to the graph isomorphism problem with
linear computational complexity (Shervashidze et al., 2011).
The WL test performs the aggregation on nodes’ labels and
their neighborhoods recursively, followed by hashing the
aggregated results into unique new labels. As a result, this
test produces an unordered tree for each node, called the
WL subtree, which is a balanced tree with the height of the
number of iterations. After repeating the algorithm k times,
the obtained WL subtree for a node includes the structural
information of the k-hop subgraph from that node. Research
shows that the expressiveness of GNNs with the message-
passing mechanism is upper-bounded by the WL test (Xu
et al., 2019).

Subtree Generation: For any node v in a graph, one can
obtain a subgraph Sub

(l)
v by taking the l-hop neighbor of v.

Given any tree generation method, e.g., the WL subtree, we
always obtain its corresponding subtree whose root is v:

T (l)
v = Ψ(Sub(l)v), (3)

3

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

where Ψ is a subtree generation function. Unless stated oth-
erwise, we employ the WL subtree to generate subtrees for
a given node due to its uniqueness (Xu et al., 2018). Instead
of explicitly constructing such trees, we can run GNNs in a
graph, since building a k-order WL subtree is equivalent to
aggregating k times in GNNs (Xu et al., 2018). Notice that
traditional methods such as Breadth-First-Search (BFS) and
Depth-First-Search (DFS) are not applicable at this work
because they do not satisfy the uniqueness property. In par-
ticular, the tree generated for the same node by BFS or DFS
will be different due to different search order.

Perfect Matching in Bipartite Graphs: A perfect match-
ing (Gibbons, 1985) is a chosen edge set of a graph wherein
every node of the graph is incident to exactly one edge.
Hence, according to the edge set, each node in the graph
corresponds to only one other node. The existence of a
perfect matching on a bipartite graph can be resolved via
Hall’s Marriage Theorem (Hall, 1935).

Theorem 3.1. (Hall’s marriage theorem) Given a bipartite
graph, B(X,Y,E) that has two partitions: X and Y and
|Y | ≤ |X|, where E denotes the edges. The necessary and
sufficient condition of the existence of the perfect match-
ing in B(X,Y,E) is : ∀ W ⊆ Y, |W | ≤ |N(W)|, where
N(W) is the neighborhood of W defined by N(W) =
{bj ∈ X : ∃ai ∈ W, (ai, bj) ∈ E}.

4. The Proposed Method
In the following, we present our proposed D2Match with
the theoretical derivation and its extensions.

4.1. Subgraph Matching Degeneracy

We approach the subgraph matching problem from a de-
generacy perspective, framing this problem as a subtree
matching problem with linear complexity. A fundamental
question to the subgraph matching problem is on what con-
ditions one subgraph is isomorphic to the other. Since the
subgraph matching problem is NP-complete, the exact an-
swer to this question becomes impractical. Instead, we can
reduce the answer of finding both sufficient and necessary
conditions to that of necessary only. What follows is to
construct a criterion that any isomorphic pairs can meet.

Subtree isomorphism is a special task of subgraph isomor-
phism and can be attained in polynomial time. Here, we aim
to reduce the subgraph isomorphism problem to a subtree
isomorphism problem. Inspired by Xu et al. (2019), we
construct a criterion by checking the subtrees rooted at the
nodes: if GQ is a subgraph of GT , then the tree rooted at
any node q of GQ should be a subtree of the tree rooted at
the matched node t = ξ(q) of GT . As stated in the follow-
ing theorem, some additional properties of these trees are
needed to make this criterion hold:

Theorem 4.1. Given a target graph GT (VT , ET) and a
query graph GQ(VQ, EQ), if GQ ⊂ GT , and the subtree
generation function Ψ as defined in Eq. (3) meets the fol-
lowing condition:

∀ graph pair (GS , G), if GS ⊂ G, then Ψ(GS) ⊂ Ψ(G),
(4)

then the subgraph isomorphic mapping ξ : VQ → VT en-
sures the l-depth subtrees of the subgraph are isomorphic
to the subtrees of the corresponding subgraph:

∀l ≥ 1, q ∈ VQ, t = ξ(q) ∈ VT ⇒ T (l)
q ⊂ T

(l)
t , (5)

Please find the proof in Appendix A.1. This theorem pro-
vides a necessary condition for the potential isomorphic
pairs. With this theorem, given a query graph GQ and a
target graph GT , the node q from GQ is possible to match
node t in GT only if T (l)

q ⊂ T
(l)
t . It then becomes an isomor-

phic test, which checks whether there exists an assignment
such that each node q in GQ possibly corresponds to one
unique node t in GT . Forming a boolean indicator matrix
S(l) ∈ R|VT |×|VQ|:

S
(l)
tq =

{
1, if Tq ⊂ Tt

0, otherwise
, (6)

we arrive at checking whether the indicator matrix S(l) con-
tains a valid assignment matrix S satisfies Eq. (2).

Due to the favorite property of uniqueness, we employ the
WL subtree as the generation function. What follows is how
to determine the subtree isomorphism relationship between
l-order trees. To be specific, based on WL subtree gener-
ation, we solve the subtree matching problem iteratively,
intending to find a perfect matching on a bipartite graph
in each iteration. The following theorem guarantees the
conversion:

Theorem 4.2. Given a node q in the query graph and a
node t in the target graph, the following three conditions
are equivalent:

1) T
(l+1)
q ⊂ T

(l+1)
t .

2) There exists an injective function on the neighborhood of
these nodes as f :N(q) → N(t), s.t. ∀qi ∈ N(q), ti =
f(qi), T

(l)
qi ⊂ T

(l)
ti .

3) There exists a perfect matching on the bipartite
graph B(l)(N(t), N(q), E), where ∀tj ∈ N(t), qi ∈
N(q), (tj , qi) ∈ E if and only if T (l)

qi ⊂ T
(l)
tj .

The proof is provided in Appendix A.2. The equivalence
of the first two conditions implies that matching subtrees
of a pair of nodes is equivalent to matching all subtrees
from their child nodes. As a result, the indicator matrix
can be updated recursively. That is, the indicator matrix at

4

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

the (l + 1)-th layer, i.e., S(l+1), should rely on S(l). Mean-
while, the equivalence of the last two conditions means that
matching the subtrees from these child nodes is equivalent to
solving the perfect matching on the corresponding bipartite
graph whose nodes represent the subtrees of the child nodes.
In summary, Theorem 4.2 tells us that subgraph matching
is equivalent to delivering perfect matching on a bipartite
graph. A visualization of this procedure is shown in Fig. 1.

Motivated by Hall’s marriage Theorem 3.1, we develop an
efficient algorithm to address the perfect matching proce-
dure. A straightforward solution is to randomly select a sub-
set W from the smaller partition of B(l)(N(t), N(q), E),
i.e., W ⊆ N(q), and count whether W ’s neighbors, i.e.,
N(W) ⊆ N(t) in the other partition, have more elements
than W . After repeating this process multiple times, we
obtain a perfect matching when no instance violates the cri-
terion. Note that we perform the procedure for all possible
matched node pairs.

Is it possible to execute all pairs in parallel? Luckily, we can
borrow GNNs to accomplish the perfect matching. Specif-
ically, when computing a perfect matching between node
q ∈ GQ and node t ∈ GT , one needs to find W such that
it satisfies W ⊆ N(q) according to Theorem 3.1. In prac-
tice, we can obtain this by sampling the neighbors of node
q, equating to sampling the edges, or the Drop Edge op-
eration (Hamilton et al., 2017a). In this way, we obtain a
sampled graph G̃Q from the query graph GQ, along with
its adjacency matrix ÃQ. Following Theorem 3.1, we con-
clude that W = N ′(q) with N ′(q) ⊂ N(q) since node
q’s neighbors in G̃Q are a subset of the original graph. At
each iteration, we will perform the counting w.r.t. W and
its neighbor set N(W) for each node pair (t, q), and check
whether |N(W)| ≥ |W | holds. To be efficient, we define a
binary matrix, Φ(l)(ÃQ, AT) ∈ R|VT |×|VQ|, where its ele-
ment at (t, q) corresponds to the result of the node pair (t, q)
between sampled query graph G̃Q and target graph GT .

Based on Theorem 4.1, we need to update the indicator
matrix S(l) recursively, where we compute Φ(l)(ÃQ, AT)
with multiple sampled G̃Q. We next show that computing
Φ is equivalent to performing the GNN-based aggregation
on the related graphs for any given S(l).

Theorem 4.3. Given the sampled query graph and the
target graph, we can construct their adjacency matrices
, ÃQ and AT , and the degree matrix of the sampled
query graph D̃Q = diag(

∑
s((ÃQ):s)). Here, we de-

note the indicator matrix at the l-th hop as S(l). To
check the validity of |N(W)| ≥ |W | for each node pair,
we can check whether each element of Φ(l+1)(ÃQ, AT)
is true or not, where Φ(l+1)(ÃQ, AT) := ZN(W) ≥ 1,
ZN(W) = AGGsum(AT , Z

T
W) and ZW = AGGmax(D̃

−1
Q ·

ÃQ, (S
(l))T).

The proof is provided in Appendix A.5. Recalling Theo-
rem 3.1, we need to check |N(W)| ≥ |W | for each node
pair (t, q), i.e., to check whether each element of Φ is true
for each sampled Ã

(k)
Q . The condition is valid only when Φ

is true for each sample, i.e., G̃(k)
Q . Hence we can check the

criterion by the following element-wise product:

S
(l+1)
subtree =

K⊙
k=0

Φ(l+1)(Ã
(k)
Q , AT), (7)

where
⊙

denotes the element-wise multiplication between
matrices. In practice, Φ(l+1)(Ã

(k)
Q , AT) considers three

cases:
AGGsum(AT ,AGGmax(D

−1
Q AQ, (S(l)))T) ≥ 1 k = 0

AGGsum(AT ,AGGmax(D̃
−1
Q Ã

(k)
Q , (S(l)))T) ≥ 1 k ∈ [1,K)

AGGmin(AQ,AGGmax(AT , (S(l))T) ≥ 1 k = K

(8)
The above three cases allow us to balance the computation
cost and accuracy. Initially, when k = 0, we deliver a full-
size sampling for all nodes to avoid induction bias. When
k = K, we perform the single-node sampling such that no
node is omitted. The cases of k ∈ [1,K − 1] are computed
via downsampling.

We want to highlight the difference between ours and other
learning-based methods regarding GNNs. Here we employ
a GNN model to accomplish the procedure of subtree match-
ing, along with theoretical equivalence. Unlike performing
the matching in our model, prior learning-based models use
GNNs to capture the variance of data distribution for similar-
ity inference since deep learning models learn distributional
information to distinguish samples from different classes.

4.2. Boosting the Matching

It is noted that our D2Match cannot guarantee that all iso-
morphism pairs are selected precisely. In order to boost
the model performance, in the following, we design the
corresponding mechanism to include more information, i.e.,
circle structures and node attributes to attain more precise
isomorphism pairs.

4.2.1. DEALING WITH CIRCLES

Prior methods often ignore circle structures though they are
common in graphs and critical to be handled. In particular,
learning-based methods rely on the expressibility of GNNs,
which have difficulty identifying cyclic structures due to
their WL-tree like aggregation mechanism (Sato, 2020).
The underlying idea of our D2Match is to select certain set
of circles and construct the circle structures as supernodes.
This allows us to formulate the circle matching as a standard
subtree matching problem. Before detailing our strategy,
we first present two desired properties of the selected set of
circles in a graph.

5

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

Atomic: Let c = (v1, ..., vl(c), v1) define a circle and v(c)
be the set of nodes of circle c, a circle is an atomic circle
if it does not contain a smaller circle. That is, there is no
circle c′ such that v(c′) ⊂ v(c). A circle set C is atomic if
every circle in the set is atomic.

Consistency: Each query circle must correspond to one
circle in the target graph if the query graph is a subgraph of
the target graph , i.e., ∀cQ = (v1, ..., vl, v1) ∈ CQ,∃cT =
(ξ(v1), ..., ξ(vl), ξ(v1)) ∈ CT where ξ is the subgraph iso-
morphic mapping. CQ and CT are the selected circle sets of
the query graph and the target graph, respectively.

The atomic property aims to ensure the compactness of cir-
cles, and the consistency attempts to ensure that the relation
between a query and a target set of circles is injective. These
two properties ensure a well-qualified set for matching. In
practice, we can take advantage of chordless cycles (West,
2000), to serve our goal of matching circles. We now state
our theorem below to show that these cycles satisfy the
above consistency and atomic property.

Theorem 4.4. Every chordless cycle is atomic. Every chord-
less cycle cQ in an induced subgraph of the original query
graph GQ must correspond to a chordless cycle cT in the
origin graph GT .

The proof is provided in Appendix, A.6. This theorem sug-
gests that chordless cycles satisfy the above two properties,
making them suitable for representing circles in a graph. To
match circles, we introduce an augmented graph by insert-
ing supernodes that embody these circles. Given a length
L, we can acquire corresponding chordless cycles whose
length is no longer than L for the query and target graphs
as : CT = {c|l(c) ≤ L, c ∈ CCT }, CQ = {c|l(c) ≤ L, c ∈
CCQ} where CCT and CCQ are the chordless cycle set.
By setting vc as the supernode of any chordless circle c, we
connect nodes from the circle c to this supernode, result-
ing in an augmented graph. Note that supernodes can only
match other supernodes to keep the matching of non-circles
untainted. To this end, we transform the circle matching
as the subtree matching problem such that we can employ
the proposed method on the augmented graph directly. Un-
less otherwise stated, we keep all notations the same in the
augmented graph to avoid abusing the notations.

4.2.2. DEALING WITH NODES’ ATTRIBUTES

Apart from circle structures, subgraph matching also in-
volves node attributes. Within the context of subgraph
matching, learning with node attributes alone may be mis-
leading because these cannot catch structural isomorphism.
As a result, we employ the obtained subtree indicator matrix
to supervise the learning process, aiming to filter out pairs
that do not pass the test in the subtree matching. We are
thus motivated to enhance the node attributes by concate-

nating the subtree matching indicator, resulting in the node
representation for the query and target graphs as follows:{

H
(l+1)
T = GNN

(l)
T (AT , concat(H(l)

T ,MLP (S(l))))

H
(l+1)
Q = GNN

(l)
Q (AQ, concat(H(l)

Q ,MLP (S(l))T)))
(9)

Here, we employ an MLP model to reduce the effect of the
difference between the node attributes and the indicator ma-
trix, where the latter behaves as a one-hot encoding feature.
We concatenate each pair of representations and then pass
it to the MLP to obtain their similarity. For the node pair
(i, j), we computer their similarity as

[S(l+1)
gnn]ij = MLP (concat([H(l)

T]i, [H
(l)
Q]j)). (10)

Now, we obtain a generalized indicator matrix that includes
both the structure information and node attribute informa-
tion

S(l+1) = S(l+1)
gnn ⊙ S

(l+1)
subtree (11)

4.3. Implementation Details and Complexity Analysis

We summarize the whole procedure in Algorithm 1 out-
lined in Appendix A.1. We now analyze the time cost
of our D2Match. It is noted that our D2Match consists
of two major parts: the subtree module and the GNN
module. Given L layers and K times of sampling, the
complexity of the subtree module and the GNN mod-
ule is O(L ∗ K ∗ |VT | ∗ |EQ| + L ∗ |VQ| ∗ |ET |) (ac-
cording to the computation of lines 4-9 in Algo. 1) and
O(L ∗ |ET | + L ∗ |EQ| + |VT | ∗ |VQ|) (according to the
computation of lines 10-12 in Algo. 1), respectively. Since
the query graph is often very small, we can treat |VQ| and
|EQ| as constants. Therefore, the overall complexity is
reduced to O(|VT |+ |ET |), attaining the linear time com-
plexity. Please refer to Appendix A.3 for more details about
the implementation. We also provide an empirical runtime
comparison in Appendix A.7.

5. Experiments
Here, we conduct extensive experiments to address the fol-
lowing questions: (1) How does our D2Match perform
comparing to SOTA GNN-based methods? (2) Why does
our D2Match work better than other GNN-based methods?
(3) How does our D2Match perform comparing to heuristic
CO-based methods? (4) What is the effect of our D2Match
on the hyperparameters? (5) What is the convergence be-
havior of our D2Match? Sec. 5.2-Sec. 5.6 answer the
above questions accordingly.

5.1. Experimental Settings

Datasets and Experimental Setup. We implement our ex-
periments on both synthetic and real-world datasets, which
are collected from a large variety of applications. We aim to

6

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

Table 1. Overall performance comparison in terms of accuracy.
Synthetic Proteins Mutag Enzymes Aids IMDB-Binary Cox2 FirstMMDB

SimGNN (Bai et al., 2019) 70.5±2.72 96.2±0.97 98.7±0.60 98.6±1.08 96.5±0.68 85.0±19.58 99.9±0.22 82.40±0.17
NeuroMatch (Rex et al., 2020) 65.7±8.98 94.5±1.73 99.2±0.22 97.9±1.08 97.4±0.96 86.5±6.51 100.0±0.00 80.80±0.39

IsoNet (Roy et al., 2022) 50.0±0.00 60.0±10.02 94.1±2.54 91.0±7.78 61.5±8.51 83.1±3.69 95.8±3.89 /
GMN-embed (Li et al., 2019) 56.6±8.61 93.8±2.41 90.8±6.16 89.4±16.44 78.3±6.92 69.3±15.18 69.7±18.20 69.1±30.29
GraphSim (Bai et al., 2020) 50.0±0.00 82.5±0.31 89.5±2.59 88.2±1.79 75.6±6.53 88.9±2.81 95.5±0.94 86.6±9.71

GOT-Sim (Doan et al., 2021) 53.0±2.74 57.2±8.52 86.8±6.92 68.7±14.15 70.6±3.08 81.3±14.60 94.8±1.04 /

D2Match 74.3±0.22 100.0±0.00 100.0±0.00 99.9±0.22 99.5±0.27 93.3±1.03 100.00±0.00 100.00±0.00

Table 2. Results of experimenting the uniformly distributed data in terms of accuracy.
Synthetic+ Synthetic Proteins∗ Mutag∗ Enzymes∗ Aids∗ IMDB-Binary∗ Cox2∗ FirstMMDB∗

SimGNN 84.1±3.40 70.5±2.72 64.6±3.36 80.3±6.18 76.0±2.12 73.2±6.06 72.0±2.45 88.2±2.05 53.2±6.61
NeuroMatch 74.5±2.57 65.7±8.98 52.8±4.76 90.4±2.88 86.6±3.64 75.6±17.78 60.4±10.11 91.0±5.70 50.0±0.00

D2Match 86.6±1.44 74.3±0.22 83.4±2.97 99.2±0.84 96.0±2.16 95.0±1.41 90.2±1.79 99.8±0.45 86.4±7.44

2 4 6
Layer number

70

80

90

Ac
cu

ra
cy

 (%
)

Synthetic
Proteins *

Enzymes *

(a) # layers vs. accuracy

2 4 6
Sample number

80

90

Ac
cu

ra
cy

 (%
)

Synthetic
Proteins *

Enzymes *

(b) # sampling vs. accuracy

0 150 300 450
Epoch

1.0

1.2

1.4

1.6

Lo
ss

 (n
or

m
al

ize
d)

D2Match
NeuroMatch
SimGNN
GOTSim
GraphSim

(c) The convergence comparison

Figure 2. We conduct sensitivity analysis on our D2Match by varying the number of layers and sampling. In Fig. 2(c), we present the
convergence curve on our D2Match and four strong baselines.

obtain pairs of query and target graphs, along with labels in-
dicating whether a query is isomorphic to the target. We first
generate synthetic data by utilizing ER-random graphs and
WS-random graphs (Rex et al., 2020). We keep edge densi-
ties the same in both positive and negative samples to ensure
consistency in the distribution. This balance avoids potential
biases during learning. For the real-world data, we follow
the setting in (Rex et al., 2020), including Cox2, Enzymes,
Proteins, IMDB-Binary, MUTAG, Aids, and FirstMMDB.
Please refer to Appendix A.9 for additional experiments,
such as Open Graph Benchmark datasets(Hu et al., 2020).

We employ these raw graphs as target graphs and generate
the positive query graphs using random breadth-first search
sampling from the target graphs. The negative query graphs
are randomly generated. Similar to the synthetic data, we
require the edge density in both positive and negative sam-
ples to be as close as possible. We split each dataset into
training and testing at a ratio of 4 : 1 and report the average
classification accuracy under the five-fold cross-validation.

Baselines. For a fair comparison, we select the following
SOTA GNN-based competitors: SimGNN (Bai et al., 2019),

NeuralMatch (Rex et al., 2020), IsoNet (Roy et al., 2022),
GMN-embed (Li et al., 2019), GraphSim (Bai et al., 2020),
and GOT-Sim (Doan et al., 2021). These all incorporate
graph neural networks into subgraph matching. For com-
binatorial optimization metheds, we choose GQL (He &
Singh, 2008), QSI (Shang et al., 2008), CECI (Bhattarai
et al., 2019) and set-intersection method LFTJ (Sun & Luo,
2020). These are traditional methods that can find exact
solutions.

5.2. Main Results

Table 1 reports the overall performance of all compared
models, where each model achieves the best results in all
possible settings up to 500 epochs. The accuracy of GOT-
Sim and IsoNet on FirstMMDB is omitted due to exceeding
time and memory. We observe that

- For the synthetic dataset, the overall performance is much
lower than that in the real-world datasets. A reason is
that the synthetic dataset is more complicated, e.g., with
a higher edge density, than real-world datasets, which
makes the matching more challenging. By examining

7

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

more details, IsoNet, GMN-embed, GraphSim, and GOT-
Sim attempt to employ a node-level assignment matrix to
capture matching between graphs, which underestimates
the importance of global structure. They can only yield
around 50% accuracy. SimGNN and NeuroMatch try to
learn the global representation and attain the accuracy of
70.5% and 65.7%, respectively.

- For the real-world datasets, D2Match attains superior
performance and beats all baselines. Among seven real-
world datasets, D2Match attains 100% accuracy in four
datasets, i.e., Protein, Mutag, Cox2, and FirstMMDB,
while at least 99.5% in Enzymes and Aids, and 93.3% in
IMDB-Binary.

- Overall, D2Match has explicitly modeled subtrees and
consistently attained the best performance among all com-
pared methods. The promising results confirm our theo-
retical analysis.

Table 3. Time comparison with CO-based metheds(seconds).
Proteins Mutag Enzymes Aids Cox2

GQL 3.82 2.05 2.98 6.94 3.34
QSI 10.37 0.16 4.63 19.67 3.22

CECI 19.74 0.27 13.74 19.15 6.19
LFTJ 9.93 0.21 4.61 20.46 5.69

D2Match 1.12 1.04 1.18 1.88 1.68

Table 4. Efficiency comparison with CO-based metheds.
Proteins Mutag Enzymes Aids Cox2

GQL 96.2 100.0 100.0 100.0 100.0
QSI 96.8 100.0 99.8 94.8 100.0

CECI 91.2 100.0 99.4 91.0 100.0
LFTJ 87.0 100.0 89.8 95.8 100.0

D2Match 100.0 100.0 99.9 99.5 100.0

5.3. Benefit of Our Core Design: The Subtree Matching

The following experiments verify how GNNs deployed in
our D2Match function differently in existing GNN-based
subgraph matching methods. That is, our D2Match utilizes
GNNs to explicitly model subtrees while existing meth-
ods optimize the graph representations via memorizing the
data distribution divergence. We additionally construct new
datasets and denote them with ∗. The new datasets exclude
the data distribution effect by the following steps: following
the same way to generate the positive samples as in Sec. 5.1,
continuing to perform edge dropping and insertion on the
clipped graphs together to obtain the final negative samples.
This strategy aims to make sure the generated samples fol-
low almost the same distribution in terms of edges. For the
synthetic dataset, given that the positive and negative data in
the original dataset are generated randomly and following
the same distribution, we construct another synthetic dataset
without following the same density distribution for better

comparison. Since SimGNN and NeuoMatch are the best-
performing GNN-based methods in Table 1, we compare
our D2Match with them.

Results in Table 2 show that D2Match outperforms
SimGNN and NeuoMatch by a much larger margin, achiev-
ing 2.5%− 33.2% improvement. This phenomenon aligns
with our hypothesis that the gain of other learning-based
methods is distribution-dependent, which results in a signifi-
cant performance drop on evenly-distributed data. Moreover,
the overall performance on Synthetic+ is much better than
that on Synthetic. This implies that data following non-even
distribution will make the matching much easier. This is in
line with the results in Table 1, i.e., the GNN-based meth-
ods tend to capture the distribution divergence rather than
performing matching.

5.4. Comparison with exact combinatorial solutions

Before detailing the comparison between D2Match and CO-
based methods, we would like to emphasize that our method
and CO-based heuristics are driven by different purposes
and are therefore suitable for different scenarios. Heuristic
algorithms can find exact solutions, but the worst-case time
complexity is exponential, and they are generally suitable
for scenarios with high matching accuracy requirements,
such as graph databases. Our method is suitable for efficient
machine learning tasks with time constraints. To verify
the advantages of our method, we compared it from three
perspectives:

Solution time: Since heuristic algorithms can find exact
solutions, the metric of accuracy is no longer distinguish-
able. Therefore, we mainly compared our algorithm and
heuristic algorithms in terms of the average running time
on the original dataset. We report the average running time
of our method and heuristic algorithms on the test set, as
shown in Table 3. The results demonstrate that our method
not only has a consistently stable running time, but it is
also significantly faster than heuristic algorithms on most
datasets, often by an order of magnitude.

Solution efficiency: To compare the efficiency of different
solutions, we compared the success rates of heuristic solvers
to the accuracy of our method, shown in Table 4. The
success rate is defined as the proportion of samples that an
algorithm completes within 10 seconds per sample on the
original dataset. Considering the constraint of execution
time, our method’s accuracy and heuristic methods’ success
rate are comparable to those based on heuristic algorithms
for most real datasets.

Scalability: To validate the scalability of our model, we
conducted experiments using larger datasets. Specifically,
we used the ”firstmm” dataset consisting of 50,000 nodes,
as well as the ”DD” dataset consisting of 300,000 nodes

8

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

and one million edges. We compared our method with
these datasets in terms of runtime and success rate. As
shown in Table 5, our method demonstrates better efficiency
than heuristic algorithms on large-scale graphs. On the DD
dataset, our method achieves an accuracy rate of nearly
100%. On the firstmm dataset, our method has a relatively
low accuracy rate, but it is comparable to some heuristic al-
gorithms. These results suggest that our method is scalable.

Table 5. Results of experimenting the scalability.

Time(seconds) Success rate(%)

DD Firstmm DD Firstmm

GQL 58.49 149.15 100.0 60.0
QSI 80.18 127.21 94.0 60.4

CECI 128.93 163.73 48.4 69.6
LFTJ 80.36 89.85 92.8 77.2

D2Match 46.61 32.62 99.2 60.0

Furthermore, we included the success rates of our heuris-
tic methods on synthetic datasets with varying numbers of
nodes. This demonstrates the scalability of our method on
synthetic data, as shown in Table 6. In general, the success
rate of heuristic methods decreases rapidly as the scale in-
creases. However, our method has consistently maintained
an accuracy of around 70%.

Table 6. Results of synthetic datasets.

Nodes 20 40 60 80 100 200

GQL 75.0 81.8 78.0 63.2 56.8 32.0
QSI 70.4 61.6 19.4 12.2 11.2 2.6

CECI 66.0 51.2 13.8 12.4 15.0 16.8
LFTJ 60.2 71.4 25.6 15.8 12.0 5.2

D2Match 70.0 70.2 74.0 63.4 71.0 67.0

5.5. Sensitivity Analysis

Effect of L, the depth of a subtree. We test the effect of
the depth of a subtree, i.e., the number of the hidden layers,
and change it from 1 to 7. Results in Fig. 2(a) show that
D2Match reaches its best performance when the number of
layers is 6. D2Match only needs a few layers to achieve
decent performance, suggesting it can scale up to large size
graphs.

Effect of K, the times of samples. Intuitively, sampling
more data to train the model will yield better performance.
We vary K from 1 to 7 and show the results in Fig. 2(b).
Surprisingly, the results show that by sampling five times,
we can obtain the best performance on all datasets. This
demonstrates that D2Match can attain decent performance
at a low computation cost.

We also ablate D2Match with circles and node attributes

at different settings, and all experiments show results con-
sistent with our theoretical analysis. Please refer to Ap-
pendix A.5 for more details.

5.6. Convergence Analysis

Figure 2(c) provides the training loss of D2Match and four
baselines on Synthetic, where we only select baselines with
the same loss functions as ours, such as MSE or CE, for a
fair comparison. The results show that (1) D2Match con-
verges the fastest due to its power of explicitly modeling the
subtrees. (2) NeuroMatch and SimGNN perform matching
through learning graph-level representations, which need
more epochs to converge for capturing the local structure.
(3) GOTSim and GraphSim attain the lowest loss in the be-
ginning but show the weakest convergence ability compared
to others because they can only capture the node-level repre-
sentations and fail to learn meaningful subgraph matching.
Consequently, they yield the worst performance as reported
in Table 1.

6. Conclusion and Future work
In this paper, we propose D2Match for subgraph match-
ing, which degenerates the subgraph matching problem into
perfect matching in a bipartite graph and proves that the
matching procedure can be implemented via the built-in
tree-structure aggregation on GNNs, which yields linear
time complexity. We also incorporate circle structures and
node attributes to boost the matching performance. Finally,
we conduct extensive experiments to show that D2Match
achieves significant improvement over competitive base-
lines and indeed exploits subtrees for the matching, which is
different from existing GNN-based methods for memorizing
the data distribution divergence.

D2Match can be further explored in several promising di-
rections. First, we can investigate more degeneracy mecha-
nisms to tackle more complicated graphs. Second, we can
exploit other information, e.g., positional encoding, to boost
the model performance. Third, we can extend our D2Match
to more real-world applications, e.g., document matching,
to investigate its capacity.

7. Acknowledgement
The work was fully supported by the IDEA Information
and Super Computing Centre (ISCC) and was partially sup-
ported by the National Nature Science Foundation of China
(No. 62201576), the National Key Research and Devel-
opment Program of China (No. 2020YFB1708200), the
”Graph Neural Network Project” of Ping An Technology
(Shenzhen) Co., Ltd. and AMiner.Shenzhen SciBrain fund.

9

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

References
Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., and Wang, W.

Simgnn: A neural network approach to fast graph simi-
larity computation. WSDM ’19, pp. 384–392, New York,
NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450359405.

Bai, Y., Ding, H., Gu, K., Sun, Y., and Wang, W. Learning-
based efficient graph similarity computation via multi-
scale convolutional set matching. Proceedings of the
AAAI Conference on Artificial Intelligence, 34:3219–
3226, 04 2020.

Bhattarai, B., Liu, H., and Huang, H. H. Ceci: Com-
pact embedding cluster index for scalable subgraph
matching. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19,
pp. 1447–1462, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450356435.
doi: 10.1145/3299869.3300086. URL https://doi.
org/10.1145/3299869.3300086.

Caelli, T. and Kosinov, S. An eigenspace projection cluster-
ing method for inexact graph matching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26
(4):515–519, 2004.

Chen, L., Gan, Z., Cheng, Y., Li, L., Carin, L., and Liu,
J. Graph optimal transport for cross-domain alignment.
2020.

Cordella, L., Foggia, P., Sansone, C., and Vento, M. A
(sub)graph isomorphism algorithm for matching large
graphs. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 26(10):1367–1372, 2004.

Doan, K. D., Manchanda, S., Mahapatra, S., and Reddy,
C. K. Interpretable graph similarity computation via
differentiable optimal alignment of node embeddings.
In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’21, pp. 665–674, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN
9781450380379.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. CoRR,
abs/2003.00982, 2020. URL https://arxiv.org/
abs/2003.00982.

Gibbons, A. Algorithmic graph theory. Cambridge univer-
sity press, 1985.

Hall, P. On representatives of subsets. Journal of The
London Mathematical Society-second Series, pp. 26–30,
1935.

Hamilton, W. L., Ying, R., and Leskovec, J. Induc-
tive representation learning on large graphs. CoRR,
abs/1706.02216, 2017a. URL http://arxiv.org/
abs/1706.02216.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017b.

Han, W.-S., Lee, J., and Lee, J.-H. Turboiso: towards
ultrafast and robust subgraph isomorphism search in large
graph databases. In SIGMOD ’13, 2013.

He, H. and Singh, A. K. Graphs-at-a-time: query language
and access methods for graph databases. In Proceedings
of the 2008 ACM SIGMOD international conference on
Management of data, pp. 405–418, 2008.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Khan, A., Li, N., Yan, X., Guan, Z., Chakraborty, S., and
Tao, S. Neighborhood based fast graph search in large net-
works. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD
’11, pp. 901–912, New York, NY, USA, 2011. Associa-
tion for Computing Machinery. ISBN 9781450306614.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kosinov, S. and Caelli, T. Inexact multisubgraph matching
using graph eigenspace and clustering models. pp. 133–
142, 08 2002. ISBN 978-3-540-44011-6.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
matching networks for learning the similarity of graph
structured objects. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 3835–3845. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/li19d.html.

McCreesh, C., Prosser, P., Solnon, C., and Trimble, J. When
subgraph isomorphism is really hard, and why this mat-
ters for graph databases. J. Artif. Int. Res., 61(1):723–759,
jan 2018. ISSN 1076-9757.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N.,
Chklovskii, D., and Alon, U. Network motifs: Simple
building blocks of complex networks. Science (New York,
N.Y.), 298:824–7, 11 2002.

Mongiovı̀, M., Natale, R. D., Giugno, R., Pulvirenti, A.,
Ferro, A., and Sharan, R. Sigma: a set-cover-based inex-
act graph matching algorithm. Journal of bioinformatics
and computational biology, 8 2:199–218, 2010.

10

https://doi.org/10.1145/3299869.3300086
https://doi.org/10.1145/3299869.3300086
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://proceedings.mlr.press/v97/li19d.html
https://proceedings.mlr.press/v97/li19d.html

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

Peng, H., Li, J., Gong, Q., Ning, Y., Wang, S., and He, L.
Motif-matching based subgraph-level attentional convo-
lutional network for graph classification. In AAAI, 2020.

Priestley, H. A. and Ward, M. P. A multipurpose back-
tracking algorithm. J. Symb. Comput., 18(1):1–40,
1994. URL http://dblp.uni-trier.de/db/
journals/jsc/jsc18.html#PriestleyW94.

Rex, Ying, Lou, Z., You, J., Wen, C., Canedo, A., and
Leskovec, J. Neural subgraph matching, 2020.

Roy, I., Velugoti, V. S. B. R., Chakrabarti, S., and De, A. In-
terpretable neural subgraph matching for graph retrieval.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 36(7):8115–8123, Jun. 2022.

Sato, R. A survey on the expressive power of graph neural
networks. arXiv preprint arXiv:2003.04078, 2020.

Shang, H., Zhang, Y., Lin, X., and Yu, J. X. Taming verifica-
tion hardness: An efficient algorithm for testing subgraph
isomorphism. 1(1):364–375, aug 2008. ISSN 2150-8097.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12(9), 2011.

Sun, S. and Luo, Q. In-memory subgraph match-
ing: An in-depth study. In Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’20, pp. 1083–1098, New
York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450367356. doi: 10.1145/
3318464.3380581. URL https://doi.org/10.
1145/3318464.3380581.

Ullmann, J. R. An algorithm for subgraph isomorphism. J.
ACM, 23(1):31–42, jan 1976. ISSN 0004-5411.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., and Bo-
man, M. Learning combinatorial optimization on graphs:
A survey with applications to networking. IEEE Access,
8:120388–120416, 2020.

West, D. B. Introduction to Graph Theory. Prentice Hall, 2
edition, September 2000. ISBN 0130144002.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? CoRR, abs/1810.00826, 2018.
URL http://arxiv.org/abs/1810.00826.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICML, 2019.

Yan, X., Yu, P. S., and Han, J. Substructure similarity
search in graph databases. In Proceedings of the 2005
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’05, pp. 766–777, New York, NY,
USA, 2005. Association for Computing Machinery. ISBN
1595930604.

Zhou, F. and Torre, F. Canonical time warping for align-
ment of human behavior. Advances in neural information
processing systems, 22, 2009.

Zitnik, M. and Leskovec, J. Predicting multicellular
function through multi-layer tissue networks. CoRR,
abs/1707.04638, 2017. URL http://arxiv.org/
abs/1707.04638.

11

http://dblp.uni-trier.de/db/journals/jsc/jsc18.html#PriestleyW94
http://dblp.uni-trier.de/db/journals/jsc/jsc18.html#PriestleyW94
https://doi.org/10.1145/3318464.3380581
https://doi.org/10.1145/3318464.3380581
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1707.04638
http://arxiv.org/abs/1707.04638

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

A. Appendix
A.1. The Pseudo-Code of D2Match

The pseudo-code of D2Match is outlined as follows:

Algorithm 1 The D2Match algorithm
Require: Query graph GQ(VQ, EQ) with node attributes XQ, target graph GT (VT , ET) with node attributes XT , iteration number: L,

sample number: K.
Ensure: Is GQ isomorphic to GT
1: GQ(VQ, EQ)← ChordlessCycleAugment(GQ);

GT (VT , ET)← ChordlessCycleAugment(GT);
2: H

(0)
Q = XQ ∈ R|VQ|×D; H(0)

T = XT ∈ R|VT |×D;
3: S(0) = InitialAssignMatrix(XT , XQ) ∈ R|VT |×|VQ|

4: for l = 0, 1..., L− 1 do
5: for k = 0, 1, ...,K do
6: Ã

(k)
Q = DropEdge(AQ) ∈ R|VQ|×|VQ|;

7: Calculate Φ(l+1)(Ã
(k)
Q , AT) according to Eq. (8)

8: end for
9: S

(l+1)
subtree =

⊙K
k=0 Φ

(l+1)(Ã
(k)
Q , AT) ∈ R|VT |×|VQ|;

10: H
(l+1)
T = GNN

(l)
T (AT , concat[H

(l)
T ,MLP (S(l))]) ∈ R|VT |×d;

11: H
(l+1)
Q = GNN

(l)
Q (AQ, concat[H

(l)
Q ,MLP ((S(l))T)]) ∈ R|VQ|×d;

12: Compute S
(l+1)
gnn ∈ R|VT |×|VQ| according to Eq.10

13: S(l+1) = S
(l+1)
gnn ⊙ S

(l+1)
subtree;

14: end for
15: result = CheckAssign(S(L))

A.2. Main Results

Theorem A.1. Given a target graph GT (VT , ET) and a query graph GQ(VQ, EQ), if GQ ⊂ GT , and the subtree
generation function Ψ as defined in Eq. (3) meets the following condition:

∀ graph pair (GS , G), if GS ⊂ G, then Ψ(GS) ⊂ Ψ(G), (12)

then the subgraph isomorphic mapping ξ :VQ → VT ensures the l-hop subtrees of the subgraph is isomorphic to the subtrees
of the corresponding subgraph:

∀l ≥ 1, q ∈ VQ, t = ξ(q) ∈ VT ⇒ T (l)
q ⊂ T

(l)
t , (13)

Proof. According to the definition of subgraph matching (McCreesh et al., 2018), when GQ is a subgraph of GT , there
must exists an injective function ξ : VQ → VT , such that ∀qi, qj ∈ VQ, (qi, qj) ∈ EQ ⇒ (ξ(qi), ξ(qj)) ∈ ET . For any
subgraph in the query graph, e.g., S(VS , ES) ∈ GQ, we always have a subgraph in the original graph GT , denoted as
GS(VG, EG), that corresponds to the set of the query node as VG = ξ(VS). This tells us that S ⊂ GS . According to this,
consider any given node from VQ: q ∈ VQ, S(l)

q is a subgraph of GQ and its image G
S

(l)
q

in GT , i.e. S(l)
q ⊂ G

S
(l)
q

. By

definition, the node in S
(l)
q or G

S
(l)
q

is at most l-hop from node q or t = ξ(q), we know that G
S

(l)
q

must be a subgraph of S(l)
t ,

i.e.,G
S

(l)
q

⊂ S
(l)
t . Put all together, we have S

(l)
q ⊂ G

S
(l)
q

⊂ S
(l)
t . Based on the listed constrain, we then have T

(l)
q ⊂ T

(l)
t .

Theorem A.2. Given a node q in the query graph and a node t in the target graph, the following three conditions are
equivalent:

1) T
(l+1)
q ⊂ T

(l+1)
t .

2) There exists an injective function on the neighborhood of these nodes as f : N(q) → N(t), s.t. ∀qi ∈ N(q), ti =

f(qi), T
(l)
qi ⊂ T

(l)
ti .

12

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

3) There exists a perfect matching on the bipartite graph B(l)(N(t), N(q), E), where ∀tj ∈ N(t), qi ∈ N(q), (tj , qi) ∈ E

if and only if T (l)
qi ⊂ T

(l)
tj .

We prove this theorem by introducing the following two theorem. Theorem A.3 shows that condition 1) is equivalent to
condition 2), i.e. the WL subtree isomorphism test can be accomplished in a recursive manner then prove Theorem. A.4 that
the condition 2) equals to condition 3) which means every iteration in the recursive process equals to examine the existence
of a perfect matching, respectively.

Theorem A.3. Given a node q in the query graph and a node t in the target graph, the following two conditions are equal:
1) T (l+1)

q ⊂ T
(l+1)
t , where l is an integer and l ≥ 1.

2) There exists an injective function on the neighboring set of these nodes as f : N(q) → N(t), s.t.∀qi ∈ N(q), ti =

f(qi), T
(l)
qi ⊂ T

(l)
ti .

Proof. We assume fq is a subtree isomorphism injective function in the condition 1), that ∀ node u, v ∈ T
(l+1)
q , (u, v) is an

edge of T (l+1)
q ⇒ ((fq(u), fq(v)) is an edge of T (l+1)

t . Similarly We also assume fqi is subtree isomorphism injective in
the condition 2).
On the one hand, if condition 1) is true then fq exists. Using the property of WL tree, we have ∀qi ∈ N(q), T (l)

qi ⊂ T
(l+1)
q ,

which means the l-order WL tree of any node qi in q’s neighbourhood belongs to the l + 1-order WL tree originate from the
node q. This suggests that fq maps T (l)

qi into a tree T (l)
f(qi)

= T
(l)
ti , which is a subtree of T (l+1)

t ,. Then the condition 2) is true.

On the other hand, if condition 2) holds, then we define the mapping as fq(v) =

{
fqi(v), v ∈ T

(l)
qi

q, v = q
. Here, the function

fq(v) is a well-defined injective function because all T (l)
qi has no intersection. This implies this is a subtree isomorphic

mapping, so 1) holds.

The above theorem provides a recursive solution to the WL subtree isomorphism algorithm. Intuitively, we can maintain an

indicator matrix S(l) ∈ R|VT |×|VQ|, where S
(l)
tq =

{
1, T

(l)
q ⊂ T

(l)
t

0, else
. This matrix captures the relation between all pairs

of nodes and thus can be used for recursion update. Next, we will show that the update process can be implemented as a
perfect matching problem, i.e., what makes condition 2) true is equivalent to finding a perfect matching on a bipartite graph,
as shown in the following theorem:

Theorem A.4. Assume the neighboring set of node t and q as X = N(t) and Y = N(q), respectively. Accordingly, we form
a bipartite graph as B(l)

t,q (X,Y,E). Here, we define the edges as E = {(ti, qj) : T
(l)
qi ⊂ T

(l)
tj }, where ti and qj represent

the ith and jth neighbour of node t and q, respectively. Under this setting, the injective function f from the condition 2) in
Theorem. A.3 induces a perfect matching.

Proof. The injective function f of condition 2) in Theorem A.3 maps every node qi in N(q) to ti = f(qi) ∈ N(t) and
T

(l)
qi ⊂ T

(l)
ti holds. While T

(l)
qi ⊂ T

(l)
ti means (qi, ti) ∈ E, the injective f naturally corresponds every node qi to an edge

(qi, tj). Since f is an injective function, qi1 ̸= qi2 ⇒ ti1 ̸= ti2 , indicating that all these edges (qi, ti), i = 1, ..., |N(q)| are
different, which actually forms a perfect matching.

Theorem A.5. Given the sampled query graph and the target graph, we can construct their adjacency matrices , ÃQ and
AT , and the degree matrix of the sampled query graph D̃Q = diag(

∑
s((ÃQ):s)). Here, we denote the indicator matrix at

the l-th hop as S(l). To check the validity of |N(W)| ≥ |W |, we can check whether each element of Φ is true or not, where
Φ := ZN(W) ≥ 1, ZN(W) = AGGsum(AT , Z

T
W) and ZW = AGGmax(D̃

−1
Q · ÃQ, (S

(l))T).

Proof. For each node pair t, q and their corresponding W = N ′(q) in the sampled query graph, We first transform the

13

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

neighboring set of W , i.e., N(W), as following:

N(W) = {ti ∈ N(t)|∃qj ∈ W = N ′(q), s.t.T (l)
qj

⊂ T
(l)
ti }

= {ti ∈ N(t)|∃qj ∈ W = N ′(q), s.t.Sti,qj = 1}

= {ti ∈ N(t)| max
q′∈N ′(q)

S
(l)
ti,q′ = 1}

= N(t) ∩ {ti| max
q′∈N ′(q)

S
(l)
ti,q′ = 1}

= N(t) ∩M(q)

(14)

Let M(q) = {ti|maxq′∈N ′(q) S
(l)
ti,q′ = 1}, we can compute M(q) via a standard maximizing aggregation process on the

sampled adjacency matrix ÃQ, in which treats the indicator matrix (S(l))T ∈ R|VQ|×|VT | as node attributes. This process
will output the representation of node q as follows,

zq,: = max{(S(l))Tj,:,∀j ∈ N ′(q)}, (15)

The obtained vector zq,: is to represent the neighbours of node q, i.e., M(q), where zqi =

{
1, i ∈ M(q)
0, else

. We rewrite this

into a matrix format as
ZW = AGGmax(ÃQ, (S

(l))T) (16)

where ZW ∈ R|VQ|×|VT | and its q-th row vector is zq:.

Recall that we demand N(W) = N(t) ∩M(q). After acquiring M(q), we can compute the |N(W)| as follows,{
|M(q)| =

∑
i zq,i

|N(W)| =
∑

i zq,i, i ∈ N(t)
(17)

In essence, this is to implement a summation aggregation on the target graph using the node representation ZW , i.e.,

ZN(W) = AGGsum(AT , Z
T
W) (18)

where ZN(W) ∈ R|VT |×|VQ| is an integer matrix and its element (t, q) shows the score of |N(W)| between node t and
q. This transformation converts the counting operation as aggregation such that we can check the aggregated values
to determine whether there is a perfect matching. Given a node pair (t, q), we have |N(W)| = [ZN(W)]tq and |W | =
|N ′(q)| =

∑
s[ÃQ]qs. Therefore, the question becomes to check whether [ZN(W)]tq ≥

∑
s[ÃQ]qs holds. We can then

derive the perfect matching as follows:

[ZN(W)]tq ≥
∑
s

[ÃQ]qs

⇔[ZN(W)]tq/
∑
s

[ÃQ]qs ≥ 1

⇔[AGGsum(AT , Z
T
W)]tq/d̃q ≥ 1

⇔[AGGsum(AT , Z
T
W) · D̃−1

Q]tq ≥ 1

⇔[AGGsum(AT , Z
T
W · D̃−1

Q)]tq ≥ 1

(19)

where d̃q is the degree of node q in the sampled graph. The degree matrix of the sample graph is defined as D̃Q =

diag[
∑

s((ÃQ):s)]. Now recall that Φ is the matrix whose (t, q) element is the comparison result of |N(W)| and |W | of
(t, q), according to eq 19, we have:

Φ(l+1)(ÃQ, AT) = AGGsum(AT , Z
T
W · D̃−1

Q) ≥ 1, (20)

14

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

where
ZT
W · D̃−1

Q = [AGGmax(ÃQ, (S
(l)))]T · D̃−1

Q

= [D̃−1
Q · AGGmax(ÃQ, (S

(l)))]T

= [AGGmax(D̃
−1
Q · ÃQ, (S

(l)))]T

(21)

Theorem A.6. Every chordless cycle is atomic. Every chordless cycle CQ in an induced subgraph GQ must correspond to a
chordless cycle CT in the origin graph GT .

Proof. Chordless cycle does not have any chord, thus there is no smaller cycle in the chordless cycle, which means chordless
cycle is atomic. Assuming GQ is a subgraph of GT , every node of CQ must correspond to a node in GT , and these nodes
form a circle CT in GT . Since GQ is an induced subgraph of GT , if CT has a chord, then CQ must have a chord, which
contradicts the condition that CQ is a chordless graph.

A.3. Implementation Details

In this section we present the implementation details of our D2Match1. At the beginning of subtree isomorphism test, the
model needs an initial indicator matrix S

(0)
subtree as the input of the first iteration. According to the definition of the indicator

matrix, S(0)
subtree shows the isomorphism relation between the subtree of 0-hop neighbors, which are the nodes themselves

in this case. Since all nodes will be isomorphic to each other if not considering the node attributes, the indicator matrix
S
(0)
subtree is actually a similarity matrix w.r.t node attributes. To get a similarity matrix of attributes, we can either directly

calculate the similarity between nodes or employ neural networks on these attributes to learn the matrix. In our model, we
implement both methods to initialize the matrix, called the initialization of the raw and the learnable:

Raw : S
(0)
subtree = CosineSimilarity(XT , XQ) = Norm(XT) ·Norm(XT

Q)

Learnable : S
(0)
subtree = MLP(XT) ·MLP(XQ)

T
(22)

where the raw initialization is to calculate the cosine similarity between the nodes’ attributes, and the learnable initialization
employs a MLP to generate hidden representations of nodes and compute their dot similarities.

In practice, we find the raw initialization performs better. This is because the node attributes of datasets are usually binary
categorical vectors, which induces clear identification information of the nodes and can be easily captured by cosine
similarity.

Our implementation of the GNN block in the model is slightly different from the description. Specifically, we use compute
the similarity of each pair of nodes as:

[S(l+1)
gnn]ij = MLP (concat([H

(l)
T]i, [H

(l)
Q]j)). (23)

The main difference is that we do not output a |VT | × |VQ| matrix, but a |VT | × |VQ| × |D(l+1)| tensor, where D(l+1)

denotes the hidden dim of l + 1 layer. The intuition is that a tensor that represents the node pairs’ similarity with vectors
can retain more information than a similarity matrix with scalar elements. In this setting, the final indicator matrix S(l+1)

can not be generated as S(l+1) = S
(l+1)
gnn ⊙ S

(l+1)
subtree, because S

(l+1)
subtree ∈ R|VT |×|VQ| but S(l+1)

gnn ∈ R|VT |×|VQ|×|D(l+1)|.
Thus we broadcast S(l+1)

subtree to S̃
(l+1)
subtree where ∀k ∈ [0, D(l+1)), [S̃

(l+1)
subtree]ijk = [S

(l+1)
subtree]ij and the final indicator matrix

S(l+1) = S
(l+1)
gnn ⊙ S̃

(l+1)
subtree

At the end of our models, we get the subtree indicator matrix S
(L)
subtree and the GNN indicator matrix S

(L)
gnn. The model will

output the final score from S
(L)
subtree and S

(L)
gnn, respectively. For the subtree module, we check whether the indicator matrix

is feasible to induce the subgraph isomorphism. Note that for a node i in the target graph and a node j in the query graph, i
is possible to match j unless [S(L)

subtree]ij = 1. So we check whether the subtree indicator matrix meets the following two
conditions:

1The python implementation of D2Match will be available at https://github.com/XuanzhouLiu/D2Match-ICML23

15

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

1) Every node in a query graph should match at least one node in the target graph:

∀j,max
i

(S
(L)
subtree)ij = 1

⇔
∑
j

max
i

(S
(L)
subtree)ij = |VQ|

⇔
∑
j

max
i

(S
(L)
subtree)ij/|VQ| = 1

(24)

2) The number of nodes in the target graph that match at least one node in the query graph is more than the number of nodes
of query graph: ∑

i

max
j

(S
(L)
subtree)ij ≥ |VQ| ⇔

∑
i

max
j

(S
(L)
subtree)ij/|VQ| ≥ 1 (25)

To make the subtree model differentiable, we use a sigmoid to replace all the logical judgment in the model:

σ(x) = Sigmoid(ax+ b) (26)

where a, b are learnable parameters; σ is the sigmoid function. The result of subtree module can be fomulated as:

rsubtree = σ(
∑
i

max
j

(S
(L)
subtree)ij/|VQ|) · σ(

∑
j

max
i

(S
(L)
subtree)ij/|VQ|) (27)

For the GNN module, we employ the neural tensor network(NTN) (Bai et al., 2019) and generate a score according to the
output of NTN and the aggregated indicator tensor:

rgnn = σ(MLP (concat[NTN(H
(L)
T , H

(L)
Q),

∑
i

∑
j

S
(L)
subtree])) (28)

Where H
(L)
T , H

(L)
Q are the node representations generated by the GNNs. NTN is the NTN layer.

The final prediction is:
r = rgnn · rsubtree (29)

Although the model’s prediction is obtained by integrating the two modules, we can not directly train the model through the
final score r because it will bring difficulties in the training process. When fitting a negative sample, the resulting subtree
module tends to be zero, forcing the overall gradient to be zero which hinders the training of the GNN module.

Therefore, we train the two blocks with different objectives. For the subtree module which aims to learn the isomorphism
relation, the result should be either 0 for not matching or 1 for matching. So we employ MAE loss to enforce the results to
be either 0 or 1. For the GNN module, we use MSE to encourage the output of GNNs to capture the similarity. Suppose the
ground-truth label is y, and our loss function is

L = MSE(rgnn, y) +MAE(rsubtree, y) (30)

Both our model and all baselines use the Adam as optimizer and set the learning rate to 3e− 4. To ensure fairness, we set all
models with adjustable number of layers to 5 layers, and set the hidden dimension to 10 to avoid overfitting.

A.4. D2Match at Work

Recall that D2Match learns an indicator matrix to capture pairwise similarities. It plays the role of permutation matrix in
matching, allowing us to pinpoint the matched subgraph. This is particularly useful since the exact position is required for
some downstream applications such as web search. In comparison, other learning-based methods are unable to pinpoint
local correspondences, but only establish the existence of a matching. We provide a visualization of the matched subgraph
to better understand the problem difficulty and the effectiveness of our method, as shown in the Fig. 3.

16

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

target graph
query graph

(a)

target graph
query graph

(b)

target graph
query graph

(c)

Figure 3. The detected subgraphs by D2Match

Table 7. The ablation study of D2Match module
Synthetic Synthetic+ Proteins Proteins∗ IMDB-Binary IMDB-Binary∗ FirstMMDB FirstMMDB∗

D2Match (gnn only) 61.1±13.31 70.2±18.58 95.2±1.04 77.2±8.11 50.0±0.00 64.4±19.73 69.7±26.98 67.8±24.38

D2Match (subtree only) 70.0±2.09 74.8±2.56 100.0±0.00 82.0±2.92 92.9±1.04 82.8±4.02 100.0±0.0 72.0±6.20

D2Match 72.7±4.45 86.6±1.44 100.0±0.00 83.4±2.97 93.3±1.03 90.2±1.79 100.0±0.0 86.4±7.44

A.5. Ablation Studies

We perform ablation studies for the GNN module, subtree module, and chordless cycle.

The GNN module in our analysis will capture the distributional features on the graph, such as the edge density difference
between classes. The GNN module is thus essential for datasets with multiple distributions, also called biased data. We run
experiments on both the biased and unbiased synthetic datasets to show the performance of our method and its variation that
without the GNN module, as shown in Table 7. D2Match outperforms D2Match without the GNN module as our theory
predicts. But our GNN module shares the same weaknesses as the other GNN models when dealing with evenly distributed
data. We observe that the performance of the GNN module drops significantly on hard datasets similar to other GNN models.
The subtree module can significantly improve the performance because it harnesses the property of subgraph-matched data,
making it robust to data’s distribution. Our subtree module outperformed the GNN module on all datasets in our ablation
study, demonstrating its effectiveness.

We also perform the ablation study on the Synthetic dataset to test the effect of chordless cycles,as shown in Table 8. Results
show the chordless cycles boost the performance with limited extra time consumption.

Table 8. The ablation study of cc

Synthetic RunTime

D2Match 74.3±1.60 19.7s/epoch
D2Match (w/o cc) 72.7±4.45 10.3s/epoch

Table 9. Random seed comparison

proteins mutag

Seed(0) 100.0±0.00 100.0±0.00
Seed(1) 100.0±0.00 100.0±0.00
Seed(2) 100.0±0.00 100.0±0.00

Fixed 100.0±0.00 100.0±0.00

Table 10. Runtime analysis
Training(s/epoch) Inference(s/epoch)

SimGNN 1.732 0.385
NeuroMatch 2.234 0.311
GMN-embed 1.850 0.290

GraphSim 3.223 0.433
IsoNet 10.553 1.939

D2Match-Subtree(S=2) 2.940 0.456
D2Match-Subtree(S=3) 3.889 0.581
D2Match-Subtree(S=4) 4.410 0.673
D2Match-Subtree(S=5) 5.143 0.750

D2Match-GNN 2.678 0.495
D2Match 8.163 1.114

17

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

A.6. Random Effect

Although our experiments do not rely on random seeds, a random split may affect the results. To test this, we set up several
random seeds and permute the raw data order before getting the five-fold. We experiment on the Protein and Mutag datasets
with trivial random seed 0,1,2 and obtain nearly identical performance. See Table 9.

While other methods based on GNNs tend to capture the divergence of distributions in the training set and hence are easily
affected by randomness, our subtree module performs the matching explicitly by the degeneracy property, as opposed to
modeling the data distribution in others, hence ours is insensitive to data partitioning.

Table 11. The hard dataset details
Synthetic+ Proteins∗ Mutag∗ Enzymes∗ Aids∗ IMDB-Binary∗ Cox2∗ FirstMMDB∗

Average nodes (target) 40.0 38.8 18.2 31.5 14.7 19.0 41.3 1376.7
Average nodes (query) 15.0 11.4 9.1 15.4 4.4 14.2 15.0 15.0

Average edges (target) 259.5 146.7 40.2 120.6 30.0 177.1 87.0 6141.6
Average edges (query) 67.3 35.5 17.6 52.6 7.1 102.6 29.9 45.6

Table 12. The dataset details
Synthetic Proteins Mutag Enzymes Aids IMDB-Binary Cox2 FirstMMDB

Average nodes (target) 40.0 39.1 17.9 33.0 15.7 19.8 41.3 1376.5
Average nodes (query) 15.0 14.4 9.0 14.8 7.9 14.6 14.4 15.0

Average edges (target) 241.7 146.5 39.5 125.6 32.4 193.1 87.0 6144.3
Average edges (query) 50.6 68.9 25.1 75.3 17.1 141.0 42.8 68.1

A.7. Runtime Analysis

We add the runtime analysis experiment as follows. We compare our method with baselines on the synthetic dataset and
record the training and inference time (second) per epoch. The results are shown in Table 10.

Our model is slower than some strong baselines like SimGNN and NeuroMatch in the experiment because they deal with
the graph-level representations. Our model is faster than IsoNet, which performs edge-level matching.

We conduct an additional ablation study to explore the time consumption of each module in our model. The results show
that the time consumption of our model mainly comes from the sampling in the subtree module whose running time is
linearly related to the sampling number. When we set the sampling number as 2, the running time is on par with the others.
Furthermore, the running time for the GNN module is the same as for the other baselines. In sum, we observe that our
model’s scalability is acceptable as both complexity analysis and empirical running time show ours is slower than others
only by a constant factor.

A.8. Dataset Details

We describe the average node number and average edge number of the target graph and query graph in the Table 12 and
Table 11. Except the hard datasets, we generate 1000 graph pairs for Synthetic, Proteins, Mutag, Enzymes, Cox2 and
FirstMMDB and 2000 graph pairs for Aids and IMDB-Binary which have smaller graph size. For the hard dataset, we
uniformly generate 500 graph pairs.

A.9. Results on More Datasets

We conduct experiments on the OGB benchmark dataset (Hu et al., 2020), including Ogbg-molhiv and Ogbg-molpcb. We
follow the same strategy in the paper to construct normal and hard versions for these datasets and choose the best-performing
baselines for comparison, including SimGNN and NeuroMatch. We present new results in Table 13.

We find that our model performs slightly better than others on normal datasets while gaining a significant advantage over
baselines on hard datasets. These results are consistent with our previous experiments, demonstrating that our model exploits
the subgraph matching property, rather than simply modeling the divergence of the data distribution as other GNNs.

18

D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching

10 15 20 25 30 35 40 45 50
Query size

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

D2Match
0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

VF2
ISMAGS
D2Match

Figure 4. Comparison with exact methods

We experiment on continuous features from the MNIST, CIFAR10 and PPI datasets, as these are constructed from vision
data(Dwivedi et al., 2020) or biological information data(Zitnik & Leskovec, 2017). We As expected, our model achieves
consistent performance as well. See Table 14.

Table 13. Obg dataset performance comparison
ogb-molhiv ogb-molhiv∗ ogb-molpcba ogb-molpcba∗

SimGNN 99.4±0.65 81.6±2.70 99.8±0.27 86.2±2.28
NeuroMatch 98.3±1.68 86.0±3.54 99.8±0.27 90.6±3.51

D2Match 99.8±0.27 99.6±0.54 100.0±0.00 100.0±0.00

Table 14. Continues dataset performance
Cifar10 MNIST PPI

SimGNN 89.0±21.82 98.5±0.93 77.0±24.67
NeuroMatch 98.1±1.14 95.9±1.34 50.0±0.00

D2Match 99.3±0.27 98.8±1.15 98.8±1.06

A.10. Comparison with Exact Methods

we compare exact matching solutions, including VF2 and ISMAGS. By nature, we know that all the exact matching methods
can obtain 100 % accuracy.

As a trade-off between accuracy and execution time, we make the comparison inspired by the setup in NeuroMatch (Rex
et al., 2020). We say an execution succeeds when its run time is less than 60s. We compare the success rate of the exact
methods by varying the query graph size from 10 to 50 on the synthetic data and report the results in Figure 4.

We show in our experiment that the failure of exact matching methods increases significantly when the target graph has more
than 30 nodes, compared to our stable performance, indicating the incompetence of these methods on large-scale datasets.

19

