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ABSTRACT

While the current trend in the generative field is scaling up towards larger models
and more training data for generalized domain representations, we go the opposite
direction in this work by synthesizing unseen domain images without additional
training. We do so via latent sampling and geometric optimization using pre-
trained and frozen Denoising Diffusion Probabilistic Models (DDPMs) on single-
domain datasets. Our key observation is that DDPMs pre-trained even just on
single-domain images are already equipped with sufficient representation abilities
to reconstruct arbitrary images from the inverted latent encoding following bi-
directional deterministic diffusion and denoising trajectories. This motivates us to
investigate the statistical and geometric behaviors of the Out-Of-Distribution (OOD)
samples from unseen image domains in the latent spaces along the denoising chain.
Notably, we theoretically and empirically show that the inverted OOD samples
also establish Gaussians that are distinguishable from the original In-Domain
(ID) samples in the intermediate latent spaces, which allows us to sample from
them directly. Geometrical domain-specific and model-dependent information
of the unseen subspace (e.g., sample-wise distance and angles) is used to further
optimize the sampled OOD latent encodings from the estimated Gaussian prior.
We conduct extensive analysis and experiments using pre-trained diffusion models
(DDPM, iDDPM) on different datasets (AFHQ, CelebA-HQ, LSUN-Church, and
LSUN-Bedroom), proving the effectiveness of this novel perspective to explore
and re-think the diffusion models’ data synthesis generalization ability. 1

1 INTRODUCTION

“Seek inward in face of difficulties.” – Mencius

Generalization has always been a challenge in data synthesis. The current research trend focuses
on leveraging larger models and more training data as to facilitate improved generalization. The
popularity of recent large-scale models such as DALLE-2 (Ramesh et al., 2022) and Imagen (Ho
et al., 2022a) have demonstrated the impressive and promising representation ability when trained
on an enormous amount of data. However, the approach of scaling up may ultimately hit its limit as
the available data is still finite; further, scaling up requires enormous resources, severely limiting the
number of research groups that are able to participate and contribute to the work, and consequently
hindering research progress. Thus, we look inwards to investigate an alternative direction in this
work. Specifically, we propose to leverage the powerful yet under-explored potential of the high-
dimensional latent spaces in pre-trained denoising diffusion probabilistic models (DDPMs) (Ho et al.,
2020; Nichol & Dhariwal, 2021) on single-domain datasets, to generate images in unseen domains
without learning any extra neural networks to explicitly model the unseen data distributions.

This work is built upon our key observation: as the state-of-the-art generative models, a pre-trained
DDPM on single-domain images (e.g., dog faces) already has sufficient representation ability to
reconstruct arbitrary unseen images (e.g., human faces and churches) from the OOD latent encodings,
as shown in Fig. 1. However, we also argue that the reconstruction ability of unseen domain images
is subject to the prerequisite of the deterministic inversion (diffusion) and denoising trajectories.
Specifically, we employ the deterministic image inversion technique derived from the denoising
diffusion implicit models (DDIMs) (Song et al., 2021a) to convert those raw images from unseen

1This work includes abundant supporting analysis, qualitative examples and discussions in the supplementary.
Core code will be submitted to AC during the discussion, complete code will be released upon acceptance.
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Figure 1: Unseen domain image synthesis with a pre-trained diffusion generative model on
AFHQ-Dog-256 (Choi et al., 2020) dataset, without any additional training to adapt to the new
domains. In the second column, we observe that a DDPM pre-trained on dog faces nevertheless has
sufficient representation ability to accurately reconstruct arbitrary images. Leveraging this unique
ability and our comprehensive analysis of the unseen OOD distributions in the latent spaces, we can
even generate images of different domains (e.g., human faces, churches, bedrooms, and cats) from
this model leveraging our proposed UnseenDiffusion method, as shown in the third column.

domains into the latent encodings, and use the pre-trained DDPMs to reconstruct the images from the
inverted latent encodings via a relatively deterministic denoising process 2, as detailed in Sec. 3.2.

The above observation motivates re-thinking the representation and generalization ability of diffusion
models, and to leverage this unique property to synthesize unseen images via pre-trained and frozen
DDPMs in this work. Recall the conventional pipeline for image synthesis via generative models (e.g.,
VAEs (Kingma & Welling, 2014), GANs (Goodfellow et al., 2014), and DMs (Ho et al., 2020)), which
usually consists of distribution learning, latent sampling and decoding. While the most natural way
seems to be learning the unseen latent distributions via extra neural networks as most existing works
do (Zhou et al., 2020; 2021; Wang et al., 2019), we tackle the problem without using networks to
learn the unknown distributions. Sampling from an unknown distribution in high-dimensional space
without prior knowledge is extremely difficult. However, by revisiting the theoretical non-Markovian
formulation of DDIMs (Song et al., 2021a), we show that the inverted OOD latent encodings also
follow a Gaussian distribution in theory, like the original ID latent variables along the denoising
chain. Based on the theoretical support, we estimate the implicit latent Gaussian distributions of the
OOD images for synthesizing new samples, as specified in Sec. 3 and Appendix C.

On the other hand, we acknowledge that a Gaussian prior alone is insufficient for generating new
unseen images in practice, due to the following two main reasons: First, there always exists a
gap between theory and practical model training (i.e., a direct sampling from the estimated OOD
Gaussian may not be precise enough to characterize the actual probability concentration mass in
latent spaces given different base models). Second, the sampled latent encoding may be “captured”
by the ID denoising trajectories given the bandwidth constraint, which leads to a typical failure case
of generating in-distribution images instead of the target unseen images (see Fig. 4). To tackle the
above empirical challenges, we gain inspiration from recent works (Zhu et al., 2023a) to rethink the
generation process from a geometrical and spatial point of view, and propose to further optimize the

2We use the term “relatively deterministic” to represent the fact that the denoising trajectory for unseen image
synthesis should have a non-zero bandwidth to tolerate some degree of stochasticity, which is a critical property
in practice explained in Sec. 3.2.
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sampled latent OOD encodings by rejecting those that do not satisfy the geometric constraints (e.g.,
pair-wise distance and angles). Interestingly, we observe that the inverted OOD latent encodings
exhibit consistent geometric characteristics in the intermediate high-dimensional latent spaces, which
in return support our theoretical Gaussian assumptions. The proposed geometrical optimization
can be considered as supplementary model-dependent and domain-specific knowledge that helps to
achieve the challenging synthesis task, with details explained in Sec. 3 and Appendix D.

We conduct experiments using various DDMs (DDPM (Ho et al., 2020), improved DDPM (Nichol
& Dhariwal, 2021)) and datasets (CelebA-HQ (Karras et al., 2017), AFHQ-Dog (Choi et al., 2020),
LSUN-Church (Yu et al., 2015), LSUN-Bedroom (Yu et al., 2015)), achieving promising performance
for this challenging task of unseen domain image synthesis, as demonstrated in Fig. 1. Notably, our
work also reveals an unusual fact that contradicts the findings of previous learning-based domain
generalization works (Zhou et al., 2020; 2021; Wang et al., 2019), which believe that it is usually
easier to generalize model abilities to unseen domains similar to the trained ones. However, we show
that our proposed method achieves better performance in dramatically different unseen domains in
Sec. 4. Overall, we name our entire framework UnseenDiffusion, and believe that our interesting
empirical observations, theoretical findings, extensive experimental analysis and novel perspective to
rethink the domain generalization ability in pre-trained DDMs in this work shall bring future insights
that benefit our research community 3.

2 RELATED WORK

Denoising Diffusion Models. Denoising Diffusion Models (DDMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) are the state-of-the-art generative models for data synthesis in images (Ramesh et al.,
2022; Rombach et al., 2022; Nichol & Dhariwal, 2021; Gu et al., 2022; Zhu et al., 2023b; Dhariwal
& Nichol, 2021; Hu et al., 2021), videos (Ho et al., 2022b), and audio (Kong et al., 2020; Zhu et al.,
2023b; Mittal et al., 2021). Inspired by thermodynamics, the core design of DDMs consists of a
Markov chain in two directions: the forward diffusion process and the reverse denoising process.
The diffusion process gradually adds stochastic Gaussian noises to the data sample x0 at each step,
converting the data into a noisy latent encoding at the end of the Markov chain at step T . In contrast,
the denoising process seeks to remove the noises added and to restore the initial data. This gradual
transition process models a random walk in the high-dimensional latent spaces and forms a trajectory
along the denoising chain (Song & Ermon, 2020; Song et al., 2020).

As the denoising trajectory proceeds, the latent in-domain distribution goes from a pre-defined
standard Gaussian to the learned data distribution. Part of existing works consider this process from
the perspective of score-based functions (Kingma et al., 2021; Song et al., 2021b; Huang et al.,
2021; Vahdat et al., 2021), but few have touched the topic of unseen distributions within learned
intermediate latent spaces.

Domain Generalization. Domain Generalization (Wang et al., 2022a) that aims to generalize deep
learning model to unseen distributions has been an important research topic in broad machine learning
area (Ganin et al., 2016; Zhao et al., 2020; Zhou et al., 2021; Muandet et al., 2013; Li et al., 2017)
with various computer vision applications such as recognition (Peng et al., 2019; Rebuffi et al., 2017),
detection (Zhang et al., 2021) and segmentation (Hoffman et al., 2018; Gong et al., 2019). In the
generative field, it even becomes a more challenging task, with the extra demand to sample from the
generalized distributions. Classic approaches seek to extend the representation ability of generalized
domains by training extra neural network modules (Zhou et al., 2020; 2021; Wang et al., 2019). More
recent trend in computer vision community is scaling up the model and dataset sizes as the most
intuitive and obvious solutions (Ramesh et al., 2022; Ho et al., 2022a; Rombach et al., 2022).

In this work, we tackle the challenge from a novel perspective by exploring the potential of latent
space from a relatively small generative model trained on the single-domain dataset.

Latent Space of Deep Generative Models. Understanding the latent space of generative mod-
els (Karras et al., 2017; Abdal et al., 2019; Gal et al., 2022) help to benefit popular downstream
tasks such as data editing and manipulation (Zhu et al., 2016; Shen et al., 2020; Kwon et al., 2023;
Zhu et al., 2023a; 2020). A large portion of works has been exploring this problem within the
context of GAN inversion (Xia et al., 2022), where the typical methods can be mainly divided into

3Please see Appendix A for some discussions on the high-level insights for several open questions.
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either learning-based (Zhu et al., 2016; Richardson et al., 2021; Wei et al., 2022; Alaluf et al., 2021)
or optimization-based categories (Abdal et al., 2019; 2020; Huh et al., 2020; Creswell & Bharath,
2018). More recently, with the growing popularity of diffusion generative models, researchers have
also focused on the latent space understanding of DDMs for better synthesis qualities or semantic
control (Rombach et al., 2022; Kwon et al., 2023; Zhu et al., 2023a; Yang et al., 2023).

Our work is also related to the latent space understanding of DDMs, and we leverage the geometric
properties and apply them to the difficult unseen domain image synthesis task.

3 UNSEEN IMAGE SYNTHESIS

In this section, we describe our methodology design to generate images of unseen domains using
a pre-trained and frozen diffusion model via latent OOD sampling and geometric optimizations,
without training any extra neural networks to explicitly model the unknown distributions.

3.1 PROBLEM FORMULATION

Given a pre-trained T -step DDM p (we omit θ from the more commonly used notation pθ since
we use frozen parameters in this work) trained on a single-domain dataset with dimensionality d
equal to the total resolution of images, our objective is to synthesize unseen images xout different
from the training domain. We denote the learned ID distribution in the ϵt latent space as ϕin

t , where
t ∈ {T, ..., 0} is the diffusion step. Similarly, we define a target unseen image domain with unknown
latent distribution ϕout

t in ϵt. Suppose that we have N raw images from the target unseen domain, thus
we can obtain N latent OOD encodings xout

inv,t at each latent space ϵt via the deterministic inversion
method derived from DDIMs Song et al. (2021a). Our objective is to deduce the behavior of the
unknown latent distribution ϕout

t based on N OOD samples, either raw images xout or inverted ones
xout
inv,t, and eventually sample xout

sample,t from ϕout
t to synthesize images xout of the target unseen

domain using the frozen model p. We further use ps and pi to represent the stochastic (Ho et al.,
2020) and deterministic (Song et al., 2021a) generation processes, respectively. In addition, we use
the hyper-parameter η (Song et al., 2021a) to characterize the degree of stochasticity in the generative
process, with η = 1 for ps and η = 0 for pi. At intermediate stochastic levels, we adopt the notation
pη=k with k equals a constant between 0 and 1.

3.2 REPRESENTATION ABILITY FOR UNSEEN DOMAINS

Unseen Domain Image Reconstruction. Our fundamental key observation is that a DDPM trained
even on a single-domain small dataset already has sufficient representation ability to accurately
reconstruct arbitrary unseen images from the inverted latent encoding xout

inv,t following a deterministic
denoising trajectory pi, as shown in Fig. 1. We further argue that this representation ability is subject
to the deterministic inversion and denoising techniques we adopted from Song et al. (2021a). Note
the inverted space can be an arbitrary step t along the chain for reconstruction purposes.

Specifically, DDIMs (Song et al., 2021a) propose a different deterministic sampling process, which
considers a family of inference distribution as:

xt−1 =
√
αt−1(

xt −
√
1− αtϵ

θ
t (xt)√

αt
) +

√
1− αt−1 − σ2

t · ϵθt (xt) + σtzt, (1)

where σt = η
√
(1− αt−1)/(1− αt)

√
1− αt/αt−1, as the η controls the variance of Gaussian

transition kernel and thus characterizes degree of stochasticity. A variant of the above process allows
us to derive a deterministic inversion technique by connecting the above Eqn. 1 to the neural ordinary
differential equations (ODEs), similar as in previous diffusion based data editing works (Kim et al.,
2022; Kwon et al., 2023; Zhu et al., 2023a). More details about the deterministic inversion and
denoising methods are included in the Appendix C.

Bandwidth of Unseen Denoising Trajectory. In practice, the representation ability in the latent
space itself is not adequate to synthesize new images for unseen domains; there exists another
implicit yet critical precondition to leverage the discovered feature of a pre-trained DDPM for
unseen image synthesis, which we refer to as “bandwidth of the unseen trajectories,” denoted as
Bη,t. In other words, in order to generate plausible unseen images from a sampled latent OOD
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Original =0 =0.1 =0.2 =0.3 =0.4 =0.5 =1.0

(a) Unseen image reconstruction results w/ trained DDPM on AFHQ-Dog-256.

Original =0 =0.1 Original =0 =0.1

=0.8

Original =0 =0.1

(b) Unseen image reconstruction results w/ untrained DDPM.

Figure 2: Illustration of the unseen trajectory bandwidth at the latent space ϵt. With a trained
DDPM, we can reconstruct unseen images from new domains with a certain stochasticity tolerance
(top row). In contrast, the untrained DDPM can also do the reconstruction, but with extremely limited
bandwidth for the unseen trajectories. We empirically choose bandwidth Bη for the target unseen
domain using the maximum value of η that guarantees the reconstruction quality (e.g., Bη = 0.2,
t = 500 in this example).

encoding xout
t ∈ ϕout

t , the actual denoising trajectory should tolerate a certain range of stochasticity,
following a “relatively deterministic” denoising process pη=k, with k ̸= 0, instead of the completely
deterministic pi. Another interpretation is to analogue the trajectory bandwidth Bη,t to the actual
subspace volume occupied by the OOD latent samples. In the extreme case where the model is
untrained, we can still invert and reconstruct arbitrary images following a deterministic trajectory.
However, this untrained model can not be used for actual generation purposes because those latent
encodings establish no generalizable patterns but simply map an arbitrary bijective function between
the latent and image spaces. Fig. 2 illustrates this concept of bandwidth for unseen trajectories; we
note that the bandwidth is an important empirical parameter for our unseen image synthesis task
that depends on the pre-trained models, the specific unseen target domains, as well as the diffusion
steps. More discussions are included in Sec. 4.2 and Appendix F.3. In this work, we define the
bandwidth Bη,t as the maximum empirical value of η that guarantees the reconstruction quality for
unseen images at the latent space ϵt.

3.3 UnseenDiffusion FOR IMAGE SYNTHESIS

After having verified the representation ability via unseen image reconstructions, we seek to gain
more knowledge on the unseen distribution established by the OOD latent encodings, as to be able to
generate novel images from the unseen domain.

Non-Markovian Inversion. We propose to take a closer look at what the forward diffusion process
actually does in theory to better understand the hidden properties of those latent encodings. The core
idea of DDIMs (Song et al., 2021a) modifies the original forward diffusion process from a Markov
process to a non-Markov one, by directly adding the information from x0 in inferring xt, which
changes the initial diffusion from q(xt|xt−1) to q(xt|xt−1,x0). The theoretical rationale behind is
that the DDPM objective only depends on the marginals q(xt|x0) instead of directly on the joint
q(x1:T |x0), with the intuitive motivation to accelerate the generation.

The above formulation implies that this revised non-Markovian diffusion process satisfies the below
family Q of inference distributions indexed by a real vector σ ∈ RT

≥0:

qσ(xt|x0) = N (
√
αtx0, (1− αt)I), (2)

where αt
4 comes from a pre-defined sequence. In addition, the Eqn. 2 simultaneously ensures that

q(xt|xt−1,x0) is also Gaussian for all t > 1 as below:

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I ). (3)

The detailed proofs and derivations of Eqn. 2 and Eqn. 3 can be found in Appendix C. Particularly,
we note that the above derivations in the diffusion forward direction do not touch the actual denoising

4We adopt the definition of αt from DDIMs, which is slightly different from DDPMs (Ho et al., 2020) as
detailed in Appendix C.
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Figure 3: Illustration of geometric distributions for ID (e.g., dogs) and OOD (e.g., church) latent
encodings along the denoising chain. At the departure latent space at step T , the ID distribution
is by definition a standard Gaussian in high-dimensional space, whose concentration mass is a thin
annulus (Blum et al., 2020). As the denoising chain proceeds, the ID and OOD Gaussian become
separable at the mixing step tm (Zhu et al., 2023a), which allows us to perform the latent geometric
sampling for unseen OOD domains. Following a relatively deterministic denoising process pη=Bη

with the trajectory bandwidth Bη, we can finally synthesize images for the target unseen domain.
Note that the ID trajectory always has a larger bandwidth than the OOD trajectory.

process p. In other words, the distribution in the intermediate latent spaces always satisfies Eqn. 2 in
theory, and is not model dependent, conditioned on the actual raw data x0.

While we have theoretically shown that the family Q of inference distributions matches the same
marginal as described in Eqn. 2, the mean values of the Gaussians are data-dependent, and can only be
empirically decided. Therefore, we use the xout for estimating the mean value for unseen images 5.

Latent Sampling with Geometric Optimization. Given an estimated Gaussian prior for the unseen
images is not sufficient to synthesize new unseen images. We propose that there exist two key factors
for a successful trial to generate an unseen image: “escape the ID trajectory of trained models” and

“stay close to the OOD trajectory of target unseen images”. As demonstrated in Fig. 4, there exists
two typical failure cases for unseen image synthesis with a given DDPM: the generated image xout

0
become in-distribution, or the generated image has very low visual quality. The cause for the first
failure case is that the OOD denoising trajectories get interfered by the ID ones. In comparison,
the low-fidelity case is due to the fact the denoising trajectory gets too “off-road” despite not being
entirely captured by the ID ones.

Inspired by Zhu et al. (2023a) where the authors tackle the semantic editing problem from a geometric
point of view by studying the high-dimensional latent spaces, we note both above causes can be
mitigated by additional geometric restrictions. Interestingly, we consistently observe the following
geometric properties that can be used as rejection criteria for optimizing the latent sampling, after
testing various sets of ID and OOD combinations with different pre-trained diffusion models. They
also serve as additional empirical validation for the Gaussian assumption of inverted OOD samples.

Observation 3.1 For any OOD sample pairs xout
inv,i and xout

inv,j from the sample set, the Euclidean
distance between these two points is approximately a constant do.

Observation 3.2 For any three OOD samples xout
inv,i, x

out
inv,j and xout

inv,k from the sample set, the angle

formed between ⃗xout
inv,kx

out
inv,i and ⃗xout

inv,kx
out
inv,j is always around 60◦.

Observation 3.3 For any OOD sample pairs xout
inv,i and xout

inv,j , and the high-dimensional origin O,

the angle formed between ⃗Oxout
inv,i and ⃗Oxout

inv,j is always around 90◦.

All these three observations above are typical geometric properties possessed by an isotropic high-
dimensional Gaussian. We acknowledge that it is usually very challenging to deduce an unknown
high-dimensional distribution solely based on its geometric properties and that there may exist other
complex distributions that exhibit similar behaviors we have observed. However, it appears from our
theoretical and empirical analysis, that the OOD Gaussian assumption holds.

5There are alternative ways for estimating the Gaussian, which are more empirical-driven, see details in
Appendix E.2.
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Table 1: Geometric properties of different
OOD domains from the latent space at the
mixing step (Zhu et al., 2023a). The results
are computed based on 1K sample pairs, we
report the mean and std for each geometric
measurement.

Domain Pair-Distance Pair-Angle Angle to Origin
Dog(ID) 608.3±3.2 60.0±0.4 90.1±0.3

CelebA(OOD) 577.1±5.0 60.0±0.5 89.7±0.4
Cat(OOD) 570.8±4.5 60.0±0.4 89.8±0.3

Church(OOD) 568.2±6.5 60.0±0.7 89.8±0.4
Bedroom(OOD) 574.3±5.5 60.0±0.6 89.5±0.5

Table 2: Reconstruction results and the empirical
bandwidth for different domains. We use an iDDPM
trained on AFHQ-Dog and 1K testing images to com-
pute the reported scores.

Method Recons. Domain MAE (↓) Bη (↑)
pSp Richardson et al. (2021) CelebA (ID) 0.079 -

e4e Tov et al. (2021) CelebA (ID) 0.092 -
ReStyle Alaluf et al. (2021) CelebA (ID) 0.089 -
HFGI Wang et al. (2022b) CelebA (ID) 0.062 -

Ours UnseenDiffusion

Dog (ID) 0.073 1
CelebA (OOD) 0.073 0.2
Church (OOD) 0.074 0.3

Bedroom (OOD) 0.072 0.3

To sum up, the UnseenDiffusion pipeline (see Algo. 3) mainly consists of estimating the unseen
Gaussian using Eqn. 2, computing the geometric properties via Algo. 1, conducting the geometric
optimization via Algo. 2, and denoising the latent using frozen DDPMs p with bandwidth Bη. The
concrete algorithms are included in Appendix F due to space limitations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model Zoos and Datasets. We adopt pre-trained DDPMs on different single domain datasets as our
base models for experiments: improved DDPM (Nichol & Dhariwal, 2021) trained on AFHQ-Dog
dataset (Choi et al., 2020), and DDPM (Ho et al., 2020) trained on the CelebA-HQ dataset (Karras
et al., 2017), the LSUN-Church dataset (Yu et al., 2015), and the LSUN-Bedroom dataset (Yu et al.,
2015). Each model generates images in the resolution of 2562, resulting in the total dimensionality
for the latent spaces to be d = 196, 608.

Evaluations and Comparisons. For the reconstruction task, we calculate the Mean Absolute Error
(MAE) as quantitative metrics. We compare the results with other popular GAN based methods,
such as pSp (Richardson et al., 2021), e4e (Tov et al., 2021), ReStyle (Alaluf et al., 2021) and
HDGI (Wang et al., 2022b). The GAN-based models usually do not have the ability of unseen image
reconstruction 6.

For the unseen image synthesis task, we mainly use the FID score (Heusel et al., 2017) as the
quantitative metric as in most generative works. We report the in-domain FID scores obtained via
the generative models as the upper bound on each domain (i.e., each dataset). In the meanwhile, we
also compare several different SOTA image-to-image translation methods via diffusion models as
baselines, as they also output images in domains that are different to the trained ones. However, it is
worth noting that those baseline methods (i.e., EGSDE (Zhao et al., 2022), DiffusionClip (Kim et al.,
2022), and Asyrp (Kwon et al., 2023)) are not really generating unseen images, but rather editing
original ID image to a target unseen domain. Moreover, those are learning-based methods trained on
each unseen domain, while our method operates on a single mutual latent space from the pre-trained
base diffusion models.

Implementation Details. For all the experiments, we use the technique of skipping diffusion steps to
accelerate the inversion and denoising process as in previous works (Song et al., 2021a; Kwon et al.,
2023; Zhu et al., 2023a) without evident perceptual impairment to the image quality. Specifically,
both inversion and denoising trajectories include 60 steps. The inversion process goes through 60
steps in total from t = 0 to tm = 500 with a uniform skip interval; the denoising process follows
the same steps in the reverse direction. We use in general 2K OOD samples to estimate the unseen
Gaussian distributions. The number of randomly picked reference OOD samples for geometric
optimizationNref is chosen to be 4, meaning that we compare the sampled latent encoding with four
inverted encodings in terms of their geometric properties before rejecting or accepting this sample.

6This is important to distinguish the generation problem of DDPMs and GANs, with detailed discussion
within the topic of “source of generalization ability” in Sec. 4 and Appendix A
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Table 3: Image synthesis results for different domains. We include three groups of comparisons
from top to bottom. L stands for learning-based methods. The first group shows the results for ID
synthesis via different generative models as upper bounds. The second group lists several learning-
based methods using the DDM as the base model but perform the image-to-image (I2I) translation
task. The third group include the results for our method using different DDMs as base models.

Method Category Dog CelebA Church Bedroom
StackGAN++ (Zhang et al., 2018) L&ID - - - 35.61

VQ-GAN (Esser et al., 2021) L&ID - 10.2 - -
StyleGAN2 (Karras et al., 2020) L&ID - - - 11.52

DDPM (Ho et al., 2020) L&ID 7.74 8.58 11.20 10.89
DDIM (Song et al., 2021a) L&ID 7.26 7.89 10.88 6.80

iDDPM (Nichol & Dhariwal, 2021) L&ID 6.33 6.94 8.86 6.79
EGSDE (Zhao et al., 2022) L&I2I 51.04 - - -

DiffusionClip (Kim et al., 2022) L&I2I ID 43.6 66.3 68.1
Asyrp (Kwon et al., 2023) L& I2I ID 38.7 59.5 57.1

Ours-DDPM OOD 48.8 ID 46.7 45.9
Ours-DDPM OOD 47.6 47.2 ID 46.8
Ours-DDPM OOD 47.3 46.9 47.1 ID
Ours-iDDPM OOD ID 43.5 43.9 43.4

4.2 EXPERIMENTAL RESULTS

Reconstruction Results. We show the evaluation results for the reconstruction test in Tab. 2,
where we demonstrate that a diffusion model pre-trained on a single-domain image dataset already
has sufficient representation ability to reconstruct new domain images following the deterministic
inversion and relatively deterministic denoising trajectories.

Specifically, we also report the bandwidth Bη we have empirically obtained for different unseen
domains using a pre-trained iDDPM (Nichol & Dhariwal, 2021) on the AFHQ-Dog dataset (Choi
et al., 2020). While this bandwidth is an empirical parameter depending on the pre-trained base DDM,
it reveals an interesting fact that contradicts conventional wisdom. While classic learning-based
methods for domain generalization (Zhou et al., 2020; 2021; Wang et al., 2019) suggest it is usually
easier to extend the model ability to domains similar to the original learned data (e.g., easier to
generalize from trained “dog faces” to unseen “human faces”, rather than to unseen “churches”),
we observe the completely opposite behavior. In this work, a bigger domain gap signifies a larger
bandwidth for the unseen target domain, making it easier to sample from and less likely to be
interfered and “captured” by the ID denoising trajectories, as presented in Tab. 2.

Unseen Domain Image Synthesis. Next, we show the quantitative results of our unseen domain
image synthesis method in Tab. 3. We incorporate three groups of comparisons for evaluation. In the
first group, we list the FID scores obtained via generative models trained as ID dataset, which can
be considered as the upper bounds for this unseen image synthesis task. For the second group, we
compare against other learning-based methods designed for image-to-image translation task. It is
worth noting that those methods are not strictly doing data generation but rather in-domain image
editing, since they do not sample from the unseen domain distribution. For the third group, we show
the performance of our proposed method for various unseen domains using four different base models.
We observe that our method achieves promising results comparable to the SOTA learning-based
image translation approaches, demonstrating the effectiveness of our OOD latent geometric sampling.

Visualization of Latent Encodings. To provide a comprehensive understanding of the geometric
locations for different OOD domains at the mixing step tm, we include the t-SNE plot (Van der
Maaten & Hinton, 2008) for the inverted latent encodings from different unseen image domains
in Fig. 4. We plot the “human” and “church” as unseen OOD domains, and compare them with
the ID “dog” domain, observing the consistent conclusion we draw from the bandwidth discussion,
which argues that the domain with larger gaps compared to the originally trained one is easier to
be distinguished and separated from the ID Gaussian distribution. In Fig. 4, we also illustrate two
typical failure cases in our proposed UnseenDiffusion method. Specifically, the first failure case
happens when the sampled OOD latent encoding passes the rejection selection but is located too
close to the ID Gaussian distribution. Therefore, during the denoising process, the OOD unseen
trajectory is interfered by the ID denoising trajectory which has a larger bandwidth, leading the final
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denoised image to be more similar to the originally learned domain. The second failure case caused
by the initial far-away location of sampled latent encoding can be usually mitigated by our geometric
optimization. We provide additional ablation studies for geometric optimizations in Appendix F.

x Sampled-human 

x

x

Case 1

Case 2

Figure 4: T-sne visualization of ID and OOD latent
encodings and failure cases demonstration. The OOD
latent encodings with larger domain gap (e.g., “church”)
are more separable compared to the unseen domain
(e.g., “human faces”) similar to the trained one (e.g.,

“dog faces”), contradicting our traditional understanding
from learning-based domain generalization methods.
Typical failure cases happen when an OOD latent sam-
ple is too close to the ID Gaussian, leading to an ID
image (case 1), or the latent sample is too isolated, lead-
ing to a low-fidelity image (case 2).

Source of Generalization Ability. Given
our novel and somewhatcounterintuitive
approach, one of the main questions is
whether the model is in fact generalizing
to the new domain. In other words: are
the synthesized unseen images in fact di-
verse and different from the real images
xout used for Gaussian estimation and ge-
ometric optimization? The above con-
cern is seemingly related to the mode col-
lapse problem where generative models
like GANs tend to synthesize similar im-
ages. In fact, we explicitly clarify that the
“mode collapse” does not exist in this work.
The underlying cause of mode collapse is
model-dependent, meaning that whichever
latent encodings are drawn from the Gaus-
sian prior, the trained model (e.g., GANs)
maps them to a similar data point in the
raw image space. However, in this work,
the arbitrary image reconstruction test en-
sures that the latent representation ability
is model-independent. In extreme cases,
there exists an infinite number of raw un-
seen images that can be always traced back
to high-dimensional latent spaces, the only challenge lies within the accurate localization of those
potential latent encodings without knowing the corresponding denoised image in advance. Qualitative
demonstrations showing the samples used for estimating and the synthesized ones are also included
in Appendix F.

5 DISCUSSIONS AND CONCLUSION

Why UnseenDiffusion works? At the end of this paper, we seek to revisit and explore the underlying
logic to explain the reasons for which our UnseenDiffusion works. From the recent BoundaryDiffusion
work, the authors show that the semantic editing of images can be effectively achieved via one-step
modification on the latent spaces after the semantic boundaries are localized, which reveals an
interesting fact that the latent spaces of diffusion models preserve the semantic characteristics of raw
data space from a geometric point of view. Specifically, if the images in the raw data space exhibit
certain manifolds and distributions that can be semantically separated, it is very likely that those
characteristics are preserved in the latent spaces of trained diffusion models, regardless of the training
domains. On the other hand, our motivation of going towards latent spaces instead of staying in the
raw space ϵ0 is the same as other generative models, which allows us to alleviate the difficulty of
sampling for synthesizing new data in a relatively more regularized space with known distributions.

Limitations and Broader Impact. To summarize, we propose a novel perspective for rethinking the
generalization ability for data synthesis using pre-trained diffusion models based on our inspiring
theoretical and empirical findings. The limitation and bottleneck of this work come from the
difficulties of localization of the target latent encodings. In other words, despite the theoretical
Gaussian assumption and additional geometric support, it is still extremely hard to identify a valid
OOD latent encoding without training. In fact, the ultimate goal of this work is never performance-
driven. If one aims to generate high-fidelity nature images with low FID scores, we would not
recommend using a DDPM trained on dog images as the tool. At the same time, we also acknowledge
that because we adopt the unseen domain image synthesis as the downstream application, it poses the
same risks of malicious use of synthetic data as other general generative works.
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A HIGH-LEVEL TAKE-AWAY AND APPENDIX OVERVIEW

A.1 INSIGHTS ON SEVERAL OPEN QUESTIONS

From a very high-level perspective, our proposed UnseenDiffusion work features a heuristic-based
method that attempts to provide some insights on several open questions in the generative domains
with diffusion models:

• Where is the limit of representation ability for DDPMs?

• Where does the generalization ability of DDPMs come from?

• What role does the stochastic Gaussian noise play in diffusion models?

For the first question, our arbitrary image reconstruction tests demonstrate that each raw image can
be deterministically traced back to the latent space and very well reconstructed. While we are not
claiming that those latent representations are optimal (and apparently they are not), we can at least
have the tool to trace the trajectories in both directions.

If the first question sets the foundation of the generalization ability of DDPMs to create new and
synthesized data, the second question is less obvious and more difficult to provide empirical evidence.
Recall the generative process in the unconditional DDPMs (after the training has been completed),
there are essentially two steps, namely latent encoding sampling and denoising 7. Given the extreme
case, one can always find latent encodings that correspond to real images given a relatively fixed
denoising trajectory, therefore the biggest challenge really comes to the first latent sampling step
when synthesizing new data, i.e., how to find a “good” latent encoding. To some degree, it seems
that synthesizing new images, no matter ID or OOD image domains, is not a “creation” process, but
rather a “discovery” process in the latent space.

We note this is intrinsically different from the “mode collapse” issue in many GAN-based works.
The mode collapse describes the fact that after a latent encoding is sampled, the mapping trajectories
collapse to a similar ending point in the image space. The intrinsic difficulty comes to “finding good
trajectories”, in contrast to the challenge of this work focuses on “finding good latent encodings”.

Take a step forward to the third question on the role that the stochastic Gaussian plays within
the diffusion framework. We notice some recent works touch on this interesting question from
different angles. For instance, the ColdDiffusion (Bansal et al., 2022) empirically indicates that
the stochastic Gaussian noises may not be necessary for diffusion models to generate new data.
The BoundaryDiffusion (Zhu et al., 2023a) reveals the “distance effect”, which exists only on the
deterministic formulations that lead to distorted images. A potential unified answer to this open
question based on our understanding is that stochastic noises may be a mitigation solution to relax the
trade-off between sampling and denoising. The rationale behind this claim comes from the following
aspects:

1) Mitigation on the sampling: according to our analysis and discussions on the bandwidth from
Sec. 3.2, the model has to exhibit a certain level of tolerance on the stochasticity (i.e., a non-zero
bandwidth) to achieve unseen image synthesis, otherwise, it is extremely difficult (almost impossible
from a probabilistic point of view) to sample a valid latent encoding.

2) Mitigation on the denoising: multiple existing literature (Ho et al., 2020; Song et al., 2021a; Zhu
et al., 2023a; Karras et al., 2022) have proved that the stochasticity helps to improve the image quality.
Specifically, Zhu et al. (2023a) provides a potential explanation from a geometrical point of view that
the stochasticity helps to bring the OOD latent encodings back to the area with higher probabilistic
concentration mass.

3) A side note on the Gaussian assumption: if all we need is stochasticity, how necessary is the
Gaussian assumption? A potential answer to this question is: the Gaussian assumption may not be
a hard request from the theoretical perspective, but is empirically very important. The key role of
Gaussian assumption is to provide an easy interface to facilitate the sampling process, and has various
important properties that can be used as mathematical tools to better interpret and understand the

7The denoising can also be considered as a mapping trajectory operation between the latent space and real
data space.
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model as well as the behaviors of latent encodings in the high-dimensional space. In theory, the latent
space can also follow other distributions, but this would increase the difficulty to train the generative
models and to do sampling during the inference stage.

A.2 OVERVIEW

As authors of this work, we summarize the biggest contribution of this work is opening up a novel
perspective to understand DDPMs, by providing abundant analysis and empirical results.

We structure the appendices as follows: In Appendix B, we present the detailed background of
DDPMs. In Appendix C, we introduce more details about DDIMs, as well as the theoretical proof of
the intermediate latent Gaussian assumption. In Appendix D, we provide the necessary background
from the studies on high-dimensional spaces for understanding the geometric and spatial properties
exhibited by the latent encodings, which sets the foundation for the geometric optimization in our
work. Appendix E presents the spatial and geometric studies for diffusion models. More empirical
results are presented in Appendix F.

B BACKGROUND ABOUT DDPMS

We briefly present the theoretical background of Denoising Diffusion Probabilistic Models
(DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) in the main paper, and describe more
details in this section.

The objective of DDPMs is to similar to all the previous generative models, which is to approximate
a data distribution q(x0) with a learned model distribution pθ(x0), from which we can easily sample
from. Specifically, the original formulation considers the generative model in the following form:

pθ :=

∫
pθ(x0:T )dx1:T , (4)

where x1, ...,xT are latent variables that represent the states of a Markov chain. At each step of the
reverse process, the joint distribution is defined as a Markov chain with learned Gaussian transition:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),
∑
θ

(xt, t)). (5)

Particularly, the starting distribution is set to be a standard Gaussian in dimensionality d, with
p(xT ) = N (xT ;0, I).

Next, we have:

pθ(x0:T ) := pθ(xT )

T∏
t=1

p
(t)
θ (xt−1|xt). (6)

For the pre-defined inference procedure q(x1:T |q0), DDPMs (Ho et al., 2020) propose to model this
process using a Markov chain with Gaussian transitions parameterized by a decreasing sequence
α1:T ∈ (0, 1]T as follows:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (7)

with q(xt|xt−1) := N (
√

αt

αt−1
xt−1, (1− αt

αt−1
)I).

The training objective of the generative model pθ(x0) is to optimize the variational lower bound on
the negative log likelihood:

Lvlb := E[−log pθ(x0)]

≤ E[−log
pθ(x0:T )

q(x1:T |x0)
]

= Eq[−log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
].

(8)
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The terms “forward process” and “reverse process” are used to describe the transition from x0 to xT ,
and from xT to x0, respectively.

C PROOF AND DERIVATIONS FOR LATENT DISTRIBUTIONS AFTER
INVERSIONS

In this section, we provide detailed discussions on the inversion technique adapted from DDIMs (Song
et al., 2021a), which is critical to our key observation on arbitrary image reconstruction tests. While
the Gaussian assumption has been already proposed in DDIMs (but not utilized in their paper), we
re-organize the logic and proof below for easy reference and for a better understanding of our work.

C.1 DENOISING DIFFUSION IMPLICIT MODELS

While the original DDPMs involve a stochastic process for data generation via denoising (i.e., the
same latent encoding will output different denoised images every time after the same generative
chain), there is a variant of diffusion model that allows us to perform the denoising process in a
deterministic way, known as the Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2021a).
DDIMs were initially proposed for the purpose of speeding up the denoising process, however,
later research works extend DDIMs from faster sampling application to other usages including the
inversion technique to convert a raw image to its arbitrary latent space in a deterministic and tractable
way. As briefly stated in our main paper, the core theoretical difference between DDIMs and DDPMs
lies within the nature of forward process, which modifies a Markovian process to a non-Markovian
one.

The key idea in the context of non-Markovian forward is to consider a family of Q of inference
distributions, indexed by a real vector σ ∈ RT

≥0:

qσ(x1:T |x0) := qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt,x0), (9)

where qσ(xT |x0) = N (
√
αTx0, (1− αT )I) and for all t > 1,

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I). (10)

The choice of mean function from Eqn. 10 ensures that qσ(xt|x0) = N (
√
αtx0, (1 − αt)I) for

all t, so that it defines a joint inference distribution that matches the “marginals” as desired. The
non-Markovian forward process can be derived from Bayes’ rule:

qσ(xt|xt−1,x0) =
qσ(xt−1|xt,x0)qσ(xt|x0)

qσ(xt−1|x0)
. (11)

In fact, in the original paper, the authors also explicitly stated that: “ The forward process from
Eqn. 11 is also Gaussian (although we do not use this fact for the remainder of this paper 8)”. While
this Gaussian property was not emphasized and leveraged in the DDIMs paper, we find it useful in
our context to explore the representation and generalization ability of pre-trained DDPMs.

In particular, the hyper-parameters for Gaussian scheduling α and β in the context of DDIMs are
slightly different from the original formulation in DDPMs (Ho et al., 2020). Denote the original
sequences from DDPMs as α′

t, then the αt in this work follows the definition of DDIMs to be
αt =

∏T
t=1 α

′
t.

C.2 PROOFS

The key theoretical support for the Gaussian assumption in the non-Markovian forward diffusion
process is from Eqn. 2, where the marginal distribution of xt given x0 satisfies a family of Gaussian.

8This paper refer to the DDIM paper (Song et al., 2021a).
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Lemma C.1. For qσ(x1:T |x0) defined in Eqn. 9 and qσ(xt−1|xt,x0) defined in Eqn. 10, we have:

qσ(xt|x0) = N (
√
αtx0, (1− αt)I). (12)

Proof. Assume for any t ≤ T , qσ(xt|x0) = N (
√
αtx0, (1− αt)I) holds, if:

qσ(xt−1|x0) = N (
√
αt−1x0, (1− αt−1)I), (13)

then we can prove that the statement with an induction argument for t from T to 1, since the base
case (t = T ) already holds.

First, we have that

qσ(xt−1|x0) :=

∫
xt

qσ(xt|x0)qσ(xt−1|xt,x0)dxt, (14)

qσ(xt|x0) = N (
√
αtx0, (1− αt)I), (15)

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I). (16)

According to Bishop & Nasrabadi (2006) 2.3.3 Bayes’ theorem for Gaussian variables, we know that
qσ(xt−1|x0) is also Gaussian, denoted as N (µt−1,Σt−1) where:

µt−1 =
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
√
αtx0 −

√
αtx0√

1− αt
=
√
αt−1x0, (17)

Σt−1 = σ2
t I+

1− αt−1 − σ2
t

1− αt
(1− αt)I = (1− αt−1)I. (18)

Therefore, qσ(xt−1|x0) = N (
√
αt−1x0, (1−αt−1)I), which allows to apply the induction argument.

Q.E.D

If we take a closer look at the lemma and its proof, all the derivations are completed in the forward
diffusion direction (i.e., the inversion direction from data to latent space), and have not touched the
trained model pθ, which sets the primary rationale to estimate the latent distributions as Gaussians,
given raw data x0 as conditioning.

D HIGH-DIMENSIONAL GEOMETRIC OPTIMIZATIONS

The sole Gaussian assumption from Lemma is insufficient to practice unseen image synthesis in
practice. On the one hand, there always exists a gap in the actual model training and its theoretical
foundations, especially when we utilize the pre-trained DDPMs and have no control over the frozen
model parameters. In other words, we can not guarantee that the base models we use perfectly model
the Gaussians as expected trained using the variational loss. In fact, Zhu et al. (2023a) has recently
demonstrated that the DDIM inversion does not exhibit symmetric diffusion trajectories as in actual
generation, contradicting to previous understanding as in Kwon et al. (2023). On the other hand,
we propose that a critical factor for a successful unseen image synthesis trail is for the denoising
trajectory to stay uninterfered by the ID trajectories as illustrated in Fig. 3.

Given the above reasons, we seek to push forward the unseen image synthesis task by additional
knowledge from a novel perspective from the geometric properties in high-dimensional space.
Inspired by Zhu et al. (2023a), where the authors successfully achieve SOTA performance in image
editing in a learning-free manner, we notice that the diffusion models preserve certain geometric
and spatial properties that characterize data semantics in training. Therefore, we propose to
explore the additional information of the unseen image domains by investigating their geometric
properties in latent spaces.
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Domains Pair-distance Pair-Angle Angle to Origin Gaussian Radius dist(Oin, Oout)
AFHQ-Dog(ID) 608.3±3.2 60.0±0.4 90.1±0.3 430.5±2.2 0
CelebA(OOD) 577.1±5.0 60.0±0.5 89.7±0.4 410.4±4.2 71.1

AFHQ-Cat(OOD) 570.8±4.5 60.0±0.4 89.8±0.3 404.6±3.6 66.2
AFHQ-Wild(OOD) 574.1±4.0 60.0±0.4 89.8±0.3 406.6±3.6 63.9

Bedroom(OOD) 574.3±5.5 60.0±0.6 89.5±0.5 407.6±4.6 61.4
Church(OOD) 568.2±6.5 60.0±0.7 89.8±0.4 404.0±6.2 72.3

CelebA(ID) 609.2±3.4 60.0±0.5 90.0 ±0.3 432.4±2.7 0
AFHQ-Dog(OOD) 575.8±9.8 60.0±1.0 89.8±0.4 408.2±10.2 67.5

Church(OOD) 566.2±10.7 60.0±1.1 89.6±0.5 401.7±10.1 77.2

Table 4: Geometric statistics for ID and different unseen OOD domains. We summarize complete
statistics we computed during our analytical experiments for different OOD domains, using the
improved DDPM (Nichol & Dhariwal, 2021) trained on AFHQ-DOG-256 (Choi et al., 2020), and the
DDPM (Ho et al., 2020) trained on CelebA-HQ (Karras et al., 2017) as the base models. Gaussian
radius is another geometric metric adopted in Zhu et al. (2023a) for the empirical search of the
mixing step. In addition, we also calculate the distance between the ID and OOD centers, denoted
as dist(Oin, Oout), this can be used as further empirical justifications for the separability between
different Gaussians.

D.1 OOD GEOMETRIC PROPERTIES

As described in the main paper, while the theoretical derivations provide a Gaussian prior that
facilitates the initial sampling, it is insufficient to generate unseen images in practice. To this end, we
further incorporate geometric based optimizations to further ensure the successful rates of unseen
image synthesis.

We consistently observe three geometric properties for the inverted OOD latent encodings. We
provide a more detailed discussion on what each property implies in this sub-section.

Recall the three geometric properties as below:

Observation 1: For any OOD sample pairs xout
inv,i and xout

inv,j from the sample set, the Euclidean
distance between these two points is approximately a constant do.

Observation 2: For any three OOD samples xout
inv,i, x

out
inv,j and xout

inv,k from the sample set, the angle

formed between ⃗xout
inv,kx

out
inv,i and ⃗xout

inv,kx
out
inv,j is always around 60◦.

Observation 3: For any OOD sample pairs xout
inv,i and xout

inv,j from the sample set, let O denote the

origin in the high-dimensional space, the angle formed between ⃗Oxout
inv,i and ⃗Oxout

inv,j is always
around 90◦.

For the first observation, when the sample pairs keep approximately the same distance, the direct
implication is that those samples are likely to be drawn from some convex region in the high-
dimensional space Wang (2012). One typical example is the spherical structure, where every data
points exhibit an equal distance from the center.

The second geometric property suggests that the unknown samples could lie on a regular lattice
near a low-dimensional manifold or sub-manifold, where the local geometry of the manifold is
approximately Euclidean. However, a less evident implication is that for samples drawn from a
high-dimensional Gaussian, this property also holds, as detailed in the next section D.2, and illustrated
in Fig. 5(c).

The third geometry property implies that the sample points might be isotropic in nature, who are
rotationally symmetric around any point in the space. Therefore, any two points drawn from the
distribution are equally likely to lie along any direction in the space. This property is also observed
for a high-dimensional Gaussian Blum et al. (2020), whose covariance matrix is proportional to the
identity matrix.

We acknowledge that to deduce a distribution in high-dimensional space solely based on its geometric
properties is very challenging, and there may exist other complex distributions that exhibit similar
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Figure 5: Illustration of various geometric properties of high-dimensional Gaussians. (a) and (b)
show the probability concentration mass is mainly centered around a thin annulus around the equator,
which are the properties mainly used in Zhu et al. (2023a). (c) illustrates the geometric observation
on the orthogonality of sample pairs. (d) illustrates the idea of separating two Gaussian distributions
in high-dimensional spaces.

properties we have observed. However, combined with our theoretical analysis and empirical
observations, the OOD Gaussian assumption seems to hold well.

Explicitly, we find the above geometric properties do not hold for images x0 from the data space. For
instance, the angle of samples to the origin is approximately 75◦ rather than 90◦.

D.2 HIGH-DIMENSIONAL GAUSSIAN

Gaussian in high-dimensional space establishes various characteristic behaviors that are not obvious
and evident in low-dimensionality. A better understanding of those unique geometric and probabilistic
behaviors is critical to investigate the latent spaces of DDMs, since all the intermediate latent spaces
along the denoising chain are Gaussian as demonstrated and proved in our previous sections.

We present below several properties of high-dimensional Gaussian from Blum et al. (2020), note
those are known and established properties, we therefore omit the detailed proofs in this supplement,
and ask readers to refer to the original book if interested.

Property D.1. The volume of a high-dimensional sphere is essentially all contained in a thin slice at
the equator and is simultaneously contained in a narrow annulus at the surface, with essentially no
interior volume. Similarly, the surface area is essentially all at the equator.

This property above is illustrated in Fig. 5(a)(b), where the sampled ID encodings are presented in a
narrow annulus.

Lemma D.2. For any c > 0, the fraction of the volume of the hemisphere above the plane x1 = c√
d−1

is less than 2
c e

− c2

2 .
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Lemma D.3. For a d-dimensional spherical Gaussian of variance 1, all but 4
c2 e

−c2/4 fraction of its
mass is within the annulus

√
d− 1− c ≤ r ≤

√
d− 1 + c for any c > 0.

The lemmas above imply that the volume range of the concentration mass above the equator is in the
order of O( r√

d
), also within an annulus of constant width and radius

√
d− 1. In fact, the probability

mass of the Gaussian as a function of r is g(r) = rd−1e−r2/2. Intuitively, this states the fact that the
samples from a high-dimensional Gaussian distribution are mainly located within a manifold, which
matches our second geometric observation.

Lemma D.4. The maximum likelihood spherical Gaussian for a set of samples is the one over center
equal to the sample mean and standard deviation equal to the standard deviation of the sample.

The above lemma is used as the theoretical justification for the proposed empirical search method
in Zhu et al. (2023a). We also adopt the search method using the Gaussian radius for identifying the
operational latent space along the denoising chain to perform the OOD sampling.

Property D.5. Two randomly chosen points in high dimension are almost surely nearly orthogonal.

The above property corresponds to the Observation 3, where two inverted OOD samples consistently
form a 90◦ angle at the origin.

D.3 SEPARABILITY OF HIGH-DIMENSIONAL GAUSSIANS

Since our proposed latent geometric sampling method relies on the fact that the ID Gaussian distri-
bution is separable from the OOD ones to ensure that the OOD denoising trajectories would not be
captured and intervened by ID trajectories. We need to be able to theoretically support the underlying
separability assumption. In statistics, separating Gaussians is also an established and formulated task.
The statistical problem arises as to how much separation is needed between the means to tell which
Gaussian generated which data point given a set of Gaussian distributions in high dimensionality.

In Blum et al. (2020), an example for separating two Gaussians in case of two spherical unit variance
is given as illustration. We know that most of the probability mass of each Gaussian lies on an annulus
of width O(1) at radius

√
d− 1 according to Lemma 3. Given two spherical unit variance Gaussians

with centers p and q separated by a distance δ, let x and y be two points randomly chosen from the
first and second Gaussian, respectively. Their distance is close to

√
δ2 + 2d, since x− p, p− q, and

q − y are nearly perpendicular, as shown in Fig. 5(d).

The implicit requirement for separating the above two Gaussians is that the distance between two
points picked from the same Gaussian is closer to each other than two points picked from different
Gaussians. In other words, the upper limit of distance between a pair of points from the same
Gaussian is an at most the lower limit of distance between points from different Gaussians, which
holds when the following inequality is true:

√
2d+O(1) ≤

√
2d+ δ −O(1). (19)

To satisfy the above inequality in Eqn. 19, we need to ensure δ ∈ Ω(d1/4).

Therefore, in statistics, we can safely separate mixtures of spherical Gaussians when their centers are
separated by more than d1/4. However, in practice, different Gaussians can even be separated when
the centers are much closer.

In our analytical experiments, given DDMs trained on the image resolution of 3 × 256 × 256,
we have the total dimensionality to be d = 196, 608, resulting in a safe separation distance to be
196, 6081/4 ≈ 21.1. Based on our analytical experiments, we have a larger separation distance
between ID and OOD Gaussians in Tab. 4, which provides theoretical and empirical justifications for
the Gaussian separability test.

E LATENT SPACES IN DIFFUSION MODELS

The understanding of latent spaces for diffusion models has evolved with the development of the field.
While the latent spaces of DDMs are initially considered to lack semantic meanings Preechakul et al.
(2022), several recent works Kwon et al. (2023); Zhu et al. (2023a) start to explicitly investigate the
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Algorithm 1 Estimation of pair-wise distance
Input: N inverted OOD latent samples xout

inv,tm
, number of sample pairs n for estimation

Output: Pair-wise distance do
dist← 0
for i = 1, 2, ..., n do
(p, q)← RandomInt(0, N − 1)
dist+ = Euclidien distance(xout

inv,p, x
out
inv,q)

end for
do ← dist/n

diffusion models from the perspective of high-dimensional latent spaces, and find that the pre-trained
DDMs already have semantic spaces. In Zhu et al. (2023a), the authors explicitly point out that the
deterministic inversion process is not symmetric to the actual denoising stochastic trajectory, and the
semantic-meaningful behaviors are observed from different levels of latent spaces.

Algorithm 2 Geometric Optimization
Input: A sampled OOD latent encoding xout

sample, geometric pair-wise distance dout, distance
tolerance dtol, angle tolerance φtol, Nref OOD reference samples xout

ref

Output: True or False
// Step 1: Distance rejection based on Observation 1.
for i = 1, ..., Nref do
d← Euclidien distance(xout

ref,i, x
out
sample)

if d < do − dtol or d > d0 + tol then
return False

end if
end for
// Step 2: Angle rejection based on Observation 2.
for i = 1, ..., Nref do
(p, q)← RandomInt(0, Nref − 1)

φ← Angle( ⃗xout
samplex

out
ref,p,

⃗xout
samplex

out
ref,q)

if φ < 60− φtol or φ > 60 + φtol then
return False

end if
end for
// Step 3: Angle rejection based on Observation 3.
for i = 1, ..., Nref do
j ← RandomInt(0, Nref − 1)

φ← Angle( ⃗Oxout
sample,

⃗Oxout
ref,j)

if φ < 90− φtol or φ > 90 + φtol then
return False

end if
end for
return True

E.1 MIXING STEP IN DIFFUSION MODELS

Inspired from the Markov mixing time (Levin & Peres, 2017), Zhu et al. (2023a) introduces the
concept of mixing step to characterize the convergence for diffusion models by considering the
distance measure between the latent distribution and the stationary distribution in the Markov chain.

Specifically, they find that the mixing step is a generic feature formed in the training process of
DDMs, which is related to the transition kernels, the stationary distribution, and the dimensionality
of latent variables, described in the Property below (proof can be found in Zhu et al. (2023a)):

Property E.1: Under the total variation distance measure || · ||TV , the mixing step tm for a DDM
with data dimensionality d is formed during training (i.e., irrelevant to the sampling methods).
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Algorithm 3 UnseenDiffusion for Unseen Image Synthesis
Input: N raw images from an unseen domain, a pre-trained DDM p, its mixing step tm, total
inversion steps Sinv , confidence level c, tolerance tol
Output: an image xout of the unseen domain.
// Step 1: Obtain inverted OOD latent encodings at the mixing step tm.
Define {τs}Sinv

s=1 s.t. τ1 = 0, τSinv
= tm

for i = 1, 2, ..., N do
for s = 1, 2, ..., Sinv − 1 do
ϵ← p(xi,τs , τs)
xi,τs+1 =

√
ατsxi,τs +

√
1− ατsϵ

end for
Save the OOD latent xi,τSinv

as xout
inv,tm

end for
Bη ← Estimate the bandwidth from xout

inv,tm

do ← Estimate the pair-wise distance from xout
inv,tm

// Step 2: Fit a Gaussian directly using xout or xout
inv,tm

below.
µout, σ

2
out ← Mean, Cov({xout

1,inv, x
out
2,inv, ..., x

out
N,inv})

σmd ← std(dist(xout
i,inv, x

out
j,inv){i,j}={1,...,N})

// Step 3: Sample and Geometric optimization.
xout
sample,tm

← N (µout, σ
2
out)

if Rejected by do, tol, and angle criteria then
Repeat sampling

end if
// Step 4: Denoising via pre-trained DDM.
xout ← pη=Bη

(xout
sample,tm

)

tm is mainly related to the transition kernels, the stationary distribution (i.e., datasets), and the
dimensionality d.

We find the above idea very practical for exploring the operational latent space to do the OOD
sampling, since one precondition in our task of unseen domain image synthesis is to ensure that the
OOD distribution is distinguishable from the ID distribution to avoid the interference. We therefore
adopt the empirical search method from Zhu et al. (2023a), and propose to select the latent space at
the mixing step for performing the latent geometric sampling.

E.2 GAUSSIAN ESTIMATIONS IN LATENT SPACES

The study of high-dimensional Gaussian distributions has been an important and long-lasting topic in
mathematics and statistics.

In our main paper in Sec. 3.3, we are estimating the unseen Gaussians using the raw images xout
0 via

Eqn. 2. However, this is not the only way to estimate the unseen Gaussians. As an alternative method,
we can also estimate the mean and variance values in a statistical way, by calculating the mean and
variance values directly from the inverted latent encodings xout

inv,t, instead of xout
0 .

Generally speaking, given a set of sample points x1, x2, ..., xn in d dimensionality 9, if we wish to fit
those sample points using a spherical Gaussian F , and assuming the unknown Gaussian has the mean
value µ and variance σ2 in every direction (i.e., isotropic). Then the probability of picking these very
points from this Gaussian is given by:

c exp(− (x1 − µ)2 + (x2 − µ)2 + ...+ (xn − µ)2

2σ2
), (20)

where the normalizing constant c is the reciprocal of [
∫
e

|x−µ|2

2σ2 dx]n. The Maximum Likelihood
Estimator (MLE) of this Gaussian F is the one that maximizes the above probability in Eqn. 20.

9We adopt the notation x without bold to represent the general case in statistics, which distinguishes from
the notation x used for representing the actual images in this work.
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Therefore, for a spherical Gaussian in high dimensionality, we can easily estimate the mean µ and
variance σ2 using the following two Lemmas. (Detailed proof can be found in the book (Blum et al.,
2020))

Lemma E.2. Let {x1, x2, ..., xn} be a set of n points in d-space. Then (x1 − µ)2 + (x2 − µ)2 +
... + (xn − µ)2 is minimized when µ is the centroid of the points x1, x2, ..., xn, namely µ =
1
n (x1 + x2 + ...+ xm).

Lemma E.3. The maximum likelihood spherical Gaussian for a set of samples is the one with center
equal to the sample mean and standard deviation equal to the standard deviation of the sample.

While both the method introduced in the main paper and this statistical method can be adopted for
the Gaussian estimation, the former is slightly faster since there is no need to conduct the inversion
for raw unseen images. However, as we claimed in the beginning in Appendix A, the Gaussian
prior is just an empirical tool that facilitates the sampling. Actually, in our experiments, both ways
result in a high rejection rate after the geometric optimization procedure. The above also aligns with
our expectation, since the base model is pre-trained, there exists no hard restrictions or constraints
to ensure the Gaussian condition. We also need to note that finding a distribution for samples
in high-dimensional spaces is a non-trivial problem that remains an unsolved challenge in
statistics, and is out of the scope of this work.

F MORE EMPIRICAL DETAILS

F.1 DETAILED ALGORITHMS

While we omit some implementation details in the main paper due to space limitations, we provide
detailed versions of different steps taken in our proposed latent geometric sampling method. Algo. 1
is the estimation of pair-wise geometric distance, and Algo. 2 is the rejection sampling using the
domain-specific geometric information as further optimizations. Algo. 3 summarizes the entire
pipeline of our proposed UnseenDiffusion method.

F.2 RESOURCES AND TIME COST

Our method does not involve any additional training or fine-tuning of the base diffusion models,
therefore it is not heavily GPU dependent. However, as we have also mentioned in the Limitations
and Bottleneck section in the main paper, the Gaussian fitting and sampling methods are relatively
time-consuming. The time cost for the denoising process, however, depends on the skipping technique
as in previous works Song et al. (2021a); Kim et al. (2022); Kwon et al. (2023); Zhu et al. (2023a),
given our case of 60 denoising steps from tm = 500, generating one image takes about 1.7 ∼ 2.4
seconds, on a single RTX-3090 GPU.

F.3 DISCUSSION ON BANDWIDTH

As we mentioned in the main paper, we observe that the unseen domains with larger domain gaps have
a larger bandwidth. In Fig. 6, we show additional qualitative results to demonstrate the above claim.
In this example, we show more qualitative results for the bandwidth search in the reconstruction task,
we select the maximum η value that ensures the quality of reconstruction as the bandwidth for the
specific unseen domain at a certain operational space of diffusion steps. Overall, the bandwidth is a
hyper-parameter that relates to the base model and the unseen domains. We also draw an interesting
conclusion here that the bandwidth also depends on the diffusion steps, showing that the bandwidth
gets larger as the chain gets closer to the raw image domains. Our observations suggest that there
exists a trade-off: while the bandwidth gets larger at the latent spaces closer to the raw image domains,
sampling from OOD unseen distributions also gets more difficult.

F.4 LEARNING-BASED BASELINES

In addition to the comparison with various SOTA diffusion-based image-to-image translation methods
such as EGSDE Zhao et al. (2022), DiffusionClip Kim et al. (2022) and Asyrp Kwon et al. (2023),
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Figure 6: Illustration of unseen trajectory bandwidth at different diffusion steps. We show
qualitative examples using the iDDPM Nichol & Dhariwal (2021) trained on AFHQ-Dog-256 as the
base model, the examples of church and cat are both unseen domain images. The image in green
boxes indicates the bandwidth we have empirically selected to preserve the reconstruction quality.
Compared to the trained image domain (i.e., dogs), cats have a smaller domain gap than churches.
Different from the conventional understanding that a smaller domain gap is beneficial for better
and easier generalization from a trained model, we observe a larger domain gap signifies a larger
bandwidth, making it easier to perform the OOD sampling and synthesis.

we also conducted baseline experiments by fine-tuning the base DDM using the unseen images from
different domains.

Specifically, we fined-tuned the iDDPM Nichol & Dhariwal (2021) trained on the AFHQ-Dog-256
dataset Choi et al. (2020) with 1K images from CelebA-HQ Karras et al. (2017) and LSUN-Bedroom-
256 Yu et al. (2015), and show the qualitative experimental results in Fig. 7. We observe from Fig. 7
that the synthesized images after fine-tuning the model tend to preserve some features from the
original domain, such as the furry hairs for human faces.

F.5 MORE SYNTHESIS RESULTS

We present more qualitative results for the unseen image synthesis via our proposed latent geometric
sampling in this section, in Fig. 8, Fig. 9 and Fig. 10.
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Figure 7: Qualitative results from the fine-tuned diffusion models on different domains. We
show qualitative examples for the domain human faces, bedrooms and churches generated from
fine-tuned diffusion models using the same amount of OOD images (1K).

The geometric optimization for the second round of rejection is important to improve the quality
of sampled OOD latent encodings: it provides additional domain-specific information to further
regularize the estimated Gaussian. We show the effect of geometric optimization on the synthesis
performance in Tab. 5. The setting with Nref = 1 refers to only using the pair-wise distance do as
the rejection criterion (since the angle criterion requires at least two reference sample points).

Intuitively, more reference OOD samples for geometric optimization should be in general beneficial
to guarantee and improve the quality of sampled latent encodings. In practice, we empirically observe
Nref = 3 ∼ 4 to be a reasonable number. With a larger number for Nref , we tend to increase the
rejection rate, leading to a trade-off between synthesized quality and sampling difficulty.

F.6 EMPIRICAL RESULTS FOR CLARIFICATION ON THE MODE COLLAPSE ISSUE

While we have clarified that the mode collapse is an intrinsically different problem that does not
exist in this work, we also provide the raw OOD images used for unseen latent estimations and
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Figure 8: More qualitative results from the unseen image synthesis task for the human faces
image domain. Using the iDDPM trained on AFHQ-Dog as the base model.

Figure 9: More qualitative results from the unseen image synthesis task for the churches image
domain. Using the iDDPM trained on AFHQ-Dog as the base model.

geometric optimizations as empirical demonstrations in Fig. 11, Fig. 12, and Fig. 13. Compared to
the synthesized images in their respective domains, we again demonstrate that the challenge in this
work is different from “mode collapse” as in previous works.
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Figure 10: More qualitative results from the unseen image synthesis task for the bedrooms image
domain. Using the iDDPM trained on AFHQ-Dog as the base model.

OOD Domains CelebA Church Bedroom
Nref = 1 47.7 46.4 45.1
Nref = 2 44.5 45.2 44.8
Nref = 3 43.8 44.6 43.3
Nref = 4 43.5 43.9 43.4

Table 5: Ablation on the effects of geometric optimization. We report the FID scores for unseen
domain image synthesis with different numbers of spatial reference OOD sample points. Note that
we need a minimum of 2 OOD reference encodings to verify the pair-wise angle rejection criteria.

Figure 11: Examples of raw human face images used for domain knowledge supplementary (i.e.,
OOD Gaussian estimation and geometric optimizations) in our proposed UnseenDiffusion.
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Figure 12: Examples of raw church images used for domain knowledge supplementary (i.e.,
OOD Gaussian estimation and geometric optimizations) in our proposed UnseenDiffusion.

Figure 13: Examples of raw bedroom images used for domain knowledge supplementary (i.e.,
OOD Gaussian estimation and geometric optimizations) in our proposed UnseenDiffusion.
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