
Bayesian Optimization for Protein Sequence Design:
Back to Simplicity with Gaussian Processes

Carolin Benjamins ∗

Leibniz University Hannover
c.benjamins@ai.uni-hannover.de

Shikha Surana
InstaDeep Ltd.

Oliver Bent
InstaDeep Ltd.

Marius Lindauer
Leibniz University Hannover

L3S Research Center

Paul Duckworth
InstaDeep Ltd.

Abstract

Bayesian optimization (BO) is a popular sequential decision making approach for
maximizing black-box functions in low-data regimes. In biology, it has been used
to find well-performing protein sequence candidates since gradient information
is not available from in vitro experimentation. Recent in silico design methods
have leveraged large pre-trained protein language models (PLMs) to predict protein
fitness. However PLMs have a number of shortcomings for sequential design
tasks: i) their current limitation to model uncertainty, ii) the lack of closed-form
Bayesian updates in light of new experimental data, and iii) the challenge of fine-
tuning on small downstream task datasets. We take a step back to traditional BO
by investigating Gaussian process (GP) surrogate models with various sequence
kernels, which are able to properly model uncertainty and update their belief over
multi-round design tasks. We empirically evaluate our method on the sequence
design benchmark ProteinGym, and demonstrate that BO with GPs is competitive
with large SOTA pre-trained PLMs at a fraction of the compute budget.

1 Introduction

Evolution encodes functional information within amino acid sequences. Understanding the effects of
sequence mutations on function is a fundamental problem for designing new proteins. Traditionally,
directed evolution [Arnold, 1998] methods have been employed to sequentially optimize proteins
to obtain better characteristics, where each round consists of random mutagenesis, gene recombi-
nations, screening and selection. This process is slow, labor-intensive, and requires costly in-vitro
infrastructure. Consequently, it is of significant interest to explore efficient in-silico sequence design
methodologies.

Labeled protein sequence datasets that link amino acid sequences to quantitative measurements
of relevant biological properties are increasingly available [Rao et al., 2019, Dallago et al., 2021,
Trabucco et al., 2022, Notin et al., 2023a, Groth et al., 2023]. However, due to experimental limitations
during dataset creation, it may only be practical to obtain measurements for dozens or a few hundred
proteins at a time [Biswas et al., 2021]. To this end, the focus is on sequence design methodologies
that efficiently use small labeled datasets to accelerate real-world experimentation.

A concurrent trend in protein sequence design considers large pre-trained protein language models
(PLMs), which take string sequences as input, and fine-tune task-specific downstream predictive

∗Work completed during an internship at InstaDeep Ltd.

AI4MAT Workshop at 38th Conference on Neural Information Processing Systems (NeurIPS 2024).

protein
sequence 🧬

protein
sequence 🧬 protein
sequence 🧬

protein
sequence ENCODING

sequence

mutation-code

FSDLWKLLPENNVLS…

M1A

query fitness train surrogate
model (GP)

KERNEL

string

fingerprintpropose new candidates
with acquisition function

🧬

Figure 1: Traditional Bayesian optimization design loop using Gaussian process (GP) models for
protein sequence design with string or fingerprint kernels. A surrogate model is trained with protein
sequences and their fitness value to approximate the underlying objective function. For this, the
sequences need to be represented, either via the sequence of amino-acids or as a mutation-code
relative to a specific wild-type protein being optimized. The GP kernel measures similarity between
protein sequences and can either directly work on the representation string or on fingerprints. Based
on the surrogate model, the acquisition function proposes new and promising protein sequence
candidates to evaluate next.

models; a review of the field is provided in Ruffolo and Madani [2024]. However, whilst being strong
supervised fitness predictors, PLMs have a number of shortcomings for design, such as: they are
computationally expensive to train and fine-tune; they have no closed-form or efficient Bayesian
update rule to incorporate new experimental data; they lack formal methods to model predictive
uncertainty and do not generalize well outside of training data distributions [Gruver et al., 2021,
Greenman et al., 2023, Tagasovska et al., 2024]; and fine-tuning large models on small downstream
task data is often challenging due to hyperparameters and overfitting.

In this work, we take a step back to simplicity and consider Gaussian process (GP) surrogate models
with various string and fingerprint kernels suitable for longer protein sequences than previously
possible [Griffiths et al., 2023]. Whilst GP models have been used to optimize proteins and antibody
designs previously [Belanger et al., 2019, Khan et al., 2023] via Bayesian optimization (BO) [Mockus,
1989, Garnett, 2023], those works specifically focused on small regions of the sequence (at most
11 amino acids), and not the high dimensional sequence design setting required for real world
protein design, which can be hundreds of amino acids. For an overview of high-dimensional BO
literature, see Kim et al. [2021], Santoni et al. [2024], González-Duque et al. [2024]. Our classical
BO setup demonstrates competitive performance compared to large pre-trained PLMs on a real-world
benchmark, with a tremendously small fraction of the resources required for training and optimization
(often running in minutes only on CPU), whilst being a general approach to optimize any protein
landscape without prior knowledge.

2 Methodology

BO is a sequential decision making approach that maximizes black-box functions in a sample-efficient
way. For black-box functions, we can only observe the input and the output, but not the gradients.
Thus, the key idea is to sequentially learn and utilize a surrogate predictive model to efficiently
explore the design space. Instead of PLMs we consider GP models to guide the design. They are the
default choice in BO [Mockus, 1989, Garnett, 2023].

The choice of the kernel in the GP model represents the covariance function and determines the
majority of the generalization properties, enabling posterior model uncertainty and robust out-of-
distribution behaviour. We first define the problem setting, then describe protein encodings and
how to translate the encodings for the kernels, and finally recap the BO design loop, which is also
summarized in Figure 1.

Problem setting Formally, in black-box optimization we aim to find the candidate x∗ ∈ X in
the design space X with the maximum fitness of a given black-box function f : X −→ R: x∗ =
argmaxx∈X f(x). In our case, it is finding the highest fit protein sequence candidate with the fewest
number of function evaluations. Protein sequence optimization in high-dimensions is challenging due
to the combinatorial design space, i.e., there are kl possible sequences (number of amino-acids (AAs)
k and sequence length l). For this reason, we restrict the search space to a pool of candidates with
corresponding fitness values.

2

Sequence encoding As proteins are often encoded as a string of hundreds of amino-acids (AAs),
they need encoding to obtain a numerical representation. We utilize single-mutant protein landscapes
from ProteinGym [Notin et al., 2023a] and investigate two different sequence representations: (i) the
sequence string of AA tokens (between 86 and 724 in length), and (ii) the mutation-code to wild-type
sequence. The mutation-code represents a single mutation relative to a wild-type sequence as a tuple
of the AA to be replaced, the position of the mutation, and the new AA, e.g. M12A, resulting in a
compact representation of symbols instead of a long sequence of mostly repeated AAs. To the best of
our knowledge, we do not know of any work using mutation-codes as encodings for protein sequence
design. In order to use fingerprint kernels (described next), we convert the sequence representation
into binary vectors, where each AA in the sequence is replaced by its index in the AA alphabet. The
integer index is then represented as binary, e.g. for a sequence of length 86 AAs we obtain a binary
vector of length 86 · 5 (number of digits to represent the 20 AA library in binary form).

GP kernels A Gaussian process (GP) is a stochastic process that specifies the full distribution over
the black-box function f(x) ∼ N (m(x), k(x, x′)), with m(x) as its mean function and k(x, x′) as
its covariance function or kernel. The kernel should be specified such that similar candidates yield
similar predictions [Rasmussen and Williams, 2006]. Therefore, GP kernels act as an inductive
bias over the underlying optimization landscape. Kernel functions have hyperparameters such as
the lengthscale, which can be optimized during model training. In biology, there are kernels for
fingerprints, strings, and graphs [Griffiths et al., 2023]. String kernels are directly applicable to both
encoding types: sequence and mutation-code. Molecular fingerprints usually are an enumeration of
subgraphs that are hashed into a binary vector. As fingerprint kernels we use Dice, Forbes [Forbes,
1925], Innerproduct, Intersection, Minmax, Otsuka, Russell-Rao, Sorgenfrei and Tanimoto. As string
kernel we use the subsequence string kernel (SSK) [Lodhi et al., 2002, Cancedda et al., 2003, Beck
and Cohn, 2017, Moss et al., 2020]. Although the SSK on classic protein sequences has the drawbacks
of being computationally inefficient and not considering the positions of subsequences [Stanton et al.,
2022], this is alleviated by using the mutation-code representation, which is a drastically shorter rep-
resentation and contains the position of the mutation. All kernels are provided in GAUCHE [Griffiths
et al., 2023]. For more details see Appendix A.2.

Bayesian optimisation Generally, in BO, the probabilistic surrogate model (here, a GP with finger-
print or string kernels) is an iteratively refined approximation of the black-box problem that guides
the optimization process. BO starts with an initial design, obtained from quasi-random sampling
strategies [Brochu et al., 2010]. With these initial evaluated candidates, the surrogate model is trained
to approximate the unknown black-box function. It captures the uncertainty of the true function
value for unobserved candidates. Then an iterative loop begins: the acquisition function, which is
a utility function trading off exploration and exploitation, proposes the next candidates to evaluate
based on the surrogate model predictions and uncertainty. In the case of proposing one candidate per
round, it is the candidate with the highest acquisition function value. In the batch setting, several
candidates can be proposed leveraging various criteria [Desautels et al., 2014, González et al., 2016,
Wu and Frazier, 2016, Neiswanger et al., 2022]. The surrogate model is then updated with the new
observation(s), and the current best candidate is updated. These steps are repeated usually for a given
overall optimization budget.

3 Experiments

Experimental setup We evaluate our BO methodology on protein sequences available in the Prote-
inGym benchmark [Notin et al., 2023a]. We follow the evaluation protocol introduced in Notin et al.
[2023b] and Hawkins-Hooker et al. [2024]. The optimization task is as follows: for a given protein
“wild-type”, i.e. a given fitness landscape, find the highest-scoring mutated sequence within the fewest
number of trials. This benchmark focuses on single mutations from the wild-type, that is, our dataset
consists of sequences where only one amino acid has been edited compared to the original sequence.
As per the design setting introduced in Notin et al. [2023b], we have 10 optimisation rounds, in each
round we acquire 100 new candidates and fitness values to include in the surrogate model training
dataset. This setting resembles in vitro experiments where batches of newly proposed sequences are
sent to the lab for evaluation in each round and the returned fitness values are incorporated into the
model. As the acquisition function we use Log Expected Improvement [Mockus et al., 1978, Ament
et al., 2023], which selects the candidates from a pool consisting of all single-mutant sequences
recorded in the dataset for that wild-type. To propose a batch of candidates we select the top 100

3

candidates based on their acquisition value. We repeat the experiment for 3 random seeds, and
compare the top-30% recall over the candidate pool, and report area-under-curve (AUC) where higher
is better (details in Appendix Appendix A.5).

Baselines We compare against three large pre-trained PLM baseline approaches: ESM2 [Meier et al.,
2021], PoET [Truong Jr and Bepler, 2023] and ProteinNPT [Notin et al., 2023b]. ESM2 is a 8 million
parameter pre-trained masked language model. We pass the average sequence embeddings through
a linear regression layer to predict fitness, and fine-tune all parameters. PoET is a family-based
autoregressive model that additionally takes multiple-aligned sequences (MSA) as additional context,
and pass the final token embedding through a linear regression layer to predict fitness, similarly
fine-tuning all layers. ProteinNPT uses frozen-embeddings from MSA Transformer [Rao et al.,
2019] and fine-tunes only the non-parametric transformer layers. We use Monte Carlo dropout [Gal
and Ghahramani, 2016] to obtain uncertainty estimates, as per the open sourced code [Notin et al.,
2023b]. For both ESM2 and PoET we use a greedy acquisition function, and for ProteinNPT we use
UCB [Auer, 2002, Srinivas et al., 2010]. Besides PLM baselines we also compare to random search.

Protein Design Results In Figure 2 (left) we plot the multi-round sequence design top 30% recall
and AUC for the baseline PLMs and best performing GP models: sequence (seq.) and mutant-code
(mut.). This is averaged over eight single-mutant ProteinGym landscapes. We present per-landscape
results in Appendix A.7, including all GP kernel variants alongside the baseline methods.

We can clearly see that PoET and ProteinNPT are the current SOTA on the ProteinGym sequence
design benchmark. However, it is worth considering that the baseline PLMs have access to two sources
of privileged information: (i) a large pre-training corpus of millions of unlabeled protein sequences,
and (ii) PoET and ProteinNPT additionally rely on MSA sequences to create their embeddings (which
for ProteinNPT are frozen-embeddings from the MSA Transformer). This provides a significant
advantage to those two PLMs as demonstrated in our results.

Runtime Results Figure 2 (right) presents the multi-round design run-time (on a log x-axis)
interpreted as the total cost of hardware for each design method, averaged over the eight landscapes.
Note that this does not include the considerable pre-training compute budget required for the PLM
baselines. We can see that the fingerprint kernels on mutation-code representation are extremely
fast, running entirely on CPU. Similarly, the sequence-based GP kernels also are significantly more
efficient than the fine-tuning regimes of PLMs. The traditional GP methods only require a fraction
of the total compute budget as opposed to the PLM baselines, which require many GPU hours for
both pre-training and fine-tuning per round. Runtimes and cost are to be found in more detail in
Appendix Table 2.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of total rounds

0.2

0.4

0.6

0.8

To
p

30
%

 re
ca

ll

ProteinNPT (5.0373)
PoET (4.9138)
*GP SSK (mut) (4.5237)
ESM-2 (4.1125)
*GP Forbes (seq) (3.9798)
Random Selector (3.4464)

10 2 101

GCP Cost (in $)

Random Selector

*GP Forbes (seq)

ESM-2

*GP SSK (mut)

PoET

ProteinNPT

Figure 2: Multi-round design averaged over eight single-mutant protein landscapes. Left: Top-30%
recall (mean and 95%-CI). Our methods are highlighted with ∗. Right: Wall-clock runtime interpreted
across hardware as compute costs. Our GP with string (SSK) or fingerprint (Forbes) kernels are
competitive with PLM baselines whilst only requiring a fraction of runtime and no pre-training.

4

4 Limitations and Future Work

This workshop paper comprises of work-in-progress, and there are limitations and avenues to build
upon in future work. One limitation of our method is that it does not leverage the additional
knowledge encoded in the pre-trained PLMs. Therefore, we consider using PLMs to inform a learned
kernel function, as in Khan et al. [2022], or a prior mean function. We explore using zero-shot PLM
predictions as a prior mean function in Benjamins et al. [2024], improving performance over using a
constant mean. In addition, string kernels might be even more expressive when the hyperparameters
of the kernel can be optimized. This has not been possible so far with high dimensional protein
sequences due to GPU memory constraints, creating a need for a more efficient implementation. For
future work, we plan to extend and evaluate our methodology for multi-mutant landscapes. Another
avenue is to investigate BO based on learned embeddings which are updated during optimization
together with end-to-end optimization of the acquisition function, similar to Stanton et al. [2022].
Additionally, we intend to investigate the exploration-exploitation trade-off specifically maximizing
information over batches, as explored in [Belanger et al., 2019], either by automatically adjusting the
trade-off over time as in [Benjamins et al., 2023], or by employing diversity-generating acquisition
functions [Neiswanger et al., 2022].

5 Conclusion

This work identifies a promising research avenue for traditional BO with GPs to tackle multi-round
protein design. With appropriate kernels, longer protein sequences than previously possibly can
be optimised. We demonstrate the competitiveness of BO with classic GPs compared to SOTA
PLM approaches that require large pre-training datasets, substantial fine-tuning budgets, and often
privileged MSA sequences; whilst only requiring a fraction of the compute budget. We believe
probabilistic surrogates hold value, especially in large design spaces where generalisation and
uncertainty-driven acquisitions are important.

References
S. Ament, S. Daulton, D. Eriksson, M. Balandat, and E. Bakshy. Unexpected improvements to

expected improvement for bayesian optimization. In NeurIPS 2023, 2023. 3, A.3

F. Arnold. Design by directed evolution. Accounts of chemical research, 31(3):125–131, 1998. 1

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., 3:
397–422, 2002. 3

M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. Wilson, and E. Bakshy. Botorch: A
framework for efficient monte-carlo Bayesian optimization. In Larochelle et al. [2020]. A.3

D. Beck and T. Cohn. Learning kernels over strings using gaussian processes. In IJCNLP 2017,
pages 67–73, 2017. 2, A.2

D. Belanger, S. Vora, Z. Mariet, R. Deshpande, D. Dohan, C. Angermueller, K. Murphy, O. Chapelle,
and L. Colwell. Biological sequence design using batched bayesian optimization. In NeurIPS
2019 Workshop on Machine Learning and the Physical Sciences, 2019. 1, 4

C. Benjamins, E. Raponi, A. Jankovic, C. Doerr, and M. Lindauer. Self-adjusting weighted expected
improvement for bayesian optimization. In A. Faust, C. White, F. Hutter, R. Garnett, and J. Gardner,
editors, Proceedings of the Second International Conference on Automated Machine Learning.
Proceedings of Machine Learning Research, 2023. 4

C. Benjamins, S. Surana, O. Bent, M. Lindauer, and P. Duckworth. Bayesian optimisation for protein
sequence design: Gaussian processes with zero-shot protein language model prior mean. In
Machine Learning in Structural Biology Workshop at NeurIPS 2024, 2024. 4

S. Biswas, G. Khimulya, E. Alley, K. Esvelt, and G. Church. Low-N protein engineering with
data-efficient deep learning. Nature Methods, 18(4):389–396, 2021. 1

5

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv:1012.2599v1 [cs.LG], 2010. 2

N. Cancedda, E. Gaussier, C. Goutte, and J.M. Renders. Word sequence kernels. Journal of Machine
Learning Research, 3:1059–1082, 2003. 2, A.2

C. Dallago, J. Mou, K. Johnston, B. Wittmann, N. Bhattacharya, S. Goldman, A. Madani, and
K. Yang. FLIP: Benchmark tasks in fitness landscape inference for proteins. bioRxiv, 2021. 1

T. Desautels, A. Krause, and J. Burdick. Parallelizing exploration-exploitation tradeoffs in gaussian
process bandit optimization. JMLR, 15(1):3873–3923, 2014. 2

S. Forbes. Method of determining and measuring the associative relations of species. Science, 61
(1585):518–524, 1925. 2, A.2

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In ICML 2016, volume 48, pages 1050–1059, 2016. 3

R. Garnett. Bayesian Optimization. Cambridge University Press, 2023. Available for free at
https://bayesoptbook.com/. 1, 2

J. González, Z. Dai, P. Hennig, and N. Lawrence. Batch bayesian optimization via local penalization.
In AISTATS 2016, 2016. 2

M. González-Duque, R. Michael, S. Bartels, Y. Zainchkovskyy, S. Hauberg, and W. Boomsma. A
survey and benchmark of high-dimensional bayesian optimization of discrete sequences. arXiv
preprint arXiv:2406.04739, 2024. 1

K. Greenman, A. Amini, and K. Yang. Benchmarking uncertainty quantification for protein engineer-
ing. bioRxiv, 2023. doi: 10.1101/2023.04.17.536962. 1

R. Griffiths, L. Klarner, H. Moss, A. Ravuri, S. Truong, Y. Du, S. Stanton, G. Tom, B. Rankovic,
A. Rokkum Jamasb, A. Deshwal, J. Schwartz, A. Tripp, G. Kell, S. Frieder, A. Bourached, A. Chan,
J. Moss, C. Guo, J. Peter Dürholt, S. Chaurasia, J. Won Park, F. Strieth-Kalthoff, A. Lee, B. Cheng,
A. Aspuru-Guzik, P. Schwaller, and J. Tang. GAUCHE: A library for gaussian processes in
chemistry. In NeurIPS 2023, 2023. 1, 2, A.2, A.3

P. Groth, R. Michael, P. Tian, J. Salomon, and W. Boomsma. FLOP: Tasks for fitness landscapes of
protein families using sequence- and structure-based representations, 2023. 1

Nate Gruver, Samuel Stanton, Polina Kirichenko, Marc Finzi, Phillip Maffettone, Vivek Myers, Emily
Delaney, Peyton Greenside, and Andrew Gordon Wilson. Effective Surrogate Models for Protein
Design with Bayesian Optimization. In The 2021 ICML Workshop on Computational Biology,
2021. 1

A. Hawkins-Hooker, J. Kmec, O. Bent, and P. Duckworth. Likelihood-based fine-tuning of protein
language models for few-shot fitness prediction and design. bioRxiv, pages 2024–05, 2024. 3

A. Khan, A. Cowen-Rivers, A. Grosnit, D. Deik, P. Robert, V. Greiff, E. Smorodina, P. Rawat,
R. Akbar, K. Dreczkowski, R. Tutunov, D. Bou-Ammar, J. Wang, A.s Storkey, and H. Bou-Ammar.
Toward real-world automated antibody design with combinatorial Bayesian optimization. Cell
Reports Methods, 3:100374, 2023. 1

M. Khan, A. Cowen-Rivers, D. Deik, A. Grosnit, K. Dreczkowski, P. Robert, V. Greiff, R. Tutunov,
D. Bou-Ammar, Jun Wang, and Haitham Bou-Ammar. Antbo: Towards real-world automated
antibody design with combinatorial bayesian optimisation. CoRR, abs/2201.12570, 2022. 4

S. Kim, P. Lu, C. Loh, J. Smith, J Snoek, and M. Soljačić. Deep learning for bayesian optimization
of scientific problems with high-dimensional structure. arXiv preprint arXiv:2104.11667, 2021. 1

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR, 2015. A.6

6

https://bayesoptbook.com/

H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and H. Lin, editors. Proceedings of the 34th
International Conference on Advances in Neural Information Processing Systems (NeurIPS’20),
2020. 5

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels. Journal of Machine Learning Research, 2(Feb):419–444, 2002. 2, A.2

J. Meier, R. Rao, R. Verkuil, J. Liu, T. Sercu, and A. Rives. Language models enable zero-shot
prediction of the effects of mutations on protein function. In NeurIPS 2021, volume 34, pages
29287–29303, 2021. 3

J. Mockus. Bayesian Approach to Global Optimization. Theory and Applications. Kluwer Academic
Publishers, 1989. 1, 2

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum.
Towards Global Optimization, 2(117-129), 1978. 3, A.3

H. Moss, D. Beck, J. Gonzàles, D. Leslie, and P. Rayson. BOSS: Bayesian optimization over string
spaces. In Larochelle et al. [2020]. 2

H. Moss, D. Leslie, and P. Rayson. MUMBO: Multi-task max-value Bayesian optimization. In
F. Hutter, K. Kersting, J. Lijffijt, and I. Valera, editors, Machine Learning and Knowledge Discovery
in Databases (ECML/PKDD’20), volume 12459, pages 447–462, 2021. A.2

W. Neiswanger, L. Yu, S. Zhao, C. Meng, and S. Ermon. Generalizing bayesian optimization with
decision-theoretic entropies. In NeurIPS 2022, 2022. 2, 4

P. Notin, A. Kollasch, D. Ritter, L. van Niekerk, S. Paul, H. Spinner, N. Rollins, A. Shaw, R. Orenbuch,
R. Weitzman, J. Frazer, M. Dias, D. Franceschi, Y. Gal, and D. Marks. ProteinGym: Large-scale
benchmarks for protein fitness prediction and design. In Advances in Neural Information Processing
Systems, volume 36, pages 64331–64379, 2023a. 1, 2, 3, A.1, 1

P. Notin, R. Weitzman, D. Marks, and Y. Gal. Proteinnpt: Improving protein property prediction
and design with non-parametric transformers. In NeurIPS 2023, volume 36, pages 33529–33563,
2023b. 3, A.1, A.6

R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, P. Chen, J. Canny, P. Abbeel, and Y. Song. Evaluating
Protein Transfer Learning with TAPE. In NeurIPS 2019, volume 32, 2019. 1, 3

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006. 2

J. Ruffolo and A. Madani. Designing proteins with language models. nature biotechnology, 42(2):
200–202, 2024. 1

M. Santoni, E. Raponi, R. Leone, and C. Doerr. Comparison of high-dimensional bayesian opti-
mization algorithms on bbob. ACM Transactions on Evolutionary Learning, 4(3):1–33, 2024.
1

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting:
No regret and experimental design. In J. Fürnkranz and T. Joachims, editors, Proceedings of the
27th International Conference on Machine Learning (ICML’10), pages 1015–1022. Omnipress,
2010. 3

S. Stanton, W. Maddox, N. Gruver, P. Maffettone, E. Delaney, P. Greenside, and A.G. Wilson.
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders.
In ICML, pages 20459–20478, 2022. 2, 4

N. Tagasovska, J. Park, M. Kirchmeyer, N. Frey, A. Watkins, A. Ismail, A. Jamasb, E. Lee, T. Bryson,
S. Ra, et al. Antibody domainbed: Out-of-distribution generalization in therapeutic protein design.
In ICLR, 2024. 1

B. Trabucco, X. Geng, A. Kumar, and S. Levine. Design-bench: Benchmarks for data-driven offline
model-based optimization. In ICML, pages 21658–21676, 2022. 1

7

T. Fei Truong Jr and T. Bepler. PoET: A generative model of protein families as sequences-of-
sequences. In NeurIPS, 2023. 3

J. Wu and P. Frazier. The parallel knowledge gradient method for batch Bayesian optimization. In
D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, 2016. 2

8

A Appendix / supplemental material

A.1 Protein landscapes

We use the set of eight single-mutant landscapes selected for ablations and hyperparameter selection
in Notin et al. [2023b] included in ProteinGym [Notin et al., 2023a], see Table 1 for an overview of
each landscape.

Table 1: Single-mutant Protein Landscapes from ProteinGym [Notin et al., 2023a]
Landscape Sequence Length Number of Sequences

TAT-HV1BR-Fernandes-2016 86 1577
REV-HV1H2-Fernandes-2016 116 2147
RL40A-YEAST-Roscoe-2013 128 1195
CALM1-HUMAN-Weile-2017 149 1813
DYR-ECOLI-Thompson-2019 159 2363
BLAT-ECOLX-Jacquier-2013 286 989
P53-HUMAN-Giacomelli-2018-WT-Nutlin 393 7467
DLG4-RAT-McLaughlin-2012 724 1576

A.2 String and Fingerprint Kernels

The kernel k(x, x′)) measures similarity between inputs and acts as an inductive bias over the
underlying optimization landscape. Kernel functions have hyperparameters such as the lengthscale,
which can be optimized during model training. String kernels operate on strings or a sequence of
symbols and mostly compare the similarity of their sub-strings. In our case the string is either a
sequence of an alphabet of 20 amino acids (length l up to hundreds) or the mutation-code (length
l = 3) of an alphabet of 20 amino acids plus the number of possible mutation locations. More
formally, our alphabet A is the set of k symbols A = {s0, ..., sk} (|A| = k). Then our vector space
is Al with l being the sequence length. Each element x ∈ Al is a vector x = (x0, x1, ..., xl) with
xi ∈ A∀i = 1, 2, ..., l.

The subsequence string kernel (SSK) [Lodhi et al., 2002, Cancedda et al., 2003, Beck and Cohn, 2017,
Moss et al., 2021] we use as provided by GAUCHE [Griffiths et al., 2023] compares sub-strings of
length n (set to n = 5). The sub-sequences are used as features and can be non-contiguous. An SSK
(n-th) order between to strings x and x′ is defined as:

kSSK(x, x
′) =

∑
u∈An

cu(x) · cu(x′)

with
cu(s) = λ|u|

m

∑
1<i1<···<i|u|<|s|

λ
i|u|−i1
g 1u((si1 , . . . , si|u|)) ,

where An is the set of all possible ordered collections containing up to n characters from the alphabet
A, 1x(x

′) the indicator function if strings x and x′ are equal. The contribution of a subsequence
u to a string s is measured by cu(s). The kernel hyperparameters are the match decay λm ∈ [0, 1]
and the gap decay λg ∈ [0, 1]. They control the weighting of long and/or highly non-contiguous
sub-strings. The kernel is normalized k̃SSK(x, x

′) = kSSK(x, x
′)/

√
kSSK(x, x)kSSK(x′, x′) to be able

to meaningfully compare strings of varied lengths.

Fingerprint kernels do not operate on the alphabet of symbols but on a binary vector, thus x, x′ ∈
{0, 1}d (d length of vector). For example, the Forbes kernel [Forbes, 1925] is defined as

kForbes(x, x
′) = σ2

f · d · ⟨x, x′⟩
∥x∥+ ∥x′∥

with ∥·∥ the Euclidean norm.

9

A.3 Hyperparameters

For our BO with GPs we use Botorch [Balandat et al., 2020] with prior zero mean, LogEI [Mockus
et al., 1978, Ament et al., 2023] and kernels from GAUCHE [Griffiths et al., 2023]. We standardize
the response values and use standard hyperparameters.

A.4 Hardware

For our experiments we used NVIDIA-A100-SXM4-80GB GPU for the PLM baselines and BO with
the SSK kernel. For the remaining experiments we used AMD EPYC 7452 CPUs.

A.5 Metrics

Top 30% Recall We define the top 30% recall as follows: The number of acquired candidates who
have a fitness value higher equal the threshold divided by the number of candidates in the pool with a
fitness value higher than the threshold. The threshold marks the lowest fitness value of the top 30%
of all candidates in the pool. It represents how many relevant items have been retrieved so far. For the
design curves aggregating results over all tasks we first average over tasks and plot the 95%-CI over
the seeds. To account for the different number of rounds we normalize the rounds and interpolate the
values accordingly. The per-task design curves are based on the raw data.

AUC We calculate the area-under-curve (AUC) as the integral of the top 30% recall over rounds. For
the aggregation over tasks we average the top 30% recall over tasks first and then calculate AUC per
seed.

A.6 Baseline models

Hyperparameters for the fine-tuning PLM methods is consistent with the practice used to select
hyperparameters for the baselines from ProteinNPT.

ESM-2 and PoET models were fine-tuned using the Adam optimizer [Kingma and Ba, 2015] using
gradient accumulation with an effective batch size of 32. Learning rates were selected in each case
after a sweep over the values {10−4, 3 · 10−5, 10−5} on the eight single mutant landscapes.

Linear regression heads were added to embeddings extracted from PoET and ESM-2. In the former
case, we used final token embeddings, and in the latter case we averaged embeddings across the
sequence dimension before feeding them to the regression head.

ProteinNPT was run using the code released by [Notin et al., 2023b]. We refer to [Notin et al.,
2023b] for further details. We used the Monte Carlo dropout uncertainty quantification strategy
proposed by [Notin et al., 2023b] for ProteinNPT. Notin et al. [2023b] report best results with a
‘hybrid’ uncertainty quantification strategy, however this strategy is not implemented in the publicly
available code.

A.7 Design curves and AUC Per Landscape

Upon inspecting the following individual landscape results, the general trend is that the PLMs
ProteinNPT and PoET are most performant. However, when we also consider cost and expertise
required for pre-training, fine-tuning and inference and in-context learning for PLMs, our GP setup
is more accessible. Per landscape the exact order of performance changes and some landscapes
are more challenging than others (P53-HUMAN-Giacomelli-2018-WT-Nutlin vs. RL40A-YEAST-
Roscoe-2013). When we compare the encoding, the mutation-code is more performant than sequence
encoding which matches the intuition that the mutation-code carries semantic information, i.e. what
amino acid has been switched where.

10

0 2 4 6 8 10
Round

0.0

0.2

0.4

0.6

0.8

To
p

30
%

 re
ca

ll

PoET (4.1123)
ProteinNPT (4.1103)
*GP SSK (mut) (3.8509)
ESM-2 (3.7893)
*GP Forbes (seq) (3.7586)
Random Selector (3.0687)

3.0 3.2 3.4 3.6 3.8 4.0
AUC

PoET

ProteinNPT

*GP SSK (mut)

ESM-2

*GP Forbes (seq)

Random Selector

TAT_HV1BR_Fernandes_2016

0 2 4 6 8 10
Round

0.2

0.4

0.6

To
p

30
%

 re
ca

ll

ProteinNPT (3.0764)
PoET (3.0325)
ESM-2 (2.8368)
*GP SSK (mut) (2.8336)
*GP Forbes (seq) (2.5073)
Random Selector (2.3792)

2.4 2.6 2.8 3.0
AUC

ProteinNPT

PoET

ESM-2

*GP SSK (mut)

*GP Forbes (seq)

Random Selector

REV_HV1H2_Fernandes_2016

0 2 4 6 8 10
Round

0.2

0.4

0.6

0.8

1.0

To
p

30
%

 re
ca

ll

ProteinNPT (6.8188)
PoET (6.5573)
*GP SSK (mut) (6.2342)
*GP Forbes (seq) (5.5321)
ESM-2 (5.3464)
Random Selector (4.1857)

4.0 4.5 5.0 5.5 6.0 6.5
AUC

ProteinNPT

PoET

*GP SSK (mut)

*GP Forbes (seq)

ESM-2

Random Selector

RL40A_YEAST_Roscoe_2013

0 2 4 6 8 10
Round

0.2

0.4

0.6

To
p

30
%

 re
ca

ll

PoET (3.4355)
ProteinNPT (3.3601)
*GP SSK (mut) (3.0295)
ESM-2 (2.9376)
*GP Forbes (seq) (2.8315)
Random Selector (2.7787)

2.8 3.0 3.2 3.4
AUC

PoET

ProteinNPT

*GP SSK (mut)

ESM-2

*GP Forbes (seq)

Random Selector

CALM1_HUMAN_Weile_2017

Figure 3: Design curves for individual single mutant landscapes for baselines and top performing GP
kernels (seq: sequence encoding, mut: mutation encoding).

11

0 2 4 6 8 10
Round

0.0

0.2

0.4

0.6

0.8

To
p

30
%

 re
ca

ll

ProteinNPT (3.7374)
*GP SSK (mut) (3.1538)
PoET (3.0985)
ESM-2 (2.8963)
*GP Forbes (seq) (2.5360)
Random Selector (2.0772)

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
AUC

ProteinNPT

*GP SSK (mut)

PoET

ESM-2

*GP Forbes (seq)

Random Selector

DYR_ECOLI_Thompson_2019

0 1 2 3 4 5 6 7 8
Round

0.2

0.4

0.6

0.8

1.0

To
p

30
%

 re
ca

ll

ProteinNPT (4.5496)
PoET (4.4905)
*GP SSK (mut) (4.0294)
*GP Forbes (seq) (3.4172)
Random Selector (3.3209)
ESM-2 (3.2563)

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6
AUC

ProteinNPT

PoET

*GP SSK (mut)

*GP Forbes (seq)

Random Selector

ESM-2

BLAT_ECOLX_Jacquier_2013

0 2 4 6 8 10
Round

0.0

0.1

0.2

0.3

0.4

To
p

30
%

 re
ca

ll

PoET (1.7014)
ProteinNPT (1.6298)
ESM-2 (1.3851)
*GP SSK (mut) (1.2217)
*GP Forbes (seq) (0.7890)
Random Selector (0.6694)

0.6 0.8 1.0 1.2 1.4 1.6 1.8
AUC

PoET

ProteinNPT

ESM-2

*GP SSK (mut)

*GP Forbes (seq)

Random Selector

P53_HUMAN_Giacomelli_2018_WT_Nutlin

0 2 4 6 8 10
Round

0.2

0.4

0.6

0.8

1.0

To
p

30
%

 re
ca

ll

ProteinNPT (5.1578)
PoET (5.0126)
*GP SSK (mut) (4.5248)
*GP Forbes (seq) (3.8980)
ESM-2 (3.4749)
Random Selector (3.0710)

3.0 3.5 4.0 4.5 5.0
AUC

ProteinNPT

PoET

*GP SSK (mut)

*GP Forbes (seq)

ESM-2

Random Selector

DLG4_RAT_McLaughlin_2012

Figure 4: Design curves for individual single mutant landscapes for baselines and top performing GP
kernels (seq: sequence encoding, mut: mutation encoding).

12

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r

3.0

3.5

4.0

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

3.0

3.5

4.0

AU
C

stringfingerprint sequence
mutation

TAT_HV1BR_Fernandes_2016

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r

2.5

3.0

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

2.5

3.0

AU
C

stringfingerprint sequence
mutation

REV_HV1H2_Fernandes_2016

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r4

5

6

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

4

5

6

AU
C

stringfingerprint sequence
mutation

RL40A_YEAST_Roscoe_2013

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r

3.0

3.5

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

3.0

3.5

AU
C

stringfingerprint sequence
mutation

CALM1_HUMAN_Weile_2017

Figure 5: Final AUC of baselines and all GP kernels. Only SSK is a string kernel, the rest is a
fingerprint kernel.

13

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r

2

3

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

2

3

AU
C

stringfingerprint sequence
mutation

DYR_ECOLI_Thompson_2019

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r

3.0

3.5

4.0

4.5

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

3.0

3.5

4.0

4.5

AU
C

stringfingerprint sequence
mutation

BLAT_ECOLX_Jacquier_2013

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r

1.0

1.5

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

1.0

1.5

AU
C

stringfingerprint sequence
mutation

P53_HUMAN_Giacomelli_2018_WT_Nutlin

ES
M

-2

Po
ET

Pr
ot

ei
nN

PT

Ra
nd

om
 S

el
ec

to
r

3

4

5

AU
C

Di
ce

Fo
rb

es

In
ne

rP
ro

du
ct

M
in

M
ax

Ot
su

ka

Ru
ss

el
lR

ao

So
rg

en
fre

i

Ta
ni

m
ot

o

SS
K

3

4

5

AU
C

stringfingerprint sequence
mutation

DLG4_RAT_McLaughlin_2012

Figure 6: Final AUC of baselines and all GP kernels. Only SSK is a string kernel, the rest is a
fingerprint kernel.

14

Table 2: Final mean AUC averaged over all 8 landscapes and 3 seeds of all surrogate models together
with run time and cost. Ordered by AUC. Best GP variant marked with ‘*’.

AUC Runtime (h) Cost ($)

ProteinNPT 5.0373 5.5038 30.7112
PoET 4.9138 1.2601 7.0314
ESM-2 4.1125 0.1014 0.5659
Random Selector 3.4464 0.0005 0.0001

*GP Forbes (seq) 3.9798 0.0993 0.0285
GP InnerProduct (seq) 3.9267 0.0877 0.0252
GP Sorgenfrei (seq) 3.9259 0.1006 0.0289
GP Otsuka (seq) 3.8541 0.0879 0.0252
GP MinMax (seq) 3.6946 0.0870 0.0250
GP Tanimoto (seq) 3.6946 0.1065 0.0306
GP Dice (seq) 3.6945 0.0853 0.0245
GP SSK (seq) 3.6447 2.6948 0.7734
GP RussellRao (seq) 3.4050 0.0826 0.0237

*GP SSK (mut) 4.5237 2.3998 0.6887
GP MinMax (mut) 4.2354 0.0078 0.0022
GP Tanimoto (mut) 4.2354 0.0085 0.0024
GP Sorgenfrei (mut) 4.1281 0.0085 0.0024
GP Dice (mut) 3.9977 0.0081 0.0023
GP Forbes (mut) 3.9762 0.0094 0.0027
GP RussellRao (mut) 3.8959 0.0087 0.0025
GP InnerProduct (mut) 3.8884 0.0064 0.0018
GP Otsuka (mut) 3.8704 0.0099 0.0028

15

	Introduction
	Methodology
	Experiments
	Limitations and Future Work
	Conclusion
	Appendix / supplemental material
	Protein landscapes
	String and Fingerprint Kernels
	Hyperparameters
	Hardware
	Metrics
	Baseline models
	Design curves and AUC Per Landscape

