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ABSTRACT

Neural decoding from electroencephalography (EEG) remains fundamentally lim-
ited by poor generalization to unseen subjects, driven by high inter-subject vari-
ability and the lack of large-scale datasets to model it effectively. Existing meth-
ods often rely on synthetic subject generation or simplistic data augmentation,
but these strategies fail to scale or generalize reliably. We introduce MultiDiffNet,
a diffusion-based framework that bypasses generative augmentation entirely by
learning a compact latent space optimized for multiple objectives. We decode di-
rectly from this space and achieve state-of-the-art generalization across various
neural decoding tasks using subject and session disjoint evaluation. We also cu-
rate and release a unified benchmark suite spanning four EEG decoding tasks of
increasing complexity (SSVEP, Motor Imagery, P300, and Imagined Speech) and
an evaluation protocol that addresses inconsistent split practices in prior EEG re-
search. Finally, we develop a statistical reporting framework tailored for low-trial
EEG settings. Our work provides a reproducible and open-source foundation for
subject-agnostic EEG decoding in real-world BCI systems.

1 INTRODUCTION

Electroencephalography (EEG) is a widely used modality in brain—-computer interfaces (BCls), sup-
porting applications from assistive communication to cognitive monitoring. Deep learning has im-
proved decoding across motor imagery, SSVEP, and speech tasks|Gu et al.| (2025);/Ahmadi & Mesin
(2025); [Lee & Lee| (2022)), yet generalizing to unseen subjects remains challenging due to high
inter-subject variability and limited dataHuang et al.| (2023)); Barmpas et al.| (2023).

Subject-specific models require extensive per-user calibration [Hartmann et al.| (2018)); Luo & Cai
(2024), while multi-subject models struggle to generalize Rommel et al.| (2022); Liu et al.[ (2022);
Wu| (2016). The alternative is to use two-stage pipelines that generate EEG via GANs or diffusion
and then train decoders (Hartmann et al., [2018}; [Torma & Szegletes, [2025)), but they suffer from low
realism, artifact transfer, and inefficiencies.

We propose MultiDiffNet, a unified multi-objective diffusion framework that learns a shared latent
space, eliminating the need for synthetic augmentation and enhancing generalization. To benchmark
progress, we release a curated suite spanning SSVEP, Motor Imagery, P300, and Imagined Speech
tasks, with standardized subject- and session-disjoint evaluation. We also develop a statistical re-
porting protocol tailored for low-trial EEG research, addressing a persistent gap in reproducibility.

2 RELATED WORK

EEG Decoding and Generalization EEG decoding has evolved from handcrafted features to
deep architectures, with EEGNet emerging as a widely adopted baseline due to its efficient depth-
wise—separable convolutions and lightweight design (Lawhern et al.| [2018)). Recent models explore
transformers (Liao et al., [2025 [Song et al., [2022al) and graph neural networks (Tang et al., 2024;
Hu et al.,[2023)), but EEGNet remains favored for its robustness and simplicity. A key limitation is
poor cross-subject generalization, with 20-40% accuracy drops despite strong within-subject perfor-



mance (Huang et al., 2023} [Barmpas et al.| [2023). Attempts to address this require expensive cali-
bration (Rommel et al., 2022} [Liu et al., [2022; Wul [2016). Scalable BCIs require subject-agnostic
models that generalize without per-user retraining.

Diffusion Models for EEG Denoising Diffusion Probabilistic Models (DDPMs) model data dis-
tributions via iterative denoising and outperform GANs in EEG synthesis by avoiding mode col-
lapse (Tosato et al.,|2023;Ho et al.,|2020). Recent enhancements, such as reinforcement learning (An
et al} |2024) and progressive distillation (Torma & Szegletes| [2025)), have further improved realism
and sampling speed. Diff-E (Kim et al.l 2023) extended diffusion to imagined-speech decoding via
joint reconstruction and classification, but remained task-specific and did not address cross-subject
generalization. Broader research suggests that combining generative and discriminative objectives
yields stronger representations (Chow et al., 2024} (Grathwohl et al., 2019), yet EEG models typi-
cally optimize only one. We explore this joint learning paradigm across diverse EEG tasks, aiming to
learn generalizable representations that capture both signal structure and task-relevant information.

Mixup Methods Signal-level augmentation has evolved from basic jittering and filtering to tempo-
ral, spectral, and channel-wise mixup (Luo & Cail [2025; |Liu et al., 2025} |[Kim et al., 2021} [Pei et al.|
2021; |[Zhang et al., 2017), but many variants introduce unrealistic artifacts that hinder generaliza-
tion. This motivates our systematic evaluation of weighted and temporal input mixup across encoder
layers, along with latent-space mixing

Evaluation Strategies Effective cross-subject EEG decoding requires both rigorous training strate-
gies and standardized evaluation. Leave-one-subject-out (LOSO) validation remains common but
is computationally intensive and impractical for real-time deployment (Del Pup et al., 2025} (Chen
et al., 2025} |[Zhao et al., [2024; |Barmpas et al., 2023} [Kunjan et al.| 2021), while simpler subject
splits often neglect session independence and true seen/unseen separation (Zhang et al.l [2023). We
address it in our work by introducing a standardized subject- and session-disjoint evaluation.

3 METHODOLOGY

3.1 MULTIDIFFNET ARCHITECTURE
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Figure 1: Overview of the MultiDiffNet that jointly optimizes a conditional DDPM, a contrastive
encoder, and a generative decoder through a shared latent space z. The encoder produces discrimi-
native features used for both classification and contrastive learning, while the decoder and DDPM
reconstruct the input signal. An optional femporal masked mixup module stochastically blends the
original, DDPM-denoised, and decoder-reconstructed EEG to improve representation quality.



MultiDiffNet is a modular architecture designed to jointly optimize classification, reconstruction, and
contrastive structure learning from EEG signals. It consists of a Denoising Diffusion Probabilistic
Model (DDPM), a discriminative encoder, a generative decoder, and a classifier (Figure E])

Given araw EEG signal x € RE*T where C is the number of EEG channels and T is the number of
timepoints, the model processes the input in two parallel paths. First, the DDPM denoises the signal
via a learned reverse diffusion process, producing a refined version # € R¢*”. Simultaneously,
the same input z is passed through an EEGNet-based encoder (See Section [3.2) to extract a latent
representation z € R”, where D is the embedding dimension. The latent vector z is then used for
two purposes: (1) it is passed to a lightweight decoder to reconstruct the denoised signal Z, resulting
in a reconstruction g € RE*T; and (2) it is passed to a fully connected classification head to
predict class logits j € RX, where K is the number of classes.

To further structure the latent space, z is locally normalized (Section [3.3) and then projected to

Zproj € RP’, which is optimized with a supervised contrastive loss. All classification and reconstruc-
tion are performed directly from z, without relying on generated augmentations.

We performed an extensive ablation study across architectural variants, modifying the presence of
DDPMs, encoder inputs, decoder pathways, classifier heads, and loss terms. The configuration de-
scribed here reflects the best-performing combination.

3.2 EEGNET-STYLE ENCODER WITH ATTENTION POOL

Given EEGNet’s demonstrated effectiveness across multiple EEG decoding tasks, we adapt its ar-
chitecture as our discriminative encoder, hypothesizing that its proven feature extraction capabilities
can produce powerful latent representations z for our multi-objective framework. Our encoder ex-
tracts multi-scale features (dnq, dns, dns) from different layers and applies attention pooling:

z = AttentionPool (dnz) € R”,

3.3 SUBJECT-WISE LATENT NORMALIZATION

To mitigate inter-subject variability, we apply subject-wise normalization on the encoder output z:

Z — Us
Znorm = P )
s

where 5 and o4 denote the mean and standard deviation computed per subject s using a subset of
training trials. During evaluation, we adopt a two-mode strategy: for seen subjects, normalization
uses pre-computed statistics from their training data; for unseen subjects, statistics are estimated
on-the-fly using their own calibration trials, simulating realistic deployment scenarios.

3.4 MIXUP STRATEGIES

Mixup strategies can improve robustness in low-trial EEG decoding. However, standard mixup tech-
niques may not fully exploit the structure of neural time series. We therefore explore two comple-
mentary strategies: Weighted Average Mixup and a novel Temporal Masked Mixup. Weighted Aver-
age Mixup performs linear interpolation between the original EEG input x, the DDPM-denoised out-
put Z, and the decoder reconstruction x4... We investigate multiple integration points in the model:
(0) Input-level mixup, (1-3) Mixup after encoder layers 1, 2, or 3, respectively, (4) Mixup after the
final attention pooling layer. To address the limitations of global interpolation, we propose Temporal
Masked Mixup, which perturbs only localized segments of the input time series while preserving
surrounding structure. See Algorithm [I|for pseudocode.

3.5 LOSS FUNCTIONS

MultiDiffNet is trained using a weighted sum of three objectives:

Liota = @ Lcemse (9, Y) + B L (Tdees T) 4+ ¥ LsupCon (Zprojs ¥)

classification reconstruction contrastive



Algorithm 1 Temporal Masked Mixup

: Initialize a binary mask M € {0, 1}“*7 with all zeros.
: Flip each 0 in M to 1 with probability p = 0.01.
: for each position in M with value 1 do
Expand to a temporal window of random length (uniform between min and max size).
: end for
: Flipeach 1 in M to —1 with:
* Fixed probability 0.5 (fixed ratio), or
* Probability drawn from Beta(0.2, 0.2) each epoch (random ratio).
7: Apply the final mask:

* 0 — x (original input)
¢ 1 — Z (DDPM output)
e —1 — z4e (decoder output)

We fix o = 1.0 and progressively scale 5 and -y to stabilize training:
. epoch . epoch
= 1.0,—— | - 0. = 1.0,—— ] - 0.2
B8 mln( 0, 100) 0.05, ~ mm( 0, =0 ) 0

Details on loss formulation and weighting strategies are provided in the Appendix.

3.6 EVALUATION METRICS

We evaluate model performance primarily using downstream classification accuracy, which quanti-
fies the proportion of correctly classified EEG samples. Accuracy is defined as:

TP+ TN
TP+TN+ FP+ FN
where TP, TN, FP, and F'N denote true positives, true negatives, false positives, and false nega-

tives, respectively. In addition, we report F1 score, precision, recall, and AUC for a more compre-
hensive evaluation; detailed formulas and results are provided in the Appendix.

Accuracy =

3.7 TREND-LEVEL STATISTICAL REPORTING FRAMEWORK

Conventional p-values often fail under the high-variance, low-trial, subject-disjoint conditions of
EEG decoding. To address this, we introduce a robust trend-level statistical framework (detailed in
the Appendix) that synthesizes effect sizes, cross-seed consistency, and Bayesian posterior probabil-
ities. This allows us to detect systematic, reproducible gains even when classical significance tests
return null results. Our approach represents a principled shift toward reproducible, evidence-based
model evaluation in brain decoding.

While this framework enhances reproducibility, it is not meant to substitute conventional p-value
testing. Instead, it addresses a well-documented limitation: in low-trial, high-variance EEG decod-
ing, even systematic improvements may fail to reach arbitrary significance thresholds. Such small
yet consistent gains—for instance, 2-3% accuracy in imagined speech or SSVEP—can substantially
affect usability in BCI systems. By combining effect sizes, cross-seed consistency, and Bayesian ev-
idence, the framework provides a principled way to surface these domain-relevant improvements,
while remaining fully compatible with classical and non-parametric statistical tests.

4 EXPERIMENTS AND RESULTS

4.1 BENCHMARK DATASET SUITE

We curated four diverse EEG benchmarks (SSVEP, P300, Motor Imagery, and Imagined Speech),
spanning increasing decoding difficulty. Each dataset is split into train, val, and two test sets: a seen-
subject (intra-subject) split and an unseen-subject (cross-subject) split. This standardized protocol



Dataset
(difficulty) *

Task Paradigm

(single trial example)

Decoding Task  # Subjects

Preprocessing

SSVEP
() 311

me‘ stimuli flicker

rest

26-class frequency-
tagged visual 35
decoding

BF (6-90 Hz); downsampled
10 250 Hz; 1s epochs; z-
score norm; 64 EEG
channels x 250 timepoints

P200 12 flashes
™ [15]

Binary target vs.
non-target ERP- a3
based detection

BF (1-24 Hz); s epochs; z-
score norm; 32 EEG
channels x 513 timepoints

Motor
Imagery
w28

rest cue motor imagery

4-class movement
decoding (L/IR 9
hand, foot, tongue)

BF (4-40 Hz); notch (50 H);
no EOG artifacts; 4s epochs;
2-score norm; 22 EEG

channels x 1001 timepoints

11-class phoneme

BF (0.5-50 Hz); notch (60

Imagined
Speech
L) 35]

decoding from
imagined
articulation

Hz); 4.95 epochs; z-score
norm; 62 EEG channels x
4900 timepoints

imagined speech spoken speech

-]

0 2 4 6 B 10 12 14
Time (s)

Figure 2: Overview of four EEG datasets ranked by task difficulty from easiest (top) to hardest
(bottom). Task paradigms and preprocessing details are adapted from the original publications:
SSVEP|Wang et al.|(2017), P300|Korczowski et al.|(2019), Motor Imagery Tangermann et al.[(2012)),
and Imagined Speech Zhao & Rudzicz| (2015).

enables rigorous evaluation of both personalization and generalization, addressing the inconsistent
and often unrealistic split practices prevalent in prior EEG research, where models are evaluated on
mixed subject data or using computationally expensive LOSO.

4.2 BASELINES

We benchmarked our model against a diverse set of carefully selected baselines to ensure robust and
fair comparisons. Our selection criteria were twofold: (i) prioritize architectures that are widely used
for generalization to unseen subjects or sessions, and (ii) cover the main inductive biases found in
EEG decoding, such as spatial filtering, temporal modeling, and attention mechanisms.

Specifically, we include: (1) EEGNet (Lawhern et al.; |2018)), a compact depthwise-separable CNN
that is widely adopted for cross-subject generalization due to its strong accuracy—efficiency trade-off;
(2) ShallowFBCSPNet (Schirrmeister et al.| [2017), which implements learnable filter-bank Com-
mon Spatial Patterns (CSP) to extract frequency—spatial features; (3) TIDNet (Kostas & Rudzicz,
2020), which introduces dilated convolutions and residual connections to improve robustness un-
der subject shift; (4) EEGConformer (Song et al., [2022b)), which combines a convolutional front-
end with self-attention to model both local spatial structure and global temporal context; and (5)
EEGTCNet (Ingolfsson et al.l |2020), a temporal convolutional network tailored for EEG that em-
phasizes causal and dilated temporal modeling, offering complementary inductive bias to purely
spatial-spectral models.

All models are evaluated using identical input windows of shape (C,T), and trained with a uni-
fied global training schedule to ensure comparability. Public implementations and recommended
hyperparameters are used where available, with no method-specific tuning.

4.3 GENERALIZATION PERFORMANCE

MultiDiffNet helps with generalization. Unlike raw EEG representations, where class boundaries
blur due to subject-specific noise, our learned latent space forms clearly separable, label-aligned
clusters (Figure[3). This structured representation enables robust decoding across subjects. As shown
in Table |1} MultiDiffNet consistently reduces the seen—unseen accuracy gap across all tasks. In
SSVERP, it lifts cross-subject accuracy from 81.08% (EEGNet baseline) to 84.72%, further boosted
to 85.25% with Temporal Masked Mixup. For comparison, other representative architectures such
as ShallowFBCSPNet (58.87%), EEGConformer (51.92%), TIDNet (25.96%), and EEGTCNet
(49.57%) fall well behind, highlighting the robustness of our latent-space design.

Even in the low-SNR regime of Imagined Speech, MultiDiffNet improves cross-subject accuracy
from 10.61% (EEGNet) to 12.12%, while simultaneously achieving a much larger gain on seen-



Table 1: Final results across tasks and models. Accuracy is reported for both seen-subject (intra-
subject) and unseen-subject (cross-subject) test splits. Tasks are ranked by task difficulty. Stars de-

note win percentage: **% > 80%, ** > 60%, * > 40%. Detailed results are in the Appendix.

Task Model Subj. Classes Seen Acc. (%) Unseen  Acc.
(%)
ShallowFBCSPNet 35 26 69.58 &+ 1.30" 58.87 + 9.37"
SSVEP EEGConformer 35 26 66.98 + 2.83 51.92 +9.06
TIDNet 35 26 28.01 +4.12 25.96 + 5.29
EEGTCNet 35 26 58.31 +4.02 49.57 +£9.14
EEGNet 35 26 89.16 £ 0.57"  81.08 £9.16™
MultiDiffNet 35 26 85.08 + 1.53" 84.72 + 6.03"
MultiDiffNet + Mixup 35 26 86.79 + 1.75™"  85.25 +6.94"
ShallowFBCSPNet 43 2 87.72 + 0.33 86.20 & 1.45
P300 EEGConformer 43 2 88.54 + 0.54™ 86.30 + 1.73
TIDNet 43 2 88.24 + 0.31" 85.63 + 0.58™
EEGTCNet 43 2 88.69 + 0.59™"  87.02 + 1.62""
EEGNet 43 2 88.79 + 0.67°"  87.24 +£2.01™
MultiDiffNet 43 2 85.35 + 1.12 79.47 + 0.54"
MultiDiffNet + Mixup 43 2 85.61 + 0.52 79.56 + 4.43
ShallowFBCSPNet 9 4 6434 +3.61""  36.46 £ 6.60
MI EEGConformer 9 4 59.57 + 5.60" 36.49 + 7.72
TIDNet 9 4 44.27 + 2.60 34.42 + 3.60
EEGTCNet 9 4 58.85 + 4.54 32.99 + 6.94
EEGNet 9 4 67.01 +£5.38""  46.18 +7.20""
MultiDiffNet 9 4 55.85 + 2.80 39.24 + 8.00™"
MultiDiffNet + Mixup 9 4 57.69 +3.27° 36.78 + 5.23
ShallowFBCSPNet 11 11 13.78 + 1.55™ 10.48 + 0.64
Img. Speech EEGConformer 11 11 10.62 + 0.82 9.21 £3.00
TIDNet 11 11 9.10 + 0.54 10.35 + 0.18
EEGTCNet 11 11 12.64 + 1.58 10.10 &+ 0.64
EEGNet 11 11 11.26 +£2.01° 10.61 + 0.93"
MultiDiffNet 11 11 15.55 +£ 0.62""  11.62 +1.29™
MultiDiffNet + Mixup 11 11 17.57 £ 1.16™"  12.12 +0.38"

subject accuracy (11.26% — 17.57%). Other baselines such as ShallowFBCSPNet (10.48/13.78%),
EEGConformer (9.21/10.62%), TIDNet (10.35/9.10%), and EEGTCNet (10.10/12.64%) hover close
to chance level on both splits, further highlighting the robustness of our approach. For such a chal-
lenging task, even modest absolute gains are meaningful, as they can indicate more reliable signal ex-
traction under extreme noise conditions. On Motor Imagery, MultiDiffNet also surpasses most base-
lines on unseen accuracy, e.g., outperforming TIDNet (34.42%) and EEGTCNet (32.99%), while
maintaining competitive seen accuracy (57.69% vs. 44.27% for TIDNet and 58.85% for EEGTC-
Net). Although it remains slightly below EEGNet (46.18/67.01%), this is likely due to ceiling effects
and dataset scale.

4.4  ABLATION STUDIES

To understand what drives generalization in MultiDiffNet, we ran extensive ablation experiments,
over 100 controlled configs. All results are reported for both seen- and unseen-subject accuracy,
with statistical evidence matrices and trend-level effect sizes in the Appendix.

Decoder input. Feeding only z to the decoder often matches or exceeds more complex fusion vari-
ants. For example, SSVEP unseen accuracy reaches 84.72% with z alone, further boosted to 85.25%
with mixup, while more elaborate fusions (z + z, Thy+ skips) show no consistent gains. These
findings validate our architectural decision to decode primarily from z. For completeness, the best



(A) Latent space evolution across epochs via t-SNE and class centroid distances, showing how the model learns to better separate different classes over time (SSVEP task).
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Figure 3: (A) Visualization of latent space across training epochs. (B) Downstream classification
performance from frozen latent representations.

accuracies achieved in this ablation are 85.86/84.72 on SSVEP, 85.88/81.41 on P300, 56.89/40.36
on Motor Imagery, and 18.58/12.88 on Imagined Speech (seen/unseen).

Classifier head. A lightweight FC head on z delivers state-of-the-art generalization with minimal
complexity. It rivals or outperforms EEGNet classifiers trained on x, especially in low-SNR tasks.
This supports our choice to use FC as the default classification head. For completeness, the best
accuracies achieved in this ablation are 85.08/84.72 on SSVEP, 85.35/84.12 on P300, 55.85/39.24
on Motor Imagery, and 17.95/11.61 on Imagined Speech (seen/unseen).

Encoder and decoder. Using raw x as encoder input consistently outperforms &, showing that
denoising is useful for regularization. Interestingly, removing the decoder entirely sometimes im-
proves generalization, suggesting that reconstruction may introduce noise if overemphasized. For
completeness, the best accuracies in this ablation are 90.95/85.58 on SSVEP, 85.71/80.93 on P300,
55.85/40.16 on Motor Imagery, and 19.22/13.76 on Imagined Speech (seen/unseen).

Loss combinations. Combining CE with mild MSE or contrastive losses improves stability, particu-
larly when auxiliary weights are gently annealed. The best results use 5 = 0.05, v = 0.2—balancing
reconstruction as a regularizer without overpowering the classification objective. For completeness,
the best accuracies in this ablation are 86.40/85.58 on SSVEP, 85.69/80.18 on P300, 59.67/41.44 on
Motor Imagery, and 19.60/13.51 on Imagined Speech (seen/unseen).

Mixup strategies. Mixup effects are task-specific. For SSVEP, Temporal Masked Mixup outper-
forms all variants. Motor Imagery benefits from Weighted Average Mixup, while P300 and Imagined
Speech show limited sensitivity, highlighting that mixup is most impactful in high-SNR regimes.
For completeness, the best accuracies in this ablation are 87.84/85.26 on SSVEP, 85.78/79.56 on
P300, 63.44/38.83 on Motor Imagery, and 19.47/12.12 on Imagined Speech (seen/unseen).

5 CONCLUSIONS AND FUTURE WORK

We presented MultiDiffNet, a diffusion-based neural decoder that learns a compact, multi-objective
latent space for EEG decoding without synthetic augmentation. Through unified benchmarks and
rigorous cross-subject evaluation, we showed that MultiDiffNet achieves strong generalization across
diverse BCI paradigms, particularly in challenging low-signal settings such as SSVEP and Imag-
ined Speech. Our statistical analysis framework further addresses reproducibility challenges in low-
trial EEG research. Future work will explore scaling MultiDiffNet to larger and more diverse EEG
datasets and extending the architecture to other neural modalities.

For completeness, we note that our trend-level statistical framework is intended only as a comple-
mentary tool for low-trial EEG research; detailed rationale is provided in Section 3.7, with Bayesian
and non-parametric validations reported in the Appendix.
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