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ABSTRACT

Learning on graphs, where instance nodes are inter-connected, has become one
of the central problems for deep learning, as relational structures are pervasive
and induce data inter-dependence which hinders trivial adaptation of existing
approaches that assume inputs to be i.i.d. sampled. However, current models
mostly focus on improving testing performance of in-distribution data and largely
ignore the potential risk w.r.t. out-of-distribution (OOD) testing samples that may
cause negative outcome if the prediction is overconfident on them. In this paper, we
investigate the under-explored problem, OOD detection on graph-structured data,
and identify a provably effective OOD discriminator based on an energy function
directly extracted from graph neural networks trained with standard classification
loss. This paves a way for a simple, powerful and efficient OOD detection model
for GNN-based learning on graphs, which we call GNNSAFE. It also has nice
theoretical properties that guarantee an overall distinguishable margin between the
detection scores for in-distribution and OOD samples, which, more critically, can
be further strengthened by a learning-free energy belief propagation scheme. For
comprehensive evaluation, we introduce new benchmark settings that evaluate the
model for detecting OOD data from both synthetic and real distribution shifts (cross-
domain graph shifts and temporal graph shifts). The results show that GNNSAFE
achieves up to 17.0% AUROC improvement over state-of-the-arts and it could
serve as simple yet strong baselines in such an under-developed area. The codes are
available at https://github.com/qitianwu/GraphOOD-GNNSafe.

1 INTRODUCTION

Real-world applications often require machine learning systems to interact with an open world,
violating the common assumption that testing and training distributions are identical. This urges the
community to devote increasing efforts on how to enhance models’ generalization (Muandet et al.,
2013) and reliability (Liang et al., 2018) w.r.t. out-of-distribution (OOD) data. However, most of
current approaches are built on the hypothesis that data samples are independently generated (e.g.,
image recognition where instances have no interaction). Such a premise hinders these models from
readily adapting to graph-structured data where node instances have inter-dependence (Zhao et al.,
2020; Ma et al., 2021; Wu et al., 2022a).

Out-of-Distribution Generalization. To fill the research gap, a growing number of recent studies
on graph-related tasks move beyond the single target w.r.t. in-distribution testing performance
and turn more attentions to how the model can generalize to perform well on OOD data. One
of the seminal works (Wu et al., 2022a) formulates the graph-based OOD generalization problem
and leverages (causal) invariance principle for devising a new domain-invariant learning approach
for graph data. Different from grid-structured and independently generated images, distribution
shifts concerning graph-structured data can be more complicated and hard to address, which often
requires graph-specific technical originality. For instances, Yang et al. (2022c) proposes to identify
invariant substructures, i.e., a subset of nodes with causal effects to labels, in input graphs to learn
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stable predictive relations across environments, while Yang et al. (2022b) resorts to an analogy of
thermodynamics diffusion on graphs to build a principled knowledge distillation model for geometric
knowledge transfer and generalization.

Out-of-Distribution Detection. One critical challenge that stands in the way for trustworthy AI
systems is how to equip the deep learning models with enough reliability of realizing what they don’t
know, i.e., detecting OOD data on which the models are expected to have low confidence (Amodei
et al., 2016; Liang et al., 2018). This is fairly important when it comes to safety-critical applications
such as medical diagnosis (Kukar, 2003), autonomous driving (Dai & Van Gool, 2018), etc. Such a
problem is called out-of-distribution detection in the literature, which aims at discriminating OOD
data from the in-distribution one. While there are a surge of recent works exploring various effective
methods for OOD detection (Hendrycks & Gimpel, 2016; Bevandić et al., 2018; DeVries & Taylor,
2018; Hein et al., 2019; Hsu et al., 2020; Sun et al., 2021; Bitterwolf et al., 2022), these models again
tacitly assume inputs to be independently sampled and are hard to be applied for graph data.

In this paper, we investigate into out-of-distribution detection for learning on graphs, where the model
needs to particularly handle data inter-dependence induced by the graph. Our methodology is built on
graph neural networks (GNNs) as an encoder for node representation/prediction that accommodates
the structural information. As an important step to enhance the reliability of GNN models against
OOD testing instances, we identify an intrinsic OOD discriminator from a GNN classifier trained
with standard learning objective. The key insight of our work is that standard GNN classifiers possess
inherent good capability for detecting OOD samples (i.e., what they don’t know) from unknown
testing observations, with details of the model as described below.

◦ Simplicity and Generality: The out-of-distribution discriminator in our model is based on an energy
function that is directly extracted through simple transformation from the predicted logits of a GNN
classifier trained with standard supervised classification loss on in-distribution data. Therefore, our
model can be efficiently deployed in practice, i.e., it does not require training a graph generative
model for density estimation or any extra OOD discriminator. Also, the model keeps a general form,
i.e., the energy-based detector is agnostic to GNNs’ architectures and can in principle enhance the
reliability for arbitrary off-the-shelf GNNs (or more broadly, graph Transformers) against OOD data.

◦ Theoretical Soundness: Despite simplicity, our model can be provably effective for yielding
distinguishable scores for in-distribution and OOD inputs, which can be further reinforced by an
energy-based belief propagation scheme, a learning-free approach for boosting the detection consen-
sus over graph topology. We also discuss how to properly incorporate an auxiliary regularization term
when training data contains additional OOD observation as outlier exposure, with double guarantees
for preserving in-distribution learning and enhancing out-of-distribution reliability.

◦ Practical Efficacy: We apply our model to extensive node classification datasets of different
properties and consider various OOD types. When training with standard cross-entropy loss on
pure in-distribution data and testing on OOD detection at inference time, our model consistently
outperforms SOTA approaches with an improvement of up to 12.9% on average AUROC; when
training with auxiliary OOD exposure data as regularization and testing on new unseen OOD data,
our model outperforms the strong competitors with up to 17.0% improvement on average AUROC.

2 BACKGROUND

Predictive tasks on graphs. We consider a set of instances with indices i ∈ {1, 2, · · · , N} = I
whose generation process involves inter-dependence among each other, represented by an observed
graph G = (V,E) where V = {i|1 ≤ i ≤ N} denotes the node set containing all the instances and
E = {eij} denotes the edge set. The observed edges induce an adjacency matrix A = [aij ]N×N

where aij = 1 if there exists an edge connecting nodes i and j and 0 otherwise. Moreover, each
instance i has an input feature vector denoted by xi ∈ RD and a label yi ∈ {1, · · · , C} where D is
the input dimension and C denotes the class number. The N instances are partially labeled and we
define Is (resp. Iu) as the labeled (resp. unlabeled) node set, i.e., I = Is ∪ Iu. The goal of standard
(semi-)supervised learning on graphs is to train a node-level classifier f with Ŷ = f(X,A), where
X = [xi]i∈I and Ŷ = [ŷi]i∈I , that predicts the labels for in-distribution instances in Iu.

Out-of-distribution detection. Besides decent predictive performance on in-distribution testing
nodes (sampled from the same distribution as training data), we expect the learned classifier is capable
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for detecting out-of-distribution (OOD) instances that has distinct data-generating distribution with
the in-distribution ones. More specifically, the goal of OOD detection is to find a proper decision
function G (that is associated with the classifier f ) such that for any given input x:

G(x,Gx; f) =

{
1, x is an in-distribution instance,
0, x is an out-of-distribution instance,

(1)

where Gx = ({xj}j∈Nx , Ax) denotes the ego-graph centered at node x, Nx is the set of nodes in the
ego-graph (within a certain number of hops) of x on the graph and Ax is its associated adjacency
matrix. Our problem formulation here considers neighbored nodes that have inter-dependence with
the centered node throughout the data-generating process for determining whether it is OOD. In such
a case, the OOD decision for each input is dependent on other nodes in the graph, which is fairly
different from existing works in vision that assume i.i.d. inputs and independent decision for each.

Energy-based model. Recent works (Xie et al., 2016; Grathwohl et al., 2020) establish an equivalence
between a neural classifier and an energy-based (EBM) (Ranzato et al., 2007) when the inputs are i.i.d.
generated. Assume a classifier as h(x) : RD → RC which maps an input instance to a C-dimensional
logits, and a softmax function over the logits gives a predictive categorical distribution: p(y|x) =

e
h(x)[y]∑C

c=1 e
h(x)[c]

, where h(x)[c] queries the c-th entry of the output. The energy-based model builds a

function E(x, y) : RD → R that maps each input instance with an arbitrarily given class label to a
scalar value called energy, and induces a Boltzmann distribution: p(y|x) = e−E(x,y)∑

y′ e−E(x,y′) = e−E(x,y)

e−E(x) ,

where the denominator
∑

y′ e−E(x,y′) is often called the partition function which marginalizes over
y. The equivalance between an EBM and a discriminative neural classifier is established by setting
the energy as the predicted logit value E(x, y) = −h(x)[y]. And, the energy function E(x) for any
given input can be

E(x) = − log
∑
y′

e−E(x,y′). (2)

The energy score E(x) can be an effective indicator for OOD detection due to its nice property: the
yielded energy scores for in-distribution data overall incline to be lower than those of OOD data (Liu
et al., 2020). However, to the best of our knowledge, current works on energy-based modeling as
well as its application for OOD detection are mostly focused on i.i.d. inputs and the power of the
energy model for modeling inter-dependent data has remained under-explored.

3 PROPOSED METHOD

We describe our new model for out-of-distribution detection in (semi-)supervised node classification
where instances are inter-dependent. We will first present a basic version of our model with energy-
based modeling (Section 3.1) and a novel energy-based belief propagation scheme (Section 3.2).
After that, we extend the model with auxiliary OOD training data (if available) (Section 3.3).

3.1 ENERGY-BASED OOD DETECTION WITH DATA DEPENDENCE

To capture dependence among data points, the most commonly adopted model class follows the
classic idea of Graph Neural Networks (GNNs) (Scarselli et al., 2008) which iteratively aggregate
neighbored nodes’ features for updating centered nodes’ representations. Such an operation is
often called message passing that plays a central role in modern GNNs for encoding topological
patterns and accommodating global information from other instances. In specific, assume z

(l)
i as the

representation of instance node i at the l-th layer and the Graph Convolutional Network (GCN) (Kipf
& Welling, 2017) updates node representation through a layer-wise normalized feature propagation:

Z(l) = σ
(
D−1/2ÃD−1/2Z(l−1)W (l)

)
, Z(l−1) = [z

(l−1)
i ]i∈I , Z(0) = X, (3)

where Ã is an adjacency matrix with self-loop on the basis of A, D is its associated diagonal degree
matrix, W (l) is the weight matrix at the l-th layer and σ is a non-linear activation.

With L layers of graph convolution, the GCN model outputs a C-dimensional vector z(L)
i as logits

for each node, denoted as hθ(xi,Gxi) = z
(L)
i , where θ denotes the trainable parameters of the GNN
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model h. Induced by the GNN’s updating rule, here the predicted logits for instance x are denoted
as a function of the L-order ego-graph centered at instance x, denoted as Gx. The logits are used to
derive a categorical distribution with the softmax function for classification:

p(y | x,Gx) =
ehθ(x,Gx)[y]∑C
c=1 e

hθ(x,Gx)[c]
. (4)

By connecting it to the EBM model that defines the relation between energy function and proba-
bility density, we can obtain the energy form induced by the GNN model, i.e., E(x,Gx, y;hθ) =
−hθ(x,Gx)[y]. Notice that the energy presented above is directly obtained from the predicted logits
of the GNN classifier (in particular, without changing the parameterization of GNNs). And, the free
energy function E(x,Gx;hθ) that marginalizes y can be expressed in terms of the denominator in
Eqn. 4:

E(x,Gx;hθ) = − log

C∑
c=1

ehθ(x,Gx)[c] . (5)

The non-probabilistic energy score given by Eqn. 5 accommodates the information of the instance
itself and other instances that have potential dependence based on the observed structures.

For node classification, the GNN model is often trained by minimizing the negative log-likelihood of
labeled training data (i.e., supervised classification loss)

Lsup = E(x,Gx,y)∼Din
(− log p(y | x,Gx)) =

∑
i∈Is

(
−hθ(xi,Gxi

)[yi] + log

C∑
c=1

ehθ(xi,Gxi
)[c]

)
,

(6)
where Din denotes the distribution where the labeled portion of training data is sampled. We next
show that, for any GNN model trained with Eqn. 6, the energy score can provably be a well-posed
indicator of whether the input data is from in-distribution or out-of-distribution.
Proposition 1. The gradient descent on Lsup will overall decrease the energy E(x,Gx;hθ) for any
in-distribution instance (x,Gx, y) ∼ Din.

The proposition shows that the induced energy function E(x,Gx;hθ) from the supervisedly trained
GNN guarantees an overall trend that the energy scores for in-distribution data will be pushed down.
This suggests that it is reasonable to use the energy scores for detecting OOD inputs at inference time.

Remark. The results above are agnostic to GNN architectures, i.e., the energy-based OOD discrimi-
nator can be applied for arbitrary off-the-shelf GNNs. Furthermore, beyond defining message passing
on fixed input graphs, recently proposed graph Transformers Wu et al. (2022b; 2023) are proven to
be powerful encoders for node-level prediction. The energy-based model is also applicable for these
Transformer-like models and we leave such an extension as future works.

3.2 CONSENSUS BOOSTING WITH ENERGY-BASED BELIEF PROPAGATION

As the labeled data is often scarce in the semi-supervised learning setting, the energy scores that are
directly obtained from the GNN model trained with supervised loss on labeled data may not suffice to
generalize well. The crux for enhancing the generalization ability lies in how to leverage the unlabeled
data in training set that could help to better recognize the geometric structures behind data (Belkin
et al., 2006; Chong et al., 2020). Inspired by the label propagation (Zhu et al., 2003), a classic
non-parametric semi-supervised learning algorithm, we propose energy-based belief propagation
that iteratively propagates estimated energy scores among inter-connected nodes over the observed
structures. We define E(0) = [E(xi,Gxi

;hθ)]i∈I as a vector of initial energy scores for nodes in the
graph and consider the propagation updating rule

E(k) = αE(k−1) + (1− α)D−1AE(k−1), E(k) = [E
(k)
i ]i∈I , (7)

where 0 < α < 1 is a parameter controlling the concentration on the energy of the node itself
and other linked nodes. After K-step propagation, we can use the final result for estimation, i.e.,
Ẽ(xi,Gxi

;hθ) = E
(K)
i , and the decision criterion for OOD detection can be

G(x,Gx;hθ) =

{
1, if Ẽ(x,Gx;hθ) ≤ τ,

0, if Ẽ(x,Gx;hθ) > τ,
(8)
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where τ is the threshold and the return of 0 indicates the declaration for OOD. The rationale behind
the design of energy belief propagation is to accommodate the physical mechanism in data generation
with instance-wise interactions. Since the input graph could reflect the geometric structures among
data samples with certain proximity on the manifold, it is natural that the generation of a node
is conditioned on its neighbors, and thereby connected nodes tend to be sampled from similar
distributions1. Given that the energy score of Eqn. 5 is an effective indicator for out-of-distribution,
the propagation in the energy space essentially imitates such a physical mechanism of data generation,
which can presumably reinforce the confidence on detection. Proposition 2 formalizes the overall
trend of enforcing consensus for instance-level OOD decisions over graph topology.
Proposition 2. For any given instance xi, if the averaged energy scores of its one-hop neighbored

nodes, i.e.,
∑

j aijE
(k−1)
j∑

j aij
, is less (resp. more) than the energy of its own, i.e., E(k−1)

i , then the updated

energy given by Eqn. 7 yields E(k)
i < E

(k−1)
i (resp. E(k)

i > E
(k−1)
i ).

Proposition 2 implies that the propagation scheme would push the energy towards the majority
of neighbored nodes, which can help to amplify the energy gap between in-distribution samples
and the OOD. This result is intriguing, suggesting that the energy model can be boosted by the
simple propoagation scheme at inference time without any extra cost for training. We will verify its
effectiveness through empirical comparison in experiments.

3.3 ENERGY-REGULARIZED LEARNING WITH BOUNDING GUARANTEES

The model presented so far does not assume any OOD data exposed to training. As an extension of our
model, we proceed to consider another setting in prior art of OOD detection, e.g., (Hendrycks et al.,
2019b; Liu et al., 2020; Bitterwolf et al., 2022), using extra OOD training data (often called OOD
exposure). In such a case, we can add hard constraints on the energy gap through a regularization
loss Lreg that bounds the energy for in-distribution data, i.e., labeled instances in Is, and OOD data,
i.e., another set of auxiliary training instances Io from a distinct distribution. And, we can define
the final training objective as Lsup + λLreg, where λ is a trading weight. There is much design
flexibility for the regularization term Lreg, and here we instantiate it as bounding constraints for
absolute energy (Liu et al., 2020): Lreg =

1

|Is|
∑
i∈Is

(
ReLU

(
Ẽ (xi,Gxi

;hθ)− tin

))2
+

1

|Io|
∑
j∈Io

(
ReLU

(
tout − Ẽ

(
xj ,Gxj

;hθ

)))2
. (9)

The above loss function will push the energy values within [tin, tout] to be lower (resp. higher) for
in-distribution (resp. out-of-distribution) samples, and this is what we expect.

The lingering concern, however, is that the introduction of an extra loss term may interfere with the
original supervised learning objective Lsup. In other words, the goal of energy-bounded regularization
might be inconsistent with that of supervised learning, and the former may change the global optimum
to somewhere the GNN model gives sub-optimal fitting on the labeled instances. Fortunately, the
next proposition serves as a justification for the energy regularization in our model.
Proposition 3. For any energy regularization Lreg , satisfying that the GNN model hθ∗ minimizing
Lreg yields the energy scores upper (resp. lower) bounded by tin (resp. tout) for in-distribution
(resp. OOD) samples, where tin < tout are two margin parameters, then the corresponding softmax
categorical distribution p(y|x,Gx;hθ∗) also minimizes Lsup.

The implication of this proposition is important, suggesting that our used Lreg whose optimal energy
scores are guaranteed for detecting OOD inputs and stay consistent with the supervised training of
the GNN model. We thereby obtain a new training objective which strictly guarantees a desired
discrimination between in-distribution and OOD instances in the training set, and in the meanwhile,
does not impair model fitting on in-distribution data.

Admittedly, one disadvantage of the energy-regularized learning is that it requires additional OOD data
exposed during training. As we will show in the experiments, nonetheless, the energy regularization
turns out to be not a necessity in quite a few cases in practice.

1The connected nodes can have different labels or features, even if their data distributions are similar. Here
the data distribution is a joint distribution regarding node feature, labels and graph structures.
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4 EXPERIMENTS

The performance against out-of-distribution data on testing set can be measured by its capability
of discriminating OOD testing samples from the in-distribution ones. In the meanwhile, we do not
expect the degradation of the model’s performance on in-distribution testing instances. An ideal
model should desirably handle OOD detection without sacrificing the in-distribution accuracy.

4.1 SETUP

Implementation details We call our model trained with pure supervised loss as GNNSAFE and
the version trained with additional energy regularization as GNNSAFE++. We basically set the
propagation layer number K as 2 and weight α as 0.5. For fair comparison, the GCN model with
layer depth 2 and hidden size 64 is used as the backbone encoder for all the model.

Datasets and Splits Our experiments are based on five real-world datasets that are widely adopted as
node classification benchmarks: Cora, Amazon-Photo, Coauthor-CS, Twitch-Explicit
and ogbn-Arxiv. Following a recent work on OOD generalization over graphs (Wu et al., 2022a),
we generally consider two ways for creating OOD data in experiments, which can reflect the real-
world scenarios involving OOD instances inter-connected in graphs. 1) Multi-graph scenario: the
OOD instances come from a different graph (or subgraph) that is dis-connected with any node in the
training set. 2) Single-graph scenario: the OOD testing instances are within the same graph as the
training instances, yet the OOD instances are unseen during training. Specifically,

◦ For Twitch, we use the subgraph DE as in-distribution data and other five subgraphs as OOD
data. The subgraph ENGB is used as OOD exposure for training of GNNSAFE++. These subgraphs
have different sizes, edge densities and degree distributions, and can be treated as samples from
different distributions Wu et al. (2022a).

◦ For Arxiv that is a single graph, we partition the nodes into two-folds: the papers published
before 2015 are used as in-distribution data, and the papers after 2017 are used as OOD data. The
papers published at 2015 and 2016 are used as OOD exposure during training.

◦ For Cora, Amazon and Coauthor that have no clear domain information, we synthetically
create OOD data via three ways. Structure manipulation: use the original graph as in-distribution data
and adopt stochastic block model to randomly generate a graph for OOD data. Feature interpolation:
use random interpolation to create node features for OOD data and the original graph as in-distribution
data. Label leave-out: use nodes with partial classes as in-distribution and leave out others for OOD.

For in-distribution data in each dataset, only partial nodes’ labels are exposed for supervised training
and another subset of nodes is used for validation. Other nodes are used as in-distribution testing
data. We provide detailed dataset and splitting information in Appendix B.1.

Metric We follow common practice using AUROC, AUPR and FPR95 as evaluation metrics for
OOD detection. The in-distribution performance is measured by the Accuracy on testing nodes. In
Appendix B.3 we provide more information about these evaluation metrics.

Competitors We compare with two classes of models regarding OOD detection. The first family
of baseline models focus on OOD detection in vision where inputs (e.g., images) are assumed to be
i.i.d. sampled: MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2018), Mahalanobis (Lee et al.,
2018), OE (Hendrycks et al., 2019b) (using OOD exposure for training), Energy and Energy Fine-
Tune (Liu et al., 2020) which also uses OOD exposure for training. We replace their convolutional
neural network backbone with the GCN encoder used by our model for processing graph-structured
data. The second family of baseline models are particularly designed for handling OOD data in graph
machine learning and we compare with two SOTA approaches: the Graph-based Kernel Dirichlet
GCN method GKDE (Zhao et al., 2020) and Graph Posterior Network GPN (Stadler et al., 2021).
We provide more implementation details for these model in Appendix B.2.

4.2 COMPARATIVE RESULTS

How does GNNSAFE++ perform compared with competitive methods? In Table 1 and 2 we
report the experimental results of GNNSAFE++ in comparison with the competitive models. We
found that GNNSAFE++ consistently outperform all competitors by a large margin throughout all
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Table 1: Out-of-distribution detection results measured by AUROC (↑) / AUPR (↑) / FPR95 (↓)
on Twitch, where nodes in different sub-graphs are OOD data, and Arxiv dataset, where papers
published after 2017 are OOD data. The in-distribution testing accuracy is reported for calibration.
Detailed results on each OOD dataset (i.e., sub-graph or year) are presented in Appendix C. GPN
reports out-of-memory issue on Arxiv with a 24GB GPU.

Model OOD Expo Twitch Arxiv
AUROC AUPR FPR ID ACC AUROC AUPR FPR ID ACC

MSP No 33.59 49.14 97.45 68.72 63.91 75.85 90.59 53.78
ODIN No 58.16 72.12 93.96 70.79 55.07 68.85 100.0 51.39

Mahalanobis No 55.68 66.42 90.13 70.51 56.92 69.63 94.24 51.59
Energy No 51.24 60.81 91.61 70.40 64.20 75.78 90.80 53.36
GKDE No 46.48 62.11 95.62 67.44 58.32 72.62 93.84 50.76
GPN No 51.73 66.36 95.51 68.09 - - - -

GNNSAFE No 66.82 70.97 76.24 70.40 71.06 80.44 87.01 53.39

OE Yes 55.72 70.18 95.07 70.73 69.80 80.15 85.16 52.39
Energy FT Yes 84.50 88.04 61.29 70.52 71.56 80.47 80.59 53.26

GNNSAFE++ Yes 95.36 97.12 33.57 70.18 74.77 83.21 77.43 53.50
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(a) The energy distributions on Twitch where nodes in different sub-graphs are OOD instances
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(b) The energy distributions on Arxiv where nodes appearing in the future are OOD instances

Figure 1: Comparison of the energy-based OOD detection performance yielded by vanilla energy
model (described in Section 3.1), using energy-based propagation (proposed in Section 3.2) and
additionally using energy-regularized training (proposed in Section 3.3). These ablation results
demonstrate that the proposed energy propagation and regularized training can both be helpful for
enlarging the energy margin between in-distribution and OOD inputs.

cases, increasing average AUROC by 12.8% (resp. 17.0%) and reducing average FPR95 by 44.8%
(resp. 21.0%) on Twitch (resp. Cora-Structure) and maintain comparable in-distribution
accuracy. This suggests the superiority of our energy-based model for OOD detection on graphs.
Furthermore, without using the energy regularization, GNNSAFE still achieves very competitive
OOD detection results, increasing average AUROC by 12.9% on Cora-Structure. In particular,
it even outperforms OE on all datasets and exceeds Energy FT in most cases on Cora, Amazon
and Coauthor, though these two competitors use extra OOD exposure for training. This shows a
key merit of our proposed model: it can enhance the reliability of GNNs against OOD data without
costing extra computation resources. To quantitatively show the efficiency advantage, we compare the
training and inference times in Table 8 in Appendix C. We can see that GNNSAFE is much faster than
the SOTA model GPN during both training and inference and as efficient as other competitors. These
results altogether demonstrate the promising efficacy of GNNSAFE++ for detecting OOD anomalies
in real graph-related applications where the effectiveness and efficiency are both key considerations.

How does the energy propagation improve inference-time OOD detection? We study the
effectiveness of the proposed energy-based belief propagation by comparing the performance of
Energy and GNNSAFE (the Energy model in our setting can be seen as ablating the propagation
module from GNNSAFE). Results in Table 1 and 2 consistently show that the propagation scheme
indeed brings up significant performance improvement. Furthermore, in Fig. 1 we compare the energy
scores produced by GNNSAFE (the middle column) and Energy (the left column). The figures show
that the propagation scheme can indeed help to separate the scores for in-distribution and OOD inputs.
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Table 2: Out-of-distribution detection performance measured by AUROC (↑) on datasets Cora,
Amazon, Coauthor with three OOD types (Structure manipulation, Feature interpolation, Label
leave-out). Other results for AUPR, FPR95 and in-distribution accuracy are deferred to Appendix C.

Model OOD Expo Cora Amazon Coauthor
S F L S F L S F L

MSP No 70.90 85.39 91.36 98.27 97.31 93.97 95.30 97.05 94.88
ODIN No 49.92 49.88 49.80 93.24 81.15 65.97 52.14 51.54 51.44

Mahalanobis No 46.68 49.93 67.62 71.69 76.50 73.25 80.46 93.23 85.36
Energy No 71.73 86.15 91.40 98.51 97.87 93.81 96.18 97.88 95.87
GKDE No 68.61 82.79 57.23 76.39 58.96 65.58 65.87 80.69 61.15
GPN No 77.47 85.88 90.34 97.17 87.91 92.72 34.67 72.56 83.65

GNNSAFE No 87.52 93.44 92.80 99.58 98.55 97.35 99.60 99.64 97.23

OE Yes 67.98 81.83 89.47 99.60 98.39 95.39 97.86 99.04 96.04
Energy FT Yes 75.88 88.15 91.36 98.83 98.55 97.35 98.84 99.43 96.23

GNNSAFE++ Yes 90.62 95.56 92.75 99.82 99.64 97.51 99.99 99.97 97.89
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Figure 2: Performance comparison of MSP, Energy, Energy FT, GNNSAFE and GNNSAFE++ w.r.t.
different encoder backbones on Cora with three OOD types.

Such results also verify our hypothesis in Section 3.2 that the structured propagation can leverage the
topological information to boost OOD detection with data inter-dependence.

How does the energy-regularized training help OOD detection? We next investigate into the
effectiveness of the introduced energy-regularized training. In comparison with GNNSAFE, we found
that GNNSAFE++ indeed yields better relative performance across the experiments of Table 1 and 2,
which is further verified by the visualization in Fig. 1 where we compare the energy scores of the
models trained w/o and w/ the regularization loss (the middle and right columns, respectively) and see
that GNNSAFE++ can indeed produce larger gap between in-distribution and OOD data. Furthermore,
we notice that the performance gains achieved in Table 2 are not that considerable as Table 1. In
particular, the AUROCs given by GNNSAFE and GNNSAFE++ are comparable on Amazon and
Coauthor. The possible reason is that the OOD data on the multi-graph dataset Twitch and
large temporal dataset Arxiv is introduced by the context information and the distribution shift may
not be that significant, which makes it harder for discrimination, and the energy regularization can
significantly facilitate OOD detection. On the other hand, the energy regularization on auxiliary OOD
training data may not be necessary for cases (like other three datasets) where the distribution shifts
between OOD and in-distribution data are intense enough.

4.3 ANALYSIS OF HYPER-PARAMETERS

We next analyze the impact of using different encoder backbones and hyper-parameters, to shed more
lights on the practical efficacy and usage of our proposed model.

Will different encoder backbones impact the detection results? Fig. 2 compares the performance
of MSP, Energy, Energy FT, GNNSAFE and GNNSAFE++ w.r.t. using different encoder backbones
including MLP, GAT (Velickovic et al., 2018), JKNet (Xu et al., 2018), MixHop (Abu-El-Haija
et al., 2019) on Cora with three OOD types. We found that different backbones indeed impact the
detection performance and in particularly, GNN backbones bring up significantly better AUROC
than MLP due to their stronger expressiveness for encoding topological features. However, we
observe that the relative performance of five models are mostly consistent with the results in Table 2
where we use GCN as the backbone and two GNNSAFE models outperform other competitors in
nearly all the cases. In the right figure, even with MLP backbone, two GNNSAFE models perform
competitively as the counterparts with GNN backbones, which also validates the effectiveness of our
energy propagation scheme that helps to leverage topological information over graph structures.

How do the propagation depth and self-loop strength impact the inference-time perfor-
mance? Fig. 3(a) plots the results of GNNSAFE++ with propagation step K increasing from
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1 to 64 and self-loop strength α varing between 0.1 and 0.9. As shown in the figure, the AUROC
scores first go up and then degrade as the propagation steps increase. The reason is that a moderate
number of propagation steps can indeed help to leverage structural dependence for boosting OOD
detection yet too large propagation depth could potentially overly smooth the estimated energy and
make the detection scores indistinguishable among different nodes. Similar trend is observed for α
which contributes to better performance with the value set as a moderate value, e.g., 0.5 or 0.7. This
is presumably because too large α would counteract the effect of neighbored information and too
small α would overly concentrate on the other nodes.

How do the regularization weight and margins impact the training? We discuss the performance
variation of GNNSAFE++ w.r.t. the configurations of tin, tout and λ in Fig. 3(b) and (c). We found
that the performance of GNNSAFE++ is largely dependent on λ which controls the strength of energy
regularization and its optimal values also vary among different datasets, though we merely tune it
with a coarse searching space {0.01, 0.1, 1.0}. Besides, a proper setting for the margin tin and tout
yields stably good performance while too large margin would lead to performance degradation.

5 RELATED WORKS

Out-of-distribution detection for neural networks Detecting OOD samples on which the models
should have low confidence has been extensively studied by recent literature. From different tech-
nical aspects, prior art proposes to adopt confidence scores from pre-trained models (Hendrycks &
Gimpel, 2016; Hendrycks et al., 2019a), add regularization on auxiliary OOD training data (Bevandić
et al., 2018; Liu et al., 2020; Mohseni et al., 2020), or train a generative model for detecting OOD
examples (Ren et al., 2019). However, these methods mostly assume instances (e.g., images) are
i.i.d. generated, and ignore the widely existing problem scenario that involves inter-dependent data.

Out-of-distribution detection on graphs In contrast, OOD detection on graph data that contains
inter-dependent nodes has remained as an under-explored research area. The recent work Li et al.
(2022) proposes a flexible generative framework that involves node features, labels and graph
structures and derives a posterior distribution for OOD detection. Moreover, Bazhenov et al. (2022)
compares different OOD detection schemes from uncertainty estimation perspective. These works
focus on graph classification where each instance itself is a graph and can be treated as i.i.d. samples as
well. In terms of node classification where the inter-dependence of instances becomes non-negligible,
Zhao et al. (2020) and Stadler et al. (2021) propose Bayesian GNN models that can detect OOD
nodes on graphs. Different from these approaches, the OOD discriminator in our model is directly
extracted from the predicted logits of standard GNNs trained with the supervised classification loss,
which keeps a simple and general form that is agnostic to GNN architectures. Also, our model is
applicable for off-the-shelf discriminative GNN classifiers and is free from training complicated
graph generative models for density estimation or any extra OOD discriminator.

Out-of-distribution generalization Within the general picture of learning with distribution shifts,
another related problem orthogonal to ours is to enhance the model’s predictive performance on OOD
testing data, i.e., OOD generalization (Muandet et al., 2013). The OOD data on graphs is of various
types dependent on specific distribution shifts in different scenarios and datasets, including but not
limited to cross-domain graph shifts and temporal graph shifts used for experiments in Wu et al.
(2022a), subgroup attribute shifts in node classification (Ma et al., 2021; Bi et al., 2023), molecule
size/scaffold shifts in molecular property prediction (Yang et al., 2022c), temporal context shifts in
recommender systems (Yang et al., 2022a), feature space expansion in tabular predictive tasks (Wu
et al., 2021), etc. As an exploratory work in OOD detection on graphs, we focus on the cross-domain
shifts and temporal shifts in our experiments as two real-world scenarios, and one promising future
direction is to extend the evaluation of OOD detection to other distribution shifts on graphs.

6 CONCLUSIONS

We have shown in this paper that graph neural networks trained with supervised loss can intrinsically
be an effective OOD discriminator for detecting OOD testing data on which the model should avoid
prediction. Our model is simple, general, and well justified by theoretical analysis. We also verify its
practical efficacy through extensive experiments on real-world datasets with various OOD data types.
We hope our work can empower GNNs for real applications where safety considerations matter.
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A PROOFS FOR TECHNICAL RESULTS

A.1 PROOF FOR PROPOSITION 1

Proof. The proof is kind of straight-forward as followed similar reasoning line of the section 3.1 in
Liu et al. (2020). The gradient of Lnll w.r.t. θ is given by

∂Lnll

∂θ
=
∑
i∈Itr
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∂θ
−
∑
c̸=yi

p(y = c | xi,Gxi)
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, c;hθ)

∂θ
.

(10)
We can see from the above equation that the training procedure overall minimizing the first-order gradi-
ent of Lnll will decrease the energy score E(xi,Gxi

, yi;hθ) and increase the energy E(xi,Gxi
, c;hθ).

In a general sense, the energy value produced by the trained model tends to become lower for any
in-distribution instance (x,Gx, y) ∼ Din.
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A.2 PROOF FOR PROPOSITION 2

Proof. If
∑

j aijE
(k−1)
j∑

j aij
< E

(k−1)
i , we can re-write the update in Eqn. 7 as the scalar-form for each

instance:

E
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> αE
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(11)

The opposite result can be similarly proved for the case
∑

j aijE
(k−1)
j∑

j aij
> E

(k−1)
i .

A.3 PROOF FOR PROPOSITION 3

Proof. We define E(x,Gx;hθ∗) as the energy yielded by the model hθ∗ minimizing the regularization
loss Lreg. And, hθ† denotes the model yielding the optimal predictive softmax distribution that
minimizes the supervised classification loss Lsup, i.e.,

ehθ† (x,Gx)[y]∑C
c=1 e

h
θ† (x,Gx)[c]

= argminp(y|x,Gx) E(x,Gx,y)∈Din
[− log p(y|x,Gx)]. (12)

Notice that E(x,Gx;hθ) = − log
∑C

c=1 e
hθ(x,Gx). Therefore we have

E(x,Gx;hθ∗) = E(x,Gx;hθ∗)− E(x,Gx;hθ†)− log

C∑
c=1

ehθ† (x,Gx)

= − log

(
e−E(x,Gx;hθ∗ )+E(x,Gx;hθ† ) ·

C∑
c=1

ehθ† (x,Gx)

)

= − log

C∑
c=1

ehθ† (x,Gx)−E(x,Gx;hθ∗ )+E(x,Gx;hθ† ).

(13)

The above relationship suggests that the energy E(x,Gx;hθ∗) is secretely equivalent to the energy
induced by the predicted logits hθ†(x,Gx)−E(x,Gx;hθ∗) +E(x,Gx;hθ†). We can thereby denote
the predictive softmax distribution of E(x,Gx;hθ∗) as

p(y|x,Gx) =
ehθ† (x,Gx)[y]−E(x,Gx;hθ∗ )+E(x,Gx;hθ† )∑C
c=1 e

h
θ† (x,Gx)[c]−E(x,Gx;hθ∗ )+E(x,Gx;hθ† )

=
ehθ† (x,Gx)[y]∑C
c=1 e

h
θ† (x,Gx)[c]

.

(14)

The above predictive distribution exactly minimizes Lsup as defined by Eqn. 12. We thus have proven
that the optimal energy that minimizes Lreg intrinsically induce the predictive softmax distribution
that minimizes Lsup. On the other hand, given our assumption that the optimal energy function can
well distinguish the scores for in-distribution and OOD inputs, we thus obtain proper choices for the
regularization loss Lreg whose optimal energy satisfies the two requirements mentioned upfront in
Section 3.3.

B EXPERIMENTAL DETAILS

We supplement experiment details for reproducibility. Our implementation is based on Ubuntu
16.04.6, Cuda 10.2, Pytorch 1.9.0 and Pytorch Geometric 2.0.3. Most of the experiments are running
with a NVIDIA 2080Ti with 11GB memory, except that for cases where the model requires larger
GPU memory we use a NVIDIA 3090 with 24GB memory for experiments.
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B.1 DATASET INFORMATION

The datasets used in our experiment are all public available as common benchmarks for evaluating
graph learning models. For ogbn-Arxiv, we use the preprocessed dataset and data loader provided
by the OGB package2. For other datasets, we use the data loader provided by the Pytorch Geometric
package3.

Cora (Sen et al., 2008) is a citation network where each node denotes a published paper and each
edge indicates the citation relationship. The goal is to predict each paper’s topic as the label class.
This dataset contains 2,708 nodes, 5,429 edges, 1,433 features and 7 classes. We use three different
ways for synthetically creating OOD data as mentioned in Section 4.1. For training/validation/testing
splits on in-distribution data, we use follow the semi-supervised learning setting by Kipf & Welling
(2017) and use its provided splits.

Amazon-Photo (McAuley et al., 2015) is an item co-purchasing network on Amazon where each
node denotes a product and each edge indicates that two linked products are frequently purchased
together. The node label denotes the category of the product. This dataset contains 7,650 nodes,
238,162 edges, 745 features, and 8 classes. Similar to Cora, we use three ways for synthetically
creating OOD data. And, for in-distribution data, we follow the common practice (Kipf & Welling,
2017) and use random splits with 1:1:8 for training/validation/testing.

Coauthor-CS (Sinha et al., 2015) is a coauthor network of computer science. Nodes denote authors
and they are connected as edges if the two authors co-authored a paper. The goal is to predict the
respective field of study for authors based on their papers’ keywords as node features. This dataset
contains 18,333 nodes, 163,788 edges, 6,805 features, and 15 classes. We also use the aforementioned
three ways to construct OOD data and for in-distribution data, we follow the common practice using
random splits with 1:1:8 for training/validation/testing.

Twitch-Explicit (Rozemberczki & Sarkar, 2021) is a multi-graph dataset, where each subgraph
corresponds to a social network in one region. Nodes in this dataset represent game players on Twitch
and edges indicate two users follow each other. Node features are embeddings of games played by the
Twitch users, and the label class indicates whether a user streams mature content. The node numbers
of the subgraphs are ranged from 1,912 to 9,498, with edge numbers from 31,299 to 153,138 and
shared feature dimension 2,545. As mentioned in Section 4.1 we use subgraph DE as in-distribution
data where we use random splits with 1:1:8 for training/validation/testing. Besides, subgraph ENGB
is used as OOD exposure and ES, FR, RU are used for OOD testing data.

ogbn-Arxiv (Hu et al., 2020) is a relatively large graph dataset that records the citation information
from 1960 to 2020. Each node denotes a paper with a subject area as the label to predict. Edges
indicate citation relationship and each node has a 128-dimensional feature vector obtained by the
word embeddings of its title and abstract. As described in Section 4.1 we use the time information
for partitioning in-distribution and OOD data. For the in-distribution portion, we also use 1:1:8
random splits for training/validation/testing. Notice that here our partition for the in-distribution and
OOD data disables us to use the original splitting by Hu et al. (2020) which used time information
for splitting training and testing nodes. In our setting, the random splitting also guarantees that the
training, validation and testing nodes (of in-distribution data) come from an identical distribution that
is distinct from that of OOD data.

B.2 IMPLEMENTATION DETAILS

Architectures As mentioned in Section 4.1, our basic encoder backbone is set as a GCN, and
we also consider other models such as MLP, GAT, JKNet and MixHop for further discussions. We
summary the architectural information of all the encoder backbones used in our experiments as
follows.

• GCN: 2 GCNConv layers with hidden size 64, ReLU activation, self-loop and batch normal-
ization.

• MLP: 2 fully-connected layers with hidden size 64 and ReLU activation.

2https://github.com/snap-stanford/ogb
3https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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• GAT: 2 GATConv layers with hidden size 64, ELU activation, head number [2, 1] and batch
normalization.

• JKNet: 2 GCNConv layers with hidden size 64, ReLU activation, self-loop and batch
normalization. The jumping knowledge module is using max pooling.

• MixHop: 2 MixHop layers with hop number 2, hidden size 64, ReLU activation, and batch
normalization.

Hyper-parameters As described in Section 4.1, we consider the following hypermeters as a default
setting: the propagation step K = 2 and the propagation self-loop weight α = 0.5. For GNNSAFE,
we only consider grid-search for the learning rate within {0.1, 0.01, 0.001} using validation set.
For GNNSAFE++, we use the validation set for additionally search for margin hyper-parameters
tin ∈ {−9,−7,−5}, tout ∈ {−1,−2,−3,−4} and the regularization weight λ ∈ {0.01, 0.1, 1.0}.

Training Details The model GNNSAFE is trained with the supervised classification loss on labeled
training data, and GNNSAFE++ is trained with the supervised loss plus the regularization loss on the
OOD training data. We use the supervised classification loss (i.e., cross-entropy) on validation set as
the indicator of epoch selection for reporting the testing result. More specifically, in each run, we
train the model with 200 epochs as a fixed budget and report the testing performance produced by the
epoch where the model yields the lowest classification loss on validation data.

Competitors For competitor models, we use their implementations provided by the original papers
and do some adaptation for our setting. As mentioned in Section 4.1, we use the same encoder
backbone GCN (with the same hidden size 64 and layer number 2) for baselines MSP, ODIN,
Mahalanobis, Energy and Energy FT. For GKDE and GPN, we use their public implementation, refer
to their hyper-parameter settings reported in the paper and do some fine-tuning for different datasets.

B.3 EVALUATION METRICS

We provide more details concerning the evaluation metrics we used in our experiment. We follow the
common practice of OOD detection literature and use AUROC, AUPR and FPR95 for evaluating the
performance for detecting OOD data in the testing set. These metrics are independent of the threshold
τ . Specifically, AUROC refers to the Area Under the Receiver Operating Characteristic (ROC) curve.
The ROC curve presents a trade-off between the true positive rate and the false positive rate under
different thresholds in 0 ∼ 1. Intuitively, the AUROC can be understood as the probability that for any
pair of a positive example (i.e., in-distribution sample) and a negative example (out-of-distribution
sample), the positive one has a larger estimated score than the negative. However, AUROC is not
always an ideal metric, especially when the positive class and negative class are imbalanced. Under
such a case, the AUPR adjusts for different positive/negative base rates. AUPR refers to the Area
Under the PR curve which presents the trade-off between the precision and recall under different
thresholds in 0 ∼ 1. Furthermore, FPR95 is also a widely used metric which refers to the False
Positive Rate at 95% true positive rate (TPR). FPR95 can be interpreted as the probability that a
out-of-distribution sample is misclassified as in-distribution when the TPR is as high as 95%.

C ADDITIONAL EXPERIMENT RESULTS

We supplement more experimental results in this section. In specific, we report detailed OOD
detection performance on each OOD dataset (different subgraphs for Twitch and different years for
Arxiv) in Table 3 and 4 as complementary for Table 1 in the maintext. Besides, in Table 5, 6 and 7
we report the AUROC/AUPR/FPR95 and in-distribution testing accuracy on Cora, Amazon and
Coauthor as complementary for Table 2 in the maintext. In Table 8 we compare the training time
per epoch and inference time of our model and the competitors. Moreover, we compare the training
time per epoch and inference time of GNNSAFE++ and the competitors in Table 8. Also, we present
more hyper-parameter analysis results in Fig. 3 including α, K, tin, tout and λ.
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Table 3: Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on
OOD sub-graphs ES, FR and RU of Twitch dataset.

Model OOD Expo Twitch-ES Twitch-FR Twitch-RU
AUROC AUPR FPR95 AUROC AUPR FPR95 AUROC AUPR FPR95

MSP No 37.72 53.08 98.09 21.82 38.27 99.25 41.23 56.06 95.01
ODIN No 83.83 80.43 33.28 59.82 64.63 92.57 58.67 72.58 93.98

Mahalanobis No 45.66 58.82 95.48 40.40 46.69 95.54 55.68 66.42 90.13
Energy No 38.80 54.26 95.70 57.21 61.48 91.57 57.72 66.68 87.57
GKDE No 48.70 61.05 95.37 49.19 52.94 95.04 46.48 62.11 95.62
GPN No 53.00 64.24 95.05 51.25 55.37 93.92 50.89 65.14 99.93
OE Yes 55.97 69.49 94.94 45.66 54.03 95.48 55.72 70.18 95.07

Energy FT Yes 80.73 87.56 76.76 79.66 81.20 76.39 93.12 95.36 30.72

GNNSAFE No 49.07 57.62 93.98 63.49 66.25 90.80 87.90 89.05 43.95
GNNSAFE++ Yes 94.54 97.17 44.06 93.45 95.44 51.06 98.10 98.74 5.59

Table 4: Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on
OOD datasets of papers published in 2018, 2019 and 2020, respectively, on Arxiv.

Model OOD Expo Arxiv-2018 Arxiv-2019 Arxiv-2020
AUROC AUPR FPR95 AUROC AUPR FPR95 AUROC AUPR FPR95

MSP No 61.66 70.63 91.67 63.07 66.00 90.82 67.00 90.92 89.28
ODIN No 53.49 63.06 100.0 53.95 56.07 100.0 55.78 87.41 100.0

Mahalanobis No 57.08 65.09 93.69 56.76 57.85 94.01 56.92 85.95 95.01
Energy No 61.75 70.41 91.74 63.16 65.78 90.96 67.70 91.15 89.69
GKDE No 56.29 66.78 94.31 57.87 62.34 93.97 60.79 88.74 93.31
GPN No - - - - - - - - -
OE Yes 67.72 75.74 86.67 69.33 72.15 85.52 72.35 92.57 83.28

Energy FT Yes 69.58 76.31 82.10 70.58 72.03 81.30 74.53 93.08 78.36

GNNSAFE No 66.47 74.99 89.44 68.36 71.57 88.02 78.35 94.76 83.57
GNNSAFE++ Yes 70.4 78.62 81.47 72.16 75.43 79.33 81.75 95.57 71.50

Table 5: Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on
Cora with three OOD types (structure manipulation, feature interpolation, label leave-out).

Model Cora-Structure Cora-Feature Cora-Label
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP 70.90 45.73 87.30 75.50 85.39 73.70 64.88 75.30 91.36 78.03 34.99 88.92
ODIN 49.92 27.01 100.0 74.90 49.88 26.96 100.0 75.00 49.80 24.27 100.0 88.92

Mahalanobis 46.68 29.03 98.19 74.90 49.93 31.95 99.93 74.90 67.62 42.31 90.77 88.92
Energy 71.73 46.08 88.74 76.00 86.15 74.42 65.81 76.10 91.40 78.14 41.08 88.92
GKDE 68.61 44.26 84.34 73.70 82.79 66.52 68.24 74.80 57.23 27.50 88.95 89.87
GPN 77.47 53.26 76.22 76.50 85.88 73.79 56.17 77.00 90.34 77.40 37.42 91.46
OE 67.98 46.93 95.31 71.80 81.83 70.84 83.79 73.30 89.47 77.01 46.55 87.97

Energy FT 75.88 49.18 67.73 75.50 88.15 75.99 47.53 75.30 91.36 78.49 37.83 90.51

GNNSAFE 87.52 77.46 73.15 75.80 93.44 88.19 38.92 76.40 92.80 82.21 30.83 88.92
GNNSAFE++ 90.62 81.88 53.51 76.10 95.56 90.27 27.73 76.80 92.75 82.64 34.08 91.46

Table 6: Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on
Amazon with three OOD types (structure manipulation, feature interpolation, label leave-out).

Model Amazon-Structure Amazon-Feature Amazon-Label
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP 98.27 98.54 6.13 92.84 97.31 95.16 8.72 92.89 93.97 91.32 26.65 95.76
ODIN 93.24 95.26 65.44 92.84 81.15 78.47 100.0 92.71 65.97 57.80 90.23 96.08

Mahalanobis 71.69 79.01 99.91 92.79 76.50 71.14 76.12 92.86 73.25 66.89 74.30 95.76
Energy 98.51 98.72 4.97 92.86 97.87 95.64 6.00 92.96 93.81 91.13 28.48 95.72
GKDE 76.39 81.58 99.25 87.57 58.96 66.76 99.28 86.18 65.58 65.20 96.87 89.37
GPN 97.17 96.39 11.65 88.51 87.91 84.77 49.11 90.05 92.72 90.34 37.16 90.07
OE 99.60 99.61 0.51 92.61 98.39 96.24 4.34 92.30 95.39 92.53 17.72 95.72

Energy FT 98.83 99.14 1.31 92.79 98.68 96.82 2.84 92.52 96.61 94.92 13.78 94.83

GNNSAFE 99.58 99.76 0.00 92.53 98.55 98.99 0.31 92.81 97.35 97.12 6.59 95.76
GNNSAFE++ 99.82 99.89 0.00 92.22 99.64 99.68 0.13 92.39 97.51 97.07 6.18 95.84
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Table 7: Out-of-distribution detection performance measured by AUROC(↑)/AUPR(↑)/FPR95(↓) on
Coauthor with three OOD types (structure manipulation, feature interpolation, label leave-out).

Model Coauthor-Structure Coauthor-Feature Coauthor-Label
AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC AUROC AUPR FPR95 ID ACC

MSP 95.30 94.37 24.75 92.47 97.05 96.93 15.55 92.45 94.88 97.99 23.81 95.18
ODIN 52.14 48.83 99.92 92.34 51.54 45.50 100.0 92.39 51.44 74.79 100.0 95.15

Mahalanobis 80.46 76.65 70.75 92.33 93.23 90.88 28.10 92.34 85.36 93.61 45.41 95.19
Energy 96.18 95.25 18.02 92.75 97.88 97.69 9.75 92.75 95.87 98.34 18.69 95.20
GKDE 65.87 72.65 99.48 88.62 80.69 86.47 96.57 84.72 61.15 81.39 94.60 89.05
GPN 34.67 40.21 99.57 89.45 81.77 80.56 74.46 87.05 93.24 97.55 34.78 91.68
OE 97.86 96.81 9.23 92.60 99.04 98.80 4.44 92.64 96.04 98.50 18.17 95.10

Energy FT 98.84 97.78 3.97 92.61 99.43 99.25 2.25 92.50 96.23 98.51 17.07 95.20

GNNSAFE 99.60 99.69 0.26 92.73 99.64 99.66 0.51 92.73 97.23 98.98 12.06 95.21
GNNSAFE++ 99.99 99.99 0.02 92.92 99.97 99.95 0.09 92.87 97.89 99.24 9.43 95.24

Table 8: Comparison of training time per epoch and inference time of all the models on five datasets.

Model Cora Amazon Coauthor Twitch Arxiv
TR (s) IN (s) TR (s) IN (s) TR (s) IN (s) TR (s) IN (s) TR (s) IN (s)

MSP 0.008 0.013 0.011 0.023 0.060 0.166 0.008 0.040 0.043 0.173
ODIN 0.007 0.025 0.009 0.053 0.055 0.311 0.008 0.081 0.018 0.010

Mahalanobis 0.008 0.251 0.013 0.306 0.073 1.081 0.009 0.006 0.024 0.034
Energy 0.013 0.016 0.016 0.022 0.114 0.160 0.011 0.048 0.063 0.192
GKDE 0.007 0.015 0.008 0.025 0.069 0.236 0.006 0.043 0.030 0.171
GPN 10.02 40.30 6.480 25.86 28.58 114.44 2.850 13.88 - -
OE 0.014 0.015 0.018 0.024 0.118 0.165 0.012 0.044 0.077 0.252

Energy FT 0.013 0.018 0.018 0.024 0.131 0.171 0.016 0.052 0.069 0.218
GNNSAFE 0.015 0.015 0.015 0.023 0.115 0.164 0.011 0.049 0.062 0.219

GNNSAFE++ 0.015 0.019 0.015 0.027 0.141 0.189 0.016 0.052 0.075 0.239
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Figure 3: (a) Hyper-parameter analysis for propagation steps K and self-loop strength α. (b)
Impact of margin hyper-parameter tin and tout. (c) Impact of weight hyper-parameter λ for energy
regularization of GNNSAFE++. We Cora with structure manipulation for experiments.
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