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Abstract001

In this paper, we explore the application of002
Large Language Models (LLMs) to the pre-003
training of music. While the prevalent use of004
MIDI in music modeling is well-established,005
our findings suggest that LLMs are inher-006
ently more compatible with ABC Notation,007
which aligns more closely with their design and008
strengths, thereby enhancing the model’s per-009
formance in musical composition. To address010
the challenges associated with misaligned mea-011
sures from different tracks during generation,012
we propose the development of a Synchronized013
Multi-Track ABC Notation (SMT-ABC Nota-014
tion), which aims to preserve coherence across015
multiple musical tracks. Our contributions in-016
clude a series of models capable of handling up017
to 8192 tokens, covering 90% of the symbolic018
music data in our training set. Furthermore,019
we explore the implications of the Symbolic020
Music Scaling Law (SMS Law) on model per-021
formance. The results indicate a promising022
research direction in music generation, offering023
extensive resources for further research through024
our open-source contributions.025

1 Introduction026

Large Language Models (LLMs) have experienced027

remarkable advancements, leading to their broad028

application across numerous domains. As these029

models extend into multimodal areas, such as vi-030

sual and auditory fields, their capability to represent031

and model complex information, including images032

(Liu et al., 2023) and speech (Baevski et al., 2020)033

becomes increasingly critical. However, this ex-034

pansion also highlights significant challenges that035

must be addressed. Specifically, the development036

of effective tokenizers for images and videos, as037

well as advanced codecs for the audio domain.038

In the domain of music, LLMs encounter inher-039

ent challenges that hinder their effective utilization.040

These models often struggle to capture the consis-041

tency of long-term structural consistency of music042

essential for pleasing music (Dai et al., 2022; Briot 043

and Pachet, 2020; Dai et al., 2021). This issue 044

stems from the use of Musical Instrument Digi- 045

tal Interface (MIDI), which, while effective, poses 046

significant challenges in terms of music’s readabil- 047

ity and structural representation. The widely-used 048

performance MIDI data may lack structural anno- 049

tations and cannot inherently encode phenomena 050

such as music repetition, thus resulting in longer 051

sequence lengths (Yuan et al., 2024). 052

To tackle this issue, the integration of ABC no- 053

tation offers a novel approach to overcoming the 054

limitations of MIDI formats, visualized in Figure 1. 055

Yuan et al. (2024) advocate for this method, high- 056

lighting ABC notation’s readability and structural 057

coherence. Their methodology involves fine-tuning 058

the LLAMA2 model, leveraging instruction tuning 059

to enhance the model’s musical output capabili- 060

ties (Touvron et al., 2023b,a). The research over- 061

looks critical tokenization considerations within 062

musical compositions. 063

In this paper, we aim to propose a training stan- 064

dard with transformer decoder-only architecture 065

for symbolic music generation tasks, which is suit- 066

able for single / multi-track music generation. We 067

observe that mismatches between measures can 068

occur by employing the traditional ’next-token- 069

prediction’ paradigm for symbolic data training. 070

This issue arises because ABC notations are gen- 071

erally notated track by track, completing one track 072

before moving on to the next. To address this chal- 073

lenge, we propose SMT-ABC notation to facilitate 074

the model’s learning of how each measure is ex- 075

pressed across various tracks. 076

Furthermore, we observe that the ABC Nota- 077

tion model benefits from additional epochs in the 078

training phase. This suggests that repeated data 079

positively impacts the model’s performance. To 080

understand this phenomenon, we introduced the 081

SMS Law for repetitive training with symbolic mu- 082

sic data. This law explores how scaling up the 083
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training data affects the performance of symbolic084

music generation models, particularly in terms of085

validation loss. This investigation aims to provide086

clear insights into the relationship between data087

repetition and model efficacy, offering guidance for088

optimizing model training strategies.089

In conclusion, our contributions are as follows:090

• We develop a Long-range Symbolic Music091

LLM that introduced a foundation model092

trained on musical notes in ABC notation,093

with an extended sequence length of 8192 to-094

kens, catering to over 90% of symbolic musi-095

cal scores we collected.096

• We propose SMT-ABC notation to represent097

notes and improve the structural integrity and098

quality of the generated music by maintaining099

consistent measures within each track.100

• We explore the SMS Law insights for ABC101

notation. We demonstrate that comprehensive102

song modeling yields superior performance103

with a positive correlation between model104

size and metric improvement. We also re-105

veal unique training epoch dynamics in music106

repetition and performance enhancement.107

• We will release a suite of state-of-the-art long-108

range foundation models in the music domain109

along with intermediate training checkpoints110

to foster community research and innovation111

in symbolic music modeling.112

2 Related work113

Music Pre-training Audio pre-training through114

the self-supervised learning paradigm has made115

great progress in speech (Baevski et al., 2020; Hsu116

et al., 2021; Baevski et al., 2022; Ma et al., 2023b;117

Yang et al., 2023; Lin et al., 2023), general-purpose118

audio (Huang et al., 2022; Baade et al., 2022; Chen119

et al., 2023, 2024), as well as music (Zhu et al.,120

2021; Dong et al., 2023; Thickstun et al., 2023;121

Ma et al., 2023a; Li et al., 2023). Two types of122

self-supervised music pre-training have been ex-123

plored: non-autoregressive discriminative models124

and autoregressive generative models. Autoregres-125

sive generative music pre-training models employ126

a GPT-style framework to generate music, either127

in codec (Copet et al., 2024) form or in symbolic128

form (Thickstun et al., 2023; Dong et al., 2023).129

Data Representation for Symbolic Music Sym- 130

bolic music representation formats such as MIDI, 131

Humdrum, and ABC notation offer distinct ap- 132

proaches for representing musical information. 133

Specifically, MIDI, which excels in capturing mu- 134

sical notes and performance, is a popular choice in 135

the music industry and research community(Huang 136

and Yang, 2020; Huang et al., 2019; Lu et al., 2023). 137

However, the complexity and length of MIDI se- 138

quences often challenge music models, which limit 139

the preservation of a composition’s full continu- 140

ity. In contrast, ABC notation stands out for its 141

textual simplicity and compactness, making it par- 142

ticularly suited for Natural Language Processing 143

(NLP) techniques. It can be efficiently processed 144

and analyzed using sequence modeling and pat- 145

tern recognition algorithms similar to those used in 146

language translation and text generation, enabling 147

automated music generation and retrieval(Sturm 148

et al., 2016; Casini et al., 2023; Yuan et al., 2024). 149

Scaling Law A wide range of research under- 150

scores a significant pattern in language model per- 151

formance, indicating a power-law relationship be- 152

tween model performance and the increases in both 153

the number of parameters and the size of the train- 154

ing data (Kaplan et al., 2020; Hoffmann et al., 2022; 155

Ghorbani et al., 2021). Scaling law plays a pivotal 156

role in advancing large language models (LLMs), 157

offering a framework to predict the optimal con- 158

figurations for larger models based on the training 159

logs of their smaller counterparts (Gao et al., 2022). 160

The research by Muennighoff et al. (2024), which 161

involves the repetition of the entire pre-training 162

dataset across multiple epochs, presents promising 163

results yet raises questions regarding its effective- 164

ness for musical data. This uncertainty prompts a 165

need for further research into the impact of data rep- 166

etition strategy by achieving improved outcomes 167

for models engaged in music-related tasks. 168

3 Method 169

3.1 SMT-ABC Notation 170

ABC notation is a widely adopted system for no- 171

tating music using plain text, and it offers unique 172

advantages when used in conjunction with deep 173

learning models. Its well-structured text format 174

ensures easy preprocessing, efficient data transmis- 175

sion, and scalability of datasets. The diverse col- 176

lection of tunes and compositions in ABC notation 177

facilitates learning various musical structures and 178

styles. Moreover, ABC notation allows models to 179
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Figure 1: Examples of MIDI (upper) and ABC notation
(bottom).

generate human-readable outputs, leading to im-180

mediate feedback and iterative refinement. These181

attributes significantly enhance both the efficiency182

and quality of the training process.183

An ABC file is composed of headers following184

the music notation. The former contains metadata185

regarding the tune, such as its composer and tempo,186

while the latter defines the melody. In ABC nota-187

tion, each note is represented by a letter, and addi-188

tional symbols are used to convey duration, rhythm,189

and other musical characteristics. An example is190

shown in Figure 1. “V:1” indicates the beginning191

of the first music track and the lines before it are192

headers. A tune can consist of one or more tracks,193

each representing a distinct musical element within194

the composition. The bars within each track are195

separated by bar line symbols like vertical lines196

(“|”), which refer to the standard bar line.197

In Yuan et al. (2024), ABC files without any198

modification are the input of models. However, we199

found that the models struggle with bar alignment200

when dealing with multiple tracks. Since a track201

represents a section or division within a musical202

composition, such as one of the instrumental or203

vocal parts in a piece of music, it is crucial for mod-204

els to capture the correspondence between tracks.205

Specifically, this correspondence exists in bars with206

the same indices, and thus, they should be treated207

as a series of groups. To this end, we reorganize the208

tracks as depicted in Figure 2. We concatenate mu-209

sic segments from bars with the same index across210

all tracks, including their right bar lines. These con-211

catenated elements from different tracks are then 212

enclosed by a pair of a newly introduced symbol 213

“<|>”, which is not part of the original ABC system. 214

This symbol represents the beginning or the end of 215

a group of bars at the same stage. In cases where 216

a tune contains only one track, each new unit will 217

consist of a single bar. After processing all the 218

bars, we obtain a synchronized version of the mu- 219

sic notation, while the headers remain unchanged. 220

The length of the tracks is not always identical due 221

to repetition or other specific musical structures, 222

which are difficult to handle exhaustively. Consid- 223

ering these special samples typically account for 224

just a small portion (0.01% in our dataset) of the 225

entire dataset, we simply skip them in this scenario. 226

3.2 Tokenizer 227

We chose YouTokenToMe (YTTM) (YouToken- 228

ToMe, 2021) framework to develop a tokenizer 229

with a vocabulary of 50,000 tokens, leveraging the 230

Byte-Pair Encoding (BPE) (Shibata et al., 1999) for 231

ABC notation tokenization. This method is instru- 232

mental in segmenting the ABC text into manage- 233

able units, thereby enhancing the model’s ability to 234

interpret and process the input effectively. We do 235

not apply any normalization and dummy prefix to 236

the training corpus, without changing its form or 237

adding extra parts at the beginning. Additionally, a 238

unique symbol “<n>“is employed to denote spaces 239

within the ABC text, ensuring accurate space recog- 240

nition by the model. 241

3.3 Model Architecture 242

MuPT utilizes a standard Transformer model ar- 243

chitecture (Vaswani et al., 2023) in a decoder-only 244

setup. Models are trained on a context length of 245

8192 tokens. We list our MuPT model parameter in 246

Table 1 and utilize several improvements proposed 247

after the original transformer paper. Below, we list 248

the included improvements: 249

• SwiGLU Activation: The SwiGLU activa- 250

tion mechanism, represented as (Swish(xW )· 251

xV ), is utilized for the MLP (Multi-Layer 252

Perceptron) intermediate activations. This ap- 253

proach significantly surpasses traditional ac- 254

tivation functions such as ReLU, GeLU, and 255

Swish in performance (Shazeer, 2020). 256

• RMSNorm Each transformer sub-layer, in- 257

cluding the attention and feedforward layers, 258

is normalized using RMSNorm as proposed 259

by Zhang and Sennrich (2019) 260
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<|> z3 E/F/ | z6 C2 | z6 A,2 | <|> 
<|> G A G C | C2 C2 C2 CD | G,2 
F,2 E,F G,A | <|> <|> ... | ... | ... | <|>

Align BarsV:1  z3 E/F/ | G A G C | ...
V:2  z6 C2 | C2 C2 C2 CD | ...
V:3 z6 A,2 | G,2 F,2 E,F G,A | ...

Figure 2: Illustration of synchronized multiple-track ABC notation. Music segments from bars sharing the same
index across all tracks, along with their right bar lines, are concatenated to guarantee alignment. The combined
elements are then enclosed by a pair of a newly introduced symbol “<|>”.

• RoPE Embeddings: In contrast to positional261

encoding (PE) strategy, we use the Rotary Po-262

sitional Encoding (RoPE) technique, as devel-263

oped by Su et al. (2023), aimed at enhancing264

long-context modeling.265

Table 1: MuPT model with different model sizes.

Parameters 190M 505M 1.07B 1.97B 4.23B

Hidden Size 768 1024 1280 1536 2048
# Layers 12 16 20 24 32
# Feedforward dims. 3072 4096 5120 6144 8192
# Heads 12 16 20 24 32
Head Size 256 256 256 256 256

3.4 Scaling Law266

The Chinchilla Law, proposed by DeepMind, is a267

scaling law that provides insights into the training268

of LLMs. Our experiments reveal that the Chin-269

chilla Law (Hoffmann et al., 2022) provides a good270

fit for general cases, where moderate models were271

trained with a moderate amount of data. In this272

section, we will list several improvements to Chin-273

chilla Law for symbolic music scaling principles274

on limited training data.275

3.4.1 Optimizing Baseline Scaling Laws under276

Computational Constraints277

A pivotal aspect of scaling laws is the optimization278

of loss within the bounds of computational feasi-279

bility. This is formalized as minimizing the valid280

loss L, subject to constraints imposed by available281

computational resources (C), specifically FLOPs,282

as denoted below:283

argminN,D L(N,D) s.t. FLOPs(N,D) = C (1)284

This framework encapsulates the trade-offs be-285

tween parameters (N ) and training tokens (D), and286

decision-making processes inherent in scaling mod-287

els under resource limitations, illuminating path-288

ways to efficiency and efficacy in LLMs training.289

More details can be found in Appendix A.1.290

In this paper, we will use the Chinchilla291

Law(Hoffmann et al., 2022) and Data-Constrained292

law(Muennighoff et al., 2024) as baselines. The 293

former is a classical baseline in LLMs’ training and 294

the latter is crucial to address the constraints faced 295

in scenarios where the volume of available training 296

data does not meet the ideal requisites. This phe- 297

nomenon is typical in the music domain. Please 298

refer to A.1.2 for more information. 299

3.4.2 Symbolic Music Scaling (SMS) Law 300

Figure 3 demonstrates the Chinchilla prediction in 301

yellow lines and the observed loss in blue. We can 302

tell that the Chinchilla law does not provide good 303

results when the data volume D is small when the 304

model just begins the pre-training stage, and when 305

D is large where repeated data provides overfitting. 306

We proposed two terms to address these problems. 307

Incorporation of a New Term. We can ob- 308

serve that when that model parameter is small 309

(e.g. N = 190M ), the Chinchilla underestimates 310

the loss value and overestimates when the model 311

size is large (e.g. N = 1072M ). This suggests 312

that the coefficient B in the Chinchilla formula 313

L = A
Nα + B

Dβ + E shall be relevant to D instead 314

of a constant. To cope with, we incorporate a new 315

term. After that, we proposed another term to pre- 316

dict the early stop points and overfited loss curve: 317

L(N,D) =
d

Nα ·Dβ
+

A

Nα
+

B

Dβ
+ E. (2) 318

Where {A,B, d,E, α, β} are learned variables 319

fit using the training runs. To address the model’s 320

limitations in accurately capturing performance 321

metrics for smaller data sizes, we introduce an ad- 322

ditional term, as delineated in Equation 2. This 323

modification aims to refine the model’s fidelity, par- 324

ticularly in scenarios characterized by limited data 325

availability. Further details on this modification 326

can be found in the Appendix A.3.1. 327

Modelling Overfitting Settings. Crucially, pre- 328

vious iterations of the model fall short in predict- 329

ing overfitting, particularly beyond early stopping 330
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Figure 3: Chinchilla Law prediction and loss survey in the setting with 2.1B unique tokens.

thresholds. This gap is especially pronounced331

in the context of Data-Constrained environments,332

such as music, where open-source data is lim-333

ited. To this end, we introduce a new component,334

Loverfit, to the model, encapsulated in Equation 3,335

to specifically account for overfitting losses:336

L (N,D,UD) =
d

Nα·Dβ + A
Nα + B

Dβ + E + Loverfit (3)337

where338

Loverfit = GELU {kd ·D + kn · log(N)− ku · log(UD)− kin} (4)339

is our overfitting formulation where340

{kd, kn, ku, kin} are learned variables for341

overfitting calibration. For comprehensive insights342

into the overfitting loss component, please refer to343

Appendix A.3.2.344

Parameter Fitting and Model Integration. Ini-345

tial parameter fitting for {α, β, A, B, E}, and d,346

subsequent linear regression analysis, focusing on347

the residuals between Equation 2 and empirical ob-348

servations, facilitates the calibration of overfitting349

parameters {kd, kn, ku, kin} within Equation 4.350

The integration of these components in Equation351

3 not only predicts performance under constrained352

conditions but accounts for overfitting dynamics,353

helping to predict the true minimum of loss curve.354

4 Experiments355

4.1 Experimental Setup356

As outlined in section 3.3, we adopt similar model357

architecture from LLaMA2(Touvron et al., 2023b),358

including RMSNorm(Zhang and Sennrich, 2019)359

and SwiGLU(Shazeer, 2020). In the full-scale data360

setting, we trained models of various sizes (ranging361

from 190M to 4.23B parameters) on the ABC text362

corpus, which consists of 33.6 billion tokens de-363

rived from a diverse collection of monophonic and364

polyphonic musical compositions spanning various365

genres and styles. For our data repetition experi- 366

ments, we utilized subsets of the corpus, specifi- 367

cally 6.25% and 25% random sampled data. The 368

Adam(Kingma and Ba, 2014) optimizer and co- 369

sine learning rate schedules are applied throughout 370

the training process. All the hyperparameters are 371

detailed in Appendix C. 372

4.2 Scaling Law 373

4.2.1 Evaluation Metrics & Fitting 374

Methodology 375

We use the R2 value and Huber loss (with the 376

parameter δ = 1e − 3) between the authentic 377

valid loss and predicted valid loss on small models 378

(190M, 505M, 1.07B) to acquire the best scaling 379

law. Then we use the best law to train two large 380

models (with 1.97B and 4.23B). See Appendix A.4 381

for more details about the two evaluation methods. 382

We optimized the SMS Law using the L-BFGS 383

algorithm, the same with Chinchilla and Data- 384

Constrained Laws. For more information, please 385

refer to Appendix A.5. 386

4.2.2 SMS Law are the Best on the Training 387

Set 388

The integration of an additional term as delin- 389

eated in Equation 2, alongside the introduction of 390

a GELU regularization component in Equation 4, 391

collectively underpins the superior performance of 392

the SMS Law, as empirically evidenced by its train- 393

ing set outcomes. This is particularly notable in 394

the context of our parametric fitting performance 395

comparison (see Table 2), where the SMS Law out- 396

shines other scaling laws, achieving the highest R2 397

value (0.9780) and the lowest Huber loss (0.0085) 398

on the training set. 399

Although Equation 11 does not eclipse the Chin- 400

chilla Law in performance metrics, it nonetheless 401

presents a significant improvement over the Data- 402

Constrained Law’s D′ by leveraging D′′, which is 403

indicative of a refined approach to managing the 404
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Paramatic fit R2 Value (train) ↑ Huber Loss (train) ↓ R2 Value (test) ↑ Huber Loss (test) ↓

Chinchilla law 0.9347 0.0109 -0.0933 0.0080
Data-Constrained law 0.7179 0.0206 0.1524 0.0071

Equation 11 0.9075 0.0129 0.3114 0.0073
Equation 2 0.9759 0.0102 0.8580 0.0062
SMS Law 0.9780 0.0085 0.9612 0.0028

Table 2: Comparison of parametric fitting performance of different scaling laws.

constraints posed by data repetition. This nuanced405

handling of data repetition, inherent to Equation406

11, suggests an enhanced generalization capability407

in such scenarios. Therefore, we culminate it along408

with other modifications, manifest in the SMS Law409

in order to enhance model performance and general-410

ization at the same time. In fact, it indeed provides411

much better results in the test set.412

4.2.3 Scaled-up Performance using SMS Law413

In our SMS Law experimentation under a computa-414

tional budget of 2× 1020 FLOPs, we initially aim415

to train a 2.10B (or 1.98B) parameter model across416

2.82 epochs on the whole 33.6B dataset per epoch,417

achieving a loss of 0.5279 (or 0.5280). Engineer-418

ing constraints necessitated a slight scale-down to419

a 1.97 billion parameter model, which, intriguingly,420

showed a minimal loss increase to 0.529 around 2.5421

epochs. Contrary to the predictions of SMS Law,422

the Chinchilla Law suggests optimal performance423

for a 990M parameter model over 6.1 epochs. Push-424

ing boundaries, we continuously train the 1.07B425

parameter model and observe overfitting returns426

beyond 3 epochs, validating the SMS Law’s ad-427

vantages in this context. Further, we train a 4.23B428

parameter model that underscored the SMS Law’s429

predictive accuracy regarding overfitting risks, af-430

firming its value as a strategic guide in scaling431

up models effectively within fixed computational432

constraints, beneficial for efficient model scaling433

decisions.434

In validating the SMS Law, we analyze the per-435

formance of 1.97B and 4.23B parameter models,436

detailed on the right-hand side of Table 2. This437

comparative study highlights the SMS Law’s ex-438

ceptional performance, evidenced by its unparal-439

leled R2 values and minimal Huber Loss on testset440

as well.441

Unlike the Chinchilla and Data-Constrained442

laws, the SMS Law not only showcase superior443

predictive accuracy but also demonstrates its effi-444

cacy in optimizing neural network scaling within445

computational constraints. These results affirm the446

SMS Law’s value in guiding scaling strategies for 447

symbolic music, marking a significant advance- 448

ment in the field.
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Figure 4: Training Loss for different model sizes and
training strategy.

449

4.3 Evaluation 450

4.3.1 Efficiency of Our Training Strategy 451

To demonstrate the efficiency of our training strate- 452

gies, we reference the training loss curves in Fig- 453

ure 4. Our comparison spans four different model 454

sizes: 190M, 505M, 1.1B, and 2B. We observed 455

that increasing the training input length from 4096 456

to 8192 significantly reduces the loss, especially 457

noticeable in the convergence phase. The compar- 458

ison shows that after aligning data, our training 459

loss slightly decreases compared to the original 460

ABC loss, demonstrating our method’s efficiency 461

in improving training for various model sizes. 462

4.3.2 Objective Metrics of Music Elements 463

Following the previous studies on music genera- 464

tion (Dong et al., 2023; Wu and Yang, 2020; Mo- 465

gren, 2016), we adopt the pitch entropy, scale con- 466

sistency and groove consistency to evaluate how 467

well the systems can generate music from the per- 468

spectives of different musical elements given the 469

first measure. Table 3 shows the mean values of 470

these three metrics, where MuPT achieves overall 471

better performances than other systems compared 472
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to the ground truths. For the whole test set, only473

51% of samples generated from GPT-4 have the474

correct ABC notation format. To compare MIDI475

representation with ABC notations, we incorporate476

Multitrack Music Transfomers (MMT) (Dong et al.,477

2023), a MIDI-based music generation model to478

infer the MIDI data transformed from the ABC no-479

tations by abc2midi1. Moreover, to compare MuPT480

with ChatMusician (Yuan et al., 2024), another481

LLM pre-trained on large-scale single-track (st.)482

ABC notation data, we separate the single-track483

samples from our test set and obtain the results in484

Table 3. MuPT also achieves better results.485

Table 3: Mean value of the pitch entropy, scale consis-
tency, and groove consistency of each system. A closer
value to the ground truth (GT) is considered better.

System
Pitch

Entropy
Scale

Consist.(%)
Groove

Consist.(%)

GT 2.708 96.80 93.46
MuPT-SMT 2.631 97.48 93.45
MuPT-Ori. 2.621 98.09 93.36
MMT 2.784 95.64 91.65
GPT-4 2.783 97.90 95.32

GT(st.) 2.617 98.39 93.25
MuPT-SMT(st.) 2.612 98.20 93.39
MuPT-Ori.(st.) 2.619 98.16 93.49
ChatMusician(st.) 2.664 98.55 94.47
MMT(st.) 2.808 95.88 91.60
GPT-4(st.) 2.686 99.27 95.72

4.3.3 Repetition Metrics486

Repetition Rate Repetition is significant in eval-487

uating how well-structured the music is. In Table488

4, the piece-level average repetition rate of each489

system is calculated to reveal how often the repeat490

sign : | appears in a generated set. It appears that491

43.7% of the generated samples from MuPT, which492

is quite close to the ground truth, higher than Chat-493

musician in single-track data, and much higher than494

GPT-4. This suggests that MuPT is more likely to495

generate music with repetition and structure.496

Intra Similarity In addition to the naive repeti-497

tion rate, we also adopt the methods introduced in498

Wang et al. (2024) to calculate the intra-similarity499

of music in each system. Specifically, a pre-trained500

VAE from Yang et al. (2019) and Wang et al. (2020)501

is transferred to compute the texture latent for each502

music piece; the intra-similarity of a music piece503

is defined as the average value of its texture latent504

similarity matrix, excluding the diagonal. Since505

1https://github.com/xlvector/abcmidi

Table 4: Mean value of the intra-texture similarity and
repetition rate of each system. ABC notation string
generated by MuPT achieves higher intra-similarity than
the ground truth as well as those generated by GPT-4.

System Intra Similarity Repetition Rate (%)

GT 0.3729 43.5
MuPT-SMT 0.4193 43.7
MMT 0.1767 -
GPT-4 0.3614 16.9

GT(st.) 0.4753 59.2
MuPT-SMT(st.) 0.4507 52.6
ChatMusician(st.) 0.5260 40.1
MMT(st.) 0.2158 -
GPT-4(st.) 0.4235 23.0

the texture encoder is pre-trained on MIDI data, 506

we transform ABC notations into MIDI format 507

before the latent is obtained. Table 4 shows the 508

mean value of each system’s intra-similarity under 509

the first-measure conditioned generation. For the 510

whole test set, MuPT achieves the highest score 511

among all systems, while for the single track, its 512

value is lower than the ChatMusician. Generated 513

pieces of MMT have notably lower intra similarity 514

than MuPT and GPT-4. This result corresponds 515

with the intuition that score-level ABC notation is 516

more capable of generating structured music than 517

performance-level MIDI. 518

4.3.4 Subjective Evaluation 519

Human assessment should be involved to further 520

testify the objective repetition metrics above. Fol- 521

lowing Donahue et al. (2023) and Thickstun et al. 522

(2023), we conduct a subjective listening study 523

to measure the qualitative performance of MuPT 524

against the ground truth (GT) and baselines consist- 525

ing of GPT-4, MMT and random note sequences 526

(Random). Listeners are asked to identify which 527

of two musical excerpts from different sources is 528

more "musical" during the test process. They are 529

also instructed to focus on two aspects of musical- 530

ity: how consistently the music sounds throughout 531

(e.g., in terms of its melodic contours, rhythmic 532

patterns, and chord progression); and how likely 533

it is that the development of the music follows a 534

clear structure (e.g., verse-chorus division, repeti- 535

tions). This process is similar to that in Yuan et al. 536

(2024) and its details are shown in the Appendix D. 537

Results for all systems are shown in Table 5. Com- 538

paring MuPT to GPT-4, listeners prefer music from 539

our system in 79% of cases. A Wilcoxon signed- 540

rank test of these pairwise judgments shows that 541

listeners preferred music from MuPT significantly 542
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Model A Model B Wins (A/B) p-value

Human Works

MuPT 81/69 0.4237
MMT 109/41 4.2249 × 10−6

GPT-4 119/31 6.6315 × 10−9

Random 138/12 4.4648 × 10−17

MuPT
MMT 110/40 4.2249 × 10−6

GPT-4 115/35 6.6641 × 10−8

Random 131/19 1.3618 × 10−13

MMT GPT-4 95/55 0.0093
Random 103/47 0.0001

GPT-4 Random 106/44 2.6691 × 10−5

Table 5: Human evaluation of paired completions of musical excerpts generated by different sources given the
first bar as the condition. The left is the matrix based on the AB test. Each row indicates the % of times listeners
preferred instrumentals from that system compared to those from each system individually (N = 150). Ground truth
is denoted by GT. i.e.77 means that listeners preferred MuPT over GPT-4 in 77% of cases. The right is the absolute
win numbers and the corresponding p-value of each pair. P-values are reported by a Wilcoxon signed rank test.

more than MMT and GPT-4 (p = 4.2249× 10−6543

and p = 6.6641× 10−8, respectively).544

4.3.5 Ablation Studies on SMT-ABC Notation545

To validate the effect of the SMT-ABC Notation546

training strategy, which has previously shown ad-547

vantages in reduced training loss 4.3.1 and higher548

consistency rate 4.3.2, we conduct two experiments:549

the first evaluates measure consistency in multi-550

track notations, and the second involves subjective551

evaluations.552
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Figure 5: Measure consistency of SMT-ABC and
Original-ABC models in different training iterations.

Measure Consistency To assess the measure553

consistency in generated ABC music sequences,554

we measure the proportion of sequences where all555

tracks contain an equal number of measures. Fig-556

ure 5 illustrates that the sequences generated by557

the SMT-ABC model demonstrate a significantly558

higher consistency rate compared to those gener-559

ated by the model trained on Original-ABC nota-560

tion. This suggests that the SMT-ABC notation561

facilitates models to maintain structural uniformity562

across different tracks, which is critical for ensur-563

ing the coherence and usability of the generated564

compositions in practical applications. 565

Objective and Subjective Evaluation In Ta- 566

ble 3, MuPT-SMT and MuPT-Ori. represent the 567

SMT-ABC notation and Original-ABC notation 568

respectively. The results show that mostly SMT- 569

ABC performs better than Original-ABC. Mean- 570

while, we also conduct the AB test of all multi- 571

track samples in the test set between these two 572

systems and it shows listeners prefer music from 573

SMT-ABC in 53% of cases than Original-ABC. 574

(p = 2.7265× 10−6). 575

5 Conclusion 576

In this paper, we introduce the MuPT series of 577

pre-trained models trained on the largest possible 578

amount of ABC Notation data, including 33.6 Bil- 579

lion high-quality diverse symbolic music tokens, 580

which set the standard for training open-source 581

symbolic music foundation models. Additionally, 582

we dive deep into the scaling law exploration and 583

propose SMS Law, a specialist in guiding future 584

scaling of symbolic music foundation models. Our 585

results demonstrate that the MuPT series is com- 586

petitive with mediocre human composers and guar- 587

antees state-of-the-art performance on symbolic 588

music generation. Moreover, MuPT introduces 589

SMT-ABC, reordering the multiple-track original 590

ABC notation format to assist pre-training of MuPT. 591

We believe that the open access of intermediate 592

checkpoints of MuPT, SMS Law, and MuPT se- 593

ries will foster collaboration and innovation within 594

the open-source computational music community, 595

and open the door to the next-generation symbolic 596

music foundation models. 597
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Limitations In this paper, we introduce the598

MuPT series, comprising pre-trained models dedi-599

cated to symbolic music generation. These models600

set a new standard for training open-source sym-601

bolic music foundation models. However, our mod-602

els primarily accept input in ABC notations and603

lack the capability for interactive generation based604

on human instructions, unlike systems such as Chat605

Musician (Yuan et al., 2024).606

Ethics Statement In designing the MuPT series,607

we have meticulously adhered to ethical guidelines608

to ensure fairness, transparency, and the responsi-609

ble use of AI in music generation. Despite these ef-610

forts, ethical challenges such as potential copyright611

infringement and unintended use of AI-generated612

music in sensitive contexts remain. We urge the613

research community to approach these challenges614

with vigilance and to consider ethical implications615

carefully when deploying similar technologies.616
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A Scaling Law847

A.1 Scaling Law Baseline848

A.1.1 Abstracting Loss Metrics through the849

Chinchilla Law850

In this part, we focus on the relationship of loss851

metrics to various resource budgets in deep learn-852

ing. It is first put forward by the Chinchilla Law as853

illustrated in Equation 5. This law posits that both854

training and evaluation losses can be abstracted as855

a function of model capacity N and training data856

size D, thus offering an insight to estimate the best857

combination of resources to be assigned to training.858

L(N,D) =
A

Nα
+

B

Dβ
+ E (5)859

Here, L(N,D) denotes the loss metric during860

training or evaluation, which is assumed to exhibit861

a power-law dependency on N and D. The parame-862

ters A, B, E, α, and β are determined by empirical863

fitting.864

A.1.2 Data-Constrained Law865

Data-Constrained Law: Scaling under Data866

Limitations. Complementing the Chinchilla Law,867

the Data-Constrained Law shows the scaling dy-868

namics of LLMs when facing the data scarcity869

problem. Here, we strictly refer to the derivation870

method of (Muennighoff et al., 2024). The goal871

of discovering Data-Constrained Scaling Law is to872

generalize the expression to multiple epochs where873

tokens are repeated.874

Data-constrained law is defined as:875

L (N,D,UD) =
A

N ′α +
B

D′β + E (6)876

where877

N ′ = UN + UNR⋆
N

(
1− exp

(
−RN

R⋆
N

))
D′ = UD + UDR

⋆
D

(
1− exp

(
−RD

R⋆
D

)) (7)878

To get a better understanding of the equation, the879

definitions of each of the above parameters are as880

follows: Like Chinchilla Law, N is defined as the881

number of model parameters, and D is defined as882

the training tokens.883

UD is defined as the number of unique tokens884

used. For data-constrained law, UD is computed as885

min{D,DC} given a budget of unique data Dc.886

UN is defined as the number of “unique” pa-887

rameters that provide an optimal fit for UD. Ac-888

cording to the method mentioned in (Muennighoff889

et al., 2024), given the following learned vari- 890

ables, {A,α,B, β E}, the optimal allocation of 891

compute(C) to N and D as follows: 892

Nopt(C) = G

(
C

6

)a

Dopt(C) = G−1

(
C

6

)b

G =

(
αA

βB

) 1
α+β

a =
β

α+ β

b =
α

α+ β

(8) 893

Thus, UN is equal to min{Nopt, N}. 894

RD is defined as the number of times the data is 895

repeated. When training for a single epoch, RD = 896

0. 897

RN is the number that the ‘unique’ parameters 898

are repeated where RN = max{
(

N
UN

)
− 1, 0}. 899

D′ is defined as the "effective data size": the 900

number of unique data needed to get the same value 901

as repeating U unique tokens for RD repeats.The 902

derivation process is as followed: 903

From a conceptual standpoint, the redundancy of 904

data samples diminishes their incremental value in 905

enhancing the model’s knowledge base, given the 906

model’s prior exposure to said information. This 907

principle underlies the hypothesis that each succes- 908

sive repetition of a sample contributes marginally 909

less to the learning process, as the model has par- 910

tially assimilated the information contained within 911

the sample through prior iterations. To describe the 912

process of training information loss, we have 913

D′ = U + U
∑RD

k=1(1− δ)k = U + (1− δ)U (1−(1−δ)RD )
δ (9) 914

where δ is defined as the ‘forgetting rate’. Each 915

time a series of tokens is trained on a model, the 916

model learns a 1 − δ fraction information from 917

the optimization process. Assuming that the num- 918

ber of epochs beyond which repeating does not 919

help, the right-hand side goes to to (1−δ)U
δ , since 920

limRD→∞(1 − (1 − δ)RD) = 1. We define R⋆
D 921

is defined as1−δ
δ , which is a learned constant. Ac- 922

cording to Taylor expansion, if δ is small, we have: 923

e
−1
R⋆
D ≈ (1− δ) (10) 924
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Now inserting (1−δ)
δ = R⋆

D and (1 − δ)RD =925

e
( −1
R⋆
D
)RD

into Equation9, we get our final equation926

representing the effective data.927

As the frequency of encountering repeated to-928

kens diminishes, the benefit gained from process-929

ing them also decreases. Hence, the derivation of930

the N ′ is similar to D′. In this context, there’s no931

need to elaborate further. It should be pointed out932

that R⋆
N is a learned parameter.933

A.2 Ablition Study on Continuous Adaptation934

of the Data-Constrained Law.935

To enhance the predictive accuracy of the Data-936

Constrained law (Muennighoff et al., 2024) for937

continuous domains, we extend the original dis-938

crete formulation 11 to accommodate continuous939

variables, allowing for a more nuanced understand-940

ing of data constraints in varied contexts. For an941

in-depth discussion on the derivation and implica-942

tions of this continuous formulation, please refer943

to Appendix A.2.944

L(N,D,UD) =
A

Nα
+

B

D′′β
+ E (11)945

where k is a new parameter to be fit, and D′′, the946

adjusted data size, is given by:947

D′′ =
1− kD/UD

1− k
UD. (12)948

The definition of D′ in Equation 9 is defined949

from a discrete version and can not be extended to950

the case when D is less than UD. So we reform the951

Equation 9 to952

D′ =
1− (1− δ)

D
UD

δ
· UD

=
1− k

D
UD
d

1− kd
· UD

(13)953

where kd := 1− δ. This equation is equivalent to954

equation 10 when D is a positive integer times UD.955

We implemented a formula symmetric to N ′956

with UN and kN . But the calculation results of957

kN ≈ 0.999. To make the formula simple, we958

use the original N instead of N ′ in the following959

formula.960

A.3 Motivation of SMS Law961

A.3.1 Motivation of Adding Power of “ND”962

Term963

In our submission, we present an in-depth anal-964

ysis of the model’s loss dynamics as illustrated965

in Figure 6, which juxtaposes the empirical loss 966

trajectory (depicted through a blue line) against 967

the theoretical predictions derived from the Chin- 968

chilla Law (illustrated by a yellow line) and further 969

contextualized by Equation 11. This comparative 970

study spans three distinct datasets—2.1B, 8.4B, 971

and 33.6B data points—across models of varying 972

capacities: 190M, 505M, and 1.07B parameters, re- 973

spectively, arranged in a matrix of subfigures with 974

datasets delineated by rows and model capacities 975

by columns. 976

Observations across all data volumes reveal a 977

nuanced interaction between model and data sizes. 978

Specifically, for smaller datasets and model sizes 979

(190M parameters), predictions consistently under- 980

estimate actual loss values, whereas for smaller 981

datasets paired with larger models (1.07B parame- 982

ters), predictions tend to overestimate. This discrep- 983

ancy underscores a critical insight: loss reduction 984

accelerates with increasing model size, suggesting 985

a modified loss function, A+ϵ
Nα over the simpler A

Nα 986

Crucially, the term ϵ emerges as a function of a 987

single variable N , ensuring variability in ϵ
Nα across 988

each unique model configuration shifting upwards 989

or downwards without changing the shape. The 990

ideal adjustment implies that ϵ approaches zero for 991

large datasets, yet remains significant for smaller 992

ones, highlighting its dependency on data volume 993

D. 994

In addressing potential overfitting, our strategy 995

focuses on minimizing parameter growth in line 996

with Equation 11. A straightforward approach in- 997

volves augmenting the loss L into a polynomial 998

encompassing A
Nα and B

Dβ , with Equation 2 intro- 999

ducing an additional term, d
Nα·Dβ , to the existing 1000

framework. This refinement, while ostensibly sim- 1001

ple, has been shown to yield robust and promising 1002

outcomes, exemplifying the efficacy of our pro- 1003

posed modifications in enhancing model perfor- 1004

mance within the context of scaling laws. 1005

A.3.2 Motivation of Linear Regression Term 1006

for Overfitted Residual 1007

Figure 7 offers a detailed exposition on the fi- 1008

delity of Equation 2 in capturing the loss trajec- 1009

tory across training sets of varied model capacities 1010

(190M, 505M, and 1.07B parameters). It is evident 1011

from the analysis that the equation adeptly mirrors 1012

the empirical loss curve across a broad spectrum 1013

of configurations, with the exception of scenarios 1014

characterized by concurrently large model sizes 1015

and token counts. A notable oversight in the liter- 1016

13



Figure 6: The loss curve, Chinchilla prediction, and Equation11 on 2.1B, 8.4B and 33.6B training data.

ature is the scant consideration of loss dynamics1017

beyond early stopping points, a consideration of1018

paramount importance in music domain due to the1019

inherent constraints on training data.1020

In addressing the challenges posed by modelling1021

loss post-early stopping, our investigation delin-1022

eates two distinct methodologies. The first ap-1023

proach involves the integration of a regularization1024

term within D′′, aimed at reducing its magnitude1025

beyond the early stopping threshold. Despite its1026

conceptual appeal, this method falls short of pro-1027

viding an adequate fit to the observed data. Alter-1028

natively, we explore the augmentation of the loss1029

function L with an additional term, engineered to1030

be negligible when both D and N are minimal,1031

yet incrementally assertive in influencing the loss1032

trajectory after early stopping points. This latter1033

strategy not only aligns more closely with empirical1034

observations but also introduces a nuanced mecha-1035

nism to accommodate the unique requirements of1036

training in the music domain, thereby extending1037

the utility and applicability of scaling laws within1038

this context.1039

As delineated in Figure 8, the analysis of resid-1040

uals post the 40 billion token threshold unveils a 1041

discernible onset of overfitting, which intriguingly 1042

appears to correlate with the model size, data ca- 1043

pacity, and the count of unique tokens processed 1044

within a single epoch. This overfitting is further 1045

characterized by a linear dependency of loss on 1046

the total number of processed tokens, coupled with 1047

a quasi-linear transition of early stopping points 1048

observed across different model capacities (as or- 1049

ganized in rows) and magnified across columns. 1050

The progression of model capaci- 1051

ties—doubling across rows and quadrupling 1052

across columns—illuminates a systematic pattern, 1053

suggesting that the early stopping points and con- 1054

sequently, the predicted loss, might be effectively 1055

modeled through a linear regression involving 1056

dataset size D, the logarithm of model capacity 1057

log(N), and and the logarithm of unique tokens 1058

per epoch log(UD). This observation culminates in 1059

the proposition of a regularization term formulated 1060

as kd · D + kn · log(N) − ku · log(UD) − kin, 1061

aimed at encapsulating and mitigating the observed 1062

overfitting dynamics. 1063

In addressing the intricacies of regularization 1064

14



Figure 7: The loss curve, Chinchilla prediction, and Equation 2 (green lines) on 2.1B training data.

Figure 8: Residule between authentical valid loss and Equation 2 prediction (blue lines), and the linear regression
results (yellow lines).

Activation Function R2 (test)↑ Huber Loss (test)↓
ReLU 0.9786 0.0095
LeakyReLU 0.9786 0.0095
GELU 0.9780 0.0085
Tanh 0.9786 0.0094
SELU 0.9779 0.010
Sigmoid 0.6030 0.0700

Table 6: Ablition study on the activation function.

within the context of early model training, espe-1065

cially when considering models of smaller scale1066

(where UD and D are minimal while N is com-1067

paratively large), it becomes imperative to ensure1068

that the regularization term does not adopt a sub-1069

stantially negative value. This stipulation aims to1070

prevent undue penalization at the onset of train-1071

ing, thereby necessitating the incorporation of an1072

activation function that tempers the regularization1073

term’s behavior. The Gaussian Error Linear Unit1074

(GELU) function emerges as an apt choice in this1075

scenario. GELU approximates the Rectified Lin-1076

ear Unit (ReLU) function for positive inputs, while 1077

also permitting slight negative values with mini- 1078

mal absolute magnitude, thus offering a balanced 1079

solution. 1080

Empirical evidence, as detailed in our analysis, 1081

underscores the efficacy of applying the GELU 1082

function to the regularization term, notably achiev- 1083

ing the lowest training loss alongside the second- 1084

highest R2 value among the tested models. This 1085

finding is particularly salient given the broader 1086

magnitude of loss variations relative to R2 values, 1087

thereby accentuating the GELU function’s suitabil- 1088
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ity for our regularization term. Consequently, the fi-1089

nalized model, incorporating the GELU-modulated1090

regularization term, is depicted through a yellow1091

line in Figure 8. This strategic application of the1092

GELU function not only mitigates the potential for1093

excessive early training penalization but also op-1094

timizes the regularization term to enhance model1095

performance effectively.1096

This approach not only elucidates the linear in-1097

terdependencies among critical factors influencing1098

model performance but also presents a nuanced1099

regularization strategy designed to enhance model1100

generalizability. Through the integration of this reg-1101

ularization term, we aim to establish a more robust1102

and theoretically informed framework for predict-1103

ing and managing loss trajectories in large-scale1104

training regimes.1105

A.4 Evaluation Metrics1106

The R-squared value, also known as the "Coeffi-1107

cient of Determination," is a statistical measure1108

used to evaluate the goodness-of-fit of a regression1109

model. It is defined as:1110

R2 = 1− SSres

SStot
(14)1111

Where SSres represents the Sum of Squares of1112

Residuals, indicating the total sum of squared dif-1113

ferences between the predicted values of the model1114

and the actual observed values, SStot represents1115

the Total Sum of Squares, indicating the total sum1116

of squared differences between the observed values1117

of the dependent variable and their mean value.1118

The Huber loss is a type of loss function com-1119

monly employed in robust regression models. Un-1120

like the squared error loss, which is sensitive to1121

outliers in the data, the Huber loss is designed to be1122

less affected by outliers. It achieves this by combin-1123

ing the characteristics of both the squared error loss1124

and the absolute error loss. It is defined piecewise1125

by:1126

Huberδ(y, f(x)) =

{
1
2(y − f(x))2, if |y − f(x)| ≤ δ

δ(|y − f(x)| − 1
2δ), otherwise

(15)1127

For small residuals, it behaves like the squared1128

error loss, whereas for large residuals, it behaves1129

like the absolute error loss. This allows the Huber1130

loss to provide a balance between the two, resulting1131

in a more robust estimation procedure.1132

A.5 Parameters Fitting Approach1133

In our study, we adopt a methodology analogous1134

to the Chinchilla Law and the Data-Constrained1135

Law, employing the L-BFGS algorithm—a limited- 1136

memory quasi-Newton method—for the optimiza- 1137

tion of the Huber Loss. This loss function is ap- 1138

plied between the logarithm of the predicted loss 1139

and the logarithm of the observed (authentic) loss 1140

across multiple runs. The objective is to identify 1141

the optimal parameters (best_para) that minimize 1142

this Huber Loss, formalized as follows: 1143

best_para = min
∑
runi

Huberδ

{
log

[
d

Nα ·D′′β +
A

Nα
+

B

D′′β + E

]
i

, log(Li)

}
= min

∑
runi

Huberδ

{
LSE

[
log

(
d

Nα ·D′′β

)
, log

(
A

Nα

)
, log

(
B

D′′β

)
, log(E)

]
i

, log(Li)

}

= min
∑
runi

Huberδ

LSE


log(d)− α log(N)− β log(D′′)

log(A)− α log(N)

log(B)− β log(D′′)

log(E)

 , log(Li)


(16) 1144

where LSE refers to the log-sum-exp a numeri- 1145

cally stable method to compute the logarithm of 1146

a sum of exponentials of inputs. The Huber Loss 1147

parameter, δ is set to 1e− 3, reflecting a stringent 1148

criterion for switching between squared loss and 1149

absolute loss to ensure robustness in optimization. 1150

Additionally, the L-BFGS algorithm’s learning rate 1151

is configured at 1e− 1, with an update history size 1152

of 10 to balance between computational efficiency 1153

and the capacity to capture relevant optimization 1154

trends. 1155

A.6 Results of Proposed Methods with Early 1156

Stops 1157

From the table, we can see that most of the exper- 1158

imental results increase after we delete the curve 1159

after the early stop points. Adding the linear regres- 1160

sion still contributes to the performance increase 1161

on the training set but provides worse results on 1162

test set compared to Equation 2. 1163

B A Short Lecture Note of L-BFGS 1164

Algorithm 1165

BFGS (Limited-memory Broy- 1166

den–Fletcher–Goldfarb–Shanno) is a variant 1167

of the BFGS method, a quasi-Newton optimization 1168

algorithm used to solve unconstrained nonlinear 1169

optimization problems. It is particularly suitable 1170

for handling large-scale optimization problems 1171

by limiting the size of the stored matrices, thus 1172

reducing storage and computational costs. 1173

The core idea of the L-BFGS algorithm is to 1174

approximate the inverse of the Hessian matrix of 1175

the objective function using historical records of 1176

function values and gradients. In contrast to tradi- 1177

tional Newton’s method that requires storing and 1178

updating the complete Hessian matrix, L-BFGS 1179
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Paramatic fit R2 Value (train) ↑ Huber Loss (train) ↓ R2 Value (test) ↑ Huber Loss (test) ↓
Chinchilla law 0.9443 0.0073 -0.0004 0.0029

Data-Constrained law 0.7216 0.0189 0.1005 0.0050
Equation 11 0.8356 0.0151 0.5829 0.0045
Equation 2 0.9843 0.0072 0.9866 0.00088
SMS Law 0.9851 0.0055 0.9864 0.00091

Table 7: Comparison parametric fitting performance of different Scaling Laws on the curve before early stop points.

method only needs to store and update some histor-1180

ical information, making it more efficient in terms1181

of storage and computation. It iteratively constructs1182

an approximate inverse Hessian matrix to update1183

parameters and continuously optimize the objective1184

function until reaching a local optimum or satisfy-1185

ing convergence criteria.1186

According to Newton-Raphson method:1187

f : Rn → R

f(xt + d) = f(xt) +∇f(xt)
Td

+
1

2
dT∇2f(xt)d+ o(∥d∥2)

(17)1188

h(d) := f(xt + d)

= f(xt) +∇f(xt)
Td

+
1

2
dT∇2f(xt)d

(18)1189

d̂ := argmin
d

h(d)

∇h(d̂) = ∇f(xt) +∇f2(xt)d̂ = 0
(19)1190

xt+1 = xt + d̂ = xt −∇2f(xt)
−1∇f(xt) (20)1191

According to BFGS:1192

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
(21)1193

In the BFGS algorithm, storing the approximate1194

Hessian matrix at each iteration can be costly in1195

terms of memory, especially in high-dimensional1196

data scenarios. However, in practical computation,1197

what we primarily need is the search direction. To1198

address this issue, the L-BFGS algorithm was in-1199

troduced as an improvement over the BFGS algo-1200

rithm.1201

In L-BFGS, instead of storing the full Hessian1202

matrix, only the most recent iterations’ informa-1203

tion is retained, significantly reducing the memory1204

footprint.1205

let ρk = 1
yTk sk

, Vk = I − yks
T
k

yTk sk
, then Hk+1 can 1206

be represented as: 1207

Hk+1 = V T
k HkVk + ρksks

T
k (22) 1208

Note that H0 = I . 1209

H1 = V T
0 H0V0 + ρ0s0s

T
0

H2 = V T
1 H1V1 + ρ1s1s

T
1

= V T
1 (V T

0 H0V0 + ρ0s0s
T
0 )V1 + ρ1s1s

T
1

= V1V
T
0 H0V0V1 + V T

1 ρ0s0s
T
0 V1 + ρ1s1s

T
1

. . .

Hk+1 = (V T
k V T

k−1 · · ·V T
1 V T

0 )H0(V0V1 · · ·Vk−1Vk)

+ (V T
k V T

k−1 · · ·V T
1 )ρ1s1s

T
1 (V1 · · ·Vk−1Vk)

+ · · ·
+ V T

k ρk−1sk−1s
T
k−1Vk

+ ρksks
T
k

(23)

1210

If only the first m steps are retained: 1211

Hk+1 = (V T
k V T

k−1 . . . V
T
k−m)H0(Vk−m . . . Vk−1Vk)

+ (V T
k V T

k−1 . . . V
T
k−m)ρ1s1s

T
1 (Vk−m . . . Vk−1Vk)

+ . . .

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k

(24)

1212

Then only sk and yk is necessary to be remained. 1213

C Training Details 1214

All the models are trained using Adam(Kingma and 1215

Ba, 2014), with β1 = 0.9, β2 = 0.95, eps = 10−8. 1216

We use a cosine learning rate schedule, decay the 1217

final learning rate from 3−5 to 3−6, with warmup 1218

ratio of 0.1. We apply a weight decay of 0.1 and 1219

gradient clipping of 1.0. Table 8 shows other train- 1220

ing details of each model. 1221

D Human Assessment 1222

We use webMUSHRA toolkit (Schoeffler et al., 1223

2018) to conduct a web-based subjective listening 1224
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Table 8: Training Details for different ABC format and model settings.

Parameters Context Length Trained Tokens Training Days Num of GPUs

Original ABC

190M 4096 119B 8.4 2
505M 4096 97B 8.4 4
1.07B 4096 49B 8.3 4
1.97B 4096 56B 8.4 8

190M 8192 346B 6.9 8
505M 8192 322B 4.1 32
1.07B 8192 223B 5.4 32
1.97B 8192 196B 8.1 32

SMT-ABC

190M 8192 276B 5.5 8
505M 8192 212B 2.7 32
1.07B 8192 181B 4.4 32
1.97B 8192 272B 11.3 32
4.23B 8192 262B 10.7 64

AB-test. About the music background of partici-1225

pants, 30% of them are beginners, 40% are inter-1226

mediates, 25% are advanced and 5% are experts.1227

During the listening test, we ask the participants1228

to choose the better one between a pair of music1229

excerpts generated from two randomly selected dif-1230

ferent systems from GT, MuPT, GPT-4, MMT and1231

Random by considering the "Musicality" which in-1232

dicates the overall perceptive quality of the music.1233

Participants are encouraged to make a choice by1234

refering to the guidelines below:1235

• How consistent the music sounds as a whole1236

(e.g., in terms of its melodic contours, rhyth-1237

mic patterns, and chord progression).1238

• How likely the development of the music fol-1239

lows a clear structure (e.g. verse-chorus divi-1240

sion, repetitions).1241

• If you cannot understand the two guidelines1242

above, just choose the one from A and B you1243

prefer.1244
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