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Abstract

Graph Neural Networks (GNNs) power applications from social and financial
networks to biology, yet they are vulnerable to backdoor attacks where tiny trigger
subgraphs force targeted misclassification while preserving clean accuracy. We
present TCF, a Topological Coarse-to-Fine defense that relies only on struc-
ture. First, Coarse Structural Pruning (CSP) screens nodes via three near-linear
tests—local spectral moments, one-step 1-WL color rarity, and ego-density Z-
scores—merged by a unified p-value rule with finite-sample FPR control. Second,
a structure-based detector is trained on clean d-hop subgraphs versus compact
synthetic triggers from small-world and preferential-attachment priors. Finally,
label-flip verification pruning removes a subgraph only if its deletion flips the node’s
prediction. On Cora, PubMed, Flickr, and OGB-Arxiv under three state-of-the-art
attacks, TCF typically reduces ASR to < 5% while maintaining clean accuracy,
indicating topology alone can deliver accurate, scalable graph backdoor defense.

1 Introduction

Graphs underpin key applications in social media[Fan et al., 2019, |Guo et al.,[2022], finance[Cheng
et al., |2023| Innan et al.| [2024]], biology[Lee et al., 2020, |Li et al., |2022], recommendation, and
knowledge graphs. Graph Neural Networks (GNNs)[Kipf and Welling, [2016} [Velickovi¢ et al., 2017]]
have become the standard tool for learning on such data via message passing over topology[Yang
et al.| [2021}[Zhang et al., 20214} [Yu et al., 2021}, 'Yasunaga et al.,[2022} Jia et al.,[2023| |Li et al.| 2023]],
delivering strong results on node/graph classification|Yang et al., [2022, |Yao et al., [2022] [Liu et al.,
2021, /Wang et al.,|2024]] and link prediction[[Li et al., 2024} Xiong et al.,[2024]]. However, recent work
shows GNNs are vulnerable to backdoor attacks|Zhang et al.|[2021b} | Xi et al.,|2021]]: an adversary
implants tiny trigger subgraphs during training so that any node carrying the trigger is mapped to an
attacker-chosen label while clean accuracy remains high.

Prior attacks have evolved from early trigger designs to adaptive and in-distribution variants that
improve stealth and reduce budgetDai et al.| [2023]],Zhang et al.|[2024a]. In response, most defenses
learn heavy detectors[[Yu et al., [2025] that depend on node attributes (or joint feature—structure
models), often using explainers[Jiang and Li, |2022] or perturbation procedures. This creates three
practical issues: (i) computational cost—per-node analysis scales poorly on large graphs; (ii) limited
transferability—feature distributions vary across domains; and (iii) underuse of topology—triggers
are discrete structural insertions and must disturb local graph structure, even when globally subtle.
These observations motivate a defense that is ftopology-only, lightweight, and coarse-to-fine.

We propose TCF, a Topological Coarse-to-Fine framework for graph backdoor defense. First, Coarse
Structural Pruning (CSP) performs near-linear screening with three complementary signals—Ilocal
spectral moments, one-step 1-WL color rarity, and ego-density Z-scores—merged via a unified
p-value test with finite-sample false-positive control. CSP retains a small candidate set. Second,
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Figure 1: Overview of the TCF pipeline: coarse structural screening, structure-only detection, and
label-flip verification.

a structure-only detector (GCN + classifier) is trained on clean d-hop subgraphs versus compact
synthetic triggers generated from small-world and preferential-attachment priors, with features
neutralized to enforce structure bias. Finally, label-flip verification pruning removes a subgraph only
if its deletion flips the node’s prediction, ensuring causal relevance.

2 Method

2.1 Preliminaries

We consider an undirected graph G = (V, &, X) with node set V', edge set &, and node-feature matrix
X € RV*4x where N = |'V| and the i-th row of X is the feature of node v; € V. The adjacency
matrix is A € RV*N D is the degree matrix, and L = I - D='/2AD~!/2 is the normalized Laplacian.
The task is node classification with a GNN fy producing class probabilities fy (G, v) for node v. A
trigger is a small connected subgraph g, = (V;, &;, X;) with size n = ['V;| < B (budget) and edge

count e = |&;| € [n -1, M] Attaching g, to a target node via a few new edges yields a poisoned
graph, denoted G @ g;. All symbols introduced here will be used consistently in subsequent sections.

2.2 Coarse Structural Pruning (CSP)
2.2.1 Local Spectral Moment Sketch

Setup. Let L. be the normalized Laplacian of G affinely rescaled to [—1, 1]. For node v and order r,
define the Chebyshev moment sketch

¢SPEC(V) = [e;rTl (I:)ev’-u,eITr(I:)ev] eR’, €))
and let (u, X) be the mean and covariance of ¢, estimated on clean data. The spectral deviation is
the Mahalanobis distance

DM(V) = (¢SPEC(V) - ,U)Tz_l (¢SPEC(V) - Il)- 2)

Computing ¢spec(+) for all nodes requires » sparse matrix—vector multiplies, i.e., O(rE).
Lemma 1 (Clean FPR control and detection power). Let r > 1. (a) Clean FPR. If clean-node
sketches satisfy Gsppe(v) clean nr (u, L), then Dy (v) clegn X?2. Thus choosing Ty = F);zl (1-90) ensures

Pr(Dm(v) > v | v clean) < 8. If (u, X) are estimated from ng clean sketches, then
no—r N 2 -1 N 1
T @ WE - By, S



yielding an exact finite-sample threshold. (b) Power. If a trigger induces a mean shift A =
E12(pgpc(v¥) — ) with noncentrality A = ||A||3 > 0, then D;(v*) ~ x2(A) and

Pr (Dm(v¥) > ) = 1= F 23 (tm), “
which increases monotonically with A.

Proof. See Appendix [B]for a detailed derivation based on (i) asymptotic normality of bounded
Chebyshev filters, (ii) the )(2 law of Mahalanobis distances, and (iii) the Hotelling—T2 correction.

Each coordinate e Ty (L)e, summarizes short closed walks around v (triangles, short cycles). Triggers
inject extra local connectivity, shifting ¢spsc and enlarging Dyi. Lemma [I] provides a calibrated
threshold for clean false alarms and an explicit power characterization via the noncentrality A, while
retaining near-linear runtime O(rE).

2.2.2 1-WL Rarity

Setup. Run one iteration of Weisfeiler—Lehman (1-WL) color refinement on G in O(E) time. Let
c(v) be the WL color of node v. From a clean calibration set D? , compute the empirical color
frequency

#Hue DY 1 c(u)=c}

#(c) = (5)
|D:al
Define a conformal p-value
1+#{u € O : #(c(u)) < #(c(v))}
p(v) = T T : ©6)
1+|D7,
and the logarithmic rarity score Ry, (v) = —log p(v) (larger is rarer).

Lemma 2 (Finite-sample FPR control and detection power). (a) Clean FPR. If the clean calibration
set and a clean test node are exchangeable w.r.t. I-WL colors, then

Pr(p(v) <6 |vclean) < 6, Vée(0,1). 7

Equivalently, thresholding R, (v) at —log & controls the clean false positive rate at 6. (b) Power. If
a trigger alters the degree—multiset pattern so that c(v*) shifts to lower clean-frequency bins, then
p(v¥) stochastically decreases (and R, (v*) increases); in particular,

Pr(Ry, (v*) > —logé) > Pr(#(c(v*)) < qs), (8)
where q s is the 6-quantile of clean frequencies.

Proof. See Appendix[C] Part (a) follows from exchangeability of ranks in conformal prediction; part
(b) follows from monotonicity of the rank statistic with respect to 7 (c(v)).

A single 1-WL step encodes each node’s one-hop degree—multiset pattern. Trigger insertions (e.g.,
small cliques or stars) perturb this pattern, making the resulting color unusually infrequent under the
clean reference. The conformal construction yields distribution-free, finite-sample FPR guarantees
while keeping runtime linear in E.

2.2.3 Ego-Density Z-score

Setup. Fornode v, let N1 (v) be its 1-hop neighbors and let G [{v}UN] (v)] be the ego network. Denote
by mgso (V) the number of edges inside this ego network (including v—neighbor and neighbor-neighbor
edges). Define the ego-density

2 Mggo (V)
INT)I(IM (V)] = 1) + 2| N1 (v)]

n(v) = € [0, 1], )

and its standardized score Z,;(v) = ((v) — 17)/0,, where (77, 07;) are estimated from clean data
(optionally conditioned on degree/community). We compute g, in linear time via neighbor-pair
sampling, preserving O (E) runtime.



Lemma 3 (Two-sided FPR control and detection power). (a) Clean FPR. Let Z):al be a clean
calibration set and define scores s(u) = |Z,(u)| for u € D . For a test node v, set the conformal

p-value
1+#{ue D : s(u)=s(v)}

cal *

1+|D*

cal

p(v) = (10)

Under exchangeability (i.i.d. clean sampling), Pr(p(v) < § | v clean) < § for any 6 € (0,1).
Equivalently, thresholding |Z,,(v)| by the (1 — 6)-quantile of {s(u)} controls the clean FPR at §. (b)
Power. If a trigger induces an ego-density shift n(v*) = no(v*) + A, with |A,| /oy >y > 0, then

Pr(p(v*) <6) > 1 -®(z1-5 - ), (11)
where 71_s is the (1 — &)-quantile of N(0,1) and @ its CDF; thus power increases with the
standardized shift .

Proof. See Appendix D] Part (a) follows from rank-exchangeability of conformal scores; part (b) uses
a CLT/Bernstein approximation for ego-density under local edge additions/removals.

n(v) quantifies how crowded (triangle/clique-like) or sparse (star/chain-like) the 1-hop neighborhood
is. Triggers that add neighbor-neighbor edges increase 7; star/chain-like additions decrease it. The
two-sided standardized score |Z,,| captures both effects, and the rank-based calibration provides
distribution-free FPR control with linear-time computation.

2.2.4 Coarse Score and Candidate Set

We aggregate the three CSP signals into a single score

SW) =41 - H{Dm(v) > tm} + A2 - H{Rw(v) > T} + 43 - L{|Z;(v)| > 7} (12)
We keep the top-p% nodes by S(v),
C={veV : S intop-p%}, (13)

and run the detector and verification pruning only for v € C. This reduces downstream cost by a
factor p while CSP itself remains near-linear: O(rE) for spectral moments plus O (E) for 1-WL and
ego-density.

2.3 Refined Pruning
2.3.1 Sample collection.

After CSP’s coarse screening, we assemble supervised data for fine-grained inspection. Positives are
d-hop subgraphs randomly sampled from a clean graph (BFS with a node cap). Negatives are small
connected subgraphs synthesized under Small-World (SW) and Preferential Attachment (PA) priors
with size n < B; trigger node features are set to constants to enforce structure-only cues.

2.3.2 Structure-based trigger detector.

We train a lightweight structure-only GCN encoder with mean readout and a linear classifier to
separate clean vs. trigger subgraphs using class-weighted cross-entropy. At test time, only CSP-flagged
nodes are evaluated: for each candidate v, extract G[v; d], embed, and score; high-score subgraphs
proceed to verification.

2.3.3 Label-lip verification pruning.

Let fy be the downstream node classifier. For candidate node v and suspicious subgraph g C G[v; d],
compute the predicted label before/after temporary removal:

)A)\/' :argmf_lx fH(G9V)C9 j}:; :argmf_lx fH(G\g’ V)C' (14)
We permanently prune g if a label flip occurs,
P, # Pvs 15)

This causality check preserves precision, while CSP limits how many nodes reach this stage, keeping
the pipeline scalable.



Table 1: Defense performance of TCF compared with baseline methods.

No-Defense Prune Prune-LD RIGBD DShield TCF (Ours)
Dataset Attack
ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC
GTA 0900 0.823 0.243 0.788 0.199 0.789 0.056 0.802 0.007 0.819 0.047+0.003 0.800+0.003
Cora UGBA 0941 0.834 0.894 0.790 0.876 0.776 0.076 0.815 0.037 0.821 0.035+0.004 0.814+0.002

DPGBA 0.946 0.826 0.899 0.801 0.882 0.782 0.153 0.809 0.027 0.848 0.025+0.003 0.848+0.003

GTA  0.843 0.855 0.312 0.775 0.255 0.750 0.070 0.813 0.042 0.858 0.013+0.002 0.850+0.002
PubMed UGBA 0.891 0.861 0.877 0.810 0.830 0.801 0.062 0.781 0.034 0.847 0.033+0.004 0.851+0.003
DPGBA 0.897 0.864 0.890 0.800 0.881 0.810 0.120 0.755 0.048 0.820 0.035+0.003 0.786+0.004

GTA  0.877 0.452 0.082 0.430 0.068 0.402 0.081 0.409 0.071 0.520 0.062+0.005 0.433+0.004
Flickr UGBA 0912 0.461 0.800 0.431 0.850 0.421 0.091 0.401 0.071 0.501 0.044+0.004 0.452+0.004
DPGBA 0.921 0.455 0.876 0.407 0.853 0.410 0.138 0.408 0.056 0.505 0.037+0.004 0.432+0.003

GTA 0.753 0.634 0.124 0.630 0.119 0.633 0.108 0.612 0.092 0.620 0.058+0.005 0.639+0.003
OGB-Arxiv.  UGBA 0.964 0.665 0.936 0.661 0.901 0.660 0.099 0.604 0.001 0.619 0.024+0.004 0.642+0.003
DPGBA 0.971 0.651 0.945 0.627 0.928 0.657 0.117 0.648 0.003 0.655 0.017+0.003 0.632+0.004

3 Experiments

3.1 Experimental Setup.

We evaluate on Cora, PubMed, Flickr, and OGB-Arxiv against three attacks (GTA[Xi et al.,[2021],
UGBA|Dai et al., [2023]], DPGBA[Zhang et al.,2024a]]) and four defenses (PruneDai et al.| [2023]],
Prune-LD[Dai et al.,[2023]], RIGBD[Zhang et al.,[2024b]], DShield[Yu et al., 2025]]). Our CSP uses
one 1-WL iteration and Chebyshev order r=4 for spectral moments; we target a global clean-FPR
0=0.03 via conformal calibration of the component thresholds, aggregate with the weighted indicator
score S(v), and—for the budgeted variant—select candidates by the top-p=5% nodes ranked by S(v).
Conformal calibration for 1-WL and ego-density uses a label-stratified 10% slice of training nodes as
the clean calibration set. Ego-density Z is computed with neighbor—neighbor pair sampling capped
at M=2000 pairs per node and degree-binned standardization (5 bins). For the refined detector in
TCF (Topological Coarse-to-Fine Defense), positives are clean d-hop subgraphs (BFS, seed rate
a=0.2, depth d=5); negatives are SW/PA triggers with node budget B=10 and constant features.
The detector is a 2-layer GCN (16 hidden), trained for 300 epochs with learning rate 0.01; we use
an 80/20 train/test split and report the mean over 5 runs. Backdoor injection strictly follows each
attack’s original settings. Full dataset statistics, baseline details, and hyperparameters appear in the
Appendix.

3.2 Results.

Across all datasets and attacks, TCF attains consistently low attack success rate (ASR; typically
< 5%) while preserving high clean accuracy. Compared to DShield, TCF shows similar or within
1-2% higher ASR in a few cases but matches or improves clean accuracy and exhibits notably stronger
cross-dataset transfer: models trained on one dataset maintain low ASR and stable accuracy when
deployed to another, whereas DShield degrades. Overall, the topological coarse-to-fine pipeline
yields robust detection and causal pruning with near-linear runtime.

4 Discussion

We present a topology-only, coarse-to-fine defense that combines broad structural screening, structure-
based detection, and label-flip verification to reduce attack success while maintaining clean accuracy
and showing solid transfer across datasets. While results are encouraging, several limits remain.
The study focuses on small, localized trigger patterns; other attack styles or adaptive strategies that
intentionally resemble normal structure could be more challenging. The screening stage relies on a
modest amount of clean calibration and a handful of hyperparameters, whose defaults worked well
in our tests but might benefit from automatic tuning in unusual graphs. The detector deliberately
ignores node attributes to promote transfer, which can trade some recall in settings where features
are stable and informative. Finally, the verification step uses predictions of the downstream model,



and additional safeguards may help when decisions are uncertain.Overall, our work offers a clear,
topology-based way to defend GNNs and provides a practical base for future extensions to richer
settings such as heterogeneous graphs and multi-relation networks.
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A Related Works

Backdoor attacks on Graph Neural Networks (GNNs) inject small trigger subgraphs into training data
and assign target labels, causing models to misclassify any test input that contains the trigger while
keeping clean accuracy largely unchanged. Early studies introduced universal subgraph triggers and
motif-based triggers to increase effectiveness. Subsequent lines of work developed adaptive trigger
generators that tailor triggers to the data, selected target nodes using centrality measures to maximize
impact, and explored clean-label settings that enhance stealth by avoiding explicit label changes on
poisoned nodes.

Defenses generally aim to discover and mitigate the influence of triggers without harming overall task
performance. Representative approaches learn robust node embeddings in a self-supervised manner,
cluster nodes to reveal distributional irregularities, and prune suspicious nodes or edges based on
inter-cluster discrepancies. Other lines use explanation- or perturbation-based analyses to identify
abnormal structural patterns. These methods provide useful baselines but often rely on node attributes
or heavy training procedures, motivating topology-focused defenses that emphasize structural signals
and causal verification.

B Derivation for Lemma I

B.1 Asymptotic normality of moment sketches. LetL = UAUT with A € [—1, 1]V*N_ Chebyshev
filters satisfy [T (x)| < 1 on [~1, 1] and admit the expansion Ty (L) = 25?:0 ak, ;L7. Hence

k
T I Ty J
€y Tk(L)ev = Z ke, j evLjev,
Jj=0



where eTL/e, counts weighted closed walks of length j rooted at v. For sparse random graphs (e.g.,
configuration models with A = O (log N)) these counts are sums of weakly dependent bounded terms
and obey a multivariate CLT:

VN (borec(v) — 1) 5 N(0.Z).

B.2 Mahalanobis distance laws. If ¢ ~ N(u,X), then Dy = (¢ — ) TE7 (¢ — p) ~ x2. If
¢ ~ N(u+E'2A, %), then Dy ~ x2(A) with A = ||A]|2. When (u, X) are replaced by empirical
estimates from ng i.i.d. clean samples, Hotelling’s theorem yields

no—r N | ~
——— (-2 (p-f) ~ Frppr-
r(ng—1)

B.3 Thresholds and power. Set the clean FPR to ¢ via 7y = F);zl (1 = 6) (or the finite-sample

F-quantile above). Under a trigger, the mean shift A generated by extra short cycles increases the
noncentrality A, and the detection probability 1 — F,2(,, (mm) grows monotonically with A.

C Derivation for Lemma

C.1 Conformal p-value validity. Under exchangeability of {c(u) : u € D7} U{c(v)}, the multiset
{#(c(u))} U {#(c(v))} is also exchangeable. Hence the rank of #(c(v)) among 1 + |D7 | values is
uniform; the smoothed rank p(v) is super-uniform: Pr(p(v) < 6) < 6, giving FPR control for any ¢.

C.2 Detection power. If a trigger moves c¢(v*) toward colors with smaller clean frequency, then
#(c(v*)) tends to be lower than calibration values, increasing its extremal rank and decreasing p(v*).
Since Ry, = —log p is monotone in 1/p, the probability of exceeding a fixed threshold grows with
the shift toward rarer colors, yielding the stated inequality.

D Derivation for Lemma

D.1 Moments under alocal independence model. For fixed d,, = [N (v)|, write mygo(v) = dy+X,,,
where X, counts neighbor-neighbor edges. Under an ER/locally independent approximation,

X, ~ Binomial( (dzv), pv). Hence
2(dv + (%) pv)

E[n(v) | dv] = dd =D +2d, Var[n(v) | d,] =

4(%)pu(1=py)
(dy(dy — 1) +2d,)*

D.2 Normal/Bernstein approximation. When (%) is moderate, by CLT

) ~Eln() | dy]
Varln(v) | 4]

N(O,1).

For finite d,,, Bernstein’s inequality yields for any 7 > O:

(%)

2py(1=py)/(dy(dy = 1) +2d,)2 + 3]

Pr(in(") -E[p() | d)]| > t) < Zexp(—

D.3 Finite-sample FPR via conformal ranks. Define s(u) = |Z,(u)| on D7,. Under ex-
changeability of DY U {v}, the (smoothed) rank of s(v) among 1 +|DZ | values is uniform; thus
Pr(p(v) £6) < 6.

D.4 Power under standardized shift. If a trigger changes neighbor—neighbor connectivity so that
n(v*) = no(v*) + A,,, then under the normal approximation |Z,, (v*)| ~ |Zy(v*) + A, /o|. For a
one-sided exceedance, Pr(|Z;|>zi_s5) = 1 — ®(z1_5 — |Ay|/0y), yielding the stated bound.



Table 2: Dataset statistics

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,443 7
PubMed 19,717 44,338 500 3
Flickr 89,250 899,756 500 7
OGB-Arxiv 169,343 1,116,243 128 40

E Experimental Details

Datasets

We use four public benchmarks covering small/medium/large graphs: Cora and PubMed (citation
networks for semi-supervised node classification), Flickr (an image-related social graph with higher
sparsity/heterophily), and OGB-Arxiv (a large-scale citation network); dataset statistics are in Table[2]
Unless otherwise noted, we adopt an 80/20 train/test split; within training, 10% of nodes are reserved
as a clean calibration set for CSP’s conformal procedures. For refined detection, positives are random
d-hop BFS subgraphs with seed rate @=0.2 and depth d=5, and negatives are small connected triggers
synthesized from SW/PA priors with node budget B=10. All node features inside synthesized triggers
are overwritten to constants to enforce structure-only learning.

Baselines

Attack baselines. We evaluate three representative backdoor attacks: (i) GTA (adaptive triggers
using features and topology), (ii) UGBA (imperceptible triggers for stealth), and (iii) DPGBA
(distribution-preserving triggers to reduce OOD effects). Backdoor injection strictly follows each
original setting (target label, poison rate, and trigger size).

Defense baselines. We compare against: Prune (cosine-similarity edge pruning), Prune+LD (edge
pruning plus dropping labels connected to low-similarity edges), RIGBD (random edge dropping
with robust training), and DShield (self-supervised contrastive pretraining with discrepancy-based
purification). Our method TCF uses CSP for screening (Chebyshev order r=4, Bonferroni aggregation
with clean-FPR target 6=0.03, candidate budget p=5% in the budgeted variant), followed by a
structure-only GCN detector (2 layers, 16 hidden units, 300 epochs, learning rate 0.01) and label-flip
verification. All results are averaged over five runs with different seeds.

Compute Resources

Experiments are conducted on a workstation running Ubuntu 20.04 with 2x NVIDIA RTX 3090
GPUs and 64 GB RAM. We use PyTorch/pyG implementations with mixed precision enabled where
applicable.



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our contributions and conclusions in the Abstract and
Introduction, and restate the main findings in the Discussion section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly discuss the method’s scope and limitations (e.g., applicable threat
models, tuning/assumption sensitivities, and failure modes) in the Limitations/Discussion
section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* Ifapplicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical statements list their assumptions and are accompanied by proofs
or proof sketches; details and auxiliary lemmas are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report datasets, baselines, hyperparameters, train/validation/test splits,
and evaluation protocols in Experiments and provide further configuration details in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: To preserve double-blind review, we do not include a public link in the
anonymized submission; we will release code (and scripts to obtain datasets) upon acceptance,
consistent with conference policy.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training settings (optimizer, learning rate, epochs), model/backbone choices,
search budgets, and key thresholds are described in Experiments with complete values listed
in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean + 95% confidence intervals over n=5 independent seeds
(varying initialization, split sampling, and attack sampling), computed as Student-t CIs
(df=4) and used consistently for all ASR/ACC tables.

Guidelines:

* The answer NA means that the paper does not include experiments.
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10.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support th e
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

¢ It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: We cover this topic in the Compute Resources section of the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We use publicly available academic datasets and standard research baselines
and do not involve human subjects or sensitive data; we follow NeurIPS ethics guidelines
and discuss potential misuse in Discussion.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
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Justification: We do not include a dedicated broader-impacts section in the anonymized
draft; we will add a concise statement on potential societal implications and safeguards in
the camera-ready.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release a high-risk foundation model or a newly collected dataset;
the work proposes a research method and evaluation procedure without assets requiring
gated access.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:

Justification: While we rely on standard public datasets/code, we do not enumerate licenses
and versions in the paper; we will document sources and licenses in the repository README
and supplemental material.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce a new dataset or pretrained model in this submission; if
code is released, it will include a license and environment specification.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human-subject studies are conducted in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No IRB approval is required because the work does not involve human subjects.
Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used as integral or non-standard components of the proposed
method or evaluation pipeline; any incidental writing assistance does not affect technical
content.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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