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Abstract

Neural fields have emerged as a powerful representation for 3D geometry, enabling
compact and continuous modeling of complex shapes. Despite their expressive
power, manipulating neural fields in a controlled and accurate manner – particu-
larly under spatial constraints – remains an open challenge, as existing approaches
struggle to balance surface quality, robustness, and efficiency. We address this by
introducing a novel method for handle-guided neural field deformation, which lever-
ages discrete local surface representations to optimize the As-Rigid-As-Possible
deformation energy. To this end, we propose the local patch mesh representation,
which discretizes level sets of a neural signed distance field by projecting and
deforming flat mesh patches guided solely by the SDF and its gradient. We conduct
a comprehensive evaluation showing that our method consistently outperforms
baselines in deformation quality, robustness, and computational efficiency. We also
present experiments that motivate our choice of discretization over marching cubes.
By bridging classical geometry processing and neural representations through local
patch meshing, our work enables scalable, high-quality deformation of neural fields
and paves the way for extending other geometric tasks to neural domains.

1 Introduction

Implicit representations—where a surface is defined not explicitly but, for example, as the zero level
set of a signed distance function—have long been used in computer graphics. However, they have
recently gained renewed attention, particularly due to advances in neural rendering techniques such
as NeRF [36]. Neural fields provide a compact representation for implicit representations in the
weights of a neural network, and offer several advantages: they support flexible topology, avoid
predefined discretization, and integrate naturally with gradient-based optimization methods. These
properties make neural fields well-suited for reconstruction tasks. As this representation becomes
more widespread, the demand for tools that enable direct analysis and manipulation of implicit
surfaces continues to grow.

The traditional representation used in geometry processing applications is the polygonal mesh, in
which the surface is explicitly modelled by a collection of connected polygons. This representation
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Figure 1: Given a neural surface and deformation handles, we employ our local patch mesh represen-
tation to optimize a neural deformation field via the ARAP loss. Our method introduces significant
improvements over previous state of the art while employing 0.75% of the time. We show the nor-
malized change in edge lengths (before/after deformation) as a colormap on the deformed surfaces.

provides a high level of interpretability and allows for fine-grained manipulation by artists. Addi-
tionally, local surface properties can be easily computed because the neighborhood information is
explicitly encoded. Due to its wide adoption and easy manipulation, a number of editing methods
have been developed for explicit representations: one of them is optimizing the as-rigid-possible
(ARAP) energy to deform an object while satisfying user-defined handle constraints and at the same
time preserving the surface geometry (in terms of its edges) to a reasonable extent. This yields natural
deformations and has been widely adapted in various applications [7, 37, 23].

Evaluating energies such as ARAP directly on implicit surfaces is challenging: properties like edge
lengths cannot be computed without applying a discretization scheme, and equivalent properties do
not necessarily exist for isosurfaces. Alternating between both representations is certainly possible
[35], but it is expensive and inherits the sensitivity to discretization choices [57]. To counter this, we
propose a new patch-based meshing for implicit representations which is 1) efficient to compute even
at high resolution, 2) not sensitive to the specific choice of discretization, and 3) can be used on all
isosurfaces to cover the complete geometric information of the neural field. Along with local patch
meshing, our work proposes multiple other significant contributions:

• Extending the ARAP estimation of the thin-shell energy to neural representations;
• Providing an efficient method for handle-guided deformation of neural fields (see Figure 1);
• Introducing a robust and efficient alternative for deforming high-resolution meshes.

2 Related work

Handle-Based Deformations Mesh-based shape editing methods have a long history in geometry
processing due to the wide acceptance and explicit representation of meshes [58, 6]. Among these,
methods which use handles to indicate the preferred deformation are intuitive for human users
to understand and generate. The as-rigid-as-possible (ARAP) energy [51] has become popular
due to its straight-forward interpretation and easy optimization while satisfying handle constraints.
However, while not complex, its global nature still prevents processing of high-resolution shapes and
is sensitive to the mesh discretization. The second aspect was overcome in SR-ARAP [26] with a
smoothed and rotation-enhanced ARAP version. While the rigid version is widely used in variety of
applications [7, 37, 23], there exist similar formulations other energies related to shape deformation,
for example conformal [42, 55] and elastic deformation energies [9]. Instead of using a pre-defined
physical energy, it is also possible to learn a set of handles from a collection of shapes [29, 41].
However, these require a suitable set of training data and are restricted to the space of deformations
learned initially.

The idea of parametrizing shape deformations with neural networks has been previously explored
in recent research: two contributions which are particularly close to our work are Neural Jacobian
Fields [2] and Neural Shape Deformation Priors [53]. NFJ is a mesh morphing (i.e., transfer of pose
between two given shapes) model which can be trained to inject several different priors, including
ARAP deformations. NSDP, on the other hand, is a data-driven handle-based mesh deformation
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model. While it allows for very fast deformation of low/medium-resolution meshes, it is limited
to the deformation prior and the handle set observed in the training data, limitations overcome by
Implicit-ARAP.

While all these methods are designed for polygonal meshes, there are various types of shape represen-
tations for which other types of deformation approaches are better suited. One such example which is
especially relevant to our work is spatial deformation tasks, which apply to solid models [46, 47],
radial basis functions [5] or cages for character animation [24].

Neural Fields Editing Energies like ARAP act directly on surface deformations, making them
naturally suited to explicit representations such as triangle meshes. In contrast, editing implicit
surfaces is more challenging due to their global coupling – local changes to the surface can affect
distant regions of the field. Even locating the surface in space can be non-trivial without certain
assumptions. The recent popularity of NeRF-like methods [36] has renewed interest in integrating
deformations into implicit frameworks. Dynamic NeRFs have been implemented by introducing
a time parameter [45] or optimizing deformation fields [8]. Other works modify the MLP weights
of neural fields to generate [17] or edit [3] shapes directly, though this lacks efficient formulations
of explicit energies like ARAP and leads to slow optimization. Mehta et al. [35] alternate between
explicit and implicit representations to enable deformations, but require costly conversions at each
step. Novello et al. [39] supports diverse deformations but lacks handle-based constraints. Neural
fields with spatial features allow shape editing through feature-space interpolation [20, 1]. Similarly
to our approach, Esturo et al. [18] optimize all isosurfaces simultaneously using divergence-free fields
– an approach also applicable beyond implicit functions [15]. Recent work [14] shows cage-based
deformations can be modeled with neural fields by learning mappings to barycentric coordinates.
Text-driven editing of implicit or hybrid representations (e.g., Gaussian splatting) has also been
explored [30, 56, 19, 10, 40].

The method closest to ours, due to Yang et al. [57], optimizes deformation losses sampled from
implicit representations but is highly inefficient, requiring several hours. In contrast, we leverage
full neural field information efficiently by using small, randomly placed discrete patches. Our use of
mesh-based ARAP objectives is supported by [11], which highlights issues with higher-order neural
field derivatives, and [28], which advocates finite differences over analytical gradients.

Other efforts to simplify local SDF representations include enhancing marching cubes with Bézier
patches [54] and composing surfaces from implicit primitives [31]. However, unlike our approach,
these methods do not yield local representations that are both explicit and structurally simple.

3 Method

Our method employs a local patch model (Sec. 3.1) to sample the surface of a neural signed
distance field, which is then deformed according to an ARAP-like energy (Sec. 3.2) with an efficient
optimization scheme (Sec. 3.3).

3.1 Local patch meshing

Given a 3D surface S represented implicitly by a neural signed distance field fθ : R3 → R, we require
a discrete local representation in order to compute the ARAP energy induced by a given deformation
field d : R3 → R3. We achieve this by generating local patches for multiple isosurfaces of fθ. The
procedure is separated into sampling and projection:

Sampling. We start by sampling k points V = {vj}kj=1 from a disk with radius ρ on the 2D
plane (including the origin) and computing the planar Delaunay triangulation. There are several
possible distributions to sample the 2D disk: we describe and visualize some possible options in
the supplementary material. However, our experiments showed that the particular choice has little
influence on our method, as we show in Figure 9.

Projection. Once we obtain the 2D patch P = (V, F ), we can discretize each isosurface by
projecting the patch and fitting it to the local geometry. To that end, we approximate a uniform
sampling of n points O = {oi}ni=1 from the zero level set S0 using the rejection/projection algorithm
proposed by Yang et al. [57]. Additionally, we sample points from other level sets by sampling
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the 3D interval [−1; 1]3 uniformly at random. We project a patch for each sampled point as Vi =

{oi +Ri (t (vj))}kj=1, where t maps 2D points to 3D as t : (x, y) 7→ (x, y, 0), oi are the sampled
origin points, and Ri are the rotations aligning patch and surface normals at each oi, which we obtain

Figure 2: Examples of patch projection
in a favourable case (top two rows) and
with overestimated radius.

as the normalized gradient of fθ (first column of Figure 2).
Then, we map each patch vertex onto level set l = fθ(oi)
via the SDF closest surface point formula [57, 12] which
maps any 3D point to its nearest neighbor on level set l as

p′ = p− (f(p)− l)
∇f(p)
∥∇f(p)∥

. (1)

In practice, when f is a neural SDF, this formula has to
be applied recursively to yield accurate results (i.e. points
whose signed distance is approximately l). Note that the
radius ρ of the tangent disk specifies a measure of locality
which is highly dependent on the underlying surface S.
Figure 2 shows examples of successful projection and
radius overestimation.

By sampling origin points from multiple isosurfaces of the
signed distance field fθ, we enable representing any local
region of the neural field with a patch mesh. We describe
how this structure can be applied to shape deformation in
Section 3.3. Moreover, we compare it to the classic SDF
meshing algorithm Marching Cubes [32, 33] in terms of
its benefits for handle-guided deformation in Section 4.2.

3.2 Deformation model

Following previous work in neural field deformation [8, 39, 45, 57], we represent our deformation
as a continuous function of the embedding space d : R3 → R3. We model it via a MLP gϕ : R3 →
SO(3)× R3 mapping 3D coordinates to roto-translations, with parameters ϕ. We use Rϕ and tϕ to
refer to the rotation and the translation fields separately. The output layer predicts a 6D vector, where
the first three components are interpreted as Euler angles and converted to a rotation matrix. We
define the complete deformation as dϕ(x) = (Rϕ(x) · x) + tϕ(x).

3.3 Optimization
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Figure 3: Loss curves for a single Implicit-ARAP
training (Figure 9, first column). We show separate
handle losses for static and moving handles for
visualization purposes.

We optimize our model similarly to Yang et al.
[57]; we summarize the process in the supple-
mentary material. The goal is to optimize for tar-
get handle positions while regularizing the com-
puted deformation to have some desired proper-
ties. Given a set of handles as with source-target
position pairs H = {(si, ti)}hi=1 (where si = ti
in the case of static handles), we fit it via a sim-
ple MSE loss Lhandle =

1
h

∑h
i=1∥dϕ(si)− ti∥2.

The key part of our loss function is the As-
Rigid-As-Possible (ARAP) energy introduced
by Sorkine and Alexa [51]. While this formu-
lation was previously adopted as a regularizer
for generative neural models [16, 23], our work
is the first to employ it in the setting of implicit
geometry processing. We aim to ensure that our
map dϕ deforms the level sets of fθ as-rigidly-
as-possible. We evaluate this in a Monte-Carlo
fashion, by sampling a set of points {xk}nk=1,
where m ≤ n points are sampled uniformly
from the zero level set of fθ and n−m points
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uniformly from the bounded volume [−1; 1]3. A surface patch is computed at each of these points via
the algorithm presented in Section 3.1, yielding a patch-based representation {(Vk, F )}nk=1. Then,
the ARAP regularization is computed as

Larap =
1

n

n∑
k=1

∑
(vi,vj)∈Ek

wi,j ∥(dϕ (vi)− dϕ (vj))− (Rϕ (vi) · (vi − vj))∥2 . (2)

Where Ek are the mesh edges for a patch mesh (Vk, F ) and wi,j are the cotangent Laplacian edge
weights. By optimizing the deformed edges (left hand side of the difference) to be as close as possible
to the rotational part (right hand side), we effectively mitigate the action of the translation field. The
original ARAP formulation only used vertex-wise rotations, as handles were fit as a pre-processing
step via Laplacian smoothing of the handle function over the surface. This operation is non-trivial
for implicit surfaces, therefore we include a translation field, which allows any given handles set to
be fit. The network gϕ is optimized with ADAM [25] steps until convergence of the loss function
L = λ1Lhandle + λ2Larap. The entire procedure for computing the Larap loss, which we described in
this section, is repeated at each iteration, including all handle points as part of the surface sample.
Nonetheless, we have observed convergence to be extremely quick, typically in the order of a few
hundreds of iterations, as showed in Figure 3. In our experiments, we usually trained our model for a
total of 1000 steps.

Input
Mean ∥∇fθ ◦ d−1

ϕ ∥ = 1.001
STD ∥∇fθ ◦ d−1

ϕ ∥ = 0.074

Ours
Mean ∥∇fθ ◦ d−1

ϕ ∥ = 1.021
STD ∥∇fθ ◦ d−1

ϕ ∥ = 0.171

NFGP
Mean ∥∇fθ ◦ d−1

ϕ ∥ = 1.039
STD ∥∇fθ ◦ d−1

ϕ ∥ = 0.201

Only zero level
Mean ∥∇fθ ◦ d−1

ϕ ∥ = 1.124
STD ∥∇fθ ◦ d−1

ϕ ∥ = 0.443

Only handles loss
Mean ∥∇fθ ◦ d−1
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STD ∥∇fθ ◦ d−1

ϕ ∥ = 1.380

Figure 4: Ablation study for our method. We compare mean and standard deviation of the deformed
SDF gradient norm for our method against: NFGP, our method with zero level set patches only, and
our method without ARAP loss. The best results, in terms of both visual quality and preservation of
the SDF field, are obtained by our full pipeline, proving the benefits of its individual components.

4 Experiments

The training procedure described in Section 3.3 can be applied seamlessly for both neural field
and mesh deformation, by simply changing the MLP architecture (further details may be found
in Section 6.2.1). We provide results for neural fields here, while we refer to Section 7.2 for an
evaluation of high-resolution mesh deformation.

Data and baselines We employ two datasets in our evaluation: the first one (TFD) is obtained by
designing a set of hand-crafted deformation experiments using mesh data from Thingi10k [59] and
the Stanford 3D scanning repository. The second one is the DeFAUST dataset introduced in [34]. We
use this data to evaluate the performance of our method against several baselines. In our comparison,
we consider the original As-Rigid-As-Possible deformation method proposed by Sorkine and Alexa
[51] (ARAP). We also include the spokes and rims variant introduced by Chao et al. [9] (Elastic), who
propose the inclusion of an elasticity model in the ARAP optimization, as well as the smooth rotations
alternative (SR-ARAP) [26], where the ARAP energy is modified to improve smoothness and volume
preservation. The last baseline is the neural field deformation approach introduced by Yang et al.
[57], who propose to use the continuous formulation of the thin shell energy at random samplings
of the implicit surface to optimize the deformation field, similarly to our method. For this baseline,
we will indicate in the following whether the deformation is applied on the SDF field via its inverse
(NFGPSDF) or on the original input mesh (NFGPMesh). Although the Neural Shape Deformation
Prior (NSDP) approach proposed by Tang et al. [53] achieves natural looking mesh deformations
with interactive performance, it is a data-driven approach that requires the specification of consistent
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Input NFGPSDF OursInv
SDF ARAP Elastic SR-ARAP OursMLP

SDF

Figure 5: Qualitative results of our method in comparison to multiple baselines for neural field
deformation. Discrete methods [51, 9, 26] are applied by extracting the marching cubes mesh at
resolution R = 512 and applying a remeshing step, as suggested in [57]. We show true implicit
deformations in green, while deformations of the zero-level set meshes are rendered in blue.

handles at training time; consequently, it is not suitable for a more general framework, and cannot be
applied to our set of experiments. We conduct a separate comparison on mesh deformation between
our method and NSDP in Section 7.3. Implicit-ARAP may be applied in multiple settings:

OursMLP
Mesh

)
regular MLP applied to input mesh, trained on its SDF representation

OursInv
SDF

)
invertible MLP applied to input SDF field

OursMLP
SDF

)
regular MLP applied to the zero level set mesh of an input SDF

Hardware and hyperparameters All of our experiments were run on a desktop computer with
a 12GB NVIDIA RTX4070Ti GPU. Achieving efficiency in this setting allows us to show that
our method is suitable for consumer grade hardware (and therefore end-user applications). The
hyperparameters we used for the deformation tasks and the SDF fitting are listed in Section 7.1. We
sample patch points via the sphere random uniform distribution (see Figure 10).

Metrics To evaluate meshing accuracy with respect to some continuous implicit surface, we
leverage the SDF fθ and compare the respective level set value li to fθ(p) for surface points p in the
set of patches {Pi}ni=1:

Epatch =
n

max
i=1

max
p∈Pi

∣∣fθ(p)− li
∣∣ . (3)

In practice, the innermost max is estimated by evaluating the point-wise error for several points
sampled from the triangles of the patch mesh Pi = (Vi, F ). We chose to aggregate via maximum
rather than mean, because a single outlier can create severe artifacts in the patch.

We use four metrics to quantitatively evaluate the computed deformations, considering both global
and local aspects of the geometry. First, we consider the percent error in volume and area of the
deformed geometry with respect to the original one. Given a surface S and its deformed version S ′,
these are computed as

Evol =

∣∣VS − VS′
∣∣

VS
, Earea =

∣∣AS −AS′
∣∣

AS
, (4)

where VX and AX indicate volume and surface area of shape X . In order to evaluate the distortion
induced on the input geometry, we use two distinct local criteria: edge lengths and face angle errors.
To obtain consistent values across all experiments, we provide the former as a percentage of the
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longest edge in the source mesh. Specifically, the error is computed as

EL =
1

|E|
∑

(u,v)∈E

|∥u− v∥ − ∥d(u)− d(v)∥|
maxe∈E∥e∥

. (5)

For the face angles, we compare the corresponding inner angles of source and deformed triangular
faces:

FA =
1

3|F |
∑
f∈F

∑
(u,v)∈E(f)

∣∣∣∣cos−1

(
u · v
∥u∥∥v∥

)
− cos−1

(
d(u) · d(v)
∥d(u)∥∥d(v)∥

)∣∣∣∣ . (6)

Both metrics require consistent connectivity between vertex sets. To implement them for the neural
field pipeline, we extract the zero level set mesh from fθ and forward-deform its vertices.

Table 1: Average runtime, angle error (FA) and percent errors in volume, area, and edge lengths (EL)
for our neural field deformation experiments. Explicit ARAP baselines are run using the zero level
set marching cubes mesh as input.

TFD DeFAUST

Ours NFGP ARAP Elastic SR-ARAP Ours NFGP ARAP Elastic SR-ARAP

Volume 0.00% 6.66% 9.40% 9.01% 5.60% 0.00% 15.15% 17.36% 17.33% 12.09%
Area 0.85% 5.30% 0.29% 0.30% 3.97% 0.63% 20.02% 16.44% 16.41% 8.67%
EL 3.26% 3.34% 0.33% 0.38% 3.44% 2.41% 8.71% 5.72% 5.73% 8.45%
FA 4.541° 3.516° 0.358° 0.379° 4.615° 3.399° 7.577° 1.677° 1.683° 6.833°

Time 2m:48s 14h:26m 9m:51s 9m:44s 10m:27s 5m:36s 14h:26m 8m:11s 8m:38s 7m:06s

4.1 Neural field deformation

The problem of deforming neural fields with handle guidance was first introduced by Yang et al.
[57], but the literature is missing follow-up proposals of significant improvements over their work.
Berzins et al. [3] hint at neural shape editing as one of the applications of their method, but a complete
implementation is not available. Other baselines are obtained by applying explicit methods on the
zero level set of a neural field, although these methods do not preserve the neural field information.

Neural Field Pipeline

fθH

Deformation training

dϕ

Deform

fθ ◦ d−1
ϕ

Architecture Following past literature [57, 38], we define the deformed
field as h(x) = fθ(d

−1
ϕ (x)). Intuitively, we obtain the SDF value by

mapping the query point in the deformed space x to its image x′ (s.t.
x = dϕ(x

′)) in the source space, via the inverse of the deformation.
Therefore, we employ an invertible MLP architecture based on coordinate
splitting, originally proposed by Cai et al. [8]. Since this architecture
is derived from the NICE model [13], it retains its volume-preservation
property, a notoriously useful prior for deformations (see Table 1). The
network is composed of 6 coordinate splitting layers, where the individual
coordinate processing blocks are implemented as 3-layer MLPs with
Softplus activation, a hidden dimensionality of 256, and 6-frequencies
Fourier features encoding [52]. We provide additional details about the
invertible MLP architecture in Section 6.2.1.

Results We show averaged quantitative results for our method and
baselines in Table 1. For true implicit methods (Ours and NFGP), we
compute volume and area directly from the deformed field h. Since the
EL and FA metrics require consistent connectivity between source and

deformed shape, we compute them by deforming the zero level set mesh of fθ; the same holds for the
discrete methods ARAP, Elastic and SR-ARAP. We used marching cubes resolution R = 512. From
the data presented in the table, we observe that our method achieves optimal volume error due to the
volume-preserving network architecture. Combining the results in Table 1 with the visualizations
in Figure 5, we can appreciate how our method reliably yields plausible results in a fraction of the
time required by the baselines, especially NFGP. Moreover, as the results over DeFAUST show, we
can easily double the training iterations to achieve even better results in more challenging cases.
The visible handle error in some of our outputs stems from our choice of loss balancing weights,
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which we set to achieve the best results on average: if a more accurate handle fit is needed, the loss
weights can be re-balanced, as we show in Section 7.6. Lastly, Figure 4 shows the benefits of both
computing local patches for all level sets and employing the ARAP regularization for our deformation
network. We use the deformed SDF gradient norm as a measure of preservation of the signed distance
properties. We further discuss this aspect in Section 7.5.

4.2 Local patch meshing

The final section of our experiments is devoted to evaluating our local patch meshing algorithm. We
begin by highlighting that our method should not be considered as a drop-in replacement for
marching cubes: even by sampling a very large number of patches, it is unlikely to cover the entire
surface, and a set of largely overlapping patches is not in general a useful representation for the
surface. Instead, our method generates discretizations of local surface regions, and we are interested
to a) verify how accurately these patches represent the underlying geometry and b) provide indications
on how to select useful radius and density values for deformation tasks.
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Figure 6: Accuracy evaluation of local patching against marching cubes. We construct the patch
meshes in this experiment to match the total vertex count and average edge length of the corresponding
marching cubes triangulation. The per-patch vertex count is fixed at 30 for all resolutions.

Reconstruction Ability In Figure 6, we compare marching cubes meshes to local patch meshes
constructed with similar vertex count and average edge length. The visualizations show the change
in “coarseness” of our representation wrt the resolution, while the graph provides some insights
to the accuracy of local patch meshing. The line plot shows the average approximation error
Êpatch = 1

n

∑n
i=1 Ep∈Pi

∣∣fθ(p)− li
∣∣, with the shaded areas covering the entire region between Êpatch

and the maximum error Epatch (Equation (3)). For MC, these metrics can be computed by considering
the entire mesh as a patch (i.e., n = 1 and P1 is the marching cubes mesh). Despite the marching
cubes line hinting at a lower deviation from the mean, our method achieves much lower average error
even for coarse patches. This is because the patch vertices are mapped exactly onto the surface, while
marching cubes places triangles based on how the surface crosses the sampled voxels; therefore, our
error only depends on the overall size of the patch relative to the “flat-ness” of the approximated local
surface region.
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Figure 7: Variation of deformation error metrics wrt patch radius (left, fixed density = 30) and
density (right, fixed radius = 0.03), averaged over TFD dataset.
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Approximation Error and Deformation Quality
The inset figure (top right) shows how patch radius
and density impact the approximation error (average
over TFD shapes). We observe negligible change
when varying the patch density, where values above
50 do not result in significant accuracy improvements.
This is also the case for deformation error metrics
(Figure 7, right). Given that increasing density results
in additional cost in deformation time and memory
(inset figure, bottom right), a conservative choice ap-
pears to be the best one. In our experiments, radius
values around 0.01 would usually provide geomet-
rically meaningful patches without significant arti-
facts (we use absolute units for the radius since input
shapes are normalized in the unit cube). On the other
hand, while smaller radius values reduce the approx-
imation error, the patches tend to collapse to single
points as their radius approaches zero. This results in
a less expressive representation of the local geome-
try, which negatively affects the deformation results
as showed in the left plot of Figure 7. Lastly, overly
large patches also cause a degradation in performance
due to the increase in approximation error. In Sec-
tion 7.8, we provide visualizations of Implicit-ARAP
outputs as the patch radius and density change. The
results are visually consistent with the quantitative
evaluation presented here.

Patches
Density: 30

Radius: 0.03
Time: 1m:49s

VRAM: 1.30GB

MC
R = 128

Random l
Time: 4m:57s

VRAM: 11.9GB

MC
R = 256

l = 0
Time: 5m:18s

VRAM: 1.56GB

MC
R = 128

l = 0
Time: 0m:43s

VRAM: 1.41GB

Figure 8: LPM and MC as underlying triangulation for deformation tasks. Our sampling is both
memory efficient and expressive.
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Volume: 7.96%

EL: 0.87%
Area: 6.30%

Volume: 7.22%

EL: 0.95%
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Figure 9: Mesh deformation results for multiple patch distributions. The final results are qualitatively
identical and the variations in metrics are negligible in most cases. See Figure 6 for the input shape.

Discretization In Figure 8, we present qualitative results of mesh deformation using both patches
and marching cubes (MC) as underlying discretizations for ARAP energy. We show three different
variations for MC: zero level set only with resolution R = 256, zero level set only with resolution
R = 128, and meshing all level sets with R = 128 to make the computed energy similar to that of
our method. The last option leads to meshes with very high triangle count especially for higher SDF
values, which increases the memory requirement and limits the resolution R = 128. Consequently,
the optimization converges to a rigid transformation, probably due to the coarse-ness of the level sets’

9



representation. Using only the zero level set, the model seems unable to properly apply the ARAP
prior to the deformation, for resolutions R = 256 and R = 128. This is likely due to using a single
discretization during the optimization process: without seeing multiple possibilities (e.g.random
patches), the continuous deformation model may find local optima that “cheat” the ARAP loss without
actually resulting in local rigidity. Overall, our patching approach appears more stable, reliable, and
efficient. Moreover, the results presented in Figure 9 suggest that the variation in error metrics due to
the choice in patch point sampling is negligible.

5 Conclusions

Discussion We presented a novel way to apply as-rigid-as-possible deformations to neural fields
which is highly efficient and more flexible and robust than previous work. To this end, we proposed
to mesh patches from several isosurfaces of a signed distance field and then compute the energy on
those to regularize a deformation field encoded in a neural network. This has important advantages
because it detaches the computational complexity from the resolution and allows for regularization
that includes properties of the embedding space, e.g., the volume-preservation of our invertible model.
The core idea can be applied seamlessly in the context of deforming high resolution meshes and
neural fields: in the latter case, we employ an invertible deformation which allows to define the
output neural field, at the cost of generality. The combination of these properties – directly inferring
the new SDF and general deformation space – is hard to obtain due to the unpredictable possible
changes in the SDF from an unconstrained deformation, but it would make for a challenging future
work. In the context of mesh deformation, we believe that employing more efficient neural SDF
representations provides an interesting direction for future investigation. Nevertheless, we believe
our work is a valuable step in the direction of efficient and flexible editing of neural fields, and that
our local discretization could be applied to solve more geometric problems in the implicit domain.

Limitations The general framework of our deformation method (“transporting” the input neural
field along the inverse deformation) is adopted from previous contributions in the literature. As such,
our method inherits the common limitation of lacking exact guarantees on the preservation of any
properties of the input field (for instance, we discuss gradient norm preservation in Section 7.5).
Additionally, the optimization of the ARAP loss is very dependent on the discretization: while
our experiments showed that our patches are a valid choice, it would be beneficial to improve this
representation with the goals of a) removing hyperparameters and b) increase surface coverage. Lastly,
concerning mesh deformation (see Section 7.2), our method’s constant time scaling is only beneficial
for high resolution meshes: further improving the optimization time would allow our method to also
target low/medium resolution meshes and improve its generality.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and part of our data (two TFD shapes) are provided in anonymized
format as part of our supplementary materials.
Guidelines:

16



• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the necessary details are provided. Additionally, we presented results
discussing our choices for method-specific hyperparameters (patch radius and density).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The specific case of handle-guided shape deformation does not support large-
scale analysis, as also attested by past contributions. The core reason is the lack of established
datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our method is designed to run in end-user applications, and we provided
various evaluations of its time/memory performance on consumer-grade hardware (specified
in the main paper).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the Code of Ethics and acknowledge our paper’s conformity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: While empowering 3D artists with faster and more robust tools for their work
may be seen as a positive societal impact, we did not feel it was relevant enough to be
discussed in the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments employ a small set of CC-0 3D models found on various
public repositories. In our opinion, their redistribution poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data we employed was obtained from DeFAUST, Thingi10k and the
Stanford 3D scanning repository, which were all properly cited in the paper. We provided
license names for each object in the supplementary material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our submission includes a complete code release with instructions and minimal
samples of data necessary to test the proposed method.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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6 Additional details

6.1 Local patch meshing

Uniform 2D Normal Linear Mixed

Figure 10: Different distributions for sampling the
2D disk (100 pts per patch).

We visualize four possible types of discretiza-
tion in Figure 10, such as uniform sampling in
polar coordinates, normalized normal sampling,
linear (deterministic) sampling, and combining
uniform coordinates with normal radius. Even
though the patches are visibly different both in
terms of point distribution and triangle appear-
ance, the specific choice has little influence on
our method, as we show in Figure 9.

Algorithm 1 presents the rejection/projection algorithm to sample the zero level set of an SDF
introduced by Yang et al. [57]. In our implementation, several parts of the algorithm are parallelized
for efficiency: for instance, the inner loop samples a large number of points x at once, retaining and
projecting those with absolute distance < τ . By performing enough sampling attempts in a single
iteration, the algorithm can frequently terminate in a single step (i.e., by retaining at least N points
among those that were sampled).

Algorithm 1 SDF zero level set sampling.

1: procedure REJECTPROJECTSAMPLING(fθ, N , τ , tmax)
2: S ← ∅
3: while |S| < N do
4: ▷ Rejection step
5: x ∼ U([−1; 1]3) ▷ Sample x from bounded 3D domain
6: while |fθ(x)| > τ do ▷ Ensure close to surface
7: x ∼ U([−1; 1]3)
8: end while
9: ▷ Projection step

10: for t = 1→ tmax do ▷ Iterate closest surface point

11: x← x− fθ(x)
∇fθ(x)
∥∇fθ(x)∥

12: end for
13: S ← S ∪ {x}
14: end while
15: return S
16: end procedure

6.2 Model

6.2.1 Network architectures

Shape model To represent the input shape internally to our deformation algorithm, we adopt a
neural SDF model proposed in previous literature [50, 52]. This model is suitable to our application
due to its efficiency on consumer-grade hardware and robustness with respect to the input geometry.
The SDF is represented via a MLP network with 8 layers, a hidden dimensionality of 256, a residual
connection at the fourth layer, 6-frequencies Fourier features encoding, and Softplus activation. This
network is optimized via eikonal training, originally proposed by Gropp et al. [21], which employs
the following four losses:

Lzero = Ex∈S0

∣∣fθ(x)∣∣ , (7)

Leikonal = Ex∈R3

∥∥∥∇fθ(x)∥ − 1
∥∥2 , (8)

Lnormals = Ex∈S0

(
1− ∇fθ(x) · n(x)
∥∇fθ(x)∥∥n(x)∥

)
, (9)

Lpenalty = Ex∈R3 exp
(
−α

∣∣fθ(x)∣∣) . (10)
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Defined on a discretization of the represented surface S0. Intuitively, these respectively constrain the
network to: 1) vanish on surface points (sampled from the input mesh triangles) 2) have unitary norm
of gradient 3) have gradient aligned with surface normals (indicated by n(x) for surface point x), and
4) have minimal zero level set, to avoid artifacts due to under-determination. We list the values for
loss weights and α which we employed in our implementation in Table 3. The Adam optimizer runs
for a total of 10000 steps and uses a starting learning rate of 10−4 and a scheduler which halves it at
steps 1000, 2000, and 5000.

-

-

+

+

Figure 11: Diagram for the forward (top) and in-
verse (bottom) passes of the invertible MLP archi-
tecture we employ in our neural field deformation
pipeline.

Deformation model. For the invertible net-
work employed in the neural field deforma-
tion pipeline, we use 6 coordinate splitting lay-
ers, where the individual coordinate process-
ing blocks are implemented as 3-layer MLPs
with Softplus activation, a hidden dimensional-
ity of 256, and 6-frequencies Fourier features
encoding [52]. Each of these layers splits and
combines coordinates according to the layer
index i, by selecting the “focus” coordinate
w = pi mod 3, where p = (x, y, z) is the in-
put vector. Each layer predicts a translation of
the “focus” coordinate and a 2D roto-translation
of the two others, which we progressively ag-
gregate to obtain Rϕ(x) and tϕ(x). The layer
architecture for this model is visualized in Fig-
ure 11. Contrarily to the Lipschitz-continuous
MLP used in NFGP [57], this architecture al-
lows for an analytic expression of its inverse and
thus is more efficient, as it does not require fixed
point iterations for inversion.

Ours (MLP) Ours (Inv) ARAP NFGP

Figure 12: Results for method and baselines for
a non-bijective deformation, which invertible net-
works (Inv, NFGP) cannot represent.

For the mesh deformation pipeline, we use a
standard MLP composed of 8 linear layers with
a hidden dimensionality of 256 and Softplus
activation. We apply Fourier features encod-
ing with 6 frequencies at the input layer and a
residual connection at the 4th layer. For both
networks, we adopt the neural deformation ini-
tialization scheme of [43, 8], which allows the
initial state of the model to predict the identity
transformation without causing symmetry break-
ing failures or numerical instability interacting
with the Adam optimizer (which are common
when the weight matrices are entirely initalized
to zero).

6.3 Training procedure

Algorithm 2 shows all the high-level operations performed in a single step of Implicit-ARAP training.
First, a single flat patch is constructed via the sampling procedure described in Section 3.1. Then,
we construct a set of origin points for surface patches: we include 1) the handle sources, 2) a
quasi-uniform sampling of the zero level set (see Algorithm 1) and 3) a uniform sampling of the
bounded embedding space. The for loop in lines 7–10 aligns the flat patch at each origin and deforms
it according to the local geometry. This operation is performed in parallel for all patches to avoid a
bottleneck. Finally, the patch mesh is constructed as the union of all surface patches, and its vertices
are deformed via dϕ. The computation of the ARAP and handle losses is described in Section 3.3.
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Algorithm 2 Implicit-ARAP training loop.

1: procedure TRAIN(T, λ1, λ2, n,m, ρ, k, fθ, dϕ, {(si, ti)}hi=1)
2: for t← 1 to T do
3: V, F ← DISKSAMPLE(ρ, k) ▷ Section 3.1, “Sampling”
4: O ← {si}hi=1 ▷ Handle sources as origins
5: O ← O ∪ REJECTIONSAMPLE(fθ,m− h)
6: O ← O ∪ UNIFORMSAMPLE([−1; 1]3, n−m)
7: for j ← 1 to n do ▷ Section 3.1, “Projection”
8: Vj ← ALIGN(V, oj , fθ)
9: Vj ← PROJECT(Vj , fθ)

10: end for
11: P ← {(Vj , F )}nj=1

12: P ′ ← {(dϕ(Vj), F )}nj=1 ▷ Section 3.2
13: Larap ← ARAPLOSS(P,P ′) ▷ Section 3.3
14: Lhandle ← 1

h

∑h
i=1∥dϕ(si)− ti∥2 ▷ Section 3.3

15: L← λ1Lhandle + λ2Larap
16: OPTIMIZE(L;ϕ) ▷ Compute gradients, ADAM step
17: end for
18: end procedure

6.4 Implementation

We implemented our algorithm in Python, relying on PyTorch [44] for neural network primitives,
linear algebra and automatic differentiation. In addition, we used Polyscope [49] for visualization,
extending its GUI with functionalities for easy point picking, which we used to design deformation
experiments. While our viewer renders a 3D triangle mesh extracted with marching cubes for the
sake of efficiency, the points selected on the shape by the user are mapped exactly onto the implicit
surface via iterations of the SDF closest point equation (Equation (1)), allowing to select an arbitrary
set of accurate handles. For a given set of points, the user can then specify an affine transformation
and save both the resulting handle transforms and the original positions. Our codebase is available at
this url.

7 Additional experiments

7.1 Hyperparameters

Where unspecified, all of our deformation experiments were run using the hyperparameters showed
in Table 2. To train the neural SDFs, we used the architecture described in Section 6.2.1 with the
hyperparameters listed in Table 3.

Table 2: Hyperparameter values for the deformation procedures. k and ρ refer to patch density and
radius, respectively, while λi are the loss balancing weights. n and m define the number of sampled
patches per training step (see Algorithm 2).

Mesh Field

Data TFD DeFAUST TFD DeFAUST

Steps 1000 2000 1000 2000
LR 10−3 10−3 10−3 10−3

λ1 103 103 103 103

λ2 101 104 103 104

k 30 30 30 30
ρ 0.03 0.01 0.03 0.01
n 2000 2000 2000 2000
m 1000 1000 1000 1000
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Table 3: Hyperparameter values for the SDF fitting procedure.
α λzero λeikonal λnormals λpenalty

100 3000 100 50 3000

Input ARAP Elastic SR-ARAP NFGPMesh OursMLP
Mesh

Figure 13: Qualitative results of our method in comparison to multiple baselines for mesh deformation,
on TFD examples.

7.2 High resolution mesh deformation

Our pipeline can be applied for classic mesh deformation, where the trained network is used to
deform the vertices of an input mesh (internally converted to a neural SDF for optimization).

Mesh Pipeline

M = (V, F )

SDF reconstruction

fθH

Deformation training

dϕ

Deform

M′ = (dϕ(V ), F )

Architecture For the mesh deformation pipeline, we do not require
invertibility as we are simply interested in the forward deformation of
a set of points in the zero level set of fθ. Therefore, we use a standard
MLP composed of 8 linear layers with a hidden dimensionality of 256
and Softplus activation. We apply Fourier features encoding with 6 fre-
quencies at the input layer and a residual connection at the 4th layer. As
mentioned in the main manuscript, the network is again initialized to pre-
dict the identity transformation [43, 8]. This architecture is ∼1.53× more
efficient to query than the invertible one, resulting in faster runtime for
the deformation procedure (excluding the internal SDF fitting). Figure 12
is also related to this section, as it shows how the standard MLP we use in
this task may represent deformations such that bijections between source
and deformed shape are not possible (e.g.changes of topology).

Results Well-established explicit methods [51, 9, 26] are very efficient
for most use-cases, but they do not scale to meshes with millions of
vertices due to super-linear time and memory costs. By representing the
input geometry implicitly in the weights of a neural network, and only
computing Laplacian edge weights for small triangle patches, our method
achieves runtime and VRAM usage independent of the input size.
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As highlighted in Table 4, Implicit-ARAP’s runtime is comparable to that of the explicit baselines.
However, the time scaling of our method is constant, therefore it is expected to remain efficient
even at resolutions higher than those employed in our evaluation. Moreover, most (∼72%) of our
runtime is spent fitting a neural SDF to the input mesh: employing a faster procedure for this step
could greatly improve our performance. The remainder of Table 4 summarizes the performance
of our method: Implicit-ARAP yields a clear improvement over SR-ARAP and NFGP. However,
ARAP and Elastic achieve much better metrics than our method for area, EL and FA. Since these
two methods provide the best solution (in a least-squares sense) for local rigidity of the given input
mesh under the handle constraints, this is to be expected. However, including useful priors such as
smoothness (SR-ARAP) immediately aligns the scale of error values to ours and NFGP.

Combining these results with the qualitative evaluation we present in Figures 13 and 14 provides
a clear picture of the accuracy, robustness and efficiency of our method, which consistently yields
accurate results with minimal artifacts. We point out that the results of ARAP baselines for the
cubes experiment (Figure 13) are correct, as the 2nd and 4th cubes are unconstrained and may be
mapped arbitrarily. Implicit-ARAP and NFGP, on the other hand, exploit the spectral bias of neural
networks to propagate the handle maps smoothly over the whole domain. However, NFGP deforms
the individual cubes into trapezoids more evidently than our method. The last advantage in using an
implicit method like ours lies in its independence from the quality of the input shape’s connectivity:
for example, the CGAL implementation of explicit baselines failed to run using the buddha mesh
(see Figure 8).

Input ARAP Elastic SR-ARAP NFGPMesh OursMLP
Mesh

Figure 14: Qualitative results of our method in comparison to multiple baselines for mesh deformation,
on DeFAUST examples.
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Table 4: Average runtime, angle error (FA) and percent errors in volume, area, and edge lengths (EL)
for our high-resolution mesh deformation experiments. The time for our method and NFGP includes
4m:44s required for the initial neural SDF fit, meaning our deformation phase runs in 1m:49s on
average for 1000 steps.

TFD DeFAUST

Ours NFGP ARAP Elastic SR-ARAP Ours NFGP ARAP Elastic SR-ARAP

Volume 4.27% 8.41% 11.82% 11.42% 8.24% 0.99% 15.02% 12.41% 12.25% 11.69%
Area 2.83% 7.04% 0.23% 0.25% 3.46% 0.82% 20.25% 0.45% 0.45% 5.36%
EL 0.76% 0.87% 0.12% 0.12% 0.89% 1.06% 8.71% 0.37% 0.38% 3.39%
FA 3.448° 4.178° 0.486° 0.495° 4.743° 1.517° 8.859° 0.517° 0.523° 5.628°

Time 6m:33s 14h:31m 8m:06s 8m:00s 9m:07s 8m:22s 14h:31m 7m:15s 8m:27s 7m:11s

7.3 Comparison to NSDP

In this section, we compare Implicit-ARAP to NSDP [53], a recent contribution in neural methods
for 3D mesh deformation. We highlight the main differences between the two methods in Table 6.
Differently from Implicit-ARAP, NSDP is data-driven, therefore to ensure fairness we carry out this
evaluation on the original test set employed by the authors, the DeformingThings4D dataset [27].
The results are available in Table 5. We observe that Implicit-ARAP, leveraging the local rigidity
prior, achieves a clear advantage for all deformation quality metrics. However, on the low/medium
resolution data available in DT4D, NSDP can compute deformations faster than Implicit-ARAP, by
pre-training the model on large amounts of data. This comes at the cost of generality, as NSDP
requires that the handles employed at inference time be “semantically” the same as those used during
training (e.g., limb extremities of a humanoid character).

Table 5: Comparison of Implicit-ARAP and NSDP [53] performance on DT4D [27].
Volume Area EL FA Time VRAM

Ours 0.58% 2.04% 2.03% 4.728° 6m:33s 1.3GB
NSDP 7.80% 5.76% 3.59% 6.603° 0m:18s 2.1GB

Table 6: Highlights of differences between our method and Neural Shape Deformation Priors [53].
Implicit-ARAP NSDP

Training Trained for each input Pretrained on large dataset
Handle set Any Defined at training time
Evaluation data resolution Medium/high (50k-500k) Medium/low (10k-50k)
Deformation prior Local rigidity (ARAP) Linear blend skinning (data prior)
Inference-time optimization Yes No

7.4 Ground truth evaluation

Throughout our evaluation, we ran deformation experiments which were obtained from 3D shape
pairs (i.e., shape pairs from FAUST [4], animations from DT4D [27]). In these cases, one may
leverage the “target” shape information to evaluate how closely the algorithm approximates the
deformation prior showed in the data, by computing the difference between the deformed shape and
the target shape [53]. This provides an additional criterion of evaluation for deformation algorithms,
which while not an “objective” metric of correctness, can provide additional insight into the behavior
of a particular method. The results are available in Table 7.

Table 7: Evaluation of Implicit-ARAP’s ability to approximate target shapes, when available for our
deformation experiments. For reference, NSDP averaged 7.79 · 10−4 on DT4D.

DeFAUST DT4D

3.54 · 10−3 3.44 · 10−3

28



7.5 SDF preservation

We are interested in evaluating to what degree Implicit-ARAP deformations preserve the signed
distance properties of the input field. Like past contributions, our method lacks theoretical guarantee
of exact preservation, and obtaining such a guarantee is an open problem. In Figure 4, we provide an
ablation experiment showing that our formulation is beneficial unitary gradient norm preservation.
We complete that result with Table 8, which presents the average of the same data over all our
experiments.

To give a practical measure of how well the SDF properties are preserved, we provide sphere-
traced [22] renders of SDFs deformed with Implicit-ARAP in Figure 15. We used the sphere tracing
implementation from Polyscope [49]. We note that, while ad-hoc rendering methods for deformed
fields such as [48] could be used, the scope of this work allows us to be satisfied with these basic
results. The results show that the deformed fields are rendered without significant artifacts.

Table 8: SDF gradient norm preservation, averaged over all our experiments. Only true implicit
methods are evaluated. The mean and STD of the deformed field gradient norm are evaluated over a
dense uniform sampling (1M points) of [−1; 1]3. Recall that for exact SDFs ∥∇f∥ = 1.

Mean ∥∇fθ ◦ d−1
ϕ ∥ STD ∥∇fθ ◦ d−1

ϕ ∥
Ours 1.016 0.146
NFGP 1.029 0.290

Input 0.999 0.077

Figure 15: Sphere-traced renders of SDFs deformed with Implicit-ARAP. The deformation inputs
may be found in Figures 5 and 13.

Input Ours NFGP Only zero level Only handles loss

Figure 16: Alternative visualization of the ablation study presented in Figure 4.

7.6 Loss balancing

As we mentioned in the main manuscript, in our neural representation setting we cannot ensure a
100% accurate handle fit, as we have to optimize the input handles via gradient descent, balancing
their contribution with that of the ARAP loss. As a result, especially in difficult cases with substantial
deformations, the optimization may favor a better preservation of local rigidity and sacrifice some
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measure of handle accuracy. In Figure 17, we show that it is possible to re-balance the loss term and
achieve accurate handle fit, at the cost of a less natural-looking deformation.

λ2

1 10 100 500 1000

Figure 17: Decreasing the weight of the ARAP loss (λ2) allows to balance handle satisfaction and
deformation quality. λ1 is set to 1000 as for all other experiments.

7.7 Matching ARAP resolution

Furthermore, we explore the connection between our method and the original ARAP through the
results in Figure 18. ARAP results are generally sensitive to the input mesh resolution: different
discretizations of the same shape will result in outputs which, while technically correct, exhibit
different properties. For low resolution meshes, local rigidity will be optimized between large
triangles, often resulting in behaviours typical of skeleton-based linear blend skinning deformations.
On the other hand, high resolution meshes will exhibit local rigidity in more localized regions. This
is apparent from the top row of Figure 18.

To determine if Implicit-ARAP would exhibit the same phenomenon, we ran our method varying
radius and density so that the average edge length of our training patches would approximate that of
the ARAP input meshes. Our results show that this is not the case, as the variations in our outputs are
insubstantial.
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Figure 18: Comparison of our method to ARAP with matching resolutions (showed as a percentage
of full resolution). The training patches are constructed with radius 0.03 (avoiding degenerate
patches) and manually selecting the density k which best approximates the average edge length of the
corresponding ARAP input mesh (which we obtained by decimating the sculpture mesh at multiple
resolutions). We also show the total runtime t (without SDF fit in our case).

7.8 Correlation of deformation results and patch parameters

Lastly, Figure 19 completes the discussion about correlation of patch parameters and deformation
performance Section 4.2. As we anticipated from the quantitative evaluation, we observe that small
patches (radius below 0.01) result in artifacts due to the insufficient influence of the ARAP energy in
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the optimized deformation. Viceversa, when the patches are too large, artifacts arise from interaction
of geodesically distant regions (e.g., the front left paw with the body, or the neck with the spine).
Finally, coherently with the results in Figure 7, variations in patch density do not have a significant
impact on visual quality.
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Figure 19: Qualitative results for Implicit-ARAP, varying patch density and radius.

8 Data license

For our experiments, we gathered a small collections of 3D shapes from Thingi10k [59] and the
Stanford 3D scanning repository. Then, we designed various deformation experiments for each of
these shapes. Finally, we included a set of deformation experiments automatically generated from the
FAUST [4] dataset. In Table 9, we list the license name of each of these assets.

Asset Reference License

DeFAUST shapes Figure 14 FAUST License
Armadillo (Stanford) Figures 12, 13 and 15 CC BY-NC 4.0

Dragon (Stanford) Figures 1, 2, 5 and 19 CC BY-NC 4.0
Buddha (Stanford) Figures 5, 8 and 15 CC BY-NC 4.0

Piranha Plant (Thingi10k) Figures 13 and 15 CC BY-NC 4.0
Hand (Thingi10k) Figure 2 CC BY-NC-SA 4.0

Sculpture (Thingi10k) Figures 6, 9, 13 and 18 CC BY-NC 4.0
Cat (Thingi10k) Figure 4 CC BY-NC-ND 4.0

Octopus (Thingi10k) Figures 5 and 17 CC BY-SA 4.0

Table 9: References in the paper and license for all 3D meshes we employed in our experiments.
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