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ABSTRACT

Despite their success, Large-Language Models (LLMs) still face criticism due to
their lack of interpretability. Traditional post-hoc interpretation methods, based on
attention and gradient-based analysis, offer limited insight as they only approximate
the model’s decision-making processes and have been proved to be unreliable. For
this reason, Concept-Bottleneck Models (CBMs) have been lately proposed in the
textual field to provide interpretable predictions based on human-understandable
concepts. However, CBMs still face several criticisms for their architectural con-
straints limiting their expressivity, for the absence of task-interpretability when
employing non-linear task predictors and for requiring extensive annotations that
are impractical for real-world text data. In this paper we address these challenges
by proposing a novel Linearly Interpretable Concept Embedding Model (LICEM)
going beyond the current accuracy-interpretability trade-off. LICEM classifica-
tion accuracy is better than existing interpretable models and matches black-box
models. The provided explanations are more plausible and useful with respect to
existing solutions, as attested in a user study. Finally, we show our model can be
trained without requiring any concept supervision, as concepts can be automatically
predicted by the same LLM backbone.

1 INTRODUCTION

In recent years, Large-Language Models (LLMs) have revolutionized the way we approach text
interpretation, generation, and classification (Devlin et al., 2018; Radford et al., 2018; Brown
et al., 2020; Achiam et al., 2023; Touvron et al., 2023). Despite their success, LLMs’ reliability
is insufficient, due to the occurrence of hallucinations (Bang et al., 2023; Huang et al., 2023) and
the inconsistency of self-provided explanations that often do not reflect the actual decision-making
process (Ye & Durrett, 2022; Madsen et al., 2024; Turpin et al., 2024). Furthermore, traditional
explainability methods mainly rely on the attention mechanism (Jain & Wallace, 2019; Wiegreffe
& Pinter, 2019) and gradient-based analysis (Chefer et al., 2021b), both of which have been shown
to provide limited interpretability as they are often unreliable (Adebayo et al., 2018; Taimeskhanov
et al., 2024) and only show where the model looks, but not what it sees in a given input (Rudin, 2019;
Fel et al., 2023; Poeta et al., 2023).

For this reason, Concept-Bottleneck Models (CBMs) (Koh et al., 2020) have been recently proposed
in the textual field to improve the interpretability of LLM predictions (Tan et al., 2024b;a). In CBMs,
an intermediate layer outputs a set of human-understandable symbols, commonly referred to as
concepts, before providing the final classification. Furthermore, CBMs allows concept interventions,
i.e., counterfactual predictions based on slight modifications of the predicted concepts. However,
they still present several limitations: i) the concept bottleneck architecture prevents to achieve high
classification accuracy, particularly in real-world text scenarios where complete concept represen-
tations are difficult to obtain; ii) when employing non-linear task predictors, standard CBMs are
not task-interpretable, i.e., the decision process from the concepts to the final classification is non-
interpretable; iii) CBMs concept annotation is expensive and existing generative concept annotation
approaches require the employment of multiple modules.

This paper addresses these challenges, by proposing a novel Linearly-Interpretable Concept Em-
bedding Model (LICEM) providing the final prediction in terms of an interpretable linear equation
working over concept embeddings. In LICEM both the weights and the concept scores of the linear
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Figure 1: Left, LICEM predicting the sentiment of a drug review (Gräßer et al., 2018). LICEM
provides accurate predictions and reveals its decision-making process. Middle, LICEM provides
the best accuracy/interpretability trade-off. Right, models’ concept F1 scores, when increasing the
number of concept annotations. Self-LICEM achieves high scores without requiring concept labels.

equation are predicted for each sample. As shown in Figure 1, left, in the context of a drug review
classification, LICEM not only allows identifying the important concepts in the text, such as ‘Effec-
tive’ or ‘Side Effects’, but also to interpret by-design its local decision process. In the experiment,
we positively answer all our research questions. In particular, we show that i) LICEM achieves
higher accuracy than existing task-interpretable models while matching or surpassing black-box
methods (Figure 1, middle); ii) LICEM explanations are more plausible and useful with respect to
existing solutions by means of a user study; iii) LICEM can be trained without any concept annotation
(Self-LICEM), as concepts can be automatically predicted by its LLM backbone, providing higher
concept accuracy than an existing method (Figure 1, right).

2 BACKGROUND

CBMs. CBMs (Koh et al., 2020; Tan et al., 2024a) are interpretable models that break the standard
end-to-end learning paradigm into the training of two neural modules f ◦ g. The concept encoder
g : X → C maps raw features x ∈ X ⊂ Rd into m higher-level abstractions c ∈ C ⊂ [0, 1]m (i.e.,
the concepts); the task encoder f : C → Y predicts n downstream classes based on the learned
concepts ŷ = f(g(x)), y ∈ Y ⊂ [0, 1]n. CEMs (Espinosa Zarlenga et al., 2022; Kim et al., 2023)
decompose the concept encoder into two functions g = q ◦ h. The inner function h : X → H ⊂ Rb

provides a representation of an input sample, while q : H → C maps this representation into m
k-dimensional concept embeddings c ∈ C ⊂ Rm,k. The concept prediction ĉj is then given by a
neural function over the concept embeddings ĉj = s(cj), where s is shared among the m concepts. A
probabilistic formalization can be found in Appendix A.1. However, the interpretability of the CEM
task predictor f(c) is limited, as the individual dimensions of concept embeddings lack meaningful
interpretation. Additionally, adapting CEM to text scenarios remains an open question.

LLM-based Textual Encoders. When considering transformer models, there exist several methods
for implementing a text encoder h(x). An immediate choice is to employ an encoder-only architecture,
such as BERT (Devlin et al., 2018), and extracting the embedding associated to the [CLS] token.
However, as recently shown in Jiang et al. (2023b), one can also exploit the remarkable performance
of existing decoder-only LLMs. The architecture of an LLM can be conceptualized as comprising two
distinct components: the stacked decoder blocks which are responsible for generating a contextualized
representation e, and a classification head that processes this representation to predict the next token.
The first can be interpreted as sampling a representation by the distribution ph, where h is the
pre-trained LLM (without the classification head). This distribution can be conditioned toward the
generation of specific embeddings by using a prompt t, i.e., e ∼ ph(e|t, x). To induce the LLM to
generate an embedding which is representative of a sentence, Jiang et al. (2023b) proposed to use
the prompt “this sentence: ‘[sentence]’ means in one word: " and substituting ‘[sentence]’ with
the sequence of tokens x. In order to obtain a rich representation of the x sequence, exploiting the
available knowledge in the pretrained LLM, we thus use the embedding e ∼ ph(e|t, x).
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Figure 2: LICEMs visualization. Using a pretrained LLM model, we i) require it to provide an
encoding of the input text following; ii) prompt the LLM to generate the concepts predictions ĉ (e.g.,
Side Effects = 0.8) in Self-LICEM, while in LICEM they are provided by a concept embedding layer;
iii) make the final prediction in an interpretable way by first predicting the equation weights wij (e.g.,
wSide Effects = -1.8) for predicting the i-th class, then executing the resulting linear equation.

3 METHOD

In this paper, we aim to develop an interpretable concept-based model for text classification. To
achieve this, we need to rely on rich text and concept representations. We create an LLM-based
CEM by first using an LLM to model the text encoder and extract an embedding e (as proposed
in Jiang et al. (2023b) and discussed in the previous section), which is then fed into a concept
embedding layer (Espinosa Zarlenga et al., 2022). Using an LLM as the text encoder allows us
to create a powerful task predictor (LICEM, Section 3.1) without the need for fine-tuning the text
encoder. Additionally, leveraging pretrained LLMs enables the self-generation of concept predictions
(Self-LICEM, Section 3.2), extending the scalability of CBMs to scenarios without available concept
annotations. A description of the overall pipeline is provided in Figure 2.

3.1 LINEARLY-INTERPRETABLE CONCEPT EMBEDDING MODEL (LICEM)

To create an interpretable predictor, it is essential to utilize both an interpretable data representation
and an interpretable model (Ribeiro et al., 2016). Concept-based models allow employing an
interpretable data representation within the network. However, to prevent a loss in generalization,
CEMs provide the task predictions over concept embeddings whose single dimensions are non-
interpretable. Thus, even when using an interpretable task predictor (e.g., a linear layer), CEM does
not allow providing an interpretable prediction.

To address this issue, in this work, we propose to predict a linear equation that can be executed over
the concept predictions and that outputs the final classification as an interpretable aggregation of
the most important concepts. In this approach, the neural network’s output is modeled as a linear
equation where the independent variables are the concepts, and their weights reflect their importance
in the task prediction, followed by a bias term. We employ two neural modules to predict for each
sample the weights and the bias of a linear equation that is executed over the concepts (that are also
predicted). Formally:

LICEM : ŷi = σ

∑
j

ŵij ĉj + b̂i

 ŵij = ρi(cj), b̂i = βi(c), ĉj = s(cj) (1)
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where, as in common logistic regressions, ŵij is the weight for the j-th concept in predicting the
i-th task, bi is the bias for the i-th task, while ĉj and cj are, respectively, the prediction and the
embedding of the j-th concept provided by CEM, and σ represents the activation function. For a
single concept j, the weights for all classes ŵj are predicted by a neural module ρ : Cj → Rn

working on the corresponding concept embedding cj. As commonly, ŵij < 0 indicates a negatively
important concept, ŵij > 0 a positively important one, and ŵij ∼ 0 a non-important concept. To
improve readability, we aim for sparse weights, where few concepts have ŵj ̸= 0. We achieve this by
adding L1 regularization to the training loss. The bias term b̂ is predicted over all concept embeddings
by a function β : C → R, representing the overall bias for each class. This term is optional, but it
allows for positive predictions even when no concept is positively predicted. Indeed, when ĉj = 0
for all j ∈ {1, ...,m}, the prediction would be ŷi = 0 regardless of ŵij . To prevent over-reliance on
the bias term, we add L2 regularization to encourage small bias values, minimizing its influence on
task prediction. Finally, we use a sigmoid activation function σ for binary classification tasks and a
softmax for multi-class classification tasks. To understand the contribution of a concept to the final
prediction of a class, we propose considering the combined contribution ŵij ĉj and plotting them in a
LIME-like feature importance plot, as shown in the output of Figure 2.

Training. LICEM is trained similarly to any supervised concept-based model with a cross-entropy
H loss over both the predicted concepts and the tasks:

Lsup = H(c, ĉ) + λyH(y, ŷ) + λw||w||1 + λb||b||2 (2)

where we indicate the loss over the concept predictions as Lc = H(ĉ, c), the loss over the task
predictions as Lt = H(ŷ, y), with ||w|| and ||b|| the regularization terms over the weights and biases
and with λy, λw and λb the optimization weights for each term. In the rest of the paper, we will refer
to this strategy as supervised.

3.2 EXPLOITING LLMS TO AVOID CONCEPT ANNOTATION: A SELF-GENERATIVE APPROACH

To alleviate human annotators from the burden of providing concept supervision, a few works are
starting to exploit the knowledge already available in pre-trained LLMs, both in the image (Yang
et al., 2023; Oikarinen et al., 2023) and in the textual domains (Ludan et al., 2023). First, an LLM is
asked to provide several attributes that describe each class. Each attribute is considered a concept for
that class, possibly shared with other classes. E.g, a parrot may be described as being a bird, with
bright feathers and of medium size. Then another LLM is required to predict whether the concept is
present in the input samples. The LLM, in this case, is formally represented by the distribution pθ,
where θ denotes the parameters of a pre-trained LLM with classification head. When conditioned
on a prompt t, the model generates the token “yes” if a specific concept is identified in the input
text sequence x, and “no” otherwise. Thus, the predicted concept is sampled as c′ ∼ pθ(c

′|t, x). In
Appendix A.2 we report some examples of prompts.

Generative approach. In Ludan et al. (2023), these concept predictions c′ are used as labels to train
a textual concept encoder. Formally, Lgen = Lc′ + λLt = H(c′, ĉ) + λH(y, ŷ). We will refer to this
strategy as generative, as a generative model provides concept annotations.

Self-generative approach. While the generative approach reduces human annotation efforts, it
requires training an additional concept encoder to learn the LLM-provided labels. In this paper, since
we already employ an LLM as a text encoder, we propose using the same LLM to directly make the
concept predictions. More precisely, we prompt the LLM to provide both a representation e for each
sample x and the concept predictions, i.e., ĉ = c′ ∼ pθ(c

′|t, x). This results in a modification of both
CEM and LICEM as the concept predictions are self-generated by the same LLM, as shown in Figure
2. We will refer to this approach as self-generative, as the same model directly provides the concept
predictions. This method eliminates the need for concept annotations, but also reduces the number of
parameters to train and improves concept performance if compared to the generative method. Indeed,
the concept accuracy of the self-generative method represents an optimum for the generative one.
In the former, the concepts c′ provided by the LLM are directly used as concept predictions, while
in the latter, they serve as training labels for an external text encoder, which aims to replicate c′.
Self-LICEM is obtained by substituting the concept predictions ĉ with c′ from Equation 1:

Self-LICEM ŷi = σ

∑
j

ŵijc
′
j + b̂i

 . (3)
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The concept embedding encoder q and the neural modules ρ and β producing the interpretable linear
equation are trained as in Equation 2, but minimizing, this time, only the loss over the task:

Lselfgen = H(y, ŷ) + λw||w||1 + λb||b||2, (4)

This approach is not limited to LICEM; it can also be extended to CBM-based and CEM-based
models. In these cases, the LLM provides the concept predictions (CBM) or both the predictions and
the embedding (CEM). In both cases, the optimization strategy involves minimizing only the cross-
entropy on the task predictions H(y, ŷ), as shown in Eq. 4. This allows converting any pre-trained
LLM into a concept-based model without the need for concept annotations.

4 EXPERIMENTS

In this section, we want to answer the following research questions:

• Generalization. Does LICEM achieve superior performance in text classification compared
to other interpretable models, and is it on par with non-interpretable ones? (Section 4.2)

• Concept Efficiency. How many concept supervisions are required to match Self-LICEM
accuracy? Does the self-generative strategy outperform the generative one in concept
accuracy? (Section 4.3)

• Interpretability. Are LICEM explanations more interpretable than those of other methods?
Can we effectively interact with LICEM? (Section 4.4)

4.1 SETUP

We test LICEM performance over different datasets (both with and without concept-supervisions),
comparing against several models and for different metrics. For all experiments, we report the
average and standard deviation across three repetitions. The models were trained on a dedicated
server equipped with an AMD EPYC 7543 32-Core processor and one NVIDIA A100 GPU. Our
code is publicly available at www.example.com1

Dataset. We evaluated LICEM performance on three text-classification datasets for which concept
annotation is available: CEBaB (Abraham et al., 2022), MultiEmotions-IT (Sprugnoli et al., 2020),
and Drug review (Gräßer et al., 2018). Additionally, we tested the generative and self-generative
approaches on the Depression dataset (Yates et al., 2017), where concept annotations are unavailable,
but where an LLM (Jiang et al., 2024) identified six depression-related concepts which are: ’Self-
deprecation’, ’Loss of Interest’, ’Hopelessness’, ’Sleep Disturbances’, ’Appetite Changes’, and
’Fatigue’. Further information regarding the datasets is reported in Appendix A.3.

Baselines. We compare LICEM against several baselines, including black-box and concept-based
models, both task-interpretable and non-interpretable approaches. For all models, we use a non
fine-tuned Mixtral 8x7B (Jiang et al., 2024) encoder h(x), following the encoding strategy proposed
in Jiang et al. (2023b). In Appendix A.4 we also report all results based on a fine-tuned BERT
encoder (Devlin et al., 2018) as backbone. The results show that the decoder-only LLM achieves
similar performance without fine-tuning the whole LLM. Besides, it enables the self-generative
approach: in Appendix A.5 we report a comparison of the concept annotation performance when
using different LLMs. For black-box models (E2E), we evaluate an end-to-end model directly
classifying the task with a Mixtral encoder h(x) and few layers as classification head (MLP), and
the same Mixtral used in Zero-shot and Few-shot prompting. CBM+LL and CBM+MLP are the
two CBMs originally proposed in (Koh et al., 2020) and recently adapted to text in (Tan et al.,
2024b). They employ a concept bottleneck layer followed, the first one, by an interpretable linear
layer, while the second by a non-interpretable multi-layer perceptron. CBM+DT and CBM+XG are
respectively two CBM variants proposed in (Barbiero et al., 2023), using an interpretable decision
tree and a non-interpretable XGBoost classifier (Chen & Guestrin, 2016) on top of the concept
bottleneck layer, respectively. CBM+DT is task-interpretable, as one can extract a decision rule based
on concepts, whereas the second variant CBM+XG is non-interpretable. As described in Section 2,
CEM (Espinosa Zarlenga et al., 2022) employs embeddings to represent concepts and enhance CBM

1We will release the code upon paper acceptance.
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Table 1: Task accuracy (%) of the compared models. We report in bold the best result among the
same type of models (e.g., supervised, interpretable ones) considering models equally best if their
standard deviations overlap. We use ✓to indicate models requiring concept supervision (C. Sup.) or
having a task-interpretable predictor (T. Inter.). We highlight in light gray the models we propose in
this work. The Self-Generative approach extends the scalability of concept-based models to datasets
without concept annotations, where supervised models cannot be applied (−).

Type Method C. Sup. T. Inter. CEBaB Multiemo-It Drug Depression

E2E
Mixtral–MLP ✗ ✗ 88.80 ± 0.75 80.01 ± 0.63 63.66 ± 1.20 97.18 ± 0.03

Mixtral–Zero-shot ✗ ✗ 86.80 ± 0.31 80.06 ± 0.66 60.81 ± 0.28 73.77 ± 0.23

Mixtral–Few-shot ✗ ✗ 84.79 ± 0.42 84.17 ± 0.67 62.16 ± 0.27 76.38 ± 0.08

SUP.

CBM+MLP ✓ ✗ 78.41 ± 9.30 45.43 ± 8.20 45.42 ± 4.90 –
CBM+XG ✓ ✗ 83.01 ± 0.10 69.01 ± 0.02 55.00 ± 0.13 –
CEM ✓ ✗ 89.60 ± 0.49 83.33 ± 0.47 66.81± 0.40 –

CBM+LL ✓ ✓ 71.43 ± 9.71 42.67 ± 7.01 34.60 ± 10.10 –
CBM+DT ✓ ✓ 77.20 ± 0.40 65.00 ± 0.02 47.20 ± 0.40 –
DCR ✓ ✓ 88.05 ± 0.53 82.01 ± 0.71 65.40 ± 0.80 –
LICEM (ours) ✓ ✓ 89.89± 0.77 83.47 ± 0.49 66.80 ± 0.29 –

SELF
GEN.
(OURS)

Self-CBM+MLP ✗ ✗ 82.71 ± 0.01 75.42± 4.42 47.59 ± 0.33 82.31 ± 0.04

Self-CBM+XG ✗ ✗ 82.70 ±<0.01 79.09 ±<0.01 53.28 ±<0.01 82.28 ±<0.01

Self-CEM ✗ ✗ 89.14 ± 0.38 84.06 ± 0.09 65.20 ± 0.73 97.16 ± 0.08

Self-CBM+LL ✗ ✓ 82.71 ± 1.23 77.15 ± 0.96 47.35 ± 0.29 82.12 ± 0.15

Self-CBM+DT ✗ ✓ 83.95 ±<0.01 78.44 ±<0.01 53.28 ±<0.01 82.28 ±<0.01

Self-DCR ✗ ✓ 87.72 ± 0.66 83.47 ± 0.43 63.29 ± 0.36 97.11 ± 0.03

Self-LICEM ✗ ✓ 89.56 ± 0.29 84.49± 0.25 65.89 ± 0.39 97.23 ± 0.02

generalization performance, but at the cost of losing task interpretability. Finally, DCR (Barbiero
et al., 2023) is a neuro-symbolic approach designed to improve the interpretability of CEM. It
generates propositional rules executed by a fuzzy system on top of concept predictions. We adapt
CEM and DCR to work in the text classification scenario, and we compare their performance against
the proposed model. For the training details regarding each model, please refer to Appendix A.3.

Metrics. We evaluate LICEM using various metrics. To assess generalization performance, we
compute the task accuracy and the macro-averaged concept F1 score (as concept classes are highly
imbalanced); for self-generative models, the macro-averaged F1 score evaluates the concept predic-
tions directly provided by the LLM (Section 3.2). To measure efficiency, we examine the concept F1
score of all models when increasing the number of concept annotations. For interpretability, we first
evaluate LICEM explanations through a user study, comparing their plausibility and usefulness to
that of DCR; secondly we evaluate the effectiveness of concept interventions over LICEM to enhance
classification accuracy (Espinosa Zarlenga et al., 2024); third we measure the Causal-Concept Effect
(CaCE) (Goyal et al., 2019), which assesses the causal relevance of concepts for task predictions.

4.2 LICEM GENERALIZATION (TABLE 1)

LICEM matches black-box task performance and outperforms all task-interpretable models.
The initial finding from analyzing Table 1 is that LICEM consistently delivers task performances
that are comparable or even better than black-box and non task-interpretable models. Interestingly,
although with overlapping standard deviation, E2Es are never the best performing models, which is
three times a LICEM and once a CEM. When it comes to interpretable models, LICEM invariably
emerge as the best interpretable predictor among the compared, with an improvement of at least
7-19% over CBM interpretable variants. With respect to DCR, we believe the improvement is due
to the way LICEM provide the final classification: the parameters of a linear equation are easier to
predict than constructing a logic rule, and to optimize, as they do not require passing through a fuzzy
system.

Self-generative approach increasing CBMs scalability while maintaining task performance.
Self-generative CBMs maintain the task accuracy of supervised CBMs while increasing their scal-
ability, as they can be applied to scenarios where concept annotations are not available, such as
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Figure 3: Concepts prediction performance vs number of concept labels used during training. To
increase plot readability, we only included the CBM+LL and the average F1 score for the generative
approaches (Gen). Self-Gen. and Gen. approaches are reported with a straight line, as they do not
require concept annotation.

the Depression dataset. We reported the performance of all concept-based baselines (not only Self-
LICEM) when trained along the self generative approach to show that it enables all CBMs to work
on top of a pretrained LLM without concept annotations. When comparing the model performance in
the two approaches, we can generally notice that the confidence intervals are overlapping. In a few
cases, such as CBM+LL, we can notice a stable improvement over all the datasets when using the
self-generative approach up to +30% on the Multiemo-It dataset. This is likely due to the trade-off
posed when training a concept-bottleneck layer, which has to favor either the task or the concept
performance: when directly working over good concept predictions, CBM performance improves.
In Appendix A.6, we also report the task accuracy of models trained along the standard generative
approach, showing similar results.

4.3 LICEMS CONCEPT EFFICIENCY (FIGURE 3)

Self-Generative approach strongly reduces the human annotation effort. In Figure 3, we report
the concept prediction performance of the compared methods when increasing the number of concept
labels used for training. Self-generative and generative approaches are reported with a straight line
since they do not require any concept supervision2. Generative and self-generative models achieve a
concept macro-averaged F1 score that is higher or close to that of supervised models when using all
available annotations, and significantly higher otherwise. When considering the CEBaB and Drug
datasets, supervised models do not surpass Self-Gen even when using all concept annotations, with
the latter achieving the highest concept accuracy. Likely, the amount of concept annotations required
to match the accuracy of the self-generative approach exceeds what is available in these datasets.

The self-generative concept accuracy exceeds that of the generative approach. The concepts
prediction performance of the generative approach tends to be lower than that of the self-generative
approach, with a reduction ranging from 2% to 7% in F1 macro score. This is because the concepts
predicted by generative models are approximations of the self-generated concepts c′ used in the
self-generative approach. These self-generated concepts serve as the labels for training the concept
encoders in the generative learning process. Detailed concepts prediction performance is presented in
Appendix A.6, Table 6 for all models across all datasets, when provided with full concept annotations.

4.4 LICEM INTERPRETABILITY

LICEM explanations are more plausible and more useful than DCR (Fig. 4). To evalu-
ate the interpretability of LICEM explanations, we conducted a user study comprising 21 ques-

2Generative approaches results are reported with variance because the concepts are still learnt and thus the
performance vary across models. For the self-generative approach, instead, the result does not vary because the
concepts are predicted equally by the LLM for all models since we set the LLM’s temperature to zero, which
results in a deterministic annotation.
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tions and involving 46 participants, consisting of both machine learning experts and non-experts.
It is structured as follows. First, participants are asked to choose the most plausible expla-
nation (Rajagopal et al., 2021) from three options: the LICEM explanation, the DCR expla-
nation, or neither. This process is repeated across three datasets (we excluded Multiemo-It,
as it contains only Italian comments). Examples of the questions are shown in Figure 6, 7,
and 8. In a second task, we assess explanation usefulness by computing how much partic-
ipants can guess the model predictions based on the provided explanation (Fel et al., 2023).

Expert Non-expert
Expertise
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Plausibility
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LICEM DCR None

Figure 4: Averaged survey results for the two user groups. On the
left, we report the explanation plausibility; on the right, users’ ac-
curacy in guessing the model prediction based on its explanation.

This experiment is carried out for
both LICEM and DCR explana-
tions and is repeated across the
same datasets as in the previous
step. In both cases, the samples
have been randomly drawn from
each dataset. A complete charac-
terization of the user study is re-
ported in Appendix A.7. The left
image of Fig. 4 presents the re-
sults related to explanation plau-
sibility. It is evident that the
LICEM explanation is consis-
tently considered more plausible
over the rule-based DCR expla-
nation by both expert and non-
expert users. Contrary to our
expectations, LICEM was espe-
cially favored by expert users, with nearly 80% of them appreciating its explanations. The right image
of Fig. 4 illustrates the accuracy achieved by users when tasked with selecting a class label based on
a given explanation. Both groups of users demonstrated good accuracy when making classifications
using the LICEM explanations. Expert people, in particular, nearly double the accuracy when using
LICEM compared to when using DCR explanations.

LICEM is responsive to concept interventions (Figure 5). To assess the possibility to interact
with LICEM, we evaluated the effect of concept interventions, i.e., modifications at test time of
the predicted concepts with a concept provided by a human expert. Figure 5 shows the test task
accuracy gain with increasing intervention probability on the CEBaB dataset, demonstrating LICEM’s
responsiveness and significant performance improvement. A similar behaviour can also be observed
for CBMs, even though they were starting from a lower task accuracy and a higher increase could
have also been expected. Results for all datasets are reported in Appendix A.8, showing similar
results, with LICEM always improving its task accuracy through interactions. For comparison, we
also report the E2E model with a flat line, since it does not offer this possibility.

LICEM predictions are caused by most important concepts (Table 2). We assess the responsive-
ness of concept-based models to do-interventions over concepts (Pearl et al., 2016), by computing
the causal concept effect (CaCE) (Goyal et al., 2019). CaCE measures the impact of modifying input

0 0.25 0.5 0.75 1
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CEM
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Figure 5: Concept interventions on the CE-
BaB dataset. We report the task accuracy gain
when varying the probability of intervention.

Table 2: Causal Concept Effect (CaCE) for different
methods. A high (absolute) value implies a strong
responsiveness of a model to modifications to the
concept.

Model Food Amb. Service Noise

CBM+LL -0.02 0.01 0.01 -0.01
CEM 0.29 0.08 0.13 -0.05
DCR 0.33 0.02 0.20 -0.02
LICEM 0.62 0.18 0.37 0.15
Self-LICEM 0.63 0.20 0.35 0.15
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samples on model predictions. For concept-based models, interventions can be made at the concept
level (Dominici et al., 2024). In the evaluated dataset, several concepts are globally relevant for task
classification (positively or negatively), thus we expect models to exhibit high absolute CaCE values.
In Table 2, we report the results for the CEBaB dataset: both LICEMs demonstrate high CaCE values,
particularly for ‘Food’ and ‘Service’ which are crucial concepts. These values are higher than CEM
and DCR, suggesting a stronger reliance on the prediction over these concepts. Conversely, CBMs
report low CaCE values that may indicate concept leakage issues (Marconato et al., 2022), possibly
due to the constraints of the concept-bottleneck representation. Results for all datasets are reported in
Appendix A.9, showing consistent findings.

5 RELATED WORK

LLM interpretability. Recent studies have highlighted the unreliability of LLMs, as they often
occur hallucinations (Ji et al., 2023), and when prompted for explanations, their responses frequently
do not reflect the actual decision-making process (Ye & Durrett, 2022; Madsen et al., 2024; Turpin
et al., 2024). Although the attention mechanism in transformer models offers some interpretability, it
has been criticized for its lack of clarity and consistency (Jain & Wallace, 2019; Wiegreffe & Pinter,
2019). To improve LLM explainability, various standard XAI techniques, such as LIME (Ribeiro
et al., 2016) and Shapley values (Lundberg & Lee, 2017), along with newer methods (Kokalj et al.,
2021; Heyen et al., 2024; Chefer et al., 2021b;a), have been employed. However, these standard
techniques have limitations (Kindermans et al., 2019; Ghorbani et al., 2019; Adebayo et al., 2018;
Taimeskhanov et al., 2024), primarily because they explain predictions in terms of input features that
often lack meaningful interpretations for non-experts (Poursabzi-Sangdeh et al., 2021). Consequently,
researchers are now exploring interpretable-by-design models also in the textual domain (Rajagopal
et al., 2021; Jain et al., 2022; Tan et al., 2024b;a).

Concept-based models. Concept-based models (Alvarez Melis & Jaakkola, 2018; Koh et al.,
2020; Ciravegna et al., 2023; Kim et al., 2023) are transparent and interactive models that utilize an
intermediate layer to represent concepts. To increase the representation capability of the concept layer,
Espinosa Zarlenga et al. (2022) proposed using concept embeddings. However, the interpretability
of CEM task predictor is limited, as individual embedding dimensions lack clear meaning. In
this work, we demonstrate how to create an interpretable task predictor over these embeddings.
A recent neurosymbolic method (DCR, Barbiero et al. (2023)) based on fuzzy logic attempted to
tackle this issue. We extend CEM and DCR applicability to the textual domain, while showing that
LICEM achieves superior predictive performance than DCR and higher interpretability than both.
Additionally, supervised concept-based models (Koh et al., 2020; Espinosa Zarlenga et al., 2022)
often require extensive concept annotations, which are frequently unavailable, particularly in text. We
enhance a recent generative approach (Yang et al., 2023; Oikarinen et al., 2023; Ludan et al., 2023)
by using the same LLM for self-generated concept predictions and sample representations.

6 CONCLUSION

In this paper, we propose LICEM, a novel linearly interpretable concept-based model for text
classification. The experimental results show this model matches black-box models performance, is
interpretable and can be trained without concept supervision (Self-LICEM). Besides a technological
impact, we believe this work can also positively impact the society by enhancing LLM transparency
and interpretability, thus facilitating their employment in several fields such as Healthcare, Finance,
Legal Systems and Autonomous Vehicles.

Future work. In this analysis, we focus on binary or ternary sentiment analysis for the ease of
identifying concepts, and to texts composed of a few sentences. In future work, we will extend our
analysis to other NLP tasks and to longer texts, to ensure the scalability of this approach. Specifically,
we plan to extend the capability of this model to work in language modelling tasks, similarly to Ismail
et al. (2023) employing CBMs to solve generative tasks in computer vision. Furthermore, other
interpretable functions could be generated and used to provide an interpretable prediction, besides
linear equations. As an example, we could also generate a text describing how each concept has been
predicted and its role in the final prediction, together with the indication of the task prediction. We
leave these investigations for future research.
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Figure 6: Example of explanation plausibility question, CEBaB dataset.

Figure 7: Example of explanation plausibility question, Depression dataset.

Figure 8: Example of explanation plausibility question, Drug dataset.

Figure 9: Example of explanation-based prediction, Depression dataset.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROBABILISTIC FORMALIZATION

CBMs. As stated in Section 2, CBMs (Kim et al., 2023) provide explanation operating abstract
human-understandable concepts. Let x ∼ p(x) represent the random variable drawn from the data
distribution, and cj ∼ p(cj |x) denote the concept j derived from sample x, where cj ∈ [0, 1]. The
prediction of the categorical variable y is then formulated as:

y ∼ p(y|x) = p(y|c1, ...cm)

m∏
j=1

p(cj |x)︸ ︷︷ ︸
p(c1,...,cm|x)

(5)

where p(y|c1, ...cm) is a categorical distribution usually modeled using a fully connected layer, and∏m
j=1 p(cj |x) is parameterized by a neural model. For simplicity we define p(y|c1, ..., cm) = p(y|c)

and p(c|x) = p(c1, ..., cm|x). The different components are optimized by maximizing the following
loss function:

L = Ex,c∼p(x,c)[−log p(c|x)] + λyEx,y∼p(x,y)[−log p(y|x)] (6)

where λy ∈ [0, 1] is the coefficient used to prioritize the concept learning relative the task learning.

CEMs. CEMs (Espinosa Zarlenga et al., 2022) addresses the low task performance of CBMs,
which is attributed to the bottleneck created by the intermediate concept layer, generating a concept
embedding for each concept. Initially, a vector representation of the raw data is generated, denoted
as e ∼ p(e|x), where e ∈ Rl. Subsequently, both the active and inactive concept states, represented
as c+j , c−j ∈ Rk , are derived from the two conditional distributions p(c+j |e) and p(c−j |e). At this
stage the concept score ĉj ∈ [0, 1] is sampled as ĉj ∼ p(ĉj |c+j , c−j ). The representational embedding
of concept j, denoted as cj ∈ Rk, is computed as a convex combination of the active and inactive
states, given by cj = ĉj · c+j + (1− ĉj) · c−j . Finally, all concept embeddings are utilized to condition
the generation of the target variable, expressed as y ∼ p(y|c1, ..., cm). This process can then be
formalized by

y ∼ p(y|x) = p(y|c1, ..., cm)︸ ︷︷ ︸
CLASSIFIER

m∏
j=1

[
p(ĉj |c+j , c−j )p(c

+
j |e)p(c−j |e)

]
︸ ︷︷ ︸

CEM

p(e|x)︸ ︷︷ ︸
ENCODER

(7)

The classifier, which operates on the concatenation of concept embeddings, is typically structured as
a deep neural network to enable end-to-end optimization. The loss function to optimize is analogous
to 6.

LICEMs. LICEM builds over the CEM’s output, modeling the distribution associated to the classifier
in 7. It utilizes both concept embeddings and concept scores to generate explanations, representing
them as a linear combination of concepts, were the weight associated to each concept j regarding
class i, ŵij ∼ pρi(ŵij |cj), changes according to the concept embedding. Additionally, a dynamic
bias is sampled using all the concept embeddings b̂i ∼ pβi

(b̂i|c1, ..., cm). The logit corresponding
to class i is calculated as li =

∑
j ŵij ĉj + b̂i. For a multiclass classification task, the softmax

function is applied to the computed logits. The final probability associated with class i is given
by πi = Softmax(li). The predicted class label ŷ is subsequently sampled from a categorical
distribution defined by ŷ ∼ Cat(ŷ|π1, ..., πn), where n denotes the total number of classes.

Self-generative. With the self-generative approach CEM is modified in order to allow external concept
scores injection. This traduces into eliminating the neural module which models p(ĉj |c+j , c−j ), and
using the LLM generated scores ĉj ∼ p(cj |x, t), where t represents the prompt, to select the state of
the concept embedding cj = ĉj · c+j + (1− ĉj) · c−j . Using c = (c1, ..., cm) and ĉ = (ĉ1, ..., ĉm) to
simplify the notation, the label prediction process can be formalized as:
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y ∼ p(y|x) = p(y|c, ĉ)︸ ︷︷ ︸
LICEM

m∏
j=1

[
p(cj |e, ĉj)

]
︸ ︷︷ ︸

MODIFIED CEM

p(ĉ|t, x)︸ ︷︷ ︸
LLM

p(e|x)︸ ︷︷ ︸
ENCODER

(8)

A.2 PROMPTS FOR ANNOTATION

Here we report the prompts used to instruct Mistral 7B and Mixtral 8x7B to perform the annotations
on the 4 different datasets used in this work. We adopted the in-context instruction learning prompting
strategy (Ye et al., 2023).

CEBAB� �
In a dataset of restaurant reviews there are 4 possible concepts: Good Food, Good Ambiance, Good Service and
Good Noise. Given a certain review, you have to detect if those concepts are present or not in the review.

Answer format: Good Food:score, Good Ambiance:score, Good Service:score, Good Noise:score.

Do not add any text other than that specified by the answer format.
The score should be equal to 1 if the concept is present or zero otherwise, no other values are accepted.

The following are examples:

Review: "The food was delicious and the service fantastic".
Answer: Good Food:1, Good Ambiance:0, Good Service:1, Good Noise:0

Review: "The staff was very rough but the restaurant decorations were great. Other than that there was a very
relaxing background music".
Answer: Good Food:0, Good Ambiance:1, Good Service:0, Good Noise:1

Now it’s your turn:

Review: <review>
Answer:� �

DRUG� �
In a dataset of drug reviews there are 2 possible concepts:

- Effectiveness: 1 if the drug was highly effective and 0 if it was marginally or not effective,
- Side effects: 1 if the drug gave side effects and 0 otherwise.

Given a certain review, you have to detect if those concepts are present or not in the review.

Answer format: Effectveness:score, Side effects:score.

Do not add any text other than that specified by the answer format.
The score should be equal to 1 if the concept is present or zero otherwise, no other values are accepted.

The following are examples:

Review: "The medicine worked wonders for me. However, I did experience some side effects. Despite this,
I still found it easy to use and incredibly effective".
Answer: Effectiveness:1, Side effects:1

Review: "Not only it did fail to alleviate my symptoms, but it also led to unpleasant side effects".
Answer: Effectiveness:0, Side effects:1

Now it’s your turn:

Review: <review>
Answer:� �

MULTIEMO-IT� �
In a dataset containing comments in Italian, you need to identify the following concepts:

-Joy: the user who wrote the comment expresses joy,
-Trust: the user who wrote the comment expresses trust,
-Sadness: the user who wrote the comment expresses sadness,
-Surprise: the user who wrote the comment is surprised.

Response format: Joy:score, Trust:score, Sadness:score, Surprise:score.
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The score must be equal to 1 if the concept is present and 0 otherwise; other values are not accepted.

The following is an example:
Comment: "Mi piace la rivisitazione di questa canzone, dolce, raffinata, elegante, bellissima!"
Answer: Joy:1, Trust:1, Sadness:0, Surprise:1

Now it’s your turn:
Comment: <comment>
Answer:� �

DEPRESSION� �
You have to identify the presence or absence of 6 concepts in a given text.
The concepts to be identified are:

- Self-Deprecation: the text exhibits self-critical or self-deprecating language, expressing feelings
of guilt, shame, or inadequacy.
- Loss of Interest: diminished pleasure or motivation in the writer’s descriptions of hobbies or pursuits.
- Hopelessness: the writer express feelings of futility or a lack of optimism about their prospects.
- Sleep Disturbances: the writer mentions insomnia, oversleeping, or disrupted sleep as part of their
experience.
- Appetite Changes: there are references to changes in eating habits.
- Fatigue: there are references to exhaustion or lethargy.

Answer format: Self-Deprecation:score, Loss of Interest:score, Hopelessness:score, Sleep Disturbances:score,
Appetite Changes:score, Fatigue:score.

The score has to be 1 if the concept is detected and 0 otherwise. Do not add any other text besides the one
specified in the answer format.

Text: <text>
Answer:� �

A.3 EXPERIMENTAL DETAILS

Dataset To check the performance of LICEM, we first selected three text-classification datasets
for which concept annotations are provided or in which attribute annotations can be employed. The
first dataset is CEBaB (Abraham et al., 2022), a dataset designed to study the causal effects of
real-world concepts on NLP models. It includes short restaurant reviews annotated with sentiment
ratings at both overall-review level and for four dining experience aspects (food quality, noise
level, ambiance, and service). The second dataset is MultiEmotions-IT (Sprugnoli et al., 2020),
a dataset designed for opinion polarity and emotion analysis and containing comments related to
videos and advertisements posted on social media platforms. These comments have been manually
annotated according to different aspects, among which we choose two dimensions: opinion polarity,
describing the overall sentiment expressed by users (that we employed as task labels), and basic
emotions from which we selected joy, trust, sadness, and surprise (concept labels). The third dataset
is Drug review (Gräßer et al., 2018), a dataset that provides patient reviews on specific drugs. The
reviews are annotated with the overall satisfaction of the users (which we discretize to a binary
representation) and drug experience annotations as effectiveness and side effects. Furthermore, to
test the generalization capability of self-supervised methods in a scenario where concept annotations
are not actually provided, we chose the Depression dataset (Yates et al., 2017)3 which consists of
Reddit posts for users who claimed to have been diagnosed with depression and control users. The
set of concepts utilized for the Depression dataset was generated by the same LLM employed for
the annotations, Mixtral 8x7B (Jiang et al., 2024). Upon prompting the model to identify concepts
relevant to depression-related comments, it returned the following six key concepts: self-deprecation,
loss of interest, hopelessness, sleep disturbances, appetite changes, and fatigue.

Evaluation We evaluate LICEM against the baselines according to different metrics, each one
analysing a different characteristic of the models. First, to check LICEM generalization performance,
we compute the task accuracy and the macro-averaged F1 score for concepts prediction. For
GENERATIVE and SELF-SUP methods, we train the model without employing the actual concept
annotations but by prompting an LLM as described in Section 3.2. To test the efficiency of the
models, we report the concepts prediction performance of the models when increasing the number of

3For the Depression dataset, we employed the cleaned version available on Kaggle.
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concept annotations (provided by humans). Finally, to test the interpretability of the model, we first
conducted a user study involving 30 participants, consisting of both machine learning experts and non-
experts to evaluate LICEM explanations. Secondly, we checked whether it is possible to intervene on
the predicted concepts (Espinosa Zarlenga et al., 2024) and improve the classification accuracy even
when using an interpretable predictor. Thirdly, we checked the Causal-Concept Effect (CaCE) (Goyal
et al., 2019), a measure introduced to assess the causality of a model with respect to a given concept.
Concept-based models, indeed, are generally required to make task predictions according to the
predicted concepts. However, the employment of vectorial concept representations (Mahinpei et al.,
2021) may lead to model ignoring the predicted concepts. We see in the results that this is not the
case for LICEM.

Experimental settings For the E2E, CBMs, CEM, DCR and LICEM models, the training process
involved utilizing an AdamW optimizer (Loshchilov & Hutter, 2017). The λy coefficient (2) was set
to 0.5 to emphasize concept learning over task loss while λw = 1× 10−6 and λb = 10−6. Moreover,
a scheduler was implemented with a gamma of 0.1 and a step size of 10 epochs throughout the
training period of 100 epochs. After every hidden layer we have used a ReLU activation function.
Here are further insights into the methodologies’ architectures, with the number of output neurons
indicated within brackets.

• E2E: layer 1 (100), layer 2 (number of classes);

• CEM: concept embedding size of 768, layer 1 (10), layer 2 (number of classes);

• CBMs, concept prediction: layer 1 (10), layer 2 (number of concepts);

– LL, task prediciton: layer (number of classes);
– MLP, task prediction: layer 1 (3 · number of concepts), layer 2 (number of classes).

• DCR: the temperature parameter is set to 0.1.

The text’s embedding size varies depending on the chosen backbone. When employing BERT, it
remains at 768, whereas adopting the LLMs approach (Jiang et al., 2023b) it increases to 4096.
For Dtree and XGBoost, we employed the default hyperparameter settings. The DTree model was
implemented using the sklearn library, while the XGBoost model was implemented using the xgboost
library4. We conducted five experiments for each methodology. The training time for the different
experiments averages around 10 minutes using the setup specified in Section 4.1.

The CEBaB dataset (Abraham et al., 2022) does not necessitate any splitting procedure as it inherently
offers training, validation, and test sets. In the training set, modifications include counterfactual
examples, while both the validation and test sets exclusively contain original reviews. For the
remaining datasets, we partitioned the data into training, validation, and test sets using stratified
sampling based on the task labels. The proportions allocated are 0.7 for training, 0.1 for validation,
and 0.2 for testing. Each experiment was conducted with a different seed.

A.4 ENCODER COMPARISON

This section presents all the results obtained using a fine-tuned BERT backbone as the encoder h(x).
In the remainder of the paper, we consistently reported results when utilizing Mixtral 8x7B (Jiang
et al., 2024) as the backbone model. In this section, we instead provide the performance of all models
in terms of task accuracy (see Table 3) and of concept macro-averaged F1 score (refer to Table 4)
when employing BERT as the backbone (Devlin et al., 2018), which is an encoder-only model.

Both tables show that there is no great difference with respect to Tables 1, 6, with BERT providing
slightly lower performance on Multiemo-It and on the Drug dataset. This result shows that the
proposed approach can be applied also to other architectures. We chose to employ Mixtral in the
remainder of the paper since it can be also effectively used to provide concept annotations, therefore
having a single model for both encoding the sample and predicting the concept scores.

4The xgboost library we used can be found at https://github.com/dmlc/xgboost.
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Table 3: This table presents the performance in terms of task accuracy (%) of different models
utilizing BERT as backbone. We report in bold the best result among the same type of models (e.g.,
supervised, interpretable ones) considering models equally best if their standard deviations overlap.
We use ✓to indicate models requiring concept supervision (C. Sup.) or having an interpretable task
predictor (T. Inter.). We highlight in light gray the models we propose in this work. We do not report
supervised model results for depression (−) since it does not provide concept annotations.

Type Method C. Sup. T. Inter. CEBaB Multiemo-It Drug Depression

E2E MLP ✗ ✗ 90.68 ± 0.47 75.67± 0.47 59.33 ± 0.56 97.80 ±0.23

SUP.

CBM+MLP ✓ ✗ 78.01 ± 6.51 54.10 ± 4.51 36.67 ± 6.24 –
CBM+XG ✓ ✗ 80.00 ± 0.34 69.02 ± 0.64 51.00 ± 0.28 –
CEM ✓ ✗ 90.67 ± 0.47 77.00 ± 0.82 58.33 ± 1.70 –

CBM+LL ✓ ✓ 61.00 ± 12.02 49.67 ± 5.46 34.33 ± 7.38 –
CBM+DT ✓ ✓ 75.67 ± 0.47 65.02 ± 0.34 46.23 ± 0.78 –
DCR ✓ ✓ 86.55 ± 0.58 74.01 ± 0.24 59.75 ± 0.45 –
LICEM (ours) ✓ ✓ 87.89 ± 0.38 75.31 ± 0.15 60.14 ± 0.44 –

GEN.

CBM+MLP ✗ ✗ 73.93 ± 5.67 44.19 ± 2.07 35.16 ± 4.3 83.20 ± 2.18

CBM+XG ✗ ✗ 83.29 ± 0.43 69.85 ± 1.55 34.94 ± 0.91 87.00 ± 1.01

CEM ✗ ✗ 85.88 ± 0.95 73.15 ± 0.67 56.95 ± 0.36 96.12 ± 0.50

CBM+LL ✗ ✓ 58.81 ± 7.16 58.35 ± 1.59 36.84 ± 11.52 51.48 ± 2.16

CBM+DT ✗ ✓ 79.28 ± 0.52 62.61 ± 2.08 34.17 ± 0.11 80.55 ± 0.03

DCR ✗ ✓ 85.63 ± 0.81 70.02 ± 2.70 57.46 ± 0.02 95.98 ± 0.27

LICEM (ours) ✗ ✓ 86.22 ± 0.66 74.45 ± 0.57 60.23 ± 0.58 96.87 ± 0.20

Table 4: This table presents the performance in terms of concept prediction of the models that utilize
BERT as backbone. Concept prediction (%) of the compared models for datasets equipped with
concept annotations is measured using the macro-averaged F1 score. We report in bold the best result
among the same type of models (e.g., supervised, interpretable ones) considering models equally best
if their standard deviations overlap. We highlight in light gray the models we propose in this work.
The methods using the self-generative have the same macro-averaged F1 score, therefore we use − to
represent all methods.

Type Method CEBaB Multiemo-It Drug

E2E MLP 79.92± 1.77 63.25 ± 1.09 79.01 ± 2.9

SUP.

CBM+MLP 75.17± 3.11 64.08± 1.22 74.26± 0.9

CEM 79.97± 1.29 64.42± 1.21 77.32± 1.2

CBM+XG 79.92± 1.77 63.25 ± 1.09 79.01 ± 0.9

CBM+LL 74.25± 4.55 62.08± 0.88 73.11± 1.7

CBM+DT 79.92± 1.77 63.25 ± 1.09 79.01 ± 2.9

DCR 82.06± 0.40 64.29± 0.42 80.10± 0.2

LICEM (ours) 82.93 ± 0.13 65.61 ± 0.69 81.59 ± 0.42

GEN.

CBM+MLP 75.05 ± 8.31 49.59 ± 10.01 43.58 ± 14.99

CEM 81.08 ± 0.44 58.30 ± 1.79 80.99 ± 0.42

CBM+XG 79.24 ± 1.21 60.79 ± 0.71 64.72 ± 0.45

CBM+LL 78.75 ± 0.59 61.72 ± 0.24 66.72 ± 19.48

CBM+DT 79.24 ± 1.21 60.79 ± 0.70 64.72 ± 0.45

DCR 80.25 ± 1.02 59.11 ± 0.84 81.47 ± 0.49

LICEM (ours) 77.79 ± 2.49 58.87 ± 0.66 81.18 ± 0.33

SELF GEN. – 84.08 ± 0.00 64.27 ±0.00 83.00 ±0.00
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Figure 10: Comparison among concept annotation methods where the annotation quality is measured
in terms of macro-averaged F1 score. On average, Mixtral 8x7B yields the best results.

A.5 LLM-BASED CONCEPT ANNOTATION VS CLASS-LEVEL ANNOTATION

This section presents a comparison between the usage of two different LLMs, Mistral 7B (Jiang
et al., 2023a) and Mixtral 8x7B (Jiang et al., 2024), as concept annotators. In Figure 10 we report the
results in terms of macro-averaged F1 score (as concept classes are highly imbalanced) on the three
datasets for which human concept annotation is available. We also report, as a baseline, a global
(class-level) annotation strategy, providing to all samples belonging to a given class the same concept
annotation. In this case, we label the positive class with positive concepts and negated negative
concepts (e.g. for all samples of the class Good Drug we use ‘Efficient’ and ’Not Side Effects’).
We can observe that between the two LLMs there is not a significant difference in performance,
with Mixtral 8x7B providing on average slightly better results. Comparing against the baseline,
instead, we can observe that there is a great improvement in CEBaB and in the Drug dataset, while in
Multiemo-It the improvement is more modest.

A.6 TASK ACCURACY AND CONCEPTS PREDICTION PERFORMANCE

In this section we report the task accuracy and the concepts prediction performance results for all
the different experiments conducted, generative approach included when using Mixtral 8x7B as a
backbone. As shown in Table 5, LICEM outperforms the other task interpretable models, reaching
the highest task accuracy for the CEBaB dataset using the generative approach.

We also report the averaged F1 macro to measure the concepts prediction performance of all models
when provided with all the available concept annotations. The results shown in Figure 3 are here
confirmed. We again see that Self-supervised strategy is a very good approach since without human
effort it provides better concept macro-averaged F1 score in CEBaB and Drug. Only on Multiemo-It
the performance are significantly lower. This result may be due to the fact that the latter dataset is in
Italian while the other datasets are in English, a language for which the LLMs have certainly seen
more training samples.

A.7 SURVEY CHARACTERIZATION

In this section, we provide further details regarding the conducted survey. A total of 46 participants
with varying levels of experience in machine learning, from complete beginners to experts, were
recruited (see Figure 11). The gender distribution was nearly balanced, with 40% identifying as
female and 60% as male. The majority of participants, 91.3%, were within the 20− 40 age range,
while only 8.7% were aged over 40.

The survey was structured in the following manner:
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Table 5: Task accuracy (%) of the compared models. We report in bold the best result among the
same type of models (e.g., supervised, interpretable ones) considering models equally best if their
standard deviations overlap. We use ✓to indicate models requiring concept supervision (C. Sup.) or
having a task-interpretable predictor (T. Inter.). We highlight in light gray the models we propose in
this work. The Generative and the Self-generative approaches extend the scalability of concept-based
models to datasets without concept annotations, where supervised models cannot be applied (−).

Type Method C. Sup. T. Inter. CEBaB Multiemo-It Drug Depression

E2E
Mixtral–MLP ✗ ✗ 88.80 ± 0.75 80.01 ± 0.63 63.66 ± 1.20 97.18 ± 0.03

Mixtral–Zero-shot ✗ ✗ 86.80 ± 0.31 80.06 ± 0.66 60.81 ± 0.28 73.77 ± 0.23

Mixtral–Few-shot ✗ ✗ 84.79 ± 0.42 84.17 ± 0.67 62.16 ± 0.27 76.38 ± 0.08

SUP.

CBM+MLP ✓ ✗ 78.41 ± 9.30 45.43 ± 8.20 45.42 ± 4.90 –
CBM+XG ✓ ✗ 83.01 ± 0.10 69.01 ± 0.02 55.00 ± 0.13 –
CEM ✓ ✗ 89.60 ± 0.49 83.33 ± 0.47 66.81± 0.40 –

CBM+LL ✓ ✓ 71.43 ± 9.71 42.67 ± 7.01 34.60 ± 10.10 –
CBM+DT ✓ ✓ 77.20 ± 0.40 65.00 ± 0.02 47.20 ± 0.40 –
DCR ✓ ✓ 88.05 ± 0.53 82.01 ± 0.71 65.40 ± 0.80 –
LICEM (ours) ✓ ✓ 89.89± 0.77 83.47 ± 0.49 66.80 ± 0.29 –

GEN.

CEM ✗ ✗ 89.97 ± 0.66 82.41 ± 0.11 63.80 ± 0.38 97.06 ± 0.11

CBM ✗ ✓ 62.07 ± 0.22 68.66 ± 4.20 33.14 ± 2.10 50.25 ± 0.39

DCR ✗ ✓ 88.97 ± 0.18 80.82 ± 0.54 63.74 ± 1.16 95.35 ± 0.21

LICEM (ours) ✗ ✓ 90.64 ± 0.38 81.85 ± 0.71 66.15 ± 0.44 96.50 ± 0.18

SELF
GEN.
(OURS)

Self-CBM+MLP ✗ ✗ 82.71 ± 0.01 75.42± 4.42 47.59 ± 0.33 82.31 ± 0.04

Self-CBM+XG ✗ ✗ 82.70 ±<0.01 79.09 ±<0.01 53.28 ±<0.01 82.28 ±<0.01

Self-CEM ✗ ✗ 89.14 ± 0.38 84.06 ± 0.09 65.20 ± 0.73 97.16 ± 0.08

Self-CBM+LL ✗ ✓ 82.71 ± 1.23 77.15 ± 0.96 47.35 ± 0.29 82.12 ± 0.15

Self-CBM+DT ✗ ✓ 83.95 ±<0.01 78.44 ±<0.01 53.28 ±<0.01 82.28 ±<0.01

Self-DCR ✗ ✓ 87.72 ± 0.66 83.47 ± 0.43 63.29 ± 0.36 97.11 ± 0.03

Self-LICEM ✗ ✓ 89.56 ± 0.29 84.49± 0.25 65.89 ± 0.39 97.23 ± 0.21

0 10 20 30 40 50 60 70
%

Machine Learning expert

Computer Science expert

Passionate about computers

Computer user

None

52.2%

10.9%

2.2%

23.9%

10.9%

Figure 11: Distribution of users by expertise level.

• Introduction to Explanations: We provided an introduction to the various types of expla-
nations, ensuring that participants had sufficient background information to understand and
interpret these explanations.

• Questionnaire: Participants were asked a total of 7 questions for each of the three datasets
that contained english text: CEBaB, Drug, and Depression. The questions were divided as
follows:

– The first 3 questions asked participants to select their preferred explanation for a given
text. Examples of these questions can be found in Figure 6, 7, 8.

– The remaining 4 questions asked participants to predict the label of the text based on
a provided explanation, with two questions pertaining to DCR and two to LICEM.
Examples of these questions are presented in Figure 9, 12, 13.

For both types of questions, we randomly selected samples from the three datasets (CEBaB, Drug,
and Depression) where both models (LICEM and DCR) made the correct predictions.
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Table 6: This table presents the performance in terms of concept prediction of the models that utilize
Mixtral 8x7B as backbone. Concept prediction (%) of the compared models for datasets equipped
with concept annotations is measured using the macro-averaged F1 score. We report in bold the
best result among the same type of models (e.g., supervised, interpretable ones) considering models
equally best if their standard deviations overlap. Self-supervised methods are reported with the same
concept accuracy with zero standard deviation, since the concept predictions are provided by an LLM
with temperature set to zero. The methods using the self-generative have the same macro-averaged
F1 score, therefore we use − to represent all methods.

Type Method CEBaB Multiemo-It Drug

E2E MLP 75.92± 0.77 74.25± 1.02 78.50 ±0.23

SUP.

CBM+MLP 65.17± 2.35 61.75± 1.02 65.33±2.46

CEM 78.83± 0.85 77.12± 1.38 80.79±0.47

CBM+XG 75.92± 0.77 74.25± 1.02 78.50± 0.23

CBM+LL 64.25± 2.56 59.12± 2.13 64.83± 1.20

CBM+DT 75.92± 0.77 74.25± 1.02 78.50±0.23

DCR 78.45± 1.92 75.67± 1.43 79.96± 0.43

LICEM (ours) 75.45 ± 0.93 76.36 ± 0.39 80.83 ± 0.36

GEN.

CBM+MLP 71.87 ± 0.14 52.60 ± 14.32 55.68 ± 19.84

CEM 74.70 ± 0.98 63.61 ± 0.44 79.45 ± 0.41

CBM+XG 75.02 ± 0.57 61.69 ± 0.44 79.15 ± 0.30

CBM+LL 72.15 ± 0.59 63.72 ± 0.84 66.72 ± 19.48

CBM+DT 75.02 ± 0.57 61.69 ± 0.44 79.04 ± 0.30

DCR 75.62 ± 2.59 62.79 ± 0.44 79.04 ± 0.33

LICEM (ours) 74.44 ± 0.25 63.75 ± 0.36 79.05 ± 0.58

SELF GEN. – 84.08 ± 0.00 64.27 ±0.00 83.00 ±0.00

Figure 12: Example of label prediction given LICEM explanation, Drug dataset.

A.8 CONCEPT INTERVENTIONS

As introduced in Section 4.4, LICEM is sensible to concept interventions. This characteristic is
very important since it implies that a human can interact with the model, providing counterfactual
predictions when prompted with different concept predictions. In Figure 14, 15, 16 we simulate
this situation by correcting mispredicted concepts with the correct concept predictions and check
whether the task prediction has been also modified. More in details, we report the improvement
in task accuracy when increasing the probability to correct the concepts, demonstrating LICEM’s
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Figure 13: Example of label prediction given DCR explanation, CEBaB dataset.

responsiveness and significant performance improvement. A similar behaviour can also be observed
for CBMs, even though they were starting from a lower task accuracy and a higher increase could
have also been expected. For comparison, we also report the E2E model with a flat line, since it does
not offer this possibility. As noted in (Espinosa Zarlenga et al., 2022), CEMs (which are not task
interpretable) may not respond well to concept interventions, especially without conducting them
during training. Thus, we trained all CEM-based models with a 0.5 intervention probability during
the forward pass.
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Figure 14: Concept interventions on the CEBaB dataset for (left) supervised approaches and (right)
self-supervised ones.
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Figure 15: Concept interventions on the Multiemo-it dataset for (left) supervised approaches and
(right) self-supervised ones.

A.9 CAUSAL CONCEPT EFFECT (CACE)

As anticipated in Section 4.4, Concept-based models predictions must be causally influenced by the
predicted concepts. We assess concept-based models’ responsiveness to do-interventions using the
Causal Concept Effect (CaCE) (Goyal et al., 2019), which measures the impact of input modifications
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Figure 16: Concept interventions on the Drug dataset for (left) supervised approaches and (right)
self-supervised ones.

Table 7: Causal Concept Effect (CaCE) for different methods. A high (absolute) value implies a
strong responsiveness of a model to modifications to a certain concept.

Concept CBM+LL CEM DCR LICEM SELF-LICEM

C
eB

A
B Good Food -0.02 ± 0.01 0.29 ± 0.03 0.33 ±0.04 0.62 ± 0.02 0.63 ± 0.01

Good Amb. 0.01 ± 0.05 0.08 ± 0.01 0.02 ±0.01 0.18 ± 0.03 0.20 ± 0.04

Good Service 0.01 ± 0.04 0.13 ± 0.01 0.20 ±0.08 0.37 ± 0.01 0.35 ± 0.02

Good Noise -0.01 ± 0.10 -0.05 ± 0.01 -0.02 ±0.01 0.15 ± 0.02 0.15 ± 0.03

M
ul

tie
m

o Joy 0.04 ± 0.06 0.18 ± 0.01 0.16 ± 0.07 0.28 ± 0.01 0.27 ± 0.01

Trust 0.02 ± 0.10 0.60 ± 0.04 0.47 ± 0.15 0.62 ± 0.03 0.63 ± 0.01

Sadness -0.04 ± 0.05 -0.06 ± 0.01 -0.04 ± 0.02 -0.04 ± 0.01 -0.10 ± 0.02

Surprise -0.01 ± 0.06 0.03 ± 0.01 0.06 ± 0.05 -0.02 ± 0.01 0.01 ± 0.01

D
ru

g Effectiveness 0.02 ±0.10 0.43 ±0.02 0.28 ±0.02 0.45 ±0.04 0.46 ± 0.02

Side Effects -0.07 ±0.14 -0.52 ±0.01 -0.25 ±0.02 -0.55 ±0.06 -0.55 ± 0.03

on model predictions. Higher absolute CaCE values indicate stronger conditioning on relevant
concepts. Tables 7 shows that both supervised and self-supervised LICEM have higher CaCE values
compared to CBM, CEM and DCR, suggesting stronger reliance on predicted concepts. This result
is positive since all concepts considered in this work are relevant for the task at hand. We leave for
future work the exploration of tasks where there are confounding concepts and checking whether
LICEM is capable to not consider them.
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