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Abstract

Large language models (LLMs) excel in ab-001
stractive summarization tasks, delivering flu-002
ent and pertinent summaries. Recent advance-003
ments have extended their capabilities to han-004
dle long-input contexts, exceeding 100k to-005
kens. However, in question answering, lan-006
guage models exhibit uneven utilization of their007
input context. They tend to favor the initial and008
final segments, resulting in a U-shaped perfor-009
mance pattern concerning where the answer is010
located within the input. This bias raises con-011
cerns, particularly in summarization where cru-012
cial content may be dispersed throughout the013
source document(s). Besides, in summariza-014
tion, mapping facts from the source to the sum-015
mary is not trivial as salient content is usually016
re-phrased. In this paper, we conduct the first017
comprehensive study on context utilization and018
position bias in summarization. Our analysis019
encompasses 5 LLMs, 10 datasets, and 5 evalu-020
ation metrics. We introduce a new evaluation021
benchmark called MiddleSum on the which we022
benchmark two alternative inference methods023
to alleviate position bias: hierarchical summa-024
rization and incremental summarization1.025

1 Introduction026

Large language models (LLMs) have drastically027

transformed the landscape of NLP recently (Brown028

et al., 2020). With instruction tuning (Ouyang029

et al., 2022; Chung et al., 2022), LLMs made a030

major leap forward in conditional (prompted) con-031

tent generation, and can generate satisfying out-032

puts without the need to finetune on a task specif-033

ically. In abstractive summarization specifically,034

this approach has arguably opened a new paradigm;035

summaries generated by LLMs are highly fluent,036

grammatical and relevant (Goyal et al., 2022). De-037

spite noticeably lower scores on automatic metrics038

such as ROUGE (Lin, 2004) or BERTScore (Zhang039

et al., 2019), summaries generated by LLMs are040

1We will share all code and data upon publication.

largely preferred by humans over summaries from 041

state-of-the-art fine-tuned models like BRIO (Liu 042

et al., 2022b, 2023c). In fact, on XSum, GPT- 043

3.5 summaries are even on par with re-annotated 044

human-written summaries, and much better than 045

the dataset ground-truth, according to human eval- 046

uators (Zhang et al., 2023b). LLMs also show 047

promising capability in evaluating summaries gen- 048

erated by other systems, including other LLMs (Fu 049

et al., 2023; Luo et al., 2023; Shen et al., 2023a). 050

Despite this success, a few major technological 051

bottlenecks remain with LLMs, including the maxi- 052

mum length of their context window. The standard 053

context window length for open-source LLMs is 054

2k tokens (Brown et al., 2020; Scao et al., 2022; 055

Penedo et al., 2023; Touvron et al., 2023a), which 056

drastically limits their usefulness for long-input 057

summarization (Shaham et al., 2022). Several tech- 058

niques were proposed to extend the context window, 059

including ALiBi (Press et al., 2021), LeX (Sun 060

et al., 2022), position interpolation (Chen et al., 061

2023) and YaRN (Peng et al., 2023). While some 062

of them claim up to 128k tokens processing capac- 063

ity (Peng et al., 2023), it remains unclear how much 064

such methods help on long-context summarization. 065

Scaling up context length would only succeed 066

if a key question gets addressed first: do LLMs 067

make proper use of their entire context? Recent 068

work (Liu et al., 2023a) suggested that, surprisingly, 069

such a simple assumption may not hold: through 070

experiments on multi-document question answer- 071

ing and key-value retrieval, the authors find that 072

LLMs mostly focus on the beginning and end of the 073

(long) context window. Plotting performance with 074

regards to the position of the important information 075

exhibits a U-shape, with performance high at first 076

(beginning of the source), then dropping, and ris- 077

ing again at the end. Worryingly, in the middle of 078

the context window, LLMs’ performance can drop 079

to even below random chance, calling for greater 080

examination of LLMs’ behaviors with regard to the 081
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position of information within the source.082

In this work, we investigate in depth how LLMs083

use their context window in abstractive summariza-084

tion. Unlike in question-answering, mapping facts085

in the output to a specific snippet in the source is not086

straightforward in abstractive summarization, due087

to the high-level of re-phrasing and compression.088

We conduct a large-scale study with 5 open-source089

LLMs, 10 datasets covering many aspects of sum-090

marization, and 5 highly diverse automatic metrics.091

Our contributions are threefold:092

• We conduct the first large-scale analysis on con-093

text utilization in abstractive summarization, and094

the impact of the position of salient information095

on performance. We show that the U-shape or096

middle-curse exhibited by (Liu et al., 2023a) also097

holds in abstractive summarization.098

• We craft an evaluation dataset (MiddleSum)099

where important information is concentrated in100

the middle of the context, enabling us to automat-101

ically quantify how much LLMs are affected by102

the middle-curse.103

• We benchmark two alternative methods for infer-104

ence on MiddleSum: hierarchical summarization105

and incremental summarization, showing their106

promise at alleviating the middle curse (espe-107

cially in the scientific paper domain).108

2 Experimental Setup109

Datasets We cover a broad set of diverse abstrac-110

tive summarization tasks, varying length and do-111

main. We include 5 datasets of standard length112

(source is below 2k tokens, which always fits in the113

context window): (i) CNN/DailyMail (Hermann114

et al., 2015), (ii) XSum (Narayan et al., 2018), (iii)115

Reddit-TIFU (Kim et al., 2019), (iv) SAMSum116

(Gliwa et al., 2019), and (v) Multi-XScience (Lu117

et al., 2020). We also include another 5 long-input118

summarization datasets: (i) Arxiv and (ii) PubMed119

(Cohan et al., 2018), (iii) GovReport (Huang et al.,120

2021), (iv) SummScreenFD (Chen et al., 2022),121

and (v) Multi-News (Fabbri et al., 2019). A high-122

level view of each dataset is shown in Table 1, and123

detailed statistics are presented in Appendix A. For124

all datasets, we run experiments on the test set, sub-125

sampling 1,000 data points if its size is greater than126

1,000, or using the entire test set otherwise.127

Models We experiment with several popular128

high-performing open-source instruction-tuned129

Input length # Documents In Flan?
Dataset Standard Long Single Multi Yes No

CNN/DM (Hermann et al., 2015) ✓ ✓ ✓

XSum (Narayan et al., 2018) ✓ ✓ ✓

Reddit-TIFU (Kim et al., 2019) ✓ ✓ ✓

SAMSum (Gliwa et al., 2019) ✓ ✓ ✓

Multi-XScience (Lu et al., 2020) ✓ ✓ ✓

Arxiv (Cohan et al., 2018) ✓ ✓ ✓

PubMed (Cohan et al., 2018) ✓ ✓ ✓

GovReport (Huang et al., 2021) ✓ ✓ ✓

SummScreenFD (Chen et al., 2022) ✓ ✓ ✓

Multi-News (Fabbri et al., 2019) ✓ ✓ ✓

Table 1: Summarization datasets under study. In standard
length datasets, the context and summary fit within a 2k tokens
LLM context window.

LLMs. Instruction-tuning datasets such as Flan 130

(Wei et al., 2021) include some of the datasets 131

we study: CNN/DM, XSum, SAMSum and Multi- 132

News. We analyze the following models through 133

HuggingFace transformers (Wolf et al., 2020): 134

• Flan-UL2 is a 20B parameters encoder-decoder 135

model pre-trained on 1T tokens. It is based on the 136

UL2 20B model (Tay et al., 2022), with the addi- 137

tion of Flan-T5 (Chung et al., 2022) instruction 138

fine-tuning. The context window is 2k. 139

• Llama-2 (Touvron et al., 2023b) is a recently 140

introduced powerful decoder-only model pre- 141

trained on 2T tokens, ranging from 7B to 70B 142

parameters, and with a 4k context window. We 143

use the 7B and 13B models. 144

• Xgen-7B (Nijkamp et al., 2023) is a 7B decoder- 145

only model pre-trained on up to 1.5T tokens. It 146

supports 8k tokens context window. 147

• Mistral-7B (Jiang et al., 2023a) is also an 8k- 148

context 7B decoder-only model, with perfor- 149

mance slightly better than Llama-2-13B. 150

We use the instruction-tuned (or chat) check- 151

points for Llama-2, Xgen-7B and Mistral-7B. To 152

run inference, we use the following prompt: Read 153

the following text and summarize 154

it: [text]. Summarize the above 155

text in [n] sentences. Summary: 156

where n is set to an average number of target 157

sentences per dataset (see Appendix A). We infer 158

all models in bfloat16 and sample summaries with 159

top-k sampling (Fan et al., 2018) using k = 50. 160

Evaluation Measures Summarization evaluation 161

is especially challenging in the LLM era, as most 162

automatic metrics poorly correlate with human 163

preferences (Goyal et al., 2022; Liu et al., 2022a). 164

To get a broad picture of performance, we eval- 165

uate with metrics as diverse as possible. First, 166
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Figure 1: Distribution of the relative location of summary bigrams within the source. We split each source document into 20
bins of the same number of words, and plot the distribution of summary bigrams over source bins.

we consider reference-based metrics: ROUGE-167

2 (Lin, 2004), which measures bigram overlap,168

BERTScore (Zhang et al., 2019), which measures169

semantic similarity with BERT (Devlin et al., 2018)170

embeddings, and A3CU (Liu et al., 2023c), which171

extracts facts in the form of Atomic Content Units172

(ACUs) (Liu et al., 2022a), and checks the presence173

of ACUs between prediction and reference. As174

reference-free metrics, we include SummaC (La-175

ban et al., 2022), a leading factual consistency eval-176

uation metric relying on entailment scores between177

pairs of source and summary sentences. We also178

leverage GPT-3.5 (gpt-3.5-turbo-0125) as179

a summarization evaluator, which is proven to be a180

strong natural language generation evaluator (Wang181

et al., 2023a; Shen et al., 2023a; Jain et al., 2023).182

We prompt the model with the source and generated183

summary (which fits in GPT-3.5’s 16k context win-184

dow) and ask to output a score on a likert scale from185

1 to 5. We refer to Appendix B for the full prompt186

template. For GPT-3.5 evaluation, we subsample187

300 data points per dataset in order to reduce costs.188

We report the performance of LLMs on all 10189

datasets, alongside a comparison to SOTA, in Ap-190

pendix C. FLan-UL2 dominates on standard-length191

datasets, but Llama-2-13B has the upper hand on192

the long-input ones. Performance itself is not193

our focus in this paper, but rather which position-194

related factors influence it. We discard Flan-UL2195

on long-input datasets due to poor performance.196

3 Experiments197

In this section, we describe a series of experiments198

aimed at understanding how LLMs treat informa-199

tion in their input depending on the position.200

3.1 RQ1: Where in the source do LLMs take 201

their information from? 202

We investigate summaries generated by LLMs, and 203

map them to specific parts of the input. Unlike 204

in question-answering or extractive summarization, 205

mapping salient information from a summary to the 206

source is not trivial in abstractive summarization. 207

We follow the approach used in (Kim et al., 2019; 208

Zhao et al., 2022a) and compute the relative posi- 209

tion of bigams from generated summaries within 210

the source documents, as a proxy for the position 211

of salient information. We only use unique bigrams 212

from summaries, and for each bigram, find all its 213

occurrences within the source, if there are any. We 214

then split the source into 20 bins of the same num- 215

ber of words, and compute the fraction of matched 216

bigrams found in each bin. On top of the LLMs de- 217

scribed above, we include the position of bigrams 218

from reference summaries, and a uniform baseline. 219

As seen in Fig. 1, all summarization datasets 220

except XSum, and Reddit-TIFU show some lead 221

bias: salient bigrams from the reference (orange 222

curves) are more likely to be found at the begin- 223

ning of the source. However, LLMs show a signifi- 224

cantly stronger lead bias on all datasets: bigrams 225

from LLMs summaries are much more likely to 226

be found in the first 20% words of the source. It 227

is especially striking on XSum (except for Flan- 228

UL2), Reddit-TIFU, Arxiv, PubMed and GovRe- 229

port. On XSum, Flan-UL2 closely matches the ref- 230

erence distribution, which we attribute to its better 231

instruction tuning. Results in Appendix D confirm 232

that bigram distribution for LLMs and references 233

are statistically different (p-value of Kolmogorov- 234
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Figure 2: Distribution of relative location of input context sentences aligned with sentences from summaries. X-axis corresponds
to the source sentence bin, y-axis to the fraction of aligned sentences in each bin.

Smirnov test (Massey Jr, 1951) inferior to 0.001)235

in all cases except Flan-UL2 on XSum and SAM-236

Sum and Llama-2-7B on XSum. We conclude that237

LLMs focus on contents at the beginning of the238

source document(s).239

3.2 RQ2: Where do LLMs look at within240

their context window?241

In the previous experiment’s design, LLMs may242

not see the entire source in long-input summariza-243

tion datasets, due to their limited context window,244

which is shorter than the source on the long-input245

datasets. We now focus on input information ac-246

cessible to LLMs, and only consider salient infor-247

mation if it falls within the context window. Be-248

sides, since the same bigram may occur multiple249

times throughout the source, we adjust the method-250

ology for saliency estimation. We align sentences251

in generated summaries to sentences in the context,252

following the procedure described in (Zhou et al.,253

2018) and also used in (Adams et al., 2023). Specif-254

ically, we greedily select source sentences until the255

ROUGE-1 F1 score between the set of selected256

source sentences and the summary stops increas-257

ing. The resulting set of source sentences forms a258

proxy of the visible salient input information being259

rephrased by the model when summarizing. We260

split each truncated source document into 10 bins261

of the same number of sentences, and map each262

aligned source sentence to its bin. Note that bins263

are not directly comparable across models, as con-264

text length varies across models.265

As we can see in Fig. 2, sentences from the first266

10% or last 10% of the input context are much267

more represented than others. A clear U-shape268

emerges on PubMed and SummScreenFD for all269

LLMs. This is intriguing knowing that Llama-2270

LLMs and the other two LLMs have different con-271

text window lengths, and the last 10% of each272

context window may contain content of varying273

saliency. In other words, LLMs seem to be mostly274

re-phrasing information from the beginning or 275

the end of their context window. 276

3.3 RQ3: Does LLMs performance depend on 277

the position of salient information? 278

Results from the last experiment raise the ques- 279

tion of whether LLMs’ summarization performance 280

changes depending on where salient information 281

is located within the input. As an approximation 282

for salient information, we consider the alignment 283

between summary sentences and source sentences 284

like in Fig. 2, but this time using the reference 285

summaries. Each reference summary is mapped to 286

the source sentences it maximizes ROUGE-1 F1 287

against, which may be scattered across the whole 288

source. We convert each source sentence to its 289

cumulative word count from the beginning of the 290

source, and take the average as an approximation 291

of the mean position of salient information within 292

the source. We keep data points with mean salient 293

position fitting within the LLM context window. 294

We examine performance changes with regard 295

to this salient position. To do so, we compute the 296

Spearman correlation coefficient between salient 297

position and each evaluation metric in Table 2. A 298

high absolute Spearman value means that summary 299

quality (as measured by this metric) can change 300

(and deteriorate) with the position of important in- 301

formation within the context. There are several 302

takeaway findings from this Table. First, we notice 303

that on standard-length datasets, reference-based 304

evaluation metrics are negatively correlated to po- 305

sition of salient information. The correlation is 306

only moderate, yet remarkably consistent across 307

datasets (except Reddit-TIFU) and models. This is 308

surprising, since such datasets fit entirely in con- 309

text and are not affected by truncation. In con- 310

trast, reference-free metrics show either no signif- 311

icant or positive correlation to information posi- 312

tion. For long-input datasets, the negative trend 313

for reference-based metrics is confirmed. On these 314
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Metric Model CNN/DM XSum Reddit SAMSum Multi-X AVG Arxiv PubMed GovReport SummScreenFD Multi-N AVG

ROUGE-2

Flan-UL2 -0.296 -0.124 0.048 -0.069 -0.201 -0.128 _ _ _ _ _ _
Llama-2-7B -0.160 -0.023 0.063 -0.059 -0.100 -0.056 0.022 -0.113 -0.109 -0.079 -0.210 -0.098
Llama-2-13B -0.166 -0.086 0.031 -0.078 -0.039 -0.068 -0.017 -0.081 -0.166 -0.139 -0.213 -0.123
Xgen-7B -0.228 -0.042 0.066 -0.039 -0.041 -0.056 0.028 -0.091 -0.405 0.063 -0.283 -0.138
Mistral-7B -0.289 -0.031 0.006 -0.024 -0.052 -0.078 -0.270 -0.279 -0.585 -0.132 -0.324 -0.318

BERTScore

Flan-UL2 -0.331 -0.185 0.062 -0.144 -0.399 -0.187 _ _ _ _ _ _
Llama-2-7B -0.173 -0.012 0.062 -0.130 -0.385 -0.128 -0.031 -0.203 -0.104 -0.067 -0.256 -0.132
Llama-2-13B -0.193 -0.102 0.038 -0.089 -0.352 -0.140 -0.082 -0.209 -0.063 -0.152 -0.279 -0.157
Xgen-7B -0.252 -0.106 0.046 -0.075 -0.343 -0.146 -0.017 -0.125 -0.353 -0.093 -0.345 -0.187
Mistral-7B -0.278 -0.052 0.014 -0.108 -0.416 -0.168 -0.348 -0.367 -0.567 -0.356 -0.403 -0.408

A3CU

Flan-UL2 -0.258 -0.090 0.050 -0.123 -0.069 -0.098 _ _ _ _ _ _
Llama-2-7B -0.182 -0.076 0.028 -0.121 -0.090 -0.088 -0.038 -0.209 -0.154 -0.129 -0.217 -0.149
Llama-2-13B -0.190 -0.098 0.009 -0.166 0.016 -0.086 -0.104 -0.232 -0.111 -0.198 -0.228 -0.175
Xgen-7B -0.212 -0.130 0.023 -0.126 -0.025 -0.094 -0.036 -0.255 -0.211 -0.076 -0.287 -0.173
Mistral-7B -0.291 -0.110 0.004 -0.105 -0.119 -0.126 -0.160 -0.283 -0.305 -0.010 -0.283 -0.208

SummaC

Flan-UL2 -0.012 0.548 0.270 0.186 -0.035 0.191 _ _ _ _ _ _
Llama-2-7B 0.088 0.552 0.375 0.227 0.224 0.293 0.090 0.108 0.126 -0.020 0.205 0.102
Llama-2-13B 0.162 0.556 0.394 0.173 0.096 0.276 0.090 0.265 0.192 -0.144 0.232 0.127
Xgen-7B 0.001 0.161 0.220 0.117 0.004 0.101 -0.208 -0.087 -0.313 -0.141 0.046 -0.141
Mistral-7B -0.045 0.515 0.149 0.069 0.154 0.128 -0.250 -0.103 -0.387 0.124 -0.010 -0.125

GPT-3.5

Flan-UL2 -0.020 0.196 0.027 -0.009 -0.193 0.000 _ _ _ _ _ _
Llama-2-7B 0.036 0.036 -0.152 0.077 -0.153 -0.031 0.008 -0.116 -0.013 -0.068 -0.120 -0.062
Llama-2-13B 0.039 0.072 -0.038 0.066 -0.052 0.017 -0.010 -0.084 -0.084 -0.060 -0.051 -0.058
Xgen-7B 0.056 -0.007 -0.101 0.006 -0.174 -0.044 -0.058 -0.096 -0.317 -0.063 -0.055 -0.118
Mistral-7B -0.115 0.124 -0.133 0.036 -0.204 -0.058 -0.446 -0.322 -0.580 -0.188 -0.163 -0.342

Table 2: Spearman correlation coefficient between each LLM’s metric, and the mean position of salient information within the
context window. Flan-UL2 is not applied to long-context summarization datasets due to its too short context window. Multi-X
is short for Multi-XScience, Multi-N is Multi-News dataset, AVG columns represent the average over standard-length and
long-input datasets, respectively. Numbers in gray correspond to non-significant Spearman scores (p-value greater than 0.05).

lengthy datasets, SummaC and GPT-3.5 tend to315

switch from positive to negative correlation, espe-316

cially for Xgen-7B and Mistral-7B. We highlight317

that since GPT-3.5 itself is affected by the middle-318

curse from Liu et al. (2023a), it may not accurately319

evaluate summarization when salient content lays320

in the middle of the context. In light of these re-321

sults, we conclude that LLMs’ summarization per-322

formance is sensitive to the position of salient323

information in the context window.324

4 Analysis325

4.1 How is information in the middle treated?326

Previous experiments show that LLMs place more327

emphasis on the beginning and the end of their328

context. We now narrow down on how LLMs329

treat the middle. To remove the effect of spread of330

salient information, we perform two controlled ex-331

periments in multi-document summarization. This332

setup enables us to shuffle the order of the input,333

which is not realistic for the single-document setup334

as it would break coherence. We only consider335

data points with the same number k of documents:336

k = 7 documents for Multi-XScience (n = 329),337

and k = 5 documents for Multi-News (n = 219).338

In the first experiment, we vary the position of339

salient information throughout the input. We keep a340

single document (the abstract of the query paper on341

Multi-XScience, and the document with the high-342

est BERTScore with the reference on Multi-News),343

and place it at position j for j ∈ {1, . . . , k}, using344

k − 1 documents from a random data point for the 345

other slots. The single relevant document is accom- 346

panied by a [RELEVANT] header, while the other 347

documents have an [IRRELEVANT] header, and 348

we prompt the LLM to only summarize the relevant 349

document. For reference-free evaluation metrics, 350

we use the single relevant document as source. In 351

this experiment and the following, we also include 352

a random baseline of shuffled inputs and model 353

predictions. In Fig. 3, we see a noticeable drop in 354

performance for all metrics when the salient docu- 355

ment is not in the first or final position. Flan-UL2 356

seems to focus on the end of the context, Xgen- 357

7B and Mistral-7B on the beginning, and Llama-2 358

models on both. Performance can fall quite below 359

random range, especially for SummaC, confirming 360

the worrying trend from Liu et al. (2023a). 361

A more fine-grained analysis with GPT-3.5 in 362

Fig. 4 evaluating specific attributes (following the 363

method in Adams et al. (2023)) reveals more de- 364

tails. Coherence and quality remain high and stable. 365

In other words, the text outputs are of good qual- 366

ity. But for informativeness and attributability, the 367

U-shape appears again: it shows that the LLMs 368

are struggling to generate content sticking to the 369

document inserted in the middle. 370

In the second experiment, we take the opposite 371

approach, and put salient information at the begin- 372

ning and the end, while the middle of the prompt 373

is filled with noise. We keep the first and last docu- 374

ments, and fill the k − 2 middle ones with random 375
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Figure 3: Multi-document summarization performance on Multi-XScience (top row) and Multi-News (bottom row) when a
unique relevant document is used, and its position is varied (x-axis). Dashed horizontal lines correspond to the random baseline.

Figure 4: Fine-grained evaluation of multi-document sum-
marization on Multi-News with GPT-3.5 when varying the
position of a unique relevant input document.

documents. We also run a baseline just using the376

first and last documents as input, expected to be377

close to the result with random documents in be-378

tween. As displayed in Table 3, filling with random379

noise between the first and last document (which380

amounts to a prompt mostly irrelevant to the ref-381

erence) leads to a moderate drop in performance.382

For instance, on Multi-XScience, with 5 random383

documents between the first and last, Llama-2-13B384

maintains 4.31 as GPT-3.5 score compared to 4.35385

when using all 7 documents.386

We conclude from these two experiments that387

LLMs can focus on the beginning and/or the end388

of their input, but largely ignore the middle. The389

U-shape or middle curse from Liu et al. (2023a)390

also applies to abstractive summarization.391

Dataset Model Input documents R-2 BS A3CU SummaC GPT-3.5

Multi-X

Llama-2-7B

All 7 4.64 82.83 5.88 54.56 4.17
First + last 4.62 82.82 5.78 47.00 4.50
First + 5 random + last 4.43 82.64 5.37 43.25 4.01
Random 1.22 81.14 3.08 30.30 1.14

Llama-2-13B

All 7 4.78 83.00 6.64 42.62 4.35
First + last 4.73 82.86 5.76 43.74 4.53
First + 5 random + last 4.61 82.80 5.72 46.42 4.31
Random 1.16 81.16 3.22 28.38 1.42

Xgen-7B

All 7 5.37 82.68 6.59 44.34 4.19
First + last 5.01 82.73 5.86 49.08 4.45
First + 5 random + last 3.89 82.16 5.03 55.29 3.01
Random 1.25 80.74 3.21 27.77 1.29

Mistral-7B

All 7 5.40 82.60 6.35 63.78 4.26
First + last 5.12 82.67 6.15 60.91 4.76
First + 5 random + last 4.45 82.40 5.35 58.19 4.06
Random 1.25 80.64 3.13 25.97 1.18

Multi-N

Llama-2-7B

All 5 10.76 85.04 19.06 60.09 4.00
First + last 9.50 84.43 15.88 54.52 3.80
First + 3 random + last 7.57 83.36 12.39 50.35 2.94
Random 1.52 80.22 3.11 33.34 1.92

Llama-2-13B

All 5 10.42 84.60 18.15 57.26 3.83
First + last 9.55 84.58 16.99 49.84 3.73
First + 3 random + last 8.27 83.79 14.84 50.09 3.18
Random 1.55 80.05 3.17 32.80 1.98

Xgen-7B

All 5 9.04 83.18 17.05 60.55 3.32
First + last 7.82 83.27 14.18 51.59 3.60
First + 3 random + last 6.30 81.85 11.66 49.02 2.66
Random 1.52 78.99 3.48 37.62 1.86

Mistral-7B

All 5 9.52 83.55 17.03 63.02 3.15
First + last 9.11 83.69 14.99 67.14 3.51
First + 3 random + last 6.59 81.66 12.50 52.14 2.45
Random 1.57 79.21 3.30 37.18 1.80

Table 3: Performance in multi-document summarization on
Multi-XScience (7 documents) and Multi-News (5 documents)
when infilling the middle of the context window with random
documents. R-2 is ROUGE-2, BS refers to BERTScore.

4.2 Can we alleviate the middle curse? 392

To evaluate loss of performance due to the mid- 393

dle curse in a natural setup, we subsample data 394

points from each of the 5 long-input summariza- 395

tion datasets. We obtain sentences from the (un- 396

truncated) source aligned with the reference sum- 397

mary, following the procedure from §3.2. Only data 398

points where the start index of the earliest aligned 399

source sentence is at least 1,200 words, are kept, 400

ensuring no salient information at the start. We ran- 401

domly sample 50 data points from each of Arxiv, 402

PubMed, GovReport and Multi-News, and 25 from 403

SummScreenFD, forming an evaluation dataset of 404
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Figure 5: Reference-based evaluation on the MiddleSum dataset. We also report (gray bars) performance achieved by uniformly
sampling subsets of the same size as MiddleSum from the original datasets, alongside bootstrapping variance (black lines).

225 samples which we name MiddleSum.2405

We evaluate LLMs on MiddleSum, keeping only406

reference-based evaluation as the dataset is built407

using saliency with regard to the reference. As408

expected, in Fig. 5 we see that LLMs perform no-409

ticeably worse on MiddleSum (green bars) as com-410

pared to the full set (gray bars), confirming that411

MiddleSum is a more challenging task.412

We benchmark alternative inference methods on413

MiddleSum: hierarchical summarization and incre-414

mental summarization, both of which are explored415

in the concurrent work of Chang et al. (2023).416

Namely, let us divide an input x of length n into417

k consecutive blocks of size at most m (yielding418

k =
⌈
n
m

⌉
): x = (x1, . . . ,xk).419

Hierarchical summarization consists in summa-420

rizing each block and then summarizing the con-421

catenation of summaries:422

yi = LLM(xi) ∀i ∈ {1, . . . , k} (1)423

y = LLM(y1, . . . ,yk) (2)424

Incremental summarization consists in updating425

a summary of the text so far with content from the426

current text block (we have y0 = ∅):427

∀i ∈ {1, . . . , k},yi = LLM(yi−1,xi) (3)428

In both methods, the final output is y. Noting l429

the output length, standard inference has complex-430

ity in O(l.n2), while both alternative methods have431

complexity in O(k.l.m2) = O(l.n.m), which is432

lower. For both methods and all models, we use433

a block size m of 1,500 words (roughly 2,000 to-434

kens), and preserve coherence by ending blocks at435

the earliest end of sentence reaching the length.436

Results are shown in Fig. 5 (blue and purple437

bars), with statistics, bigrams analysis and results438

split over datasets in Appendix E. Both methods439

show promising results, notably on Mistral-7B440

for which they improve performance significantly.441

2We will release it alongside our code

Across domains, hierarchical and incremental in- 442

ference are very successful on scientific publica- 443

tions, which we hypothesize is due to the natural 444

division in structured sections of such inputs. Yet, 445

they seem to harm summaries on the other domains. 446

4.3 Is scaling context length really useful? 447

Experiments from §4.1 confirm that LLMs struggle 448

to summarize information contained in the middle 449

of their context window. This poses issues for long- 450

input summarization: after the initial part with high 451

saliency, important information becomes sparser, 452

and at the same time LLMs processing capability 453

weakens. To investigate this issue, we infer long- 454

document summarization with length truncated at 455

m ∗ 2k tokens, varying m from 1 to 6. We use our 456

longest context LLMs Xgen-7B and Mistral-7B, as 457

well as two LLMs extending Llama-2-7B context 458

window with position interpolation (Chen et al., 459

2023), a method gaining traction as an efficient 460

way to scale LLMs’ context window. We use two 461

LLMs applying position interpolation: Vicuna-7B- 462

1.5-16k3, and Llama-2-7B-32k4, with context of 463

16k tokens and 32k tokens, respectively. 464

Results for GovReport in Fig. 6 (and Appendix F 465

for Arxiv and SummScreen) confirm our intuition: 466

all metrics plateau or even decrease (see Mistral- 467

7B) from 4k context window upwards. Two con- 468

flicting forces are at play when increasing length: 469

giving more information to the model helps it re- 470

trieving key elements to make a summary, while 471

reasoning over a longer context is more challeng- 472

ing. Yet, such a drop for Xgen-7B and Mistral-7B 473

at 8k inference length is concerning. Both position 474

interpolated models show more robustness ; thus 475

these patterns may vary a lot across LLMs. Our 476

results suggest that in the current LLMs inference 477

and evaluation framework, there is no need to 478

exceed 4k tokens in the context window. 479

3In HuggingFace: lmsys/vicuna-7b-v1.5-16k
4In HuggingFace: togethercomputer/LLaMA-2-7B-32K
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Figure 6: Long-input summarization performance on GovReport with 4 models and all 5 metrics. X-axis represents the
truncated maximum source length. Xgen-7b and Mistral-7b cannot infer beyond 8k tokens.

5 Related Work480

Summarization with LLMs It is widely ac-481

knowledged that LLMs have propelled forward ab-482

stractive summarization research (Pu et al., 2023),483

with their summaries being highly rated by hu-484

man annotators (Goyal et al., 2022; Zhang et al.,485

2023b). Liu et al. (2023b) proposes to train smaller486

models like BART (Lewis et al., 2020) or BRIO487

(Liu et al., 2022b) with contrastive learning using488

LLMs like ChatGPT as evaluator providing signal489

on which generated summary candidate is better.490

Summary chain-of-thought designs a custom chain-491

of-thought method which first prompts the LLM to492

list important facts, then integrates these facts into493

a coherent summary (Wang et al., 2023c). SummIt494

utilizes ChatGPT to iteratively write then refine495

summaries given feedback from an evaluator LLM496

(Zhang et al., 2023a). Chain-of-density gradually497

makes GPT-4 generated summaries contain more498

and more entities while keeping length budget con-499

stant, creating more informative albeit a bit less500

readable summaries (Adams et al., 2023). Ravaut501

et al. (2022) noticed that data points with higher502

compression are generally harder to summarize503

with pre-trained models.504

Position bias in LLMs Sun et al. (2021) showed505

that for Transformer-based models, most recent506

tokens play a greater role compared to older to-507

kens for next-token prediction. It was later found508

that for in-context learning, the order of examples509

within the prompt impacts GPT-3’s performance510

(Liu et al., 2021; Lu et al., 2021). Reliance on511

positional information affects LLMs capabilities512

in arithmetic (Shen et al., 2023b), in multiple-513

choice question-answering (Zheng et al., 2023;514

Pezeshkpour and Hruschka, 2023), and as text gen-515

eration evaluators (Wang et al., 2023b) ; making516

it hard to rank LLMs (Alzahrani et al., 2024). Liu517

et al. (2023a) was the first to show that LLMs’ per-518

formance weakens in the middle of the prompt, yet,519

how LLMs make use of their full context window520

remains poorly understood. The passkey retrieval 521

evaluation, which consists in prompting the LLM 522

to recall a complex string or long number inserted 523

in its prompt, is becoming popular recently as a 524

way of verifying LLM’s processing capability at 525

each position (Liu et al., 2023a; Jiang et al., 2024). 526

However, this task does not measure position bias 527

on complex, abstract reasoning tasks like summa- 528

rization. A line of work attempts to solve the mid- 529

dle curse through compressing the prompt (Jiang 530

et al., 2023b,c), with very promising results albeit 531

at the cost of prompt fluency. Another approach 532

marginalizes results over different permutations of 533

the input to suppress dependency on input order 534

(Tang et al., 2023). Concurrent work to ours also 535

finds that in zero-shot summarization, LLMs tend 536

to prefer lead content (Chhabra et al., 2024). 537

6 Conclusion 538

Behind the recent hype around LLMs and their 539

amazing instruction following and content genera- 540

tion capacities, our study showcases a major weak- 541

ness in abstractive summarization: LLMs suffer 542

from the middle curse and struggle to use informa- 543

tion in the middle of their context window. LLMs 544

do not make a consistent use of their context win- 545

dow as they mostly look at the beginning and (to 546

a lesser extent) the end, which at first glance may 547

be hidden by the prevalent lead bias in summariza- 548

tion datasets. Extending context window beyond 549

4k tokens, which has been an intense area of focus 550

lately, is not justified in the current inference and 551

evaluation setup in abstractive summarization. We 552

benchmarked two alternative inference methods 553

(hierarchical inference and incremental inference) 554

on MiddleSum, an evaluation subset designed to 555

showcase the middle curse. Despite promising re- 556

sults, especially on scientific paper datasets, these 557

methods are far from a silver bullet to the middle 558

curse. We call for a better evaluation of LLMs, 559

which accounts for the salient spans of the source 560

which are effectively being processed. 561
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Limitations562

Our work only considers open-source LLMs for563

summary generation and ignores closed-source564

LLMs such as the popular OpenAI’s GPT-3.5 and565

GPT-4, or Anthropic’s Claude. We made this de-566

cision to advocate for openness in LLM research ;567

yet we acknowledge that it would be interesting to568

also investigate properties of summaries generated569

by these paying API LLMs.570

Another limitation lays in the saliency estima-571

tion. We approximate salient content in the source572

through maximizing ROUGE-1 overlap with sum-573

mary sentences. Other methods are also well-574

suited for this task, albeit at greater computational575

cost ; for instance semantic similarity through576

BERTScore or BARTScore ; or saliency estima-577

tion through a LLM in zero-shot.578

Lastly, we can only evaluate a finite number of579

LLMs, and we settled for the evaluation of 5 recent580

and popular open-source LLMs. Findings may581

change as LLMs undergo changes and improve-582

ments in their training process.583
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A Statistics 986

In Table 4, we include statistics on each of the 987

abstractive summarization datasets under consid- 988

eration. We use the non-anonymized version for 989

CNN/DM (See et al., 2017). For Reddit-TIFU, 990

we use the Long subset, and SummScreenFD, 991

is the ForeverDreaming (FD) subset of Summ- 992

Screen. GovReport and SummScreenFD are part of 993

the long-input benchmarks Scrolls (Shaham et al., 994

2022) and ZeroScrolls (Shaham et al., 2023). 995
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Dataset Domain # Docs # Data points # Sentences # Words # Tokens

Train Val Test Doc. Summ. Inf. Doc. Summ. Doc. Summ. Max gen.

CNN/DM (Hermann et al., 2015) News 1.00 287,113 13,334 11,490 33.37 3.79 3 773.23 57.75 994.56 84.47 192
XSum (Narayan et al., 2018) News 1.00 204,045 11,332 11,334 19.11 1.00 1 433.05 23.19 566.79 31.63 64
Reddit-TIFU (Long) (Kim et al., 2019) Social Media 1.00 33,701 4,214 4,221 22.21 1.45 2 444.20 23.37 532.18 29.82 128
SAMSum (Kim et al., 2019) Dialogue 1.00 14,732 818 819 8.96 2.01 2 126.93 23.12 175.54 29.69 128
Multi-XScience (Lu et al., 2020) Science 5.06 30,369 5,066 5,093 30.55 4.86 5 773.36 120.65 965.99 157.77 384
Arxiv (Cohan et al., 2018) Science 1.00 203,037 6,436 6,440 250.37 6.23 6 6,446.11 166.72 8,940.00 225.58 512
PubMed (Cohan et al., 2018) Science (medical) 1.00 119,924 6,633 6,658 101.61 7.59 7 3,142.92 208.03 4,602.62 324.97 512
GovReport (Huang et al., 2021) Legal 1.00 17,517 973 973 282.86 23.14 22 8,363.22 649.01 11,025.02 879.10 768
SummScreenFD (Chen et al., 2022) TV Transcripts 1.00 3,673 338 337 727.06 5.26 5 7,618.20 123.34 10,067.39 157.44 512
Multi-News (Fabbri et al., 2019) News 2.73 44,972 5,622 5,622 79.02 9.88 10 2,101.49 256.55 2,998.52 324.29 512

Table 4: Statistics on the 10 datasets used for experiments. Doc. is the source document, Summ. the ground-truth summary,
Inf. refers to the number of desired sentences to be in the summary prompted to each LLM during inference. Statistics are
computed on the entire test set. # Tokens is calculated with Llama-2’s tokenizer. Max gen. is the maximum tokens size that we
set when decoding summaries. Underlined test sizes correspond to datasets where we subsample randomly 1,000 test data points
for evaluation.

In Fig. 7, we illustrate how much of the source996

document(s) is visible with a 4k context window997

(Llama-2).998

B GPT-3.5 Evaluation999

To evaluate LLM-generated summaries with1000

GPT-3.5, we use the following prompt template:1001

1002

Score the following summary generated by1003

another system given the source on a scale from1004

1 to 5 with regards to overall general summary1005

quality. 1-point indicates a low quality summary,1006

and 5 points a very high quality summary. A1007

high quality summary is grammatical, fluent,1008

informative, relevant, coherent and factually1009

consistent with the source. Let’s think step-by-step1010

and just output the score.1011

1012

Source:1013

[source]1014

1015

Instruction:1016

Summarize the above text in [n] sentences.1017

1018

Summary:1019

[summary generated by the LLM to evaluate]1020

1021

Your score:1022

1023

When evaluating for the specific aspect of1024

informativeness, the first paragraph becomes:1025

1026

Score the following summary generated by an-1027

other system given the source on a scale from 1 to1028

5 with regards to how informative the summary is.1029

1 point indicates a not informative summary, and 51030

points a very informative summary. An informative1031

summary captures the important information in1032

the article and presents it accurately and concisely. 1033

Let’s think step-by-step and just output the score. 1034

1035

When evaluating for the specific aspect of 1036

overall quality, the first paragraph becomes: 1037

1038

Score the following summary generated by 1039

another system given the source on a scale from 1 1040

to 5 with regards to its quality. 1 point indicates 1041

a low quality summary, and 5 points a very high 1042

quality summary. A high quality summary is 1043

comprehensible and understandable. Let’s think 1044

step-by-step and just output the score. 1045

1046

When evaluating for the specific aspect of 1047

coherence, the first paragraph becomes: 1048

1049

Score the following summary generated by 1050

another system given the source on a scale from 1051

1 to 5 with regards to its coherence. 1 point 1052

indicates an incoherent summary, and 5 points a 1053

very coherent summary. A coherent summary is 1054

well-structured and well-organized. Let’s think 1055

step-by-step and just output the score. 1056

1057

When evaluating for the specific aspect of 1058

attributability, the first paragraph becomes: 1059

1060

Score the following summary generated by an- 1061

other system given the source on a scale from 1 to 1062

5 with regards to how attributable it is. 1 point in- 1063

dicates a not very attributable summary, with many 1064

hallucinations, and 5 points a summary very at- 1065

tributable to the source, consistent with the source. 1066

In a very attributable summary, all the informa- 1067

tion is fully attributable to the source. Let’s think 1068

step-by-step and just output the score. 1069
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Figure 7: Fraction of the source which fits into the context window, for several context window lengths with Llama-2
tokenization. The black dashed lines correspond to Llama-2 context window length of 4k tokens. On standard-length datasets,
4k is enough to access 100% of all source documents ; but on the long-input datasets such as GovReport or SummScreenFD,
such a context window may not even fit 50% of the source.

Model Metric CNN/DM XSum Reddit-TIFU SAMSum Multi-X AVG Arxiv PubMed GovReport SummScreenFD Multi-N AVG

SOTA ROUGE-2 24.17 27.09 11.13 29.88 4.60 19.37 21.93 23.26 30.90 10.70 13.60 20.07

Flan-UL2

# sents 2.89 1.00 1.34 2.08 2.28 1.19 1.78 1.27 1.80 5.49 2.79 2.63
ROUGE-2 20.28 22.74 8.61 28.21 3.04 16.58 9.37 7.42 4.76 4.33 7.79 6.73
BERTScore 88.05 91.94 87.42 92.29 81.87 88.31 83.82 83.07 83.53 84.85 84.97 84.05
A3CU 32.69 32.11 16.89 49.48 5.98 27.43 14.79 13.83 12.00 8.37 16.99 13.20
SummaC 69.96 24.27 35.76 30.19 57.98 43.63 67.56 60.96 73.80 56.00 76.80 67.02
GPT-3.5 3.16 3.52 1.61 2.92 3.23 2.89 2.66 2.85 3.13 2.35 3.32 2.86

Llama-2-7B

# sents 3.00 1.27 2.00 1.83 7.77 3.17 5.80 6.61 12.88 5.77 18.69 9.95
ROUGE-2 14.16 7.27 4.17 15.53 4.87 9.20 13.84 12.89 16.22 5.36 12.37 12.14
BERTScore 87.32 87.47 85.87 89.95 83.32 86.79 83.84 82.82 85.28 85.41 85.63 84.60
A3CU 29.04 14.18 12.15 35.64 6.39 19.48 16.78 16.60 17.23 9.66 22.23 16.50
SummaC 35.58 25.24 26.38 24.56 49.39 32.23 53.22 51.82 70.47 39.01 57.49 54.40
GPT-3.5 4.10 4.24 2.83 3.61 4.42 3.84 4.21 4.19 3.43 2.71 3.91 3.69

Llama-2-13B

# sents 3.01 1.16 2.00 1.98 5.22 2.67 5.92 7.22 27.75 5.16 12.79 11.77
ROUGE-2 14.10 8.61 4.22 14.16 5.29 9.28 13.52 15.24 17.28 5.62 12.58 12.85
BERTScore 87.40 87.94 85.85 89.45 83.58 86.84 83.88 84.24 85.29 85.42 85.84 84.93
A3CU 29.57 16.30 12.94 34.19 7.29 20.06 16.44 19.21 17.01 10.30 23.09 17.21
SummaC 33.83 24.07 25.76 24.81 41.70 30.03 55.09 56.00 76.44 38.74 53.12 55.88
GPT-3.5 4.12 4.34 2.91 3.45 4.45 3.85 4.06 4.13 3.66 2.69 3.89 3.69

Xgen-7B

# sents 3.93 2.24 2.62 2.34 5.94 3.41 8.07 13.50 22.46 10.60 9.05 12.74
ROUGE-2 14.55 6.00 3.98 14.51 5.54 8.92 12.31 13.99 14.68 4.24 11.07 11.26
BERTScore 87.07 87.12 85.84 89.53 83.42 86.60 83.07 82.87 83.94 83.91 84.95 83.75
A3CU 27.88 12.75 12.56 33.18 7.45 18.76 15.28 18.79 15.65 8.44 21.33 18.90
SummaC 52.25 37.95 28.40 25.63 44.36 37.72 53.28 60.56 65.22 42.03 56.45 55.51
GPT-3.5 3.82 3.97 2.78 3.52 4.37 3.69 3.96 3.99 2.78 2.42 3.58 3.35

Mistral-7B

# sents 3.10 1.12 2.64 2.25 7.73 3.37 12.00 11.88 25.83 27.13 16.43 18.65
ROUGE-2 16.37 7.05 4.34 14.66 5.57 9.60 9.77 14.32 11.36 3.11 12.61 10.23
BERTScore 87.50 87.45 85.71 89.78 83.16 86.72 81.44 82.85 82.43 81.46 85.07 82.65
A3CU 30.60 13.14 13.08 32.21 6.96 19.20 12.66 16.31 14.92 8.40 22.22 14.90
SummaC 53.67 24.79 30.51 26.82 62.49 39.66 57.81 69.03 67.07 35.76 68.50 59.63
GPT-3.5 3.92 4.30 2.73 3.63 4.47 3.81 2.83 3.63 2.01 1.88 3.60 2.79

Table 5: Performance achieved by the 5 LLMs on each dataset for 5 automatic metrics. # sents is the average number of
sentences in generated summaries. Multi-X is short for Multi-XScience, Multi-N is Multi-News dataset, AVG columns represent
the average over standard-length and long-input datasets, respectively. SOTA numbers are taken from(Xie et al., 2023) on
CNN/DM, from (Zhao et al., 2022b) XSum, Reddit-TIFU and SAMSum, from (Pang et al., 2022) for Arxiv and PubMed, from
(Xiong et al., 2022) for GovReport and SummScreenFD, from (Xiao et al., 2022) for Multi-News and Multi-XScience. Due to a
lack of reported results for other metrics, we only include ROUGE-2 scores for SOTA models. Best scores (outside of SOTA) are
in bold.
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Model CNN/DM XSum Reddit-TIFU SAMSum Multi-XScience Arxiv PubMed GovReport SummScreenFD Multi-News

Flan-UL2 0.000 0.012 0.000 0.017 0.000 _ _ _ _ _
Llama-2-7B 0.000 0.000 0.000 0.490 0.000 0.000 0.000 0.000 0.000 0.000
Llama-2-13B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Xgen-7B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mistral-7B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6: P-value of a 2-sample Kolmogorov-Smirnov test between the position distribution of bigrams in LLM-generated
summaries and bigrams in reference summaries. We round numbers to 3 decimals. Numbers in gray correspond to non-significant
differences (p-value above 0.05).

Dataset Domain # Docs # Data points # Sentences # Words # Tokens

Doc. Summ. Doc. Summ. Doc. Summ.

Arxiv Science 1.00 50 299.36 5.84 7,605.52 165.80 10,846.00 226.22
PubMed Science (medical) 1.00 50 157.60 6.96 5,090.84 203.04 7,783.02 329.12
GovReport Legal 1.00 50 445.64 22.80 13,308.70 656.10 17,462.90 883.10
SummScreen TV transcripts 1.00 25 762.24 3.56 9,732.44 88.60 12,878.08 115.00
MultiNews News 3.18 50 211.34 9.86 5,939.32 269.84 8,130.78 336.16
Overall Mixed 1.48 225 332.24 10.50 8,180.13 297.57 11,258.16 407.15

Table 7: Statistics on the MiddleSum evaluation dataset, breaking down on each domain. Doc. is the source document, Summ.
the ground-truth summary. # Tokens is calculated with Llama-2’s tokenizer.

C Baseline Performance1070

In Table 5, we report zero-shot performance with1071

the 5 LLMs described in §2. We note that for1072

standard-length datasets, Flan-UL2 is dominating,1073

while for long-context ones, Llama-2-13B takes1074

the lead.1075

D Statistical Significance on RQ11076

In Table 6, we run a 2-sample Kolmogorov-1077

Smirnov statistical significance test to compare the1078

bigrams position distribution of LLMs with the1079

reference summaries.1080

E More Results on MiddleSum1081

In Table 7, we show statistics on the MiddleSum1082

evaluation dataset.1083

In Figs. 8a to 8d, we repeat the salient bigrams1084

analysis from Fig. 1 for each of the four long-input1085

LLMs on MiddleSum. We note that both hierar-1086

chical and incremental inference notably decrease1087

reliance on lead bigrams compared to standard in-1088

ference.1089

In Figs. 9 to 13, and in Table 8 (exact numbers),1090

we show reference-based evaluation on each of the1091

5 subsets of MiddleSum.1092

F More Results on Long-Input Tasks1093

In Figs. 14 and 15, we conduct the analysis on1094

increasingly longer input context from Fig. 6 on1095

Arxiv and SummScreen, respectively.1096

G Software 1097

We use the following Python libraries, all open 1098

source: 1099

• numpy, version 1.24.3 1100

• torch, version 2.0.1 1101

• scikit-learn, version 1.0.2 1102

• sentencepiece, version 0.1.97 1103

• nltk, version 3.8.1 1104

• spacy, version 3.6.0 1105

• scipy, version 1.10.1 1106

• rouge-score, version 0.1.2 1107

• bert-score, version 0.3.13 1108

• summac, version 0.0.03 1109

• tiktoken, version 0.4.0 1110

• openai, version 0.28.0 1111

• huggingface-hub, version 0.17.2 1112

• datasets, version 2.14.5 1113

• accelerate, version 0.21.0 1114

• tokenizers, version 0.14.1 1115

• transformers, version 4.34.0 1116
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(a) Llama-2-7B (b) Llama-2-13B

(c) Xgen-7B (d) Mistral-7B

Figure 8: Relative location of summary bigrams within the source on MiddleSum for 4 LLMs.

Figure 9: Reference-based evaluation on the Arxiv subset of MiddleSum dataset.

Figure 10: Reference-based evaluation on the PubMed subset of MiddleSum dataset.
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Figure 11: Reference-based evaluation on the GovReport subset of MiddleSum dataset.

Figure 12: Reference-based evaluation on the SummScreenFD subset of MiddleSum dataset.

Figure 13: Reference-based evaluation on the Multi-News subset of MiddleSum dataset.

Figure 14: Long-input summarization performance on Arxiv with 4 models and all 5 metrics. X-axis represents the truncated
maximum source length. Xgen-7b and Mistral-7b cannot infer beyond 8k tokens.

Figure 15: Long-input summarization performance on SummScreen with 4 models and all 5 metrics. X-axis represents the
truncated maximum source length. Xgen-7b and Mistral-7b cannot infer beyond 8k tokens.
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Model Metric Inference MiddleSum (MS) MS/Arxiv MS/PubMed MS/GovReport MS/SummScreen MS/Multi-News

Llama-2-7B

ROUGE-2
Standard 10.96 12.62 10.97 13.26 4.07 10.43
Hierarchical 11.33 14.63 13.36 13.51 4.85 7.06
Incremental 12.56 14.43 13.54 17.26 5.19 8.68

BERTScore
Standard 84.19 83.43 83.13 84.63 85.33 85.01
Hierarchical 84.13 83.86 83.74 84.26 85.23 84.10
Incremental 84.26 83.73 83.80 84.67 85.70 84.14

A3CU
Standard 12.81 13.55 12.12 11.71 7.31 16.61
Hierarchical 13.21 15.64 15.14 12.26 9.71 11.57
Incremental 12.88 15.34 14.45 10.51 10.24 12.55

Llama-2-13B

ROUGE-2
Standard 11.07 11.68 11.63 13.56 5.09 10.38
Hierarchical 10.24 13.45 13.26 10.21 4.93 6.71
Incremental 11.90 12.53 13.84 17.34 5.06 7.33

BERTScore
Standard 84.04 83.29 83.15 84.43 85.24 84.70
Hierarchical 83.17 83.74 83.75 80.07 85.03 84.20
Incremental 83.43 82.45 83.45 84.96 83.24 82.95

A3CU
Standard 12.94 13.01 13.42 10.92 8.47 16.65
Hierarchical 12.85 16.28 14.11 10.40 8.36 12.86
Incremental 12.47 14.64 14.80 11.75 10.76 9.54

Xgen-7B

ROUGE-2
Standard 8.92 11.94 9.34 10.02 4.53 6.57
Hierarchical 9.87 13.06 11.37 11.77 2.79 6.83
Incremental 9.11 10.97 10.55 13.16 3.71 4.44

BERTScore
Standard 82.51 82.45 81.96 82.65 83.28 82.60
Hierarchical 82.86 82.73 82.56 82.67 83.79 83.03
Incremental 82.49 81.94 81.82 83.11 83.39 80.83

A3CU
Standard 12.50 15.14 12.85 11.99 8.48 12.05
Hierarchical 11.74 14.55 12.61 10.76 7.33 11.25
Incremental 11.51 12.73 13.15 9.13 8.97 9.69

Mistral-7B

ROUGE-2
Standard 7.16 9.28 9.56 5.86 2.19 6.41
Hierarchical 10.78 11.67 13.71 13.36 4.76 7.39
Incremental 10.15 11.36 12.66 12.89 3.46 7.02

BERTScore
Standard 81.07 80.98 81.19 80.41 80.10 82.20
Hierarchical 83.10 82.56 83.00 83.81 83.90 82.62
Incremental 82.25 81.92 82.39 83.67 83.14 80.56

A3CU
Standard 10.35 11.55 11.46 7.94 8.53 11.34
Hierarchical 11.15 12.15 14.21 10.62 7.48 9.47
Incremental 10.43 14.25 11.00 8.90 7.44 9.05

Table 8: Reference-based results for all models and inference methods on MiddleSum, breaking down by subset. The best
number across inference methods is in bold.
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