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Abstract

Electrocardiogram (ECG) captures the heart’s electrical signals, offering valuable infor-
mation for diagnosing cardiac conditions. However, the scarcity of labeled data makes it
challenging to fully leverage supervised learning in medical domain. Self-supervised learning
(SSL) offers a promising solution, enabling models to learn from unlabeled data and uncover
meaningful patterns. In this paper, we show that masked modeling in the latent space can be
a powerful alternative to existing self-supervised methods in the ECG domain. We introduce
ECG-JEPA, a SSL model for 12-lead ECG analysis that learns semantic representations of
ECG data by predicting in the hidden latent space, bypassing the need to reconstruct raw
signals. This approach offers several advantages in the ECG domain: (1) it avoids producing
unnecessary details, such as noise, which is common in ECG; and (2) it addresses the limi-
tations of naive L2 loss between raw signals. Another key contribution is the introduction
of Cross-Pattern Attention (CroPA), a specialized masked attention mechanism tailored for
12-lead ECG data. ECG-JEPA is trained on the union of several open ECG datasets, to-
taling approximately 180,000 samples, and achieves state-of-the-art performance in various
downstream tasks including ECG classification and feature prediction.

1 Introduction

Electrocardiography is a non-invasive method to measure the electrical activity of the heart over time,
serving as a crucial tool for diagnosing various cardiac conditions. While numerous supervised methods
have been developed to detect heart diseases using ECG data (Hannun et al.| [2019; |[Ribeiro et al., [2020;
Siontis et al., 2021)), these models often face significant performance degradation when applied to data
distributions different from those on which they were trained. This challenge points to the need for more
flexible approaches that can learn robust, transferable representations from ECG data.

Self-supervised learning (SSL) offers an alternative approach by learning general representations in diverse
domains, such as natural language processing (NLP) (Devlin et al., 2019; Brown et al., [2020; [Touvron et al.,
2023), computer vision (CV) (Chen et all [2020}; [He et al.l [2022; |Assran et al., [2023)), and video analysis
(Tong et al., [2022; |Bardes et al.l |2024)). Despite this promise, the application of SSL to ECG data presents
unique challenges. For instance, data augmentation, which is essential in many SSL architectures, is more
complex for ECG than for computer vision data. Simple transformations like rotation, scaling, and flipping,
effective in CV, can distort the physiological meaning of ECG signals. Additionally, ECG recordings often
contain artifacts and noise, which may cause autoencoder-based SSL models to struggle with reconstructing
raw signals. These architectures may also miss visually subtle but diagnostically critical features, such as
P-waves and T-waves, which are imperative for diagnosing certain cardiac conditions.

In this work, we propose ECG Joint-Embedding Predictive Architecture (ECG-JEPA) tailored for 12-lead
ECG data, effectively addressing the aforementioned challenges. ECG-JEPA utilizes a transformer archi-
tecture to capture the semantic meaning of the ECG. By masking several patches of the ECG, ECG-JEPA
predicts abstract representations of the missing segments, indicating a high-level understanding of the data.
Additionally, we develop a novel masked-attention for multi-lead ECG data, which we call Cross-Pattern
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Figure 1: Example of 12-lead ECG signals from CODE-15 (Ribeiro et al.,2020) dataset.

Attention (CroPA). CroPA incorporates clinical knowledge into the model as an inductive bias, guiding it
to focus on clinically relevant patterns and relationships across leads.

Our extensive empirical empirical evaluations reveals the following characteristics:

o ECG-JEPA achieves notable improvements in linear evaluation and fine-tuning on classification tasks
compared to existing SSL methods without hand-crafted augmentations (Sections .

e CroPA introduces a specialized masked attention mechanism, allowing the model to focus on clini-
cally relevant information in multi-lead ECG data, resulting in improved downstream task perfor-
mance (Section [5.7]).

o ECG-JEPA can also recover important ECG features, including heart rate and QRS duration, which
are classical indicators used in ECG evaluation. This is the first work to demonstrate that learned
representations can effectively recover ECG features (Section [5.4)).

o ECG-JEPA is highly scalable, allowing efficient training on large datasets. For instance, ECG-JEPA
is trained for only 100 epochs, yet outperforms other ECG SSL models on most downstream tasks,
taking approximately 22 hours on a single RTX 3090 GPU (Figure [3)).

In summary, ECG-JEPA introduces a robust SSL framework for 12-lead ECG analysis, overcoming tra-
ditional SSL limitations with clinically inspired design elements, scalable architecture, and demonstrated
effectiveness on a wide range of tasks.

2 Background

Self-Supervised Learning (SSL) facilitates learning abstract representations from input data without the need
for labeled data, which is particularly beneficial in medical domains where labeled data is scarce and costly
to obtain. SSL leverages inherent data patterns to learn useful representations, allowing models to adapt to
various downstream tasks with greater robustness to data imbalances . We begin in Section
with an overview of the ECG and its key features, highlighting the critical characteristics essential for
understanding ECG data. In Sections [2.2] and 2:3] we briefly explain key SSL techniques and their specific
applications to ECG, respectively.

2.1 Electrocardiogram (ECG)

Electrocardiography is a non-invasive diagnostic method that records the heart’s electrical activity over time
using electrodes placed on the skin. The result of this recording is called an electrocardiogram (ECG), which
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visually represents the electrical activity of the heart as a waveform. The standard 12-lead ECG captures
electrical activity of the heart from multiple angles. These 12 leads are categorized into limb leads (I, II, TIT),
augmented limb leads (aVR, aVL, aVF), and chest leads (V1-V6). Each lead provides unique information
about the heart’s electrical activity, offering a comprehensive view that aids in diagnosing various cardiac
conditions. Refer to Figure [I] for an illustration of 12-lead ECG.

ECG features are specific characteristics of ECG signals
that are critical for summarizing the overall signal. These
features play an essential role in monitoring a patient’s
health status and are instrumental in the application of
statistical machine learning models for diagnosing heart
diseases. Key ECG features include heart rate, QRS dura-
tion, PR interval, QT interval, and ST segment. These fea-
tures are identified by measuring specific time intervals or
amplitude levels in the ECG waveform. For instance, heart
rate is calculated using the formula 1000x (60/RR, interval)
in beats per minute (bpm), where the RR interval is mea-
sured in milliseconds (ms). Refer to Figure [2] for a visual
representation of these features.

RR interval

QRS duration

Figure 2: Key ECG features.

In this work, we use only 8 leads (I, I, V1-V6) as the remaining 4 leads (III, aVR, aVL, aVF) can be derived
from linear combinations of the 8 leads following the Einthoven’s law (Thaler} |2021]):

IMI=I11-1, aVR=—(I+1I)/2, aVL=(I-1)/2, aVF=(II-1)/2.

This choice maintains the necessary diagnostic information while optimizing computational efficiency. A
performance comparison between the 8-lead model and the 12-lead model is provided in Appendix
demonstrating that the 8-lead model achieves comparable results with reduced computational requirements.

2.2 Self-Supervised Learning Architectures

Self-supervised learning can be broadly categorized into contrastive and non-contrastive methods. Non-
contrastive methods can be further divided into generative and non-generative architectures. See Balestriero
et al.| (2023)) for a broader introduction to SSL.

In contrastive learning, the model is encouraged to produce similar representations for semantically related
inputs 2 and 2", while pushing apart the representations of unrelated inputs 2 and y/. SimCLR (Chen
et al [2020) is one of the most popular contrastive methods, using two different augmentations of a single
input x to form semantically similar pairs z and 2.

Beyond contrastive methods, generative architectures have been particularly successful in recent large lan-
guage models (Devlin et al.,|2019; Brown et al.,|2020; Touvron et al.l |2023) and in computer vision (He et al.,
2022)). Generative architectures typically involve reconstructing a sample z from its degraded version a/,
employing either encoder-decoder frameworks or other paradigms like decoder-only or encoder-only models.
The premise is that reconstructing clean data from a corrupted version reflects the model’s deep understand-
ing of the underlying data structure. In encoder-decoder frameworks, the encoder maps the perturbed input
2’ into a latent representation, which the decoder then uses to reconstruct the original input z (Vincent
et all |2008). Recently, |Balestriero & LeCun| (2024) observed that generative architectures prioritize learn-
ing principal subspaces of the data, which may limit their capacity to capture semantic representations for
perceptual tasks.

As an alternative, non-generative methods have shown promise across domains, including computer vision
(Grill et al.| 20205 [Bardes et al., 2022 |Chen & He} [2020; |Assran et all [2023) and video analysis (Bardes
et all 2024). Among these, the Joint-Embedding Predictive Architecture (JEPA) (LeCunl 2022) processes
an input pair x and its corrupted versions x’ to obtain representations z and 2z’ through encoders. Unlike
generative architectures that make predictions in the input space, JEPA performs prediction in the latent



Under review as submission to TMLR

Linear Evaluation on PTB-XL vs GPU Hours
0.90 ECG-JEPA

(100 epochs) ST-MEM
0.88 ® (300 epochs)
0.86
0.84
O
-]
< 0.82
.MTAE N
0.80 (800 epochs)

MLAE
0.78 ® (300 epochs)

20 30 40 50 60 70 80
Pretraining GPU Hours

Figure 3: Linear evaluation on PTB-XL multi-class. ECG-JEPA makes predictions in the hidden represen-
tation space, while other methods are masked-autoencoder based, reconstructing raw signals.

space by reconstructing z from 2’. This approach effectively avoids the challenge of predicting unpredictable
details, a common issue in biological signals.

2.3 Related Works

Several studies have worked on capturing semantically meaningful representations of 12-lead ECG data.
Contrastive Multi-segment Coding (CMSC) (Kiyasseh et al.; |2021)) splits an ECG into two segments, en-
couraging similar representations for compatible segments while separating incompatible ones. Contrastive
Predictive Coding (CPC) (van den Oord et all [2019)), applied in Mehari & Strodthoff| (2022)), predicts fu-
ture ECG representations in a contrastive manner, but its reliance on LSTM modules makes it inefficient
for large datasets. More recently, |Zhang et al. (2022)) introduced masked autoencoders for ECG, proposing
temporal and channel masking strategies, Masked Time Autoencoder (MTAE) and Masked Lead Autoencoder
(MLAE). Similarly, [Na et al.| (2024) proposed ST-MEM, which masks random time intervals for each lead.
However, both MLAE and ST-MEM may struggle with the high correlations between ECG leads, potentially
oversimplifying the prediction task.

3 Methodology

ECG-JEPA is trained by predicting masked patches of ECGs in the hidden representation space, using a
partial view of the input to infer the missing parts. The proposed architecture utilizes a student-teacher
framework, as illustrated in Figure We subdivide the multi-channel ECG into non-overlapping patches
and sample a subset of these patches for masking.

While our model is trained to predict in the representation space, learning by reconstructicting the raw signals
can be particularly challenging in the ECG domain due to the prevalence of noise. Instead, our model predicts
the masked patches in the hidden representation space, where this challenge can be effectively addressed.

Figure [3] illustrates the advantages of reconstructing in the hidden representation space by comparing the
linear evaluation results of ECG-JEPA and other masked autoencoder-based models on the PTB-XL multi-
class task. Blue dots represent masked autoencoder-based models. ECG-JEPA achieves superior performance
with only 100 epochs of training.

Our approach inherently accounts for the presence of noise in biological signals, as the model is trained on
raw ECG signals without any preprocessing or noise removal techniques. This design choice ensures that
the model is trained on real-world noisy ECG samples (see Figure [1)), enabling it to process such signals
effectively, even when noise from sources like patient movement or electrical interference is present.
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Figure 4: ECG-JEPA training overview. For illustration, we use C' = 3 channels, N = 5 subintervals with
Lis = {1, 3,5}, representing visible intervals and I,,,sx = {2,4}. representing masked intervals.

3.1 Patch Masking

Let z € REXT represent a multi-lead ECG of length T with C' channels. We divide the interval [0,7) into
N non-overlapping subintervals of length ¢. Each subinterval in each channel constitutes a patch z.; € Rf
of x, resulting in C' x N patches {i}ccjc),ic(n], Where [N] is the set of integers {1,2,..., N}.

The masking strategy in multi-lead ECG must be carefully chosen because patches in different leads at the
same temporal position are highly correlated , potentially making the prediction task too easy.
To address this, we mask all patches across different leads in the same temporal space. With this in mind,
we employ two masking strategies: random masking and multi-block masking.

In random masking, we randomly select a percentage of subintervals to mask, while in multi-block masking,
we select multiple consecutive subintervals to mask. Note that we allow these consecutive subintervals to
overlap, which requires the model to predict much longer sequences of representations. To evaluate the
effectiveness of ECG-JEPA, we use both strategies, with a random masking ratio of (0.6,0.7) and a multi-
block masking ratio of (0.175,0.225) at a frequency of 4 (see Appendix for an ablation study on varying
masking ratios). For either masking strategy, the masking indices are denoted as I,,,sx C [IN], and the visible
indices as I,s, such that [N] = Iy U L. The unmasked patches {zc,i}ce(c) ier,,, Serve as contextual

input for the student networks, while the masked patches {z.;}cc(c]ic1,,., are the targets to predict in the
representation space.

msk

The patches {2 }cejcy,ic[n] are converted into a sequence of token vectors {8} oc(cy,ic(n] of dimension D
using a linear layer, and augmented with positional embeddings. For simplicity, we continue to refer to the
token vectors as z..; € RP with a slight abuse of notation. We employ the conventional 2-dimensional sinu-
soidal positional embeddings for the student and teacher networks, while 1-dimensional sinusoidal positional
embeddings are used for the predictor network.

3.2 Teacher, Student, and Predictor

ECG-JEPA is built upon three key components: the teacher network, the student network, and the predictor
network, each playing a distinct role in the model’s learning process. The teacher and student networks are
based on standard transformer architectures, while the predictor network, a smaller transformer, operates
on single-channel representations. Despite operating on single channels, the predictor effectively encodes
information from all leads, leveraging the self-attention mechanism to integrate contextual dependencies.

The teacher network handles the entire C'x N patches {zc i }ce[c,ic[n], generating fully contextualized repre-
sentations {zc;}cejc),ie(n]- The student network, however, processes only C' x @ visible (unmasked) patches
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Figure 5: Patch-level representations are averaged to yield the ECG representation vector (colored in cyan).

{Zci}eeicict,,,, Where Q = |I,s| represents the number of visible time intervals. The representations
{5 celcy.iet,,, from the student are then concatenated with C'x (N—Q) (learnable) mask tokens zps, € R,
resulting in C' x N representations. Subsequently, each lead’s representations {25 Yicr, ., U{Zmsk, - - -, Zmsk }
are passed to the predictor, generating the predictions {Zc; }ic[n-

Finally, the objective function of ECG-JEPA is defined as the L1 distance between the predicted represen-
tations for the masked patches and their corresponding teacher-generated representations. Formally,

L= o Y il

ce[C] [ Tmst] i€ mak

While the parameters of the student and teacher networks are optimized through gradient-based methods,
the weights of the teacher network are updated using an exponential moving average (EMA) of the student
network, as detailed in Appendix [C]

3.3 ECG Representation

After training, only the student network is used as the encoder. The encoder’s outputs are average-pooled
to produce the final ECG representation, which serves as the feature vector for downstream tasks. The
dimension of this latent representation vector matches the encoder’s token dimension, which is set to D = 768
in our case. See Figure [f] for an illustration.

3.4 Cross-Pattern Attention (CroPA)

Multi-lead ECG signals require careful analysis of patterns that are often consistent across different leads,
which is crucial for identifying potential cardiac abnormalities. This demands attention mechanisms that
prioritize relationships within the same lead and within relevant time windows.

To incorporate this structural insight, we introduce Cross-Pattern Attention (CroPA), a masked self-attention
mechanism designed for multi-lead ECG data. CroPA imposes an inductive bias by allowing each patch to
attend only to patches within the same lead and temporal space (Figure @ Specifically, a token . ; attends

i

z, » if and only if ¢ = ¢ (same lead) or i =i (same temporal space).

This design aligns with how ECG signals are clinically in-
terpreted, where intra-lead and temporally adjacent signals M
are most relevant. By incorporating this inductive bias,
CroPA focuses on relevant intra-lead relationships, reduc- MM M
ing interference from unrelated signals across other chan-
nels and temporal spaces. Unlike standard self-attention, M W
which treats all patches equally, CroPA adopts a structured

approach that mirrors the clinical interpretation process,

leading to improved performance on downstream tasks. Figure 6: Cross-Pattern Attention (CroPA).
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4 Experimental Settings

In all experiments, 10-second multi-lead ECG signals were resampled to 250 Hz, yielding T" = 2500 time
points. We divided the interval [0,T) into N = 50 non-overlapping subintervals, each of length ¢ = 50. The
model was trained for 100 epochs without data augmentation or noise removal preprocessing, and the final
checkpoint was used for downstream tasks. Additional experimental details are provided in Appendix [B]

4.1 Pretraining Datasets

Training SSL models with large datasets is crucial for developing generalized representations. However, most
previous works have used relatively small datasets, with the exception of Na et al| (2024), where an SSL
model was trained with a large number of 12-lead ECGs. Following |[Na et al.| (2024)), we use the Chapman
(Zheng et al.,2020b), Ningbo (Zheng et al.|[2020a), and CODE-15 (Chen et al.,|2019) datasets for pretraining
ECG-JEPA. The Chapman and Ningbo datasets collectively consist of 45,152 10-second 12-lead ECGs at
500 Hz. CODE-15 includes 345,779 12-lead ECGs from 233,770 patients at 400 Hz, with 143,328 being 10-
second recordings. After excluding recordings with missing values, we have 43,240 ECGs from Chapman
and Ningbo and 130,900 ECGs from CODE-15.

4.2 Downstream Datasets

We use the PTB-XL (Wagner et all [2020) and CPSC2018 (Liu et all |2018|) datasets to evaluate the
performance of ECG-JEPA on downstream tasks. PTB-XL contains 21,837 clinical 10-second 12-lead ECG
records from 18,885 patients, recorded at 500 Hz and annotated with 71 diagnostic statements, which are
aggregated into five diagnostic superclasses. We use these superclass labels for our experiments. The
CPSC2018 dataset includes 6,877 12-lead ECG recordings with nine annotated cardiac conditions. These
datasets are multi-label in nature, where each recording can have multiple labels simultaneously. The details
of the datasets are provided in Appendix

4.3 Architecture

Our model employs transformer encoder architectures for the student, teacher, and predictor networks.
Both the teacher and student networks consist of 12 layers with 16 attention heads and a hidden dimension
of 768. The predictor network, designed as a smaller transformer encoder, comprises 6 layers with 12
attention heads and a hidden dimension of 384. While the teacher and student networks process the multi-
lead ECG data holistically, the predictor operates on each lead independently to reconstruct the masked
representations. Importantly, this does not imply that the predictor relies solely on single-lead information
for the reconstruction task; due to the self-attention mechanism, the input representations for each lead still
encapsulate information from all leads.

4.4 Downstream Tasks

We conduct extensive experiments to show that ECG-JEPA effectively captures semantic representations. Its
performance is evaluated on classification tasks using linear probing and fine-tuning. Furthermore, we assess
its capability in low-shot learning settings, as well as under reduced-lead conditions where the downstream
dataset is limited to single or two leads. Reduced-lead configurations are common in clinical practice,
especially in scenarios like wearable devices or remote monitoring, where using the full 12-lead ECG setup
is impractical.

To validate the expressiveness of the learned representations, we predict key ECG features such as heart
rate and QRS duration. Notably, this work is the first to show that these learned representations can
recover a variety of ECG features. The ability to predict these features highlights the informativeness of the
representations and their potential to capture clinically relevant characteristics, which is crucial for reliable
ECG analysis.
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Table 1: Linear evaluation on multi-label and multi-class tasks. Our proposed method outperforms
all baselines, achieving the highest AUC and F1 scores across both tasks and datasets.

Multi-label Task Multi-class Task

Method Epochs PTB-XL CPSC2018 PTB-XL CPSC2018

AUC F1 AUC F1 AUC F1 AUC F1
ST-MEM 800 0.880 0.640 | 0.963 0.756 | 0.866 0.528 | 0.973 0.752
SimCLR 300 0.866 0.624 | 0.890 0.523 | 0.842 0.496 | 0.918 0.624
CMSC 300 0.802 0472 | 0.767 0.206 | 0.796 0.442 | 0.787 0.391
CPC 100 0.620 0.167 | 0.687 0.091 | 0.600 0.201 | 0.672 0.210
MoCo v3! 800 - - - - 0.739  0.142 | 0.712  0.080
MTAE! 800 - - - - 0.807 0.437 | 0.818 0.349
MLAE! 800 - - - - 0.779 0.382 | 0.794 0.263
ECG-JEPA,, 100 0.906 0.690 | 0.969 0.769 | 0.894 0.616 | 0.974 0.805
ECG-JEPA,,,; 100 0.912 0.712 | 0.971 0.789 | 0.896 0.628 | 0.973 0.819

1 Scores reported in [Na et al.| (2024); results for multi-label tasks were not available.

ECG datasets, such as PTB-XL and CPSC2018, often include multiple simultaneous labels for a single
recording, making them multi-label tasks. However, many prior studies have simplified this into a multi-class
classification problem by excluding samples having more than one labels. To ensure a fair comparison, we
pretrain competing methods using publicly available code and evaluate them on the multi-label classification
task. In cases where the code is unavailable, we will convert our task into a multi-class problem to align
with the reported performance in the literature.

5 Experiments

In this section, we evaluate the performance of the learned representations across various downstream tasks
to demonstrate their generalizability and ability to capture essential ECG features. ECG-JEPA is compared
against several state-of-the-art self-supervised learning (SSL) methods.

For classification tasks, we use AUC (Area Under the ROC Curve) and F1 scores as evaluation metrics. AUC
provides a comprehensive measure of discriminative ability by considering performance across all classification
thresholds, making it more robust to variations in decision boundaries. In contrast, the F1 score balances
precision and recall at a fixed threshold, offering insights into the model’s performance when a specific
decision boundary is chosen.

In multi-label classification, we compute AUC by averaging the scores from binary classification for each
label, while for multi-class classification, AUC is calculated using the one-vs-rest approach. For both tasks,
F1 scores are macro-averaged across all classes to ensure equal weighting of each class in the final score.

In most cases, ECG-JEPA consistently outperforms other SSL methods that rely on hand-crafted augmen-
tations, highlighting its effectiveness in learning generalizable representations. In our experiments, ECG-
JEPA,, and ECG-JEPA,,;, refer to ECG-JEPA models trained using random masking and multi-block mask-
ing strategies, respectively.

5.1 Linear Evaluation

Table[I]present the results of our linear evaluation on the PTB-XL and CPSC2018 datasets. We train a linear
classifier on top of the frozen representations for 10 epochs and evaluate its performance on downstream tasks.
Further training beyond 10 epochs does not lead to any significant improvement in performance. As shown
in the tables, ECG-JEPA consistently outperforms other SSL methods, demonstrating superior efficiency
and effectiveness with substantially reduced computational resources.
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Table 2: Reduced lead evaluation. Linear evaluation of PTB-XL multi-label classification in single-leade (II)

and dual-lead (II and V1).

1-Lead 2-Lead
Method AUC F1 AUC F1
ST-MEM 0.832  0.571 | 0.840 0.573
ECG-JEPA,, 0.846 0.596 | 0.877  0.647
ECG-JEPA,,, | 0.849 0.593 | 0.880 0.657

Table 3: Low-shot linear evaluation on the multi-label PTB-XL. The mean and standard deviation of macro
AUCs are reported for 1% (192 samples) and 10% (1923 samples) of the training set, selected three times

independently.
PTB-XL
Method Epochs 1% 10%
ST-MEM 800 0.807 + 0.003 0.858 £+ 0.001
SimCLR 300 0.803 £+ 0.002 0.843 £ 0.001
CMSC 300 0.750 = 0.008 0.792 4+ 0.001
CPC 100 0.523 + 0.006 0.560 £+ 0.005
ECG-JEPA,, 100 0.836 £ 0.006 0.887 £ 0.000
ECG-JEPA,,; 100 0.843 + 0.004 0.894 + 0.003

5.2 Reduced Lead Evaluation

To evaluate ECG-JEPA’s performance under reduced input settings, we leveraged the flexibility of trans-
former architectures to handle variable input lengths. In this experiment, we conducted a linear evaluation
on the PTB-XL multi-label task using only a single lead (Lead II) and two leads (Lead II and V1), training
linear classifiers on the learned representations for 10 epochsﬂ Table |2 presents the results. Notably, ECG-
JEPA maintains strong performance even with fewer leads, which is valuable for practical applications in
mobile health monitoring, where most devices typically output only one or two leads.

5.3 Low-shot Linear Evaluation

Table [3| presents the performance comparison on the low-shot task. Low-shot learning is particularly chal-
lenging, as models must generalize effectively with limited labeled data. Given the difficulty and resource-
intensive nature of obtaining labeled data in medical research, low-shot learning represents a realistic and
critical scenario in the medical field. In this experiment, we evaluate the performance of ECG-SSL mod-
els on the PTB-XL multi-label task with only 1% and 10% of the training set, while keeping the test set
fixed. As shown in the table, ECG-JEPA demonstrates a clear advantage over other SSL methods, with its
effectiveness becoming particularly evident in low-shot learning tasks. This suggests that ECG-JEPA can
be particularly well-suited for transfer learning where labeled data is scarce.

5.4 ECG Feature Extraction

Extracting ECG features is crucial for diagnosing and monitoring cardiac conditions. In this experiment,
we assess the model’s ability to extract key features such as heart rate and average QRS duration from the
learned representations. Unlike classification tasks, which focus on perceptual patterns, ECG features are
directly tied to the signal’s morphology.

Various methods exist for segmenting ECG signals (Sereda et al., 2019; [Moskalenko et all [2020; |Chen et al.
2023} |Joung et all [2024)), which can be used to extract ECG features. For this experiment, we utilized a
publicly available segmentation model (Joung et al.l|2024) to generate ground truth labels for heart rate and
QRS duration from the PTB-XL dataset.

1We compare only with ST-MEM, as it is a transformer-based model whose pretrained weights are publicly available.
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Table 4: ECG feature prediction results on PTB-XL multi-lable test set. The mean heart rate and QRS
duration in the test set are 70.01 BPM (£17.65) and 90.48 ms (+17.02), respectively.
Mean Absolute Error

Method Heart Rate (BPM) | QRS Dur. (ms)
ST-MEM 1.48 + 2.70 4.94 £ 4.54
SimCLR 1.87 + 2.81 6.14 + 5.80
CMSC 7.20 + 7.43 10.12 + 9.98
CpPC 11.40 + 11.04 11.55 £+ 11.55
ECG-JEPA,,; 1.54 + 2.62 4.81 + 4.29
ECG-JEPA,,; 1.45 + 2.44 4.41 + 4.08

To compute the heart rate, the segmentation model identifies R peaks and calculates the average RR interval
across the ECG signal. The heart rate is then derived using the formula 1000 x (60/avg RR interval), where
the RR interval is expressed in milliseconds.

For an average QRS duration, the segmentation model detects the onset and offset of each QRS interval
within the ECG. The duration of each QRS interval is computed as the difference between its offset and
onset. The average QRS duration is then calculated as the mean of all detected QRS duration. We then
trained a linear regression model on the learned representations to predict these features, using mean squared
error (MSE) as the loss function.

Table [] shows the performance comparison, reporting the means and standard deviations of the absolute
differences between the predicted and extracted values for the heart rate and QRS duration across the
PTB-XL test set.

5.5 Robustness Under Noise

The robustness of the proposed model was further evaluated across varying noisy conditions. Specifically, the
model’s performance was compared in three scenarios: (1) with basic preprocessing steps applied to remove
noise (high-pass and low-pass filtering; noise level 0), (2) without preprocessing, retaining the inherent noise
present in raw signals (noise level 1), and (3) with artificially introduced noise (noise level 2).

To simulate realistic noise, we incorporated two common
ECG artifacts: baseline drift and powerline interference.
These artifacts were generated using mathematical mod-
els to evaluate the model’s performance under challenging

Linear Evaluation on PTB-XL

conditions. Detailed explanations of the preprocessing 092 :ts
steps and the artificial noise generation are provided in 090
Appendix [B.4] 088 @ e
o— —e— PN
Figure [7] presents the performance of the top four models S 086
on the PTB-XL multi-label task. Notably, both ECG- < 0.84
JEPA and SimCLR demonstrate considerable robustness 0.82 ® ECG-JEPA (mb)
even under severe noise conditions (noise level 2), whereas 0.80 8 Eﬁ%éﬂw )
the performance of ST-MEM drops significantly. This 0.78 @ SimCLR ®

disparity can possibly be attributed to the fundamental 0 1 2
differences in their approaches: ECG-JEPA and SimCLR Noise Level

are latent representation prediction models. In contrast,
ST-MEM focuses on reconstructing the raw signal itself,
making it more susceptible to noise. However, further
investigation is required to confirm this hypothesis and to
better understand the underlying factors contributing to
noise robustness.

Figure 7: Performance comparison under
varying noise levels on the PTB-XL multi-
label task.
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Table 5: Fine-tuning on multi-class task.

PTB-XL CPSC2018
Method Epochs AUC F1 AUC F1
Supervised 100 0.887 0.608 | 0.893  0.566
MoCo v3! 800 0.913 0.644 | 0.967 0.838
MTAE! 800 0.910 0.613 | 0.961 0.769
MLAE! 800 0.915 0.625 | 0.973 0.816
CMSC! 800 0.877 0.510 | 0.938 0.717
ST-MEM 800 0.929 0.668 | 0.977 0.820
SimCLR 300 0.905 0.650 | 0.934 0.693
CPC? 100 - - - -
ECG-JEPA,, 100 0.944 0.710 | 0.980 0.821
ECG-JEPA,,,; 100 0.937 0.680 | 0.983 0.799

1 Scores reported in [Na et al.| (2024).
2 We did not fine-tune CPC due to its slow training process.

Table 6: Effect of CroPA. Linear evaluation (lin) and fine-tuning (ft) results on PTB-XL multi-class task.

lin ft
Mask CroPA | Epochs | AUC | AUC
Random X 100 0.888 | 0.930
Random 200 0.887 | 0.927
Random 100 0.894 | 0.944

Multi-block
Multi-block
Multi-block

100 0.872 | 0.924
200 0.886 | 0.914
100 0.896 | 0.937

O M X|O wW

5.6 Fine-tuning

Fine-tuning is another method to evaluate the quality of learned representations, as it tests the model’s
ability to adapt its pre-trained features to new tasks. We add a linear classification head at the end of the
encoder and train the entire network for 10 epochs. Similar to linear evaluation, training for 10 epochs is
sufficient, as further training does not lead to additional performance gains. Fine-tuning can potentially
enhance performance beyond what is achieved with linear evaluation alone.

To further boost performance during fine-tuning, we applied preprocessing steps, including high-pass and
low-pass filtering, to mitigate common ECG artifacts such as baseline drift and powerline interference noise.
These steps ensure cleaner input signals, enabling the model to fully exploit its learned representations and
achieve optimal performance.

Table [5| presents the results of fine-tuning on the PTB-XL and CPSC2018 datasets. ECG-JEPA is compared
with other SSL methods as well as supervised methods in a multi-class classification setting, where the student
network is trained directly from the scratch. The results indicate that ECG-JEPA achieves the highest AUC
and F1 scores on PTB-XL and the highest AUC on CPSC2018.

5.7 Effect of CroPA

Table [6] presents the results of our evaluation of the effectiveness of CroPA. CroPA introduces a “human-
like" inductive bias, enabling the model to be trained more efficiently on multi-lead ECG data. Without
CroPA, models may require more epochs to converge. For a fair comparison, we trained ECG-JEPA with
and without CroPA for 100 and 200 epochs and compared their performance on the PTB-XL multi-class
task. The results show that CroPA improves the model’s performance, demonstrating its effectiveness in
capturing inter-lead relationships and enhancing the model’s ability to learn meaningful representations.
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Figure 8: UMAP visualization of ECG representations (NSR and AFib) from the PTB-XL test set.

6 Visualization of ECG Representations

Dimensionality reduction techniques enable the visualization of high-dimensional datasets, providing valuable
insights into uncovering hidden patterns within complex data. UMAP (Mclnnes et all |2018]), a widely used
non-linear dimensionality reduction method, balances local versus global structure in the data.

In this section, we employ UMAP to visualize two prominent rhythm categories from PTB-XL: normal sinus
rhythm (NSR) and atrial fibrillation (AFib). These labels comprise 16,687 samples (train: 15,021; test:
1,666) and 1,514 samples (train: 1,335; test: 149) in the rhythm category, respectively. See Appendix
for further explanation on the dataset. SR is characterized by a regular rhythm and a single P wave for each
QRS complex, whereas AFib is characterized by irregular and often rapid heart rhythms. Although AFib is
not directly related to diagnostic statements of the heart, it significantly increases the risk of stroke, heart
failure, and other cardiovascular complications.

Figure [§] illustrates the UMAP projection of the NSR and AFib samples from the test set, where UMAP is
fitted on SR and AFib samples from the train set. The majority of NSR ECGs (orange) and AFib ECGs
(blue) are well-separated in the 2D space, though a few samples overlap with different clusters. These patterns
highlight the need for further exploratory data analysis to better understand the structure and quality of the
dataset. Notably, overlapping samples or outliers in unexpected clusters may indicate mislabeled instances.
Such cases are examined in detail in Appendix [D] to identify opportunities for enhancing the dataset’s
quality. This analysis demonstrates the potential of our model to aid in refining large-scale clinical datasets
by uncovering hidden data issues.

7 Conclusion

We proposed ECG-JEPA, an effective SSL method tailored for 12-lead ECG data. By utilizing latent space
prediction architecture coupled with the innovative masked self-attention mechanism, CroPA, ECG-JEPA
effectively learns meaningful representations of ECG signals. This approach addresses the challenges posed
by noise and artifacts in ECG data, demonstrating substantial improvements over existing SSL methods in
various downstream tasks, with the added benefit of significantly faster convergence.

Our extensive experimental evaluations reveal that ECG-JEPA outperforms state-of-the-art SSL methods
across several tasks, including linear evaluation, fine-tuning, low-shot learning, and ECG feature extraction.
Moreover, our investigation into the use of 8 leads, as opposed to the full 12-lead ECG, indicates that
this reduction does not compromise performance while optimizing computational efficiency. This finding is
particularly significant for applications constrained by limited computational resources.
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Appendix
A Ablation Study

A.1 Masking Ratio

Table [7] presents the performance of ECG-JEPA in linear evaluation with different masking ratios and
strategies. The results indicate that the model benefits from a high masking ratio. Notably, multi-block
masking is advantageous for linear evaluation, while random masking is more effective for fine-tuning, as
indicated in Table [} Although random masking with a ratio of (0.7, 0.8) achieves better performance in the
PTB-XL multi-label task, a masking ratio of (0.6, 0.7) performs better in other tasks. Therefore, we chose
the latter for our main experiments.

Table 7: Effect of masking strategy. Linear evaluation results on PTB-XL multi-label task using different
masking ratios and strategies.

Mask Ratio Freq. | AUC F1
Random (0.3, 0.4) 1 0.884 | 0.652
Random (0.4, 0.5) 1 0.904 | 0.698
Random (0.5, 0.6) 1 0.906 | 0.697
Random (0.6, 0.7) 1 0.906 | 0.690
Random (0.7, 0.8) 1 0.909 | 0.706

Multi-block | (0.10,0.15) | 4 | 0.904 | 0.678
Multi-block | (0.15,0.20) | 4 | 0.905 | 0.687
Multi-block | (0.175, 0.225) 4 0.912 | 0.712

A.2 Comparison with 12-Lead Model

We now investigate the practical sufficiency of using 8 leads for ECG-JEPA pretraining. To evaluate the
impact of this reduction, we trained models using both 8 leads and 12 leads and compared their performance
on the linear evaluation of a multi-label task for PTB-XL.

Table [§] presents the results of this comparison using ECG-JEPA,;,. As expected, the performance difference
between the 8-lead and 12-lead models is minimal, indicating that using 8 leads is sufficient for effective
pretraining without significant loss of information.

Table 8: Comparison of 8-Lead and 12-Lead Models on PTB-XL multi-label.
Model ‘ epochs ‘ AUC ‘ F1
8-Lead 100 0.906 | 0.690

12-Lead 100 0.905 | 0.699

B Experimental Details

B.1 Downstream Datasets Details

Tables [0] and show the distribution of the PTB-XL diagnostic, thythm, and CPSC2018 datasets,
respectively. Note that the sum of samples in each class exceeds the total number of ECG recordings in
multi-label task.

In PTB-XL dataset, ECG records are provided with multiple ECG statements out of a set of different 71
statements, which are aggregated in three label categories: diagnostic, form, and rhythm labels. In this
paper, we use diagnostic and rhythm labels for experiments. Diagnostic labels represent pathological con-
ditions based on the overall interpretation of ECGs. Rhythm labels focus specifically on temporal patterns,

16



Under review as submission to TMLR

Table 9: PTB-XL Diagnostic Category Distribution.

Type Set | # ECG Norm MI STTC CD HYP
Total | 21799 9514 5469 5235 4898 2649
Multi-label | Train | 19230 8551 4919 4714 4402 2387
Test 2158 963 550 521 496 262
Total 16244 9069 2532 2400 1708 535
Multi-class | Train 14594 8157 2276 2158 1524 479
Test 1650 912 256 242 184 56

Table 10: PTB-XL Rhythm Category Distribution.

Type Set | # ECG NSR AFib Others
Total | 21030 16748 1514 2912
Multi-label | Train 18932 15074 1362 2625
Test 2098 1674 152 287
Total | 20887 16687 1484 2716
Multi-class | Train | 18804 15021 1335 2448
Test 2083 1666 149 268

distinguishing them from diagnostic labels and complementing them by capturing unique aspects of cardiac
activity.

The PTB-XL dataset is stratified into ten folds, where the first eight folds are used for training, the ninth
fold for validation, and the tenth fold for testing. In our experiments, we used the first nine folds for training
and the tenth fold for testing, as we did not observe overfitting during linear evaluation and fine-tuning.

For the CPSC2018 dataset, only the training set is publicly available, which is stratified into seven folds. We
used the first six folds for training and the seventh fold for testing, omitting the validation set. The original
CPSC2018 dataset consists of 6,877 ECG recordings, but we excluded recordings with a length of less than
10 seconds, resulting in 6,867 ECG recordings.

B.2 Hyperparameters for ECG-JEPA

Hyperparameters for ECG-JEPA pretraining, linear evaluation, and fine-tuning are provided in Tables
[ and respectively. In ECG-JEPA,,,;, the number of visible patches in ECG-JEPA,,;, varies more than
in ECG-JEPA,, resulting in higher GPU memory usage. Consequently, we reduced the batch size to 64 to
fit the model on a single NVIDIA RTX 3090 GPU. Interestingly, ECG-JEPA,,,; benefits from larger learning
rates, even with the halved batch size.

For fine-tuning process, the actual learning rate is calculated as ir = base_ Ir x batchsize/256, following the
heuristic by |Goyal et al.|(2018).

Figure 9: Linear Evaluation Settings Figure 10: Fine-tuning Settings

config value config value
optimizer AdamW optimizer AdamW
learning rate 0.01 base learning rate 1.0e-4
weight decay 0.05 weight decay 0.05
batch size 32 batch size 16

learning rate schedule
warmup epochs
epochs

cosine decay
3
10

17

learning rate schedule
warmup epochs
epochs

cosine decay
3
10
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Table 11: CPSC2018 Distribution.
Type Set # ECG Norm PVC AF LBBB STE 1AVB PAC STD RBBB

Total 6867 918 1220 235 220 721 614 699 868 1854
Multi-label | Train 5989 805 1059 206 197 632 534 615 742 1616
Test 878 113 161 29 23 89 80 84 126 238
Total 6391 918 975 178 185 685 531 606 783 1530
Multi-class | Train 5577 805 849 159 169 600 459 534 671 1331
Test 814 113 126 19 16 85 72 72 112 199

Table 12: Pretraining Settings for ECG-JEPA.

config ECG-JEPA,;, | ECG-JEPA 1,
optimizer AdamW AdamW
learning rate 2.5e-5 5e-b

weight decay 0.05 0.05

batch size 128 64

learning rate schedule | cosine decay | cosine decay
warmup epochs 5 5

epochs 100 100

drop path 0.1 0.1

B.3 Hyperparameters for Other Pretrained Models

Besides pretraining ECG-JEPA, we also pretrained other models, including CMSC (Kiyasseh et al., 2021)),
CPC (van den Oord et al.; 2019), and SimCLR (Chen et al., 2020) using the same datasets as ECG-JEPA.

For CMSC and CPC, we adhered to the original architecture and hyperparameters. SimCLR utilized a
ResNet50 (He et al., [2016) encoder with an output dimension of 2048. CMSC and SimCLR were pretrained
for 300 epochs, selecting the best checkpoint at 100, 200, or 300 epochs based on linear evaluation performance
on the PTB-XL multi-label setting. Due to the slow training process, CPC was pretrained for only 100
epochs, taking approximately 9 days on a single NVIDIA RTX 3090 GPU due to the LSTM module in the
model. For ST-MEM, we employed the publicly available checkpoint pretrained for 800 epochs.

Given SimCLR’s sensitivity to data augmentations, we applied several that work well empirically: base-
line shift (adding a constant to all leads), baseline wander (low-frequency noise), Gaussian noise (random
noise), powerline noise (50 Hz noise), channel resize, random crop, and jump noise (sudden jumps). These
augmentations aimed to enhance the robustness of the model to various signal distortions.

B.4 Noise Generation and Preprocessing for ECG Signals

To evaluate the pretrained models’ robustness under noise (Section , we preprocess ECGs to generate
noise-removed data, and we add artificial noise to ECGs to generate ECGs with strong noise. Specifically, we
apply high-pass and low-pass filters with cutoff frequencies 0.67 Hz and 40 Hz, respectively. This effectively
removes both baseline drift and powerline interference noise.

While applying filters for noise removal is both straightforward and effective, generating realistic noise is
more complex. Following Lenis et al.| (2017)), we use the following mathematical model to generate realistic

baseline drift:
K

b(t):C'Zak‘COS(QW'k'Af~t+¢)k)

k=0

with Af = fs/N = 0.1 Hz, where fs = 250Hz is the sampling frequency and N = 2500 is the total number
of time steps. Additionally, K = 5 represents the number of sinusoidal components, the amplitude coefficient
ay, is randomly sampled from a uniform distribution [0, 1], while the phase ¢y, is randomly drawn from the
interval [0, 27). We use the scaling factor C = 0.5.
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Filtered

Baseline Nois

Figure 11: Visualization of ECG signals under the effect of filtering and added noise conditions. Note that
the original signal contains both mild baseline and powerline noise.

For powerline interference, we follow a noise generation approach inspired by [Friesen et al.| (1990). The
powerline noise is modeled as a sum of sinusoidal components, including a base frequency f,, = 50 Hz and
its higher harmonics. Specifically, given a sampling frequency f; = 250Hz and signal length N = 2500
timesteps, the noise is computed as:

K

s(t)=C-> ay - cos (2nkfat + ¢)

k=1

where C' = 0.5 is a scaling factor, aj are random amplitude coefficients uniformly sampled from [0, 1], and ¢
is randomly drawn from [0,27). K = 3 specifies the number of higher harmonics considered.

Both types of noise were applied to all samples in the training and test sets with a probability of 0.5, and
identical noise was added across all 8 leads.

Figure illustrates the impact of high-pass and low-pass filtering, as well as the effect of added noise,
highlighting how these artifacts distort the ECG signal and how preprocessing can restore its structure.

B.5 Software Used in the Experiments

All experiments were conducted using Python 3.10 on an Ubuntu 20.04 operating system. The primary
framework utilized was PyTorch 2.3 for model implementation and training, with CUDA 11.8 for GPU
acceleration.

C Exponential Moving Average

The teacher network is initialized as a copy of the student network and is updated using an exponential
moving average (EMA) of the student’s weights. The EMA is computed as follows:

. i1 .
zeacher = Bie:eacher + (]‘ - ﬂl) ;tudent

where i denotes the current training iteration, and 3; is a momentum parameter that evolves during training.
The momentum parameter 5; is computed as:

i+ (emaj — emag)

; = emag +
A 0 iterations_per__epoch - epochs

Here, emay and ema; represent the initial and final values of the momentum parameter, respectively. For
our implementation, emag = 0.996 and ema; = 1.0.
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Figure 12: Comparison of NSR and AFib signals in leads I, IT, and V1. (a) NSR demonstrates a regular
heart rhythm with clear P waves. (b) AFib exhibits an irregular heart rhythm with the absence of P waves.

D Case Analysis of UMAP Embeddings

In this section, we analyze individual ECG samples that are embedded in clusters different from their
expected categories in the UMAP visualizations presented in Section [f] These cases include normal sinus
rhythm (NSR) samples located within atrial fibrillation (AFib) clusters and AFib samples found in NSR
clusters. Such occurrences provide valuable insights into the model’s learned representations and highlight
the challenges posed by atypical or borderline samples.

NSR typically exhibits a regular heart rhythm with distinct P waves preceding each QRS complex. In
contrast, AFib is characterized by an irregular rhythm, the absence of discernible P waves, and the presence
of fibrillatory waves—irregular, rapid oscillations of the baseline. Figureconsists of (a) an example of NSR
and (b) an example of AFib, illustrating the characteristic differences between the two. However, certain
samples in the UMAP embeddings deviate from these standard definitions. To further understand these
cases, we review the ECG signals of selected samples from each scenario.
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D.1 NSR Samples in AFib Clusters

Figure shows an example of an NSR signal that is embedded in the AFib cluster. Upon inspection,
this signal reveals irregularities in rhythm, and P waves are missing in leads V2-V6. These features, while
atypical for NSR, may explain why the model’s representation aligns this signal with the AFib cluster.

V2

V3

va

V5

V6

—
f—

Figure 13: Example of an NSR signal embedded in the AFib cluster. The signal exhibits irregular rhythm
and missing P waves in leads V2-V6, deviating from typical NSR characteristics.
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D.2 AFib Samples in NSR Clusters

Conversely, Figure illustrates an AFib signal that is embedded in the NSR cluster. While this signal
shows fibrillatory waves in leads III, and V1, the rhythm is regular and P waves are visible. This partial
resemblance to NSR may have caused the model to assign it to the NSR cluster.
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Figure 14: Example of an AFib signal embedded in the NSR cluster. The signal shows irregular P waves
but exhibits a rhythm that mimics NSR to some extent.

D.3 Implications of Atypical Cases

The presence of these atypical cases underscores the complexity of real-world ECG classification. Such
samples may reflect physiological conditions that do not strictly align with the standard definitions of NSR
or AFib, highlighting the potential for borderline or transitional states. Additionally, these cases might
indicate mislabeled data, which is not uncommon given the inherent complexity of ECG interpretation.

Our analysis demonstrates that the model’s learned representations are valuable not only for classifying
typical cases but also for identifying and interpreting atypical cases. By examining UMAP embeddings, the
model provides insights into ambiguous samples and helps uncover potential labeling inconsistencies. This
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capability is particularly useful, as it can contribute to improving dataset quality by detecting and addressing
mislabeled or borderline cases.
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