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Abstract

When personalized federated learning (FL) meets large foundation models, new
challenges arise from various limitations in resources. In addition to typical
limitations such as data, computation, and communication costs, access to the
models is also often limited. This paper endeavors to solve both the challenges of
limited resources and personalization. i.e., distribution shifts between clients. To
do so, we propose a method named ZOOPFL that uses Zeroth-Order Optimization
for Personalized Federated Learning. ZOOPFL avoids direct interference with
the foundation models and instead learns to adapt its inputs through zeroth-order
optimization. In addition, we employ simple yet effective linear projections to
remap its predictions for personalization. To reduce the computation costs and
enhance personalization, we propose input surgery to incorporate an auto-encoder
with low-dimensional and client-specific embeddings. We provide theoretical
support for ZOOPFL to analyze its convergence. Extensive empirical experiments
on computer vision and natural language processing tasks using popular foundation
models demonstrate its effectiveness for FL on black-box foundation models. 1

1 Introduction

In recent years, the growing emphasis on data privacy and security has led to the emergence of
federated learning (FL) [86, 12, 13, 9, 62, 35]. FL enables collaborative learning while safeguarding
data privacy and security across distributed clients [97]. However, FL faces two key challenges:
limited resources and distribution shifts (Figure 1 (a, b)).

The rise of large foundation models [5] has amplified these challenges. The computational demands
and communication costs associated with such models hinder the deployment of existing FL ap-
proaches (Figure 1a). 2 Most of them require fine-tuning the models on every client.3 Moreover,
foundation models, often proprietary [77, 69], grant only black-box access, making FL resource-
efficient applications a pressing research area.

Recent efforts in FL [93, 103, 16, 37] have attempted to reduce the number of optimized parameters
to minimize computational and communication costs. As illustrated in Figure 1 (c), existing methods
use prompts [45] or adapters [7] to fine-tune foundation models [93]. Other approaches [99, 44] focus
on limiting the number of communication rounds. All of them however depend on white-box access

∗Equal contribution. † Corresponding author(jindongwang@outlook.com).
1Our code is available at https://anonymous.4open.science/r/zoopfltest-FC21.
2Communication costs can be estimated as C = p×K × T , where p, T , K respectively denote the number

of parameters, rounds, and clients. With GPT-3 for example [6], p = 175 billion parameters, making the
communication of entire models impractical.

3Training GPT-2-small [61] requires at least two A100 GPUs for 16 hours, a resource unavailable to many.
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(d) Our proposed ZOOPFL
Figure 1: ZOOPFL addresses federated learning with foundation models while coping with limited
resources in communication, computation, and model accessibility (a) and being robust to distribution
shifts (b). Most existing methods rely on white-box model access (c). ZOOPFL is applicable to
black-box models by using input surgery and semantic output re-mapping (d).

Table 1: Comparisons of different methods.
Type Method Model scale Model accessibility Communication Computation Personalization

Base FedAVG Limited White-box Inefficient High Unsupported
FedBN Supported

Large model for FL FedPrompt, FedCLIP Unlimited White-box Efficient Low SupportedPromptFL, pFedPG High

Zero-order for FL FwdLLM, BAFFLE Unlimited White-box Efficient Low SupportedFedZO Limited

Model reprogramming Reprogrammable-FL Unlimited White-box Efficient High Supported

Black-box foundation FL ZooPFL (Ours) Unlimited Black-box Efficient Low Supported

to the foundation models. Moreover, distribution shifts are an additional challenge for FL since the
data across clients is not necessarily i.i.d. [39, 78] (Figure 1b). Directly aggregating information e.g.,
with FedAVG [53] often results in slow convergence and poor performance in each client [25]. Some
methods have been designed to address the personalization of large foundation models [40, 65, 92].
However, they cannot deal with black-box models. The method proposed in this paper is designed to
cope with label shift, i.e. variations in the distribution of labels among clients (Figure 1b).

In this paper, we propose ZOOPFL to cope with limited resources and personalization for federated
learning and black-box foundation models. To cope with black-box models, ZOOPFL proposes two
strategies, input surgery and semantic re-mapping, and learning through zeroth-order optimization
(ZOO). To reduce the computational costs of ZOO and share information among clients, we employ an
auto-encoder with low embedding dimensions to represent transformations. For better personalization,
the client-specific embeddings and semantic re-mapping are preserved by each client. Figure 1 (d)
illustrates that our proposed method learns transformations on the inputs and mappings of the outputs
through zeroth-order optimization [46, 84, 42]. This bears similarities with model reprogramming
[15] and Reprogrammable-FL [2], but the latter is unsuitable for black-box models and personalization.
To the best of our knowledge, our method is the first to achieve federated learning with large black-box
models, a challenging setting that is becoming increasingly relevant to the real world.

In summary, our contributions are four-fold.

1. Scenario Exploration: We delve into the challenges posed by fully black-box foundation
models in FL. Our contribution lies in understanding and navigating this complex scenario.

2. ZOOPFL Framework: We introduce ZOOPFL, a comprehensive solution tailored for FL in
resource-constrained and personalized settings. This framework encompasses input surgery and
semantic re-mapping. ZOOPFL employs strategic input manipulations, leveraging dedicated
embeddings, and employing zeroth-order optimization while it project outputs for specific task
and personalization.

3. Theoretical Support: We provide theoretical support, enhancing ZOOPFL’s credibility and
offering insights into its workings.

4. Empirical Validation: ZOOPFL is rigorously evaluated through computer vision and natural
language processing experiments, demonstrating the effectiveness and versatility of ZOOPFL.

2 Preliminaries

2.1 Black-box Federated Learning with Large Foundation Models

What is the setting? Foundation models can be viewed as black-box that can only provide the
outputs according to inputs. It is not allowed to access any internal information on the foundation
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models, which means, no backpropagation is allowed. Each client preserves the same foundation
model locally. We do not consider the storage of large models and the additional costs associated
with inference. We aim to utilize large black-box foundation models for better personalized FL. 4

Why is it practical? To make the best of large foundation models, we can either fine-tune/adapt
the models in their own data or perform FL on the cloud. Therefore, the value of our work lies
primarily in two aspects. On the one hand, fine-tuning or adapting locally is extremely expensive.
Fine-tuning on client side requires high computation and communication costs. Moreover, foundation
model providers are not willing to share all information of model resources and it is a possible way
that they can provide foundation models in an encrypted form. On the other hand, FL on the cloud is
not the ideal solution. One cannot trust the cloud providers by uploading all the training data to the
cloud. So, the best practice is to perform computation locally. Combining the above situations. i.e.,
updating models locally with low cost, one can conclude that our proposed black-box FL is the only
solution. Specifically, note that "black-box" does not only mean we do not have model access; it is a
more broad technique for model update when local BP cannot be performed due to large model sizes.
In this situation, our proposed method is a preliminary attempt and exploration.

3 Methodology

In this section, we articulate our proposed ZOOPFL. We begin with problem formulation in Sec. 3.1.
Then, we show the motivation of designing ZOOPFL in Sec. 3.2. Next, Sec. 3.3 introduces the details
of our approach. Finally, we propose some discussions in section 3.4.

3.1 Problem Formulation

We assume there are n different clients {C1, · · · , Cn} in personalized federated learning scenarios.
Each client Ci has its own data Di = {xi,j , yi,j}ni

j=1 where ni means the number of data in the ith
client. Data in different clients have different distributions, i.e. P (Di) ̸= P (Dj). In the personalized
FL setting, there exists the same black-box large foundation model in each client, g, which we
know nothing inside and can only obtain logit outputs with fixed-size inputs. Our goal is to achieve
personalized (i.e., satisfying) performance with black-box foundation models on each client by
learning a significant transformation si on inputs and a re-mapping ri on outputs without accessing g
for each client Di. Specifically, denote ℓ a loss function, the learning objective is:

min
si,ri

1

n

n∑
i=1

1

ni

ni∑
j=1

ℓ(ri(g(si(xi,j))), yi,j). (1)

3.2 Intuition

Input designs affect the performance of foundation models. Different representations with the
same inputs can induce foundation models to make completely different predictions, which illustrates
that adding interference or reconstructing inputs can be utilized for adaptation. However, most
methods that add interference are performed at the sample level [88, 8, 48, 2, 105, 24] , i.e. special
design for each sample, that are unsuitable to exchange information among clients and cannot cope
with unseen samples. Therefore, it is necessary to reconstruct samples via an auto-encoder to adapt
input with unchanged dimensions for foundation models. The exchange of auto-encoder parameters
can facilitate the sharing of input transformation information across different clients.

Semantic re-mapping generates more semantically meaningful logits. Although large foundation
models have been trained on a huge amount of samples [60], there still exists some classes or situations

4The real-life dilemma provided here illustrates the importance of direction. On the one hand, powerful
LLMs, such as GPT4 [1] and Gemini [19], only provide APIs, that can be viewed black-box [31]. The data
owners are unwilling to upload the raw data to APIs (Data processed by ZOOPFL might be able to be directly
uploaded as shown in section D.6). On the other hand, the model suppliers are reluctant to expose all information
about their models to others [73]. And clients usually cannot afford the back-propagation costs of LLMs. We
believe that encrypting large models into black boxes and running them locally, similar to software [71], may be
a solution. Therefore, we propose ZOOPFL, an initial exploration of this subdirection.
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Figure 2: The framework of ZOOPFL. Please note that communications occur during step 2.

that foundation models cannot cover [83]. However, these new scenarios or classes can be made
of existing fundamental elements or similar to some existing categories, which means foundation
models can be able to extract remarkable features.5 Considering layers between remarkable features
and final logits as random projecting, re-mapping outputs with a simple linear layer can achieve
acceptable performance similar to [32].

Design logic. Since access to foundation models is restricted, we have to rely on zeroth-order
optimization methods to train auto-encoders, which leads that directly operating on the outputs of
auto-encoders with high dimensions can exhaust unaffordable computational costs. To reduce the
costs, we fix decoders and compute differences on embedding with low dimensions. For better
personalization, we preserve semantic re-mapping in clients. Specifically, we preserve a client-
specific embedding, i.e., a simple one-dimensional vector, for each client, which can be concatenated
with embedding to generate adapted inputs with personalized characteristics.

3.3 ZOOPFL

In this paper, we propose ZOOPFL to learn input surgery and semantic re-mapping for black-box
large foundation models in federated learning. ZOOPFL aims to adapt inputs to models and project
outputs to meaningful semantic space. ZOOPFL mainly consists of three steps, namely, auto-encoder
pre-training, input surgery, and semantic re-mapping.6 Figure 2 shows the pipeline of our approach,
where Figure 2(a) describes the communications between clients and the server and Figure 2(b)
provides details on how to perform training on a local client.

The training process on a client is described as follows, where steps 2∼3 are iterative.

1. Auto-encoder pre-training: this step directly utilizes inputs to pre-train the auto-encoder which
then serves as the input surgery function.

2. Input surgery: this step only updates the encoder of auto-encoder and client-specific embeddings
to transform the input consistent with the foundation model.

3. Semantic re-mapping: this step endeavors to re-map logits into meaningful semantic spaces with
a simple linear projection.

Auto-encoder Pre-training. Before input surgery and semantic re-mapping that are assisted
by labels, ZOOPFL firstly utilizes inputs of samples to pre-train auto-encoders for better initial
understanding of client data and we will fix decoders in the next two steps. For client Ci, we denote

5Some popular language models such as BERT [20] and GPT-2 [61] in Huggingface utilize a random
projection between extracted features and logits.

6Note that the pre-training here is different from the pre-training of large foundation models such as self-
supervised pre-training. This step is much more efficient than pre-training a large foundation model since we
only train a little auto-encoder.
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ẑi as the ith client-specific embedding and si = oi ◦ qi where qi and oi represent the encoder and the
decoder respectively. This step is unsupervised and each client utilizes MSE loss to train local si:

ℓMSE = E(x,y)∼P(Di) ∥oi([qi(x), ẑi])− x∥22 , (2)

where [·, ·] denotes the concatenation operation. The updated encoder and decoder of each client
are then transmitted to the server. Similar to FedAVG [53], the server aggregates the collected
auto-encoders and distributes the aggregated one, s, to each client.

w(s) =
1

n

n∑
i=1

w(si), (3)

where w(s) represent parameters of s. We assume that all clients contribute equally and participate
in training. The above pre-training is iterative and we can obtain well-trained auto-encoders finally.

Input Surgery. After pre-training, input surgery optimizes encoders, qi, to transform inputs con-
sistent with foundation models. This step only exchanges encoders of clients to share common
knowledge while each client preserves a client-specific embedding to represent personalized knowl-
edge. In Figure 2, the foundation model, g, is black-box and the decoder is frozen. In the following,
we elaborate on the whole training process in local clients.

In client Ci, an input x is first fed into the encoder qi, generating an embedding vector z = qi(x).
Then we concatenate z with the client-specific embedding, ẑi, and obtain the final embedding feature,
z̃ = [z, ẑi], which is then sent to the decoder. Once processed by the decoder, we can obtain x̃ = oi(z̃)
with the same dimension as x, and then the adapted input, x̃, goes through the foundation model and
the re-mapping layer, which generates the final prediction, ỹ. We utilize the cross-entropy loss ℓcls to
guide the optimization:

ℓ1 = E(x,y)∼P(Di)ℓcls(ri(g(oi([qi(x), ẑi])), y). (4)

However, the above objective cannot be directly optimized using the standard stochastic gradient
descent since the foundation model g is frozen, preventing us from computing its gradient using
back-propagation. We adopt the zeroth-order optimization method, specifically, the coordinate-wise
gradient estimate (CGE), to learn qi and ẑi [102, 75, 47, 42, 26]. To make the process clear and easy
to understand, we freeze ri and view oi, g, and ri as a whole module, G, in this step.

Assume z ∈ Rd1 and ẑi ∈ Rd2 . According to CGE, by adding a perturbation to z̃, we obtain the new
embedding and the corresponding classification loss,

z̃1 = z̃+ ρej , ℓx,1 = ℓcls(ri(g(oi(z̃1, y)))), (5)

where ej = (0, 0, · · · , 1, 0, 0 · · · , 0) ∈ Rd1+d2 denotes the jth elementary basic vector and ρ is a
hyperparameter that describes the extent of the perturbation. Similarly, we can obtain z̃2 and ℓx,2.

z̃2 = z̃− ρej , ℓx,2 = ℓcls(ri(g(oi(z̃2, y)))). (6)

Then, we have the gradient of G w.r.t. z̃ computed as:

∇z̃G(z̃) = (∇z̃G(z̃)1,∇z̃G(z̃)2) ≈
d1+d2∑
i=1

ℓx,2 − ℓx,1
2× ρ

ej . (7)

For ẑi, we directly update it with corresponding parts of ∇z̃G(z̃) via a learning rate γ2, ẑi
new =

ẑi − γ2 ×∇z̃G(z̃)2 where ∇z̃G(z̃)2 denotes the last d2 dimensions of ∇z̃G(z̃). For ∇z̃G(z̃)1, we
can update qi with the chain rule for differentiation.

∇qiℓ1 =
dz̃

dqi

dG
dz̃

≈ dz

dqi
∇z̃G(z̃)1 ≈ d∇z̃G(z̃)1z

dqi
. (8)

Finally, we can update the encoder, w(qnewi ) = w(qi)− γ1 ×∇qiℓ1. Once all clients have updated
encoders, we can aggregate encoders in the server and then distribute the aggregated encoder:

w(q) =
1

n

n∑
i=1

w(qnewi ). (9)
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Semantic Re-mapping. In the last step, we train the encoder that enables the input consistent with
foundation models. Here, we perform semantic re-mapping similar to [32]. This step only occurs in
each client and no communication exists for simplicity and personalization. We view all parts before
ri as a whole module, F , with two functions, including extracting features and mapping extracted
features to a random space and we freeze F . These two functions correspond to artificial features and
the first layer in [32] respectively and we only update ri corresponding to the second layer of ELM:

ℓ2 = E(x,y)∼P(Di)ℓcls(ri(F(x)), y). (10)

Since this part is behind g, w(ri) can be updated directly.

3.4 Discussion

We perform step 2 and step 3 iteratively. There also exist other zeroth-order optimization methods,
e.g., the randomized gradient estimate (RGE) [46]. However, the concrete implementation of zeroth-
order optimization is not our focus and we thereby choose CGE for deterministic and stability [47].
We assume foundation models exist on clients in the form of encrypted assets and we do not upload
transformed inputs. Moreover, we do care about communication costs and GPU demands instead of
training time in clients. To reduce training time, some techniques, such as RGE, random selections
on ej , reduction on d1 + d2, etc., can be adopted and we leave this as our future work.

Our algorithm converges and the asymptotic convergence rate is O( 1√
T
). For detailed theoretical

analysis and the corresponding proofs, please refer to section A and section B. section C.1 provides
more discussion on design logic while section C.2 provides the detailed algorithmic flow.

4 Experiments

4.1 Setup

Table 2: Information of benchmarks.
Modality Dataset Samples Classes Clients Selected Samples

CV

COVID-19 9,198 4 20 9,198
APTOS 3,662 5 20 1,658
Terra100 5,883 10 20 5,883
Terra46 4,741 10 20 4,741

NLP

SST-2 67k 2 20 9,763
COLA 8.5k 2 20 5,700

Finanical 4,840 3 10 3,379
Flipkart 205,053 3 20 3,048

Datasets and baselines. We eval-
uate ZOOPFL on 8 classification
benchmarks with two modalities in-
cluding computer vision (CV) and
natural language processing (NLP).
The benchmarks are COVID-19 (C-
19) [63], APTOS [34], Terra100 (T-
100) [4], Terra46 [4], SST-2 [81, 67],
COLA [81, 87], Financial-phrasebank
(Financial) [52], and Flipkart [76]. Brief information can be found in Table 2.7 We filter meaningless
samples and select samples for global class balance. Select strategies can be found in section D.1
while data distributions can be found in section D.2. To our best knowledge, no other methods are
proposed and thereby we only compare ZOOPFL with zero-shot pre-trained models (ZS).

Implementation details. For vision tasks, we set g as CLIP [60] with ResNet50 as the image
backbone [60]. r is a linear layer with dimension M where M is the number of classes. q contains
several blocks composed of a convolution layer, a RELU activation layer, a Batch Normalization
layer, and a Pooling layer while o contains several blocks composed of a convTranspose layer, a
RELU activation layer, and a Batch Normalization layer. We set d1 = 6 × 7 × 7 = 294 and
d2 = 2× 7× 7 = 98. We set the learning rate for pretraining as 10−4 and set other learning rates as
hyperparameters. For simplicity, other learning rates are all the same. We set the local epoch number
as 1 and set the global round number T = 120. Moreover, we do not tune ρ but set ρ = 5× 10−3.
We select the best results according to accuracy on validation parts.

For language tasks, we select four foundation models, including ALBERT-base [36], BERT-base [20],
DeBERTa-base [30], and GPT2 [61]. Note that there are recent large language foundation models such
as Llama [72] and Falcon [56], but we can only experiment with the above ones due to constrained
computational devices.8 Our method works for all kinds of foundation models in various sizes. q

7We have chosen so many clients because it reflects the typical real-world scenario where there are numerous
clients, each with relatively small amounts of data [93].

8Our hardware is a server with 4 V100 (16G) GPUs, which cannot afford to train larger foundation models.
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Figure 3: Results on CV (a-d) and NLP (e-h) tasks.
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Figure 4: Ablation study, convergence, and communication costs.

simply contains several linear layers followed by batch normalization layers. Please note that we
transform input embeddings processed by foundation models for NLP instead of original texts. We
set d1 = 128 − 32 = 96 and d2 = 32. We set the local epoch number as 1 and set the global
round number T = 130. Other settings are similar to computer vision. For concrete structures of
auto-encoders, please refer to section D.3.

4.2 Experimental Results

Figure 3 shows the results on all eight benchmarks and detailed results are in section D.4. And
we have the following observations. 1) Our method achieves the best results on average for all
benchmarks whatever the backbone is. It significantly outperforms the zero-shot method with
remarkable improvements. In computer vision benchmarks, the improvements are about 42%, 25%,
21%, and 59% for COVID-19, Terra100, APTOS, and Terra46 respectively. In natural language
processing benchmarks, for SST-2, COLA, and Flipkart, Financial-phrasebank, the improvements are
about 43%, 39%, 15%, and 33% respectively. Please note that there only exist a few training data in
each client (for COVID-19, each client only has about 50 samples.), which means utilizing foundation
models is important. 2) Our method achieves the best accuracy in most clients, demonstrating the
necessity of input surgery and semantic re-mapping. As shown in Figure 3(a)-(d), ZOOPFL only
performs slightly worse than ZS in few clients, e.g. client 13 on COVID-19, which can be due to
the instability of zeroth-order optimization. 3) For natural language processing, different backbones
bring different performance. From Figure 3(g), we can see that our method based on GPT2 can
achieve better results compared to other backbones, although ZS performs the worst with GPT2.
However, from Figure 3(f), we can see that ZOOPFL based on GPT2 does not achieve the best
performance. 4) Why large foundation models cannot achieve acceptable performances on these
benchmarks? For computer vision, we choose COVID-19, APTOS, and Terra Incognita and these
datasets can be missing during pretraining of CLIP, which leads the failure of CLIP with zero-shot.
For natural language processing, although large foundation models can extract remarkable features,
they need to be fine-tuned for downstream tasks, which means they may randomly guess without the
post-processing. Due to these factors, post-processing to large foundation models is necessary, which
is just what we explore in this paper.

4.3 Analysis and Discussion

Ablation Study. Figure 4(a)-4(b) give experiments on ablation study and we have following obser-
vations. 1) In most situations, each part of ZOOPFL can bring improvements. 2) Step 3 is more
significant than Step 2. Since Step 3 re-maps outputs, it can offer semantic meanings to foundation
models for specific tasks, which is more direct and effective intuitively. Step 2 transforms inputs that
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Figure 5: More discussions by varying backbones, data splits, data sizes, and optimization order.
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Figure 6: Parameter sensitivity of computer vision and natural language tasks (on finance data).

still go through foundation models or even random projections, and thereby it is indirect and less
effective. However, by combining Step 2 with Step 3, we can achieve further improvements. 3) In
some situations, client-specific embeddings do not bring remarkable improvements, which can be
induced by two reasons. First, CGE is not stable enough and we cannot ensure ZOOPFL finds the
best global optimals. Second, to ensure fairness, we offer comparison methods without client-specific
embeddings containing larger dimensions and thereby these methods can learn better representations
for auto-encoders. 4) Step 1 brings significant improvement for CV while it is less effective for NLP.
This can be due to two reasons. We provide better auto-encoders for CV but simple linear layers for
NLP. Moreover, the closed pretraining of an auto-encoder without subsequent adjustments to the
decoder may not be suitable for NLP. Fortunately, ZOOPFL can achieve convincing improvements
compared to ZS no matter whether adopting step 1.

Convergence and Communication Cost. We provide convergence analysis and communication cost
comparisons in Figure 4(c) and 4(d), respectively. Figure 4(c) shows that both the average training
accuracy and testing accuracy are convergent. There exist slight disturbances due to instability of
CGE and the process of federated learning. Moreover, we can find that there exists a divergence
between training and testing, which means there could be further improvements if more generalization
techniques could be adopted which we leave as our future work. From Figure 4(d), we can see
exchanging in encoders can reduce a significant amount of transmission cost, especially for LSTM,
which means our method can be employed in reality.

More insightful analysis. 1) Can stronger backbones bring better performance? Figure 5(a)
and 4(d) show that auto-encoders comprised of LSTM can bring better performance with fewer
communications (especially for GPT2), which means more suitable backbones can lead to better
performance. 2) How can data splits influence the performance? Figure 5(b) shows that ZOOPFL
still achieves better performance when using a different parameter for Dirichlet distribution (0.1 vs.
0.2) for NLP data split. In this more personalized situation, ZS maintains a similar performance
while ours performs better. 3) More training data, better results? As shown in Figure 5(c), we
choose the APTOS dataset where our method has the worst performance, to evaluate the influence of
training data. We find that more training data can bring further improvements, which is completely
consistent with our intuition. 4) Can optimization order influence performance? We provide three
orders for optimization. Order 1 is what we adopted. Order 2 is to perform step 2 for all rounds
and then perform step 3, which means these two steps are split. In order 3, we first optimize the
encoder, then client-specific embeddings, and finally semantic re-mapping layers, and these parts
are iterative. As shown in Figure 5(d), Order 1 and Order 3 can perform slightly better than Order 2,
which demonstrates the necessity of joint optimization. More analysis can be found in section D.

Parameter sensitivity. Figure 6 provides parameter sensitivity and we obtain following observations.
1) Our method is stable for a wide range of parameters although CGE may lead instability. 2) For
most situations, larger learning rates with Adam can bring better performance. 3) ZOOPFL can
achieve further improvement if we finetune hyperparameters more carefully. For example, we can
choose larger learning rates, e.g.0.5 or choose more suitable ρ for specific tasks, e.g. 0.05 for CV.
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5 Related Work

Federated learning makes it possible to perform distributed multi-party computing without com-
prising privacy [101, 79, 53, 97, 55, 80, 58, 89, 70, 49]. FedAVG is the baseline algorithm for FL by
exchanging parameters instead of raw data, which has been used in many applications [38, 3, 62].
When FedAVG meets non-iid data, it can suffer from low convergence speed and terrible person-
alization performance [64, 39, 40, 33, 93, 82, 66, 17]. [65] proposed PerFedMask that considers
the computational capability of different devices while some other work considered utilizing knowl-
edge distillation for personalization [14]. Besides personalization, there exists research focusing on
generalization [12, 29, 59]. Our method can deal with situations where distribution shifts exist.

Since deep learning has entered the era of large foundation models [5, 91, 106], some novel issues,
e.g. computation costs and communication costs, are coming into being, leading operations on the
whole network impossible [85, 18, 10, 21, 90, 68, 43, 11, 28, 104]. FedPrompt [103] studied prompt
tuning in a model split aggregation way while FedCLIP [51] designed an attention-based adapter
for CLIP [60]. FwdLLM [93] combined BP-free training with parameter-efficient training methods
while pFedPG [95] deployed a personalized prompt generator at the server to produce client-specific
visual prompts. These methods all require access to the internals of large models.

Besides data privacy, model privacy also raised attention recently [54]. Model suppliers are usually
more willing to only provide predictions for given inputs or just provide a product that can only
generate predictions [77]. In this paper, we view these protected foundation models as black-box
models [27, 50]. Little work paid attention to finetuning or optimizing in this field, but most related
work focused on attacks [96, 98]. One related work is FedZO [22] which utilized zero-order
optimization [26], but it did not consider utilizing large foundation models. Some other work also
made use of zero-order optimization for federated learning [41, 100, 23], but none of them utilized
large black-box foundation models.

Model reprogramming (MR) [74, 94, 15] provides a similar solution to ZOOPFL. It trains the
inserted input transformation and output mapping layers while keeping the source pretrained model
inact to enable resource-efficient cross-domain machine learning. The main purpose of model repro-
gramming is to transfer knowledge to targets and it can be viewed as a sub-field of transfer learning.
Recently, [2] proposed the first framework, Reprogrammable-FL, adapting MR to the setting of differ-
entially private federated learning. Reprogrammable-FL learned an input transformation for samples
and added learned perturbations to the original samples. It preserved local input transformations and
shared output transformation layers, which are totally in contrast to ours. Moreover, ZOOPFL is
proposed for black-box foundation models and can provide an ideal personalization capability.

6 Conclusion and Discussion

We proposed ZOOPFL which can deal with large black-box models in federated learning. ZOOPFL
mainly consists of two parts, including input surgery and semantic re-mapping. Moreover, with a
client-specific embedding, ZOOPFL can be more personalized. We demonstrated its effectiveness on
both CV and NLP tasks. ZOOPFL achieved remarkable performance without large communication
costs and high demands of GPUs.

As the first exploration in black-box federated learning for large foundation models, ZOOPFL can be
more perfect by pursuing the following avenues. 1) Since the stability and speed of CGE influence
the performance of step 2, it can be better to seek more stable and efficient optimization algorithms.
2) Foundation models in ZOOPFL can be enhanced by other ways, e.g., auxiliary models, to serve as
a complement to foundation models. 3) Experiments with larger foundation models can be performed
for evaluation if computational resources are enough in the future.

Broader Impacts

ZOOPFL has transformative impacts across various sectors by enabling personalized models while
ensuring data privacy. In healthcare, it enhances personalized medicine and remote monitoring.
In finance, it improves fraud detection and financial services. Smart cities and IoT applications
leverage ZooPFL for customized services and device optimization. ZOOPFL’s ability to handle client
heterogeneity and enhance privacy drives innovation across these fields.
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A Theoretical Analysis

We present the convergence analysis of ZOOPFL. There exist three parts to optimize during step 2 and
step 3, including the parameters of the encoder (û), clients specific embeddings (v1,i), and semantic
re-mapping layers (v2,i). Following [57], we group parameters into two parts, i.e. ui := û ∪ v1,i,
vi := v2,i.9 Now we give the main conclusion with proofs in section B.
Theorem 1. Suppose assumptions 1, 2, 3, and 4 hold, and the learning rates in ZOOPFL are chosen
as γu = η/(Luτu) and γv = η/(Lvτv), with

η ≤ min
{

1

24(1 + µ2)
,

m

128χ2(n−m)
,

√
m

χ2n

}
. (11)

Then, right after the training of T epochs, ignoring absolute constants, we have

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤ ∆F0

ηT
+ ησ2

alt,1 + η2σ2
alt,2. (12)

Corollary 1. An optimal learning rate is:

η =

(
∆F0

Tσ2
alt,1

)1/2∧(
∆F 2

0

T 2σ2
alt,2

)1/3

∧ 1

1 + µ2

∧ m

χ2(n−m)

∧√
m

χ2n
.

(13)

We have, ignoring absolute constants,

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤

(∆F0σ
2
alt,1)

1/2

√
T

+
(∆F 2

0 σ
2
alt,2)

1/3

T 2/3

+
∆F0

T

(
1 + µ2 + χ2(

n

m
− 1) +

√
χ2

n

m

)
.

(14)

The measure of convergence of Algorithm 1 is in terms of the weighted average of square norms of
the gradients of loss function E

[
∆

(t)
u

]
and E

[
∆

(t)
v

]
through iterations from 1 to T − 1, i.e. the left

hand of (14). As the square norms of the gradients of loss function at the optimal solution is zero,
whether or not these norms approach zero is a good criterion of the convergence. With this choice
of optimal learning rate, it is clear from the right hand of (14) that our algorithm converges and the
asymptotic convergence rate is O( 1√

T
).

B Proofs

The proof is based on the theoretic work of personalized federate learning pioneered in [57]. Firstly,
we will make some assumptions on our models (parameters) akin to those in [57] with some
differences specific to our scenario. One can refer [57] for more details.

Recall that our loss function is defined as follows:10

F (û,v) =
1

n

n∑
i=1

Fi(û,vi), (15)

where Fi(û,vi) = Ex∼Di
fi(û,vi,x). û denotes the sharing parameters, i.e. parameters of si, while

vi denotes parameters preserved in each client. According to the structure of ZOOPFL, vi is also
decomposed into two parts: vi = v1,i ∪ v2,i corresponding to parameters of ẑi and ri respectively,
and as pointed out in main sections of our paper, we regroup our parameters as follows: for each
device i, ui := û ∪ v1,i, vi := v2,i.

9Different from [57], optimized parameters in ZOOPFL contain three parts and we utilize ZOO instead of
gradients.

10As we will regroup parameters later, we use û instead of u to make symbols consistent.
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Assumption 1. (Smoothness). For each device i = 1, 2, . . . n, the object Fi is smooth, i.e., it is
continuously differentiable and,

1. ui → ∇uFi(ui,vi) is Lu-Lipschitz for all vi ,

2. vi → ∇vFi(ui,vi) is Lv-Lipschitz for all ui ,

3. vi → ∇uFi(ui,vi) is Luv-Lipschitz for all ui, and,

4. ui → ∇vFi(ui,vi) is Lvu-Lipschitz for all vi.

Further, we assume for some χ > 0 that

max{Luv, Lvu} ≤ χ
√
LuLv. (16)

Assumption 2. (Bounded Gradient). For each device i = 1, 2, . . . n, the object Fi has bounded
gradient, that is, there exists Mu,Mv > 0 such that

|∇ufi(ui,vi,x)| < Mu,

and |∇vfi(ui,vi,x)| < Mv ∀x ∈ Di.
(17)

Assumption 3. (Bounded Variance). Let Di denote a probability distribution over the data space Z
on device i. There exist functions Gi,u and Gi,v which are unbiased estimates of ∇uFi and ∇vFi

respectively. That is, for all ui,vi:

Ex∼Di
[Gi,u(ui,vi,x)] = ∇uFi(ui,vi),

and Ex∼Di
[Gi,v(ui,vi,x)] = ∇vFi(ui,vi).

(18)

Furthermore, the variance of these estimators is at most σ2
u and σ2

v respectively. That is,

Ex∼Di
||Gi,u(ui,vi,x)−∇uFi(ui,vi)||2 ≤ σ2

u, (19)

Ex∼Di
||Gi,v(ui,vi,x)−∇vFi(ui,vi)||2 ≤ σ2

v. (20)

In this work, we usually take the particular form Gi,u(ui,vi,x) = ∇ufi((ui,vi),x), which is the
gradient of the loss on datatpoint x ∼ Di under the model (ui,vi), and similarly for Gi,v.

As our model has a black box LLM, we can’t get the gradient of parameters in this part. So we
resort to zero-order optimization partially. In particular, we take differences of function values
to estimate unknown gradients in that part. The resulting method is dubbed stochastic difference
descent method. More precisely, Let G be a continuous function on x, ρ be a fixed vector with the
same dimension of x and its norm ||ρ|| = ρ, we denote ∆ρ,xG(x) := (G(x + ρ) − G(x))/ρ or
(G(x+ ρ) +G(x− ρ)− 2G(x))/(2ρ) to be the difference of G at point x with step ρ. Then the
way we update x is similar to that in stochastic gradient descent method:

xk+1 = xk − γ∆ρ,xG(x)|x=xk
. (21)

Let us denote G̃i,u(ui,vi,x) := ∆ρ,ufi((ui,vi),x), G̃i,v(ui,vi,x) := ∆ρ,vfi((ui,vi),x). Un-
like Assumption. 3, G̃i,uui,vi,x) (resp.
G̃i,v(ui,vi,x)) is not an unbiased estimation of ∇uFi(ui,vi) (resp. ∇vFi(ui,vi)). However,
under Assumption. 1,Assumption. 2 and Assumption. 3, we have the following estimates:
Lemma 1. (Bounded 1st and 2nd moments).

||Ex∼DiG̃i,u(ui,vi,x)−∇uFi(ui,vi)|| ≤ Luρ, (22)

||Ex∼Di
G̃i,v(ui,vi,x)−∇vFi(ui,vi)|| ≤ Luρ. (23)

Furthermore,

Ex∼Di
||G̃i,u(ui,vi,x)−∇uFi(ui,vi))||2 ≤ 2L2

uρ
2 + 2σ2

u, (24)

Ex∼Di
||G̃i,v(ui,vi,x)−∇vFi(ui,vi))||2 ≤ 2L2

vρ
2 + 2σ2

v. (25)

Proof. For each x ∈ Di there exists a u′
i between ui and ui + ρ in each component such that

(∇ufi(ui+ρ,vi,x)−∇ufi(ui,vi,x))/ρ = ∇ufi(u
′
i,vi,x). Then by the smoothness assumption:

||∇ufi(u
′
i,vi,x)−∇ufi(ui,vi,x)|| ≤ Lu||u′

i − ui|| ≤ Lu||ρ|| = Luρ. (26)
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Thus

G̃i,u(ui,vi,x)−∇uFi(ui,vi) = (27)

G̃i,u(ui,vi,x)−∇ufi((ui,vi),x) +∇ufi((ui,vi),x)−∇uFi(ui,vi). (28)

Taking expectation on both sides and applying (26) and
Ex∼Di

∇ufi((ui,vi),x) = ∇uFi(ui,vi), we get

Ex∼Di
G̃i,u(ui,vi,x)−∇uFi(ui,vi)

= Ex∼Di
G̃i,u(ui,vi,x)−∇ufi((ui,vi),x)

≤ Ex∼Di |G̃i,u(ui,vi,x)−∇ufi((ui,vi),x)| ≤ Luρ.

(29)

Taking absolute values on both sides completes the proof of (22). The same is true for (23).

For (24) and (25), we note that by Cauchy-Schwartz inequality

||G̃i,u(ui,vi,x)−∇uFi(ui,vi)||2 (30)

≤ 2||G̃i,u(ui,vi,x)−∇ufi(ui,vi,x)||2 (31)

+ 2||∇ufi(ui,vi,x)−∇uFi(ui,vi)||2. (32)

Taking expectation on both sides and using (26) and Assumption. 3 complete the proof. The same is
true for (25).

As our model has the form F = r ◦ J ◦ s with s corresponding to the encoder, J corresponding to
decoder and black-box LLM, and r corresponding to linear remapping, the following corollary is
useful.

Corollary 2. Let si, Ji, ri be three continuously differentiable functions such that fi(ui,vi,x) =
ri ◦ Ji ◦ si, then we have

||Ex∼Di
∇ri,u ◦∆ρJi,u ◦ ∇usi,u(ui,vi,x)−∇uFi(ui,vi)|| ≤ M2

uLuρ, (33)

||Ex∼Di∇ri,u ◦∆ρJi,u ◦ ∇visi,u(ui,vi,x)−∇vFi(ui,vi)|| ≤ M2
vLvρ. (34)

Furthermore,

Ex∼Di
||∇ri,u ◦∆ρJi,u ◦ ∇usi,u(ui,vi,x)−∇uFi(ui,vi)||2 ≤

2M4
uL

2
uρ

2 + 2σ2
u,

(35)

Ex∼Di
||∇ri,u ◦∆ρJi,u ◦ ∇vi

si,u(ui,vi,x)−∇vFi(ui,vi)||2 ≤
2M4

vL
2
vρ

2 + 2σ2
v.

(36)

Proof. Using the bounded gradient assumption and following the steps in the proof of Lemma. 1
completes the proof.

Finally, we make a gradient diversity assumption.

Assumption 4. (Partial Gradient Diversity). There exists δ ≥ 0 and µ ≥ 0 such that for all u and v,

1

n

n∑
i=1

||∇uFi(ui,vi)−∇uF (u,v)||2 ≤ δ2 + µ2||∇uF (u,v)||2. (37)

Please refer [57] for more background on some of these assumptions.
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B.1 Convergence Analysis of ZOOPFL

We give the error bounds results of Algorithm 1, thus theoretically establishing the convergence
property.

In our case, we rename the parameters so that u := û ∪ v1,v := v2. As per Appendix A.3 in [57],
we use the constants

σ2
alt,1 =

δ2

Lu

(
1− m

n

)
+

2M4
uL

2
uρ

2 + 2σ2
u

Lu

+
(2M4

vL
2
vρ

2 + 2σ2
v)(m+ χ2(n−m))

Lvn
,

(38)

σ2
alt,2 =

2M4
uL

2
uρ

2 + 2σ2
u + δ2

Lu
(1− τ−1

u ) (39)

+
(2M4

vL
2
vρ

2 + 2σ2
v)m

Lvn
(1− τ−1

u ) +
χ2(2M4

vL
2
vρ

2 + 2σ2
v)

Lv
. (40)

and the definitions

∆(t)
u =

1

n

n∑
i=1

||∇uFi

(
u
(t)
i ,v

(t)
i

)
||2,

and, ∆(t)
v =

1

n

n∑
i=1

||∇vFi

(
u
(t)
i ,v

(t)
i

)
||2.

(41)

Theorem 1. Suppose Assumption. 1,Assumption. 2,Assumption. 3 and Assumption. 4 hold and the
learning rates in ZOOPFL are chosen as γu = η/(Luτu) and γv = η/(Lvτv), with

η ≤ min
{

1

24(1 + µ2)
,

m

128χ2(n−m)
,

√
m

χ2n

}
. (42)

Then, right after the training of T epochs, ignoring absolute constants, we have

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤ ∆F0

ηT
+ ησ2

alt,1 + η2σ2
alt,2. (43)

Corollary 3. An optimal learning rate is chosen as follows

η =

(
∆F0

Tσ2
alt,1

)1/2∧(
∆F 2

0

T 2σ2
alt,2

)1/3∧ 1

1 + µ2∧ m

χ2(n−m)

∧√
m

χ2n
.

(44)

We have, ignoring absolute constants,

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤

(∆F0σ
2
alt,1)

1/2

√
T

+
(∆F 2

0 σ
2
alt,2)

1/3

T 2/3

+
∆F0

T

(
1 + µ2 + χ2(

n

m
− 1) +

√
χ2

n

m

)
.

(45)

Proof. The proof is invoking Lemma 25 in [57] upon establishing Thm. 1

We will refer the readers to [57] for the proof of convergence of FedAlt algorithm therein. One of our
novel differences to [57] is that our black-box model is secure so its gradient is invisible to us, leading
us to consider zero-order (gradient free) optimization. Thus we first establish a result analogous to
lemma 22 in [57] for zero-order optimization.
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Lemma 2. Consider f : Rd → R which is L-smooth, its norm of gradient is bounded by M and fix
a w(0) ∈ Rd. Define the sequence (w(t)) of iterates produced by stochastic difference descent with
step ρ and a fixed learning rate γ starting from w(0):

w(t+1) = w(t) − γg̃(t), (46)

where g̃ is an unbiased estimation to ∆ρ,wf(w(t)) (not an unbiased estimation to ∇f(w(t))) with
bounded variance 2M4L2ρ2 + 2σ2. Fix a number τ of steps. If γ ≤ (

√
2τL)−1, we have the bound

τ−1∑
t=0

||w(t) −w(0)||2

≤ 8γ2τ2(τ − 1)||∇f(w(0))||2 + 4γ2τ2(τ − 1)(2M4L2ρ2 + 2σ2).

(47)

Proof. If τ = 1, we have nothing to prove. Assume now that τ ≥ 2. Let F (t) be the sigma-algebra
generated by w(t) and denote Et[·] = E[·|F (t)]. We will use the inequality

Et||g̃(t)||2 = Et||g̃(t) −∇f(w(t))||2 + ||∇f(w(t))||2

≤ 2M4L2ρ2 + 2σ2 + ||∇f(w(t))||2.
(48)

We then successively deduce,

Et||w(t+1) −w(0)||2 (49)

= ||w(t) −w(0) − γg̃(t)||2 (50)

≤
(
1 +

1

τ − 1

)
||w(t) −w(0)||2 + γ2τEt||g̃(t)||2 (51)

≤
(
1 +

1

τ − 1

)
||w(t) −w(0)||2 + 2γ2τ ||∇f(w(t) −∇f(w(0))||2 (52)

+ 2γ2τ ||∇f(w(0))||2 + γ2τ(2M4L2ρ2 + 2σ2) (53)

≤
(
1 +

1

τ − 1
+ 2γ2τL2

)
||w(t) −w(0)||2 + 2γ2τ ||∇f(w(0))||2 (54)

+ γ2τ(2M4L2ρ2 + 2σ2) (55)

≤
(
1 +

2

τ − 1

)
||w(t) −w(0)||2 + 2γ2τ ||∇f(w(0))||2 (56)

+ γ2τ(2M4L2ρ2 + 2σ2). (57)

Above, we used (a) the inequality 2αβ ≤ α2/δ2 + δ2β2 for reals α, β, δ,(b) (48),(c) L-smoothness
of f , and,(d) the condition on the learning rate.

Let C = 2γ2τ ||∇f(w(0))||2 + γ2τ(2M4L2ρ2 + 2σ2). Unrolling the inequality and summing up
the series for all t ≤ τ − 1

||w(t) −w(0)||2 ≤ C

t−1∑
j=0

(
1− 2

τ − 1

)j

≤ C

2
(τ − 1)

(
1 +

2

τ − 1

)t

(58)

≤ C

2
(τ − 1)

(
1 +

2

τ − 1

)τ−1

≤ C

2
(τ − 1)e2, (59)

where we used the bound (1 + 1/α)α ≤ e for all α > 0. Summing over t and using the numerical
bound e2 < 8 completes the proof.

Lemma 3. Consider the setting of Lemma. 2. If γ ≤ (2τL)−1, we have the bound

||w(τ) −w(0)||2 ≤ 16γ2τ2||∇f(w(0))||2 + 8γ2τ2(2M4L2ρ2 + 2σ2). (60)
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Proof. Proceeding similar to the last proof (expect using δ = τ ) gives us

Et||w(t+1) −w(0)||2

≤
(
1 +

2

τ

)
||w(t) −w(0)||2 + 4γ2τ ||∇f(w(0))||2

+ 2γ2τ(2M4L2ρ2 + 2σ2).

(61)

Unrolling and summing up the sequence completes the proof, similar to that of Lemma. 2

With all the preparations, we now take the proof of Thm. 1.

Proof. Recall that our parameters are renamed as u := û ∪ v1,v := v2.

The first step is to start with

F (u(t+1),v(t+1))− F (u(t),v(t)) = F (u(t),v(t+1))− F (u(t),v(t)) (62)

+ F (u(t+1),v(t+1))− F (u(t),v(t+1)). (63)

The first line is referred to v-step and the second u-step. The smoothness assumption bounds the
u-step:

F (u(t+1),v(t+1))− F (u(t),v(t+1)) (64)

=
1

n

n∑
i=1

Fi(u
(t+1)
i ,v

(t+1)
i )− Fi(u

(t)
i ,v

(t)
i ) (65)

≤ 1

n

n∑
i=1

(〈
∇uFi(u

(t)
i ,v

(t+1)
i ),u

(t+1)
i − u

(t)
i

〉
+

Lu

2
||u(t+1)

i − u
(t)
i ||2

)
. (66)

As discussed in [57], the most challenging thing is that the two terms in angle bracket ⟨⟩ are not
independent random variables. Indeed, they both depend on the sampling S(t) of devices. The
way to circumvent it is to introduce virtual full participation for v-step update to eliminate this
dependence structure and obtain a good estimate of the error it introduces. Briefly speaking, virtual
full participation for parameters v is to assume all devices to update the v parameters (it is just
technically assumed but not done in practice) that is independent of sampling of S(t) devices, breaking
the dependence between u(t+1) and v(t+1). We ask the readers to read [57] for full details.

We use the notation ṽ(t+1) to denote the virtual update of v. Then the proceeding inequality goes on
as: 〈

∇uFi(u
(t)
i ,v

(t+1)
i ),u

(t+1)
i − u

(t)
i

〉
+

Lu

2
||u(t+1)

i − u
(t)
i ||2 (67)

=
〈
∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
+

Lu

2
||u(t+1)

i − u
(t)
i ||2 (68)

+
〈
∇uFi(u

(t)
i ,v

(t+1)
i )−∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
(69)

≤
〈
∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
+ Lu||u(t+1)

i − u
(t)
i ||2 (70)

+
1

2Lu
||∇uFi(u

(t)
i ,v

(t+1)
i )−∇uFi(u

(t)
i , ṽi

(t+1))||2 (71)

≤
〈
∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
+ Lu||u(t+1)

i − u
(t)
i ||2 (72)

+
χ2Lv

2
||ṽ(t+1) − v

(t+1)
i ||2. (73)

The last two inequalities follow from Young’s inequality and Lipschitzness of vi ↪→ ∇uFi(ui,vi)
respectively.

The usage of virtual update is to ensure that ṽ(t+1) is independent of S(t). This allows us to take an
expectation w.r.t the sampling S(t) of the devices.
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Recall that under the new parameters u and v, the only difference to the setting of FedAlt in [57] is
that we need zero-order optimization to update u parameter instead of first-order gradient method.
Thus, we can use the calculations in [57] with F replaced by Fi and then add them together from 1 to
n to similarly arrive at the following expression:

Et

[
F (u(t+1),v(t+1))− F (u(t),v(t+1))

]
(74)
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2
vρ

2 + 2σ2
v)χ

2(1−m/n) (76)
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v , (77)

note here ũ
(t)
i,k is u-parameter updates via stochastic difference descent method rather than stochastic

gradient descent method. We bound this term with Lemma. 2, invoking the assumption on gradient
diversity. And then plugging the resulting estimate back in, we get
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The bound on v-step has exactly the same form as presented in [57] since when conditioned on
u(t),v(t) all functions used in updating v is continuously differentiable. Plugging this bound on
v-step into (62), we get
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Taking an unconditional expectation, summing it over t = 0 to T − 1 and rearranging this gives
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This is a bound in terms of the virtual updates ṽ(t+1). Similarly to the manipulations in [57] we can
relate ∆̃

(t)
u with ∆

(t)
u . 11, and finally we get:
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Plugging in γu = η/(Luτu) and γv = η/(Lvτv) completes the proof.

C Methodology

C.1 More Discussion on Design Logic

Design for the Decoder. In the first step, we pre-train the decoder to adapt to the corresponding
dataset, enabling it to better understand the embeddings formed by the encoder. In the second step,
freezing the decoder is motivated by two considerations: 1. reducing the computational cost of
zero-order optimization; 2. minimizing the communication cost in federated learning.

The mechanism design of the semantic re-mapping process. We consider the scenario where the
foundational model may not be suitable for a particular task, and we cannot modify it. Instead, we
can only adjust the inputs and outputs of the model to make it compatible with the task. Regarding
semantic re-mapping, the main consideration is that the foundational model may be trained for
common tasks (such as the final layer of the base NLP classification model in Hugging Face being a
random mapping). To adapt it to a specific task, a simple re-mapping is needed.

C.2 Summary

Here, we briefly provide a summary. Algorithm 1 describes the concrete process of ZOOPFL. si is
consist of two components, qi (i.e. the encoder) and oi (i.e. the decoder), which are optimized via
Adam in pretraining. Then, qi is optimized via CGE during Input Surgery. Finally, ri is optimized
via Adam in Semantic-remapping.

D Experiments

D.1 Description of the Datasets

Computer vision datasets.

COVID-19 [63]. It is a public posterior-anterior chest radiography images dataset with four classes,
including 1,281 COVID-19 X-Rays, 3,270 Normal X-Rays, 1,656 viral-pneumonia X-Rays, and 3,001
bacterial-pneumonia X-Rays. We split data into 20 clients via the Dirichlet distribution following
[99] and each client has different distributions on the label space. In each client, only 10% of data

11More precisely, we simply take the same steps for Fi and then add all of them together.
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Algorithm 1 ZOOPFL
Input: n clients’ datasets {Di}ni=1
Output: Input surgery, {si}ni=1, semantic re-mapping, {ri}ni=1, client-specific embeddings, {ẑi}ni=1

1: for t = 1 to T do ▷ Step 1
2: for i = 1 to n do
3: Pretrain Client i according to ℓMSE = E(x,y)∼P(Di) ∥oi([qi(x), ẑi])− x∥22
4: Upload {w(si)}ni=1 to the server
5: Aggregate weights, w(s) = 1

n

∑n
i=1 w(si)

6: Distribute client weight w(s) to each client
7: for t = 1 to T do
8: for i = 1 to n do ▷ Step 2
9: for k = 1 to d1 + d2 do ▷ Compute Gradients via CGE

10: z̃1 = z̃+ ρej , ℓx,1 = ℓcls(ri(g(oi(z̃1, y))))
11: z̃2 = z̃− ρej , ℓx,2 = ℓcls(ri(g(oi(z̃2, y))))

12: Compute differences on embeddings, ∇z̃G(z̃) ≈
∑d1+d2

i=1
ℓx,2−ℓx,1

2×ρ ej

13: Compute gradients, ∇qiℓ1 = dz̃
dqi

dG
dz̃ ≈ dz

dqi
∇z̃G(z̃)1 ≈ d∇z̃G(z̃)1z

dqi

14: Update parameters, w(qnewi ) = w(qi)− γ1 ×∇qiℓ1
15: Upload {w(qnewi )}ni=1 to the server
16: Aggregate weights, w(q) = 1

n

∑n
i=1 w(q

new
i )

17: Distribute q to clients
18: for i = 1 to n do ▷ Step 3
19: Train semantic re-mapping according to ℓ2 = E(x,y)∼P(Di)ℓcls(ri(F(x)), y)

are utilized for training and the rest data are split evenly into two parts for validation and testing
respectively.

APTOS [34]. It is an image dataset that judges the severity of diabetic retinopathy on a scale of 0 to
4. The original dataset contains 3,662 training images and 1,928 testing images but it suffers from
heavily unbalanced. We only utilize the training part in our setting and we randomly choose 400
samples for classes 0 and 2. Our processed dataset contains 1658 samples. We split data into 20
clients and 20% of data serve for training similar to COVID-19.

Terra Incognita [4]. It is a common dataset that contains photographs of wild animals taken by
camera traps at locations L100, L38, L43, and L46. It totally contains 24,788 samples with 10 classes.
We randomly choose two locations, i.e. L46 and L100, to construct two benchmarks, i.e. Terra46 and
Terra100. For these two benchmarks, we split data into 20 clients and 20% of data serve for training
similar to COVID-19.

Natural language processing datasets.

SST-2 [81, 67]. The Stanford Sentiment Treebank contains sentences from movie reviews and the
labels come from human annotations of their sentiment. It contains about 67k training samples with
two classes. We choose sentences with the number of words ranging from 20 to 50 12 and obtain
9763 samples. We split data into 20 clients and 20% of data serve for training similar to COVID-19.

COLA [81, 87]. The Corpus of Linguistic Acceptability contains English acceptability judgments
drawn from books and journal articles on linguistic theory and it judges a sequence of words whether
it is a grammatical English sentence. It contains 8.5k training samples with two classes. We choose
sentences with the number of words less than 30 and obtain 5700 samples in total. For the class with
more samples, we randomly choose parts to ensure balance. We split data into 20 clients and 20% of
data serve for training similar to COVID-19.

Financial-phrasebank [52]. It consists of sentences from financial news categorized by sentiment.
It contains 4840 samples with three classes, including positive, neutral, and negative. We choose
sentences with the number of words less than 60 and obtain 3379 samples in total. We split data into
10 clients and 20% of data serve for training similar to COVID-19.

12We split sentences into words via spaces.
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Figure 7: Data distributions. The size of dots represents the number of samples.

Flipkart [76]. This dataset contains information on product name, product price, rate, reviews,
summary and sentiment. It has 205,053 samples with multiple labels. We choose sentiment analysis
as our task and there can be three classes, including positive, neutral, and negative. We choose
reviews with lengths more than 30 and we randomly choose parts of classes with more samples for
balance. The processed dataset contains 3048 samples for each class. We split data into 20 clients
and 20% of data serve for training similar to COVID-19.

D.2 Data Distributions

Figure 7 shows the complete data distributions on the rest benchmarks.

D.3 Model Structures

Table 3 shows details on auto-encoders. Please note that the encoder accounts for approximately half
of the parameter count.

D.4 Additional Results

Table 4, Table 5, Table 6, and Table 7 show more detailed results on computer vision and natural
language processing. We have added relevant experiments. ’Alone*’ denotes locally trained black-
box models on individual clients, while ’FedAVG*’ represents direct federated learning without any
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Table 3: The structures of auto-encoders.
CV NLP(Linear)

Layer(type) Output Shape #|Param| Layer(type) Output Shape #|Param|
Conv2d-1 [-1,32,224,224] 896 Linear-1 [-1,128] 6,291,584
ReLU-2 [-1,32,224,224] 0 BatchNorm1d-2 [-1,128] 256
BatchNorm2d-3 [-1,32,224,224] 64 ReLU-3 [-1,128] 0
MaxPool2d-4 [-1,32,112,112] 0 Linear-4 [-1,256] 33,024
Conv2d-5 [-1,64,112,112] 18,496 BatchNorm1d-5 [-1,256] 512
ReLU-6 [-1,64,112,112] 0 ReLU-6 [-1,256] 0
BatchNorm2d-7 [-1,64,112,112] 128 Linear-7 [-1,96] 24,672
MaxPool2d-8 [-1,64,56,56] 0 BatchNorm1d-8 [-1,96] 192
Conv2d-9 [-1,128,56,56] 73,856 ReLU-9 [-1,96] 0
ReLU-10 [-1,128,56,56] 0 Linear-10 [-1,256] 33,024
BatchNorm2d-11 [-1,128,56,56] 256 BatchNorm1d-11 [-1,256] 512
MaxPool2d-12 [-1,128,28,28] 0 ReLU-12 [-1,256] 0
Conv2d-13 [-1,32,28,28] 36,896 Linear-13 [-1,128] 32,896
ReLU-14 [-1,32,28,28] 0 BatchNorm1d-14 [-1,128] 256
BatchNorm2d-15 [-1,32,28,28] 64 ReLU-15 [-1,128] 0
MaxPool2d-16 [-1,32,14,14] 0 Linear-16 [-1,49152] 6,340,608
Conv2d-17 [-1,8,14,14] 2,312 Tanh-17 [-1,49152] 0
ReLU-18 [-1,8,14,14] 0 NLP(LSTM)
BatchNorm2d-19 [-1,8,14,14] 16 LSTM-1 [-1,64,128] 459,776
MaxPool2d-20 [-1,8,7,7] 0 Linear-2 [-1,96] 12,384
Linear-21 [-1,294] 115,542 LSTM-3 [-1,64,128] 132,096
ReLU-22 [-1,294] 0 Linear-4 [-1,64,768] 99,072
BatchNorm1d-23 [-1,294] 588 Tanh-5 [-1,64,768] 0
ConvTranspose2d-24 [-1,32,14,14] 2,336
ReLU-25 [-1,32,14,14] 0
BatchNorm2d-26 [-1,32,14,14] 64
ConvTranspose2d-27 [-1,128,28,28] 36,992
ReLU-28 [-1,128,28,28] 0
BatchNorm2d-29 [-1,128,28,28] 256
ConvTranspose2d-30 [-1,64,56,56] 73,792
ReLU-31 [-1,64,56,56] 0
BatchNorm2d-32 [-1,64,56,56] 128
ConvTranspose2d-33 [-1,32,112,112] 18,464
ReLU-34 [-1,32,112,112] 0
BatchNorm2d-35 [-1,32,112,112] 64
ConvTranspose2d-36 [-1,16,224,224] 4,624
ReLU-37 [-1,16,224,224] 0
BatchNorm2d-38 [-1,16,224,224] 32
Conv2d-39 [-1,3,224,224] 51

Table 4: Results on four computer vision benchmarks. Bold means the best.
DataSet Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AVG

COVID-19 ZS 18.36 33.66 1.94 48.06 3.38 47.32 53.17 0.00 3.40 51.71 3.90 43.69 40.78 13.17 54.37 0.00 11.65 36.59 0.97 58.05 26.21
Ours 76.81 42.44 82.04 59.22 82.61 70.24 62.44 79.90 82.04 55.12 58.54 80.58 37.86 71.22 64.08 82.52 72.33 49.27 87.38 66.83 68.17

APTOS ZS 0.00 53.12 0.00 41.94 0.00 45.16 25.00 32.26 48.39 0.00 29.03 12.50 65.62 0.00 51.61 0.00 40.62 0.00 0.00 38.71 24.20
Ours 43.33 59.38 54.84 54.84 50.00 41.94 56.25 38.71 51.61 48.39 41.94 53.12 65.62 32.26 48.39 53.12 50.00 36.67 48.39 51.61 49.02

Terra46 ZS 21.93 21.55 25.22 12.39 34.48 6.09 13.04 25.44 33.33 18.42 46.09 6.96 35.96 16.38 41.74 5.31 25.00 7.96 21.74 21.74 22.04
Ours 48.25 62.07 56.52 70.80 43.97 51.30 45.22 28.95 47.37 62.28 41.74 59.13 34.21 60.34 60.00 59.29 35.34 67.26 50.43 76.52 53.05

Terra100 ZS 14.13 9.89 7.69 9.57 5.56 6.38 9.78 6.45 6.52 16.48 4.40 11.70 11.83 7.78 12.90 7.69 11.96 7.61 9.78 12.22 9.52
Ours 63.04 73.63 56.04 75.53 65.56 100.00 59.78 96.77 90.22 57.14 51.65 64.89 48.39 80.00 86.02 49.45 52.17 68.48 78.26 60.00 68.85

Table 5: Average results on CV. Bold means the best.
BenchMark COVID-19 APTOS Terra46 Terra100 AVG

ZS 26.21 24.20 22.04 9.52 20.49
Alone* 36.05 24.98 19.17 16.58 24.20
FedAVG* 36.61 24.51 33.19 26.50 30.20
Ours 68.17 49.02 53.05 68.65 59.72
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Table 6: Average results on NLP. Bold means the best.
Benchmark Method ALBERT BERT DeBERTa GPT2 AVG

SST-2

ZS 47.84 52.16 52.14 52.14 51.07
Alone* 91.81 94.70 84.47 54.22 81.30
FedAVG* 55.51 74.38 71.51 50.20 62.90
Ours 94.70 94.72 94.70 94.70 94.71

COLA

ZS 50.22 50.22 49.87 48.82 49.78
Alone* 69.12 68.55 76.89 68.20 70.69
FedAVG* 52.02 58.77 50.75 56.49 54.51
Ours 89.34 88.73 88.16 88.46 88.67

Financial

ZS 60.76 54.82 62.11 41.26 54.74
Alone* 63.56 62.70 64.18 62.11 63.14
FedAVG* 60.02 63.44 61.07 38.07 55.65
Ours 68.91 68.54 68.69 71.79 69.48

Flipkart

ZS 32.26 29.43 33.27 34.16 32.28
Alone* 48.59 33.40 56.06 33.88 42.98
FedAVG* 35.86 34.44 43.39 39.21 38.23
Ours 64.85 64.50 66.32 65.50 65.29

Table 7: Results on Financial-phrasebank. Bold means the best.
Backbones Client 1 2 3 4 5 6 7 8 9 10 AVG

ALBERT ZS 31.85 91.18 64.71 58.21 78.36 42.96 85.82 38.24 67.41 48.89 60.76
Ours 52.59 99.26 62.50 58.96 87.31 52.59 94.78 50.00 77.78 53.33 68.91

BERT ZS 42.22 70.59 58.82 49.25 57.46 47.41 67.16 43.38 58.52 53.33 54.82
Ours 52.59 99.26 62.50 58.96 87.31 50.37 94.78 44.12 77.78 57.78 68.54

DeBERTa ZS 25.93 99.26 62.50 58.96 87.31 36.30 94.78 31.62 77.78 46.67 62.11
Ours 52.59 99.26 66.18 58.96 87.31 42.96 94.78 46.32 77.78 60.74 68.69

GPT2 ZS 41.48 41.18 49.26 37.31 43.28 37.04 48.51 33.82 42.96 37.78 41.26
Ours 52.59 99.26 75.00 61.94 87.31 52.59 91.04 50.74 81.48 65.93 71.79

Table 8: Resource Consumption.
Phase Metric Foundation Models ALB. BERT DeB. GPT2

Inference

FLOPS
Base 5.4475E+09 5.4413E+09 7.2483E+09 5.0627E+06
Ours(Linear) 5.4497E+09 5.4540E+09 7.2611E+09 1.7772E+07
Ours(LSTM) 5.4656E+09 5.4856E+09 7.2927E+09 4.9377E+07

Time (S)
Base 0.4278 0.3308 0.6475 0.6107
Ours(Linear) 0.5856 0.4767 0.5887 0.5321
Ours(LSTM) 0.7582 0.6028 0.7143 0.6753

Metric Foundation Models ALB. BERT DeB. GPT2

Train GPU Memory (MB)
Base 5742 5380 8356 7874
Ours(Linear) 1718 3086 3346 3838
Ours(LSTM) 1738 2076 2336 2718

Metric Foundation Models ALB. BERT DeB. GPT2

/ Storage (M)
Base 45 418 532 475
Ours(Linear) 54 467 580 524
Ours(LSTM) 46 421 534 478

personalization modules. Please note that the method of fine-tuning local inputs and outputs is also
proposed by us. Thus we do not include these two comparison methods in the main paper.

D.5 Resource Consumption Analysis

Table 8 shows resource consumption on other metrics. Since our model contains the foundation model
on each client, it will slightly consume more FLOPS, inference time (running ten times to calculate
the time.), and storage. We can observe that, compared to the foundational model, the incremental
changes can be negligible, and sometimes even slightly less resource-intensive (possibly due to the
instability of the computing environment). Please note that it is the incremental consumption that we
are truly concerned about. In terms of GPU consumption, although our model is larger, it consumes
less resources. It is reasonable that our approach consumes less GPU since we do not need to compute
and store the gradients of foundational models.

D.6 Visualization Study

Figure 8 describes the visualization of both the original images and the corresponding restored images
via the Autoencoder on Terra100. We can observe that the recovered images almost eliminate the
corresponding category information. However, they generate distinct patterns for different categories.
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Figure 8: Visualizations of both the original images and the corresponding restored images via
the Autoencoder on Terra100. The upper row is the original figures while the bottom row is the
corresponding restored images via the Autoencoder. The first two columns are of the fourth class
while the last two columns are of the eighth class.

Therefore, we can even attempt to upload processed data to foundation models in the server and obtain
feedback outputs for remapping if data privacy and security could not be too strict and important.
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided the full set of assumptions and a complete proof in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details can be found in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have included the open access to code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included experimental settings/details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have included sufficient experimental results and analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included resource analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed broader impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risksthe paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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