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ABSTRACT

In-context learning (ICL) enables large language models (LLMs) to generalize to
new tasks by incorporating a few in-context examples (ICEs) directly in the input,
without updating parameters. However, the effectiveness of ICL heavily relies on
the selection of ICEs, and conventional text-based embedding methods are often
inadequate for tasks that require multi-step reasoning, such as mathematical and
logical problem solving. This is due to the bias introduced by shallow semantic
similarities that fail to capture the deeper reasoning structures required for these
tasks. We present GraphIC, a novel approach that leverages graph-based represen-
tations of reasoning processes, coupled with Bayesian Networks (BNs) to select
ICEs. Graph structures inherently filter out shallow semantics while preserving
the core reasoning structure. Importantly, BNs capture the dependency of a node’s
attributes on its parent nodes, closely mirroring the hierarchical nature of human
cognition—where each thought is shaped by preceding ones. This makes BNs
particularly well-suited for multi-step reasoning tasks, aligning the process more
closely with human-like reasoning. Extensive experiments across three types of
reasoning tasks (mathematical reasoning, code generation, and logical reasoning)
demonstrate that GraphIC outperforms both training-free and training-based mod-
els in selecting ICEs, excelling in terms of both effectiveness and efficiency. We
show that GraphIC enhances ICL’s performance and interpretability, significantly
advancing ICE selection for multi-step reasoning tasks.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020) represents a paradigm in how large language models
(LLMs) perform inference by using a small number of in-context examples (ICEs) within the input
prompt. This technique enables LLMs to generalize to new tasks or enhance their performance
on existing tasks without updating parameters. However, previous studies have highlighted the
sensitivity of ICL performance to the specific ICEs selected (Zhao et al., 2021; Liu et al., 2022),
underscoring the importance of strategic ICE selection. Consequently, numerous methods have been
proposed to optimize the selection of ICEs, focusing on improving task performance and ensuring
greater robustness (Liu et al., 2022; Rubin et al., 2022; Ye et al., 2023; Gupta et al., 2024). These
methods frequently rely on text-based embeddings, where both the query and candidate ICEs are
embedded using a language encoder, with similarity scores guiding the selection process.

Current text-based embedding selection methods primarily focus on capturing semantic-level simi-
larity, demonstrating their utility in tasks such as semantic analysis (Liu et al., 2022) and machine
translation (Agrawal et al., 2023). However, these approaches encounter significant limitations in
multi-step mathematical and logical reasoning tasks, such as GSM8K (Cobbe et al., 2021) and
ProofWriter (Tafjord et al., 2021). The core issue lies in the fact that textual data often encodes
a substantial amount of shallow semantic information, which is largely irrelevant to the underlying
reasoning processes required for math and logic tasks. This extraneous information introduces bias
in the selection of ICEs (An et al., 2023), and can even lead the LLM to adopt misleading rea-
soning strategies, thereby degrading task performance. For example, in a problem involving speed
calculation (i.e., determining the rate of change of distance over time), text-based embeddings may
prioritize examples that focus on solving for time or distance due to their closer semantic similarity,
as shown in Figure 1 (left). This misalignment steers the LLM away from the correct problem-
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Q: Jeannie hikes the 12 miles to Mount Overlook at a pace of 4 miles per 

hour, and then returns at a pace of 6 miles per hour. How long did her hike 

take, in hours?

A: Up, took 12 / 4 = 3 hours.

Down, took 12 / 6 = 2 hours.

Total time was 3 + 2 = 5 hours.

Q: Sadie, Ariana and Sarah are running a relay race. Each part of the race is 

a different length and covers different terrain. It takes Sadie 2 hours to run 

through the forest at an average speed of 3 miles per hour. Ariana sprints 

across the open field on her section at 6 miles per hour for half an hour. If 

Sarah runs along the beach at four miles per hour and their total time for the 

race is four and half hours, what is the total distance of the race?

A: Sadie ran for 3 miles/hour * 2 hour = 6 miles.

Ariana covered a distance of 6 miles/hour * (1/2) hour = 3 miles.

Sarah ran for 4.5 hours - 2 hours - 0.5 hours = 2 hours.

In this time, Sarah traveled a distance of 4 miles/hour * 2 hours = 8 miles.

The total distance for the race was 6 miles + 3 miles + 8 miles = 17 miles.

…

Q: Rachel is stuffing envelopes. She has eight hours to complete the task, 

and there are 1,500 envelopes. In the first hour, Rachel stuffs 135 envelopes. 

The second hour she stuffs 141 envelopes. How many envelopes will Rachel 

need to stuff per hour to finish the job?

A: Rachel has 1500 - 135 - 141 envelopes = 1224 envelopes remaining to 

stuff.

Rachel has 8 hours - 2 hours = 6 hours left to finish the task.

Rachel needs to stuff 1224 envelopes / 6 hours = 204 envelopes per hour.

Q: Allie has 9 toys, which are in total worth $52. If we know that one toy is 

worth $12, and all the other toys have the same value, how much does one of 

the other toys cost?

A: Allie has 9 - 1 = 8 toys of the same value.

Without the value of the one $12 toy, all 8 other toys are worth in total 52 - 12 

= $40.

That would mean, that one of the other toys is worth 40 / 8 = $5.

…

Text-based Retrieval: Graph-based Retrieval:

12 miles / 4 mph = 3 hours

She has already walked for 1 + 1 + 1 = 3 hours

She has 3 - 3 = 0 hours left to walk the remaining distance

She has 0 miles left to walk

 Marissa has walked 4 + 2 = 6 miles so far.

She has 12 - 6 = 6 miles left to walk.

She wants to walk the entire trail in 12 miles / 4 mph = 3 hours.

She has already walked for 1 + 1 = 2 hours.

She has 3 - 2 = 1 hour left to walk the remaining 6 miles.

She needs to walk 6 miles / 1 hour = 6 mph.

Output: Output:

Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another hour to walk the next two miles. If she 

wants her average speed to be 4 miles per hour, what speed (in miles per hour) does she need to walk the remaining distance?

Question:

✓

Figure 1: ICL with different ICE retrieval mechanisms. The left panel shows examples retrieved
via BERT embedding (Devlin et al., 2019), while the right panel displays examples retrieved via
GraphIC. Semantically related terms are highlighted in blue, and quantities or variables needing
resolution are highlighted in green.

solving approach. Therefore, a novel representation is needed to enhance example retrieval for tasks
involving multi-step mathematical and logical reasoning.

Extensive research indicates that graph-based representations, in contrast to text, align more closely
with human cognitive processes and are better equipped to model multi-step reasoning (Friston,
2008; Besta et al., 2024; Yao et al., 2023). Graphs enable the filtering of irrelevant shallow seman-
tic content while preserving the core reasoning structure, thus facilitating the development of an
unbiased example retrieval mechanism. More critically, this representation offers a novel and inter-
pretable approach for constructing example retrievers. When solving multi-step reasoning problems,
the ideal examples are those whose reasoning processes can be directly applied to the query. In other
words, after extracting the thought pattern from these examples, the same logic can be reused to solve
the query question and arrive at the correct answer. Graph structures provide an explicit means to
model these reasoning processes, enabling us to extract implicit thought patterns and assess their
transferability to new problems.

More formally, a reasoning process can be modeled as a graph G with attributes (x1, . . . , xn),
where each xi represents the attribute of vertex vi, corresponding to the thought at vi. We fur-
ther assume that the probability density function governing the sequence of thoughts throughout the
reasoning process is given by p(x1, . . . , xn;G,W ), where W denotes the parameters of the under-
lying thought pattern. Given a query question q and its associated reasoning graph Gq , our goal
is to retrieve ICEs with parameterized thought patterns W i that maximize the probability density
p(xq

1, . . . , x
q
n;G

q,W i), i.e., maximizing the likelihood of solving q correctly. To achieve this, we
employ a Bayesian Network (BN) (Pearl, 2014), a type of probabilistic graphical model, to repre-
sent the multi-step reasoning process and to parameterize the thought patterns. The motivation for
using BN lies in their inherent similarity to human cognition; they assume that the value of each
node (thought) is influenced by the values of preceding nodes, mirroring the way new ideas are con-
structed based on prior knowledge. This structure makes BNs particularly well-suited for capturing
the dependencies and progression of reasoning steps.

In this paper, we introduce GraphIC, a Graph-based In-Context Example Retrieval Model. The key
idea is to leverage graph representations of reasoning processes to enhance the retrieval of ICEs.
Specifically, we first prompt the LLM to generate “thought graphs” for both the candidate examples
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and the query question, where each graph encodes the reasoning steps involved. We then employ
a BN to model each thought graph of candidate examples and estimate the associated parameters
through maximum likelihood estimation, which we reformulate as a bilinear form maximization
problem with a closed-form solution. To better simulate human-like reasoning, we incorporate a
personalized PageRank (PPR) mechanism (Page, 1999), reflecting the cognitive tendency to re-
visit starting point during reasoning, a characteristic well-aligned with the assumptions behind PPR.
Once the thought graphs and their parameters are computed, we select examples whose parameters
maximize the probability density of thoughts on the query question’s thought graph. Note that we
leverage a graph model to aid ICE retrieval, not for direct problem-solving. The solution is driven
by the LLM’s reasoning capabilities. This approach ensures that the retrieved examples, though not
necessarily semantically similar to the query, align with the underlying reasoning process. As shown
in Figure 1(right), GraphIC retrieves examples that, while not focusing on semantically similar tasks,
share a common reasoning structure—for instance, solving for rates such as how the number of en-
velopes changes over time or how costs vary with the number of toys. This guides the LLM towards
the correct solution.

We evaluate GraphIC against 10 baseline models on three multi-step reasoning tasks: mathemat-
ical reasoning, code generation, and logical reasoning. Results show GraphIC excels in selecting
relevant ICEs, surpassing existing methods in effectiveness and efficiency. Additionally, GraphIC
shows faster performance improvements with more ICEs and exhibits asymmetry, mirroring real-
world reasoning. Key contributions are summarized as follows: 1) We introduce a novel graph-based
representation, the “thought graph”, to model multi-step reasoning processes. This approach effec-
tively filters out irrelevant shallow semantic information while preserving the essential reasoning
steps. 2) By leveraging BNs, we design a retrieval mechanism that maximizes the probability density
of solving the query problem, providing a more objective-driven and interpretable retrieval process.
3) Our experimental results indicate that GraphIC, despite being a training-free model, outperforms
both training-free and training-based models across various multi-step reasoning tasks.

2 RELATED WORK

Existing ICE selection techniques can be classified as either training-free or training-based, depend-
ing on whether a retriever needs to be trained.

Training-free approaches are generally divided into two types: (i) those that use heuristic criteria
such as similarity (Liu et al., 2022; Hu et al., 2022), diversity (Cho et al., 2023; Zhang et al., 2022b;
Levy et al., 2023; Hongjin et al., 2022; Zhang et al., 2023), complexity (Fu et al., 2022), or combi-
nations of these (Agrawal et al., 2023; Tonglet et al., 2023; Gupta et al., 2023) to select in-context
examples (ICEs); (ii) those that leverage feedback from LLMs, such as probability distributions (Wu
et al., 2023; Nguyen & Wong, 2023; Li & Qiu, 2023; Yang et al., 2023), perplexity (Gonen et al.,
2023), or the model’s generated output (An et al., 2023) to guide the selection process. While
training-free approaches avoid the computational and time overhead associated with model train-
ing, their relatively simplistic architecture often results in sub-optimal performance compared to
training-based methods.

Training-based methods are typically divided into two main categories. The first learns to select
individual examples and then extends this to k-shot scenarios (Rubin et al., 2022; Xiong et al., 2024;
Gupta et al., 2024). The second models the selection of a group of examples as a whole (Ye et al.,
2023; Wang et al., 2023; Zhang et al., 2022a; Scarlatos & Lan, 2023; Lu et al., 2022; Peng et al.,
2023; Xu et al., 2024). While training-based approaches usually achieve superior performance, their
reliance on repeated LLM queries and model training makes them both computationally intensive
and time-consuming.

Our proposed GraphIC method is not only training-free and inherently efficient but also incorporates
an advanced graph-based example retriever specifically designed for multi-step reasoning tasks.
This sophisticated design enables GraphIC to achieve a significant performance advantage, even
surpassing training-based methods.

3 PRELIMINARIES: BAYESIAN NETWORK

A Bayesian Network (BN) (Pearl, 1982; 1986; PEARL, 1988; Heckerman et al., 1995; Friedman
et al., 1997) is a probabilistic graphical model that represents conditional dependencies among ran-
dom variables via a directed acyclic graph (DAG). In a DAG G = (V,E), V = {v1, . . . , vn} denotes
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Question:

Every day, Wendi feeds each of her chickens three cups 

of mixed chicken feed, containing seeds, mealworms 

and vegetables to help keep them healthy. 

She gives the chickens their feed in three separate 

meals. In the morning, she gives her flock of chickens 15 

cups of feed.  In the afternoon, she gives her chickens 

another 25 cups of feed.  

How many cups of feed does she need to give her 

chickens in the final meal of the day if the size of Wendi's 

flock is 20 chickens?

Input Question: Thought Graph:

feed_per_chicken = 3

number_of_chickens = 20

morning_feed = 15

afternoon_feed = 25

total_feed_required = [multiply](feed_per_chicken, 

number_of_chickens)

total_feed_given = [add](morning_feed, 

afternoon_feed)

final_meal_feed = [minus](total_feed_required, 

total_feed_given)

Formalized Reasoning Representation:

Predefined 

rule-based 

parsing

Prompt 

based 

generating

Prompt 

based 

generating

AugmentAugment Update 

features

Update 

features

Collect

QuestionQuestion

Candidate SetCandidate Set

Thought Graph 

Generating

Thought Graph 

Generating

Thought Graph of Candidate Examples

Thought Graph of Question

Parameter 

estimate

Feature

extraction

original

self-loop

PPR

3 20 15 25

multiply

minus

add

3 20 15 25

multiply

minus

add

Collect

In-context 

example 1

In-context 

example 1

In-context 

example k

In-context 

example k

In-context 

example 1

In-context 

example k

Feature of Question

Parameter of Candidate Examples

Figure 2: The overall pipeline of GraphIC. First, the question and candidate examples are processed
through the thought graph generation module, where the LLM generates formalized reasoning rep-
resentations, which are then parsed into thought graphs. For the question’s thought graph, we extract
X (cognitive process per vertex) and compute aggregated feature Z. For candidates, parameters αi

and βi are estimated to capture relevant thought patterns. We then evaluate the applicability of these
patterns on the query’s thought graph, enabling ICE selection.

the vertices corresponding to random variables, and E denotes the conditional dependencies. Each
vertex vi is associated with a random variable Xi, and the joint probability distribution is factorized
as:

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi|pa(vi)), (1)

where xi ∈ Rnf denotes the value of the random variable Xi, pa(vi) refers to the set of parent
variables for vi, and p(xi|pa(vi)) is typically modeled as:

p(xi|pa(vi)) = g(dist(xi, x̂i)), (2)
with x̂i = Wzi and zi = f(pa(vi)). Here, x̂i represents the predicted value of xi based on zi,
where zi aggregates information from the parent nodes pa(vi). The weight matrix W is used to
predict x̂i, f(·) denotes the aggregation function, dist(·, ·) is a distance metric between xi and x̂i,
and g(·) is a function that satisfies: 1). monotonicity: g′(u) ≤ 0 for u ≥ 0; and 2) normalization:∫
x
g(dist(x, x̂i))dx = 1.

Given the aggregated features Z = (z1, . . . , zn)
⊤ where ⊤ denotes the transpose operation, or-

ganizing the individual feature vectors zi into a matrix where each row corresponds to a feature
vector, along with the distance function dist(·, ·) and function g(·), the joint probability density of
the dataset X = (x1, x2, . . . , xn)

⊤ can be computed.

4 THE PROPOSED GRAPHIC
In this work, we propose a novel approach called GraphIC for representing the problem-solving
process through a graph-based model, intending to select examples that maximize the probability
density of capturing the correct reasoning process. First, we introduce “thought graphs”, a formal
structure designed to represent the reasoning process underlying each example (Section 4.1). Build-
ing on this, we develop a probabilistic framework for modeling the thought graph, enabling us to
compute the probability density associated with a given thought graph (Section 4.2). This proba-
bilistic model serves as the foundation for our example selection strategy, which prioritizes examples
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that maximize the probability density of thoughts on the thought graph of query question (Section
4.3). The overall framework is illustrated in Figure 2.

4.1 THOUGHT GRAPH AND ITS CONSTRUCTION

We begin by introducing the concept of a thought graph and its construction, inspired by the hier-
archical structure of human cognition in problem-solving. The human thought process, especially
when addressing complex problems, can be naturally modeled as a graph-like structure (Friston,
2008; Besta et al., 2024; Yao et al., 2023). In this work, we present the “thought graph” as a struc-
ture for modeling the cognitive process of LLMs during multi-step reasoning tasks. Formally, a
thought graph G is represented as a vertex-attributed graph, where each vertex is associated with
a natural language text, corresponding to the description of the operation performed or the inter-
mediate conclusion reached at that step. To facilitate computation, we further represent the vertex
attributes as the BERT embedding (Devlin et al., 2019) of corresponding text, denoted as xi.

Since LLMs are not natively equipped to output graph structures, we propose a methodology to gen-
erate these graphs from LLM outputs. As illustrated in Figure 2, we prompt the LLM to generate a
“formalized reasoning representation” (FRR), which is subsequently parsed to construct the thought
graph. The detailed prompt and parser pseudo-code are provided in Appendix D.

After constructing the thought graph, a straightforward way to select in-context examples (ICEs) is
to compare the similarities between graph embeddings. To compute these embeddings, we employ
a widely adopted method where each graph embedding is generated through iterative aggregation of
node information, as outlined by Togninalli et al. (2019). Specifically, this process is formalized as:

Xh+1 = ÃXh, X0 = X = (x1, x2, . . . , xn)
⊤, (3)

where Ã = D̃
− 1

2

A (A+I)D̃
− 1

2

A , D̃A = 1+
∑

j Aij . A represents the adjacency matrix of the thought
graph, where Aij = 1 indicates a directed edge from node vi to node vj , and Aij = 0 otherwise.

While this approach effectively captures the structural properties of human thought as represented in
the graph, it is constrained by its focus on graph similarity alone. Importantly, selecting an example
based solely on the similarity does not necessarily optimize the possibility of an LLM generating a
correct reasoning trajectory. To overcome this, we further propose a novel example retrieval model
that prioritizes the optimization of the probability density of producing a correct reasoning process
detailed in the next subsection, moving beyond a mere reliance on graph similarity.

4.2 PROBABILISTIC MODEL ON THOUGHT GRAPH

Building on the method for constructing thought graphs, we now turn to developing a probabilistic
model for this structure. BNs model the dependencies of a node’s attributes on its parent nodes,
which closely mirror the way human cognition functions—where new thoughts are informed by
prior ones (Oaksford & Chater, 2007; Jacobs & Kruschke, 2011). This makes them a well-suited
framework for modeling the thought graphs. In this section, we outline the construction of BNs for
thought graphs. As described in Section 3, calculating the joint probability density on the thought
graph requires the aggregate feature Z, the distance metric dist(·, ·), and the function g(·). We now
provide a detailed discussion of how each of these components is constructed.

Computing the Aggregated Feature Z. Traditional BNs, which rely on the Markov assumption
that a node’s feature distribution depends solely on its parent nodes, are insufficient for modeling a
thought graph where reasoning often requires referencing multiple prior steps. For example, prob-
lem solvers may need to iteratively review information from earlier steps or return to the beginning
to re-examine the entire reasoning process. To address this limitation, we first employ an iterative
aggregation mechanism that better captures the human reasoning processes. This iterative approach
is formalized in Equation (3). Next, inspired by the Personalized PageRank (PPR) algorithm (Page,
1999; Gasteiger et al., 2018), we refine this method to more accurately simulate the flow of informa-
tion during problem-solving. The PPR framework models a random walk where a user transitions
between web pages with some probability of returning to the start. This closely parallels the cogni-
tive process in complex problem-solving, where solvers often revisit initial hypotheses to reassess
their reasoning. Therefore, the iterative feature aggregation is defined as follows:

X(h+1) =
[
(1− λ)Ã+ λB̃

]
X(h), X(0) = (x1, x2, . . . , xn)

⊤, (4)
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where λ ∈ (0, 1), B̃ = D̃
− 1

2

B (B + I)D̃
− 1

2

B , and D̃B = 1 +
∑

j Bij . The matrix B models the
retracing aspect of the thought process, where Bij = 1 if deg(vj) = 0 and deg(vi) > 0, otherwise
Bij = 0, with deg(vj) representing the in-degree of node vj .

After H iterations, the aggregated feature matrix Z is given by:

Z =
[
(1− λ)Ã+ λB̃

]H
X. (5)

Distance Metric dist(·) and Function g(·). In prior works (Rubin et al., 2022; Ye et al., 2023;
Xiong et al., 2024), the inner product has been a standard approach for quantifying vector similar-
ity. Building on this, we define the distance function dist(·) (see equation 1) in terms of the inner
production as follows:

dist(x1, x2) = l − x⊤
1 x2, (6)

where l is a sufficiently large constant chosen to ensure that dist(x1, x2) remains positive. A suitable
choice for l is the square of the maximum norm of the embeddings produced by the model:

l = max
t

[
Emb(t)⊤Emb(t)

]
, t ∈ NL, (7)

with Emb(·) denoting a text embedding model and NL denoting the set of all natural languages.
Additionally, we define gi(u) =

1
Ci

exp(−u) (see equation 1), allowing us to represent:

p(xi;G,X) = gi(dist(xi, x̂i)) =
1

Ci
exp

[
−(l − x̂⊤

i xi)
]
=

1

Ci
exp

[
−(l − z⊤i W⊤xi)

]
, (8)

where Ci is a normalization constant.

Note that this formulation establishes a probabilistic model for the thought graph. Given the param-
eters W , we can compute the probability density of each vertex attribute, which in turn allows us to
determine the probability density of the entire graph. In essence, the matrix W governs the gener-
ation of new attributes and is meant to capture or represent the underlying structure of reasoning or
connections between different concepts or ideas in the thought graph.

4.3 PROBABILISTIC EXAMPLE RETRIEVAL

As outlined in Section 4.2, the parameter W is meant to capture and represent the underlying struc-
ture of reasoning or connections between different concepts or ideas within the thought graph. The
task of computing the probability density of generating a particular thought graph given W can be
interpreted as evaluating the likelihood of producing the associated reasoning process based on the
thought pattern encoded within W . Building on this idea, we design an example retrieval mechanism
that estimates the model parameters for each candidate example and prioritizes those that maximize
the probability density of the thought graph corresponding to the query. These selected examples
serve as ICEs, offering the highest potential for accurately solving the problem at hand.

Estimation of Model Parameters. We estimate the parameter matrix W by maximizing the like-
lihood function LW of the thought graph features, which is computed as

LW =

n∏
i=1

p(xi|G), logLW =

n∑
i=1

log p(xi|G). (9)

To simplify the computation, this reduces to the following:

logLW = −
n∑

i=1

logCi +

n∑
i=1

[
−(l − z⊤i W⊤xi)

]
= −

n∑
i=1

logCi − nl + tr(ZW⊤X⊤). (10)

Hence, maximizing LW is equivalent to maximizing tr(ZW⊤X⊤), formally expressed as:

max
W

tr(ZW⊤X⊤), W ∈ Rnf×nf , s.t. ||W ||F = (

m∑
i=1

n∑
j=1

w2
ij)

1
2 = 1. (11)

This constraint ensures that the magnitude of W does not influence the optimization.

Typically, the number of vertices n in the thought graph is much smaller than the embedding dimen-
sionality nf (i.e., n≪ nf ). For instance, in the GSM8K dataset, thought graphs often contain fewer
than 20 vertices, while the embeddings nf can be as high as 768 if BERT is used. This dimensional
disparity makes the solution for W non-unique. Moreover, storing and computing a matrix of size
nf × nf is computationally burdensome. To address both uniqueness and computational efficiency,
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we constrain W to to be of rank 1, reducing it to the form:
W = αβ⊤, ||α||2 = ||β||2 = 1, α, β ∈ Rnf . (12)

This simplifies the optimization to:
tr(ZW⊤X⊤) = tr(Zβα⊤X⊤) = tr(α⊤X⊤Zβ) = α⊤X⊤Zβ. (13)

Thus, we reformulated the problem as a bilinear form maximization problem:
max
α,β

α⊤X⊤Zβ, s.t. ||α||2 = ||β||2 = 1. (14)

The closed-form solution to this problem (Leon, 1994) can be obtaind as:
α = U [0, :], β = V [0, :], where U,Σ, V = SVD(X⊤Z). (15)

Selection of Examples. We extract parameters (α, β) from the thought graph of each candidate ex-
ample, denoted as {(α1, β1)}Ni=1, where N represents the size of the candidate set. For a given query
q, we construct its thought graph Gq and derive Zq , then we select the top k candidate examples that
maximize the probability density pi(X

q) of generating the correct reasoning process:
pi(X

q) = (αi)⊤(Xq)⊤Zqβi. (16)
These selected examples are taken as ICEs in ICL, where the detailed templates used in ICL are
given in Appendix B.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

We conduct a comprehensive evaluation of GraphIC model across four multi-step reasoning bench-
marks: two for mathematical reasoning (GSM8K (Cobbe et al., 2021) and AQUA (Ling et al.,
2017)), one for code generation (MBPP (Austin et al., 2021)), and one for logical reasoning
(ProofWriter (Tafjord et al., 2021)). For both GSM8K and MBPP, we utilize the original datasets
without further preprocessing. For AQUA and ProofWriter, we refine the original dataset to improve
the experimental setup, as detailed in Appendix A.

For GSM8K, AQUA, and ProofWriter, model performance is evaluated based on the accuracy of
the LLMs’ final answers. For MBPP, we adopt the pass@1 metric (Chen et al., 2021) to assess the
quality of code generation.

We employ GPT-4o-mini and Llama-3.1-8B-Instruct as LLMs. Unless explicitly mentioned other-
wise, all evaluations are conducted under an 8-shot paradigm. We set the temperature to 1e-5. We
set iterations H in Equation 5 to 3, with λ values from {0, 0.1, 0.2, 0.3}, based on the LLM and
dataset (see Appendix D for details). For GSM8K, AQUA, and ProofWriter, we prompt the LLM
to create a formalized reasoning representation (FRR) for thought graph construction, using vertex
features from a BERT model. For MBPP, we use the staticfg module to parse Python code
and generate the control flow graph, embedding each vertex’s features with CodeBERT (Feng et al.,
2020). Variable names in the code are anonymized with arbitrary symbols like ‘a’, ‘b’, and ‘c’.

5.2 BASELINES

Our model, GraphIC, is designed as a training-free retriever for ICE selection. We compare GraphIC
against six training-free retrieval methods spanning random, similarity-based, diversity-based, and
complexity-based approaches, including: 1) Random randomly selects k unique ICEs from the
candidate set; 2) BM25 (Robertson et al., 2009) selects the top k examples based on BM25 scoring;
3) BERT (Devlin et al., 2019) is a dense retriever using cosine similarity with BERT-base-uncased
embeddings; 4) Complex-CoT (Fu et al., 2022) selects k examples based on complexity, quantified
by newline characters; 5) Auto-CoT (Zhang et al., 2022b) clusters candidates and selects the closests
to each cluster center; and 6) Skill-kNN (An et al., 2023) prompts LLM to generate task-relevant
skills for query and candidates, followed by dense retrieval. Since Skill-kNN does not natively sup-
port datasets like GSM8K, we manually craft the instructions and examples, detailed in Appendix C.

We also compare with four training-based retrievers, which encompass both single-example and
combination-example retrieval strategies, including: 1) EPR (Rubin et al., 2022) is trained to
retrieve the single most relevant ICE, with top k examples being selected during inference;
2) CEIL (Ye et al., 2023) uses determinantal point processes to select ICEs balancing similarity
and diversity, where three CEIL models per dataset with scaling factors of 0.01, 0.05, and 0.1 are
trained and the best results are reported; 3) DQ-LoRe (Xiong et al., 2024) uses dual queries and
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low-rank approximation re-ranking to identify ICEs; and 4) GistScore (Gupta et al., 2024) encodes
task-specific information into gist tokens for selecting ICEs. Following Skill-kNN, We use GPT-J-
6B (Wang & Komatsuzaki, 2021) as the scoring LLM for EPR, CEIL, and DR-LoRe.

5.3 MAIN RESULTS

Figure 3 illustrates the thought graphs corresponding to each dataset. Table 1 evaluates our GraphIC
model against 10 baselines across two LLMs and four datasets. As a training-free method, GraphIC
consistently outperforms both training-free and training-based baselines in most settings. With the
GPT-4o-mini model, GraphIC achieves the highest performance, averaging 2.57% above the leading
training-free model and 1.18% above the best training-based model. For the Llama-3.1-8B-Instruct
model, GraphIC ranks first in three out of four datasets, with an average gain of 4.29% over the
top training-free competitor and 2.5% over the strongest training-based method. Our analysis shows
that the GraphIC model significantly enhances performance in mathematical and logical reasoning
tasks versus code generation, especially for complex problems. For instance, in the GSM8K dataset,
GraphIC outperforms all baselines by an average of 0.65% and 3.57% with two LLMs. In the more
challenging AQUA dataset, improvements rise to 3.47% and 7.64%.
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9824.119 “Anne is furry.” “Anne is nice.”

“Anne is kind.”“Anne is quiet.”

“Anne is young.”

“Anne is green.”

“Anne is furry.” “Anne is nice.”

“Anne is kind.”“Anne is quiet.”

“Anne is young.”

“Anne is green.”

GSM8K AQUA MBPP ProofWriter

Figure 3: Examples of thought graphs. For GSM8K and AQUA, Vertices indicated by dashed lines
represent the numbers entered during calculations, which will be removed in subsequent steps. The
purple vertice indicates the final step in the reasoning process.

Table 1: Main results on two LLMs and four datasets. For random retrieval, we present the mean
and standard deviation derived from five independent experiments. Bold numbers indicate the best
results, while underlined numbers represent the second-best results.

LLM Model GSM8K AQUA MBPP ProofWriter Avg.

GPT-4o-mini

Random 92.90 (0.31) 71.58 (0.72) 72.76 (0.74) 64.90 (0.93) 75.54 (0.36)
BM25 92.64 70.47 73.4 66.25 75.69
BERT 93.02 66.93 74.2 65.25 74.85

Complex-CoT 92.49 67.32 74.2 64.25 74.57
Auto-CoT 92.72 69.69 73.8 62.25 74.62
Skill-kNN 92.34 71.65 72.0 66.00 75.50

EPR 93.02 72.04 73.8 68.50 76.84
CEIL 92.57 72.44 73.8 69.50 77.08

DQ-LoRe 93.32 69.69 74.6 66.50 76.03
GistScore 93.25 69.69 72.8 67.00 75.69

GraphIC 93.48 73.62 75.2 70.75 78.26

Llama-3.1
-8B-Instruct

w/o ICL 46.47 35.43 43.4 40.75 41.51
Random 78.86 (0.87) 53.15 (1.85) 57.72 (1.06) 76.10 (2.45) 66.46 (0.84)
BM25 77.71 46.85 62.0 77.75 66.08
BERT 74.15 50.39 60.8 73.75 64.77

Complex-CoT 79.30 50.00 58.6 78.25 66.54
Auto-CoT 72.78 42.91 58.4 78.00 63.02
Skill-kNN 77.56 50.39 60.8 74.00 65.69

EPR 75.66 53.94 62.0 79.25 67.71
CEIL 75.51 51.97 62.4 81.00 67.72

DQ-LoRe 77.93 54.33 59.8 81.25 68.33
GistScore 74.60 44.49 60.4 79.50 64.75

GraphIC 79.98 57.48 61.6 84.25 70.83

Additionally, we observe that the GPT-4o-mini model’s performance on the GSM8K dataset is rel-
atively invariant to the selection of ICEs. So, we further perform an additional experiment on the
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Table 2: Results obtained using GPT-3.5-Turbo as the LLM on the GSM8K dataset.
Random BM25 BERT Complex-CoT Auto-CoT Skill-kNN EPR CEIL DQ-LoRe GistScore GraphIC

80.76(0.55) 82.10 80.89 81.65 82.03 81.50 81.65 81.72 82.10 81.72 82.79

GSM8K dataset using the GPT-3.5-Turbo model. As presented in Table 2, GraphIC model achieves
superior performance across all metrics.

5.4 ABLATION STUDY

We perform a series of ablation studies to systematically evaluate the contribution of each component
within the GraphIC framework, which is built upon three key pillars: the incorporation of thought
graphs, PPR for aggregating features, and BN-based retrieval.

To this end, we develop several variants of the GraphIC model: 1) Text relies solely on text embed-
dings, the same as the BERT approach; 2) FRR retrieves examples using BERT embeddings derived
from FRRs (or CodeBERT embeddings for the MBPP dataset); 3) Graph utilizes the formula (3) to
generate graph embeddings, which are employed for dense retrieval; 4) Graph+PPR uses the for-
mula (5) to obtain graph embeddings for dense retrieval; 5) Graph+BN excludes the backtracking
(or PPR) mechanism from the full GraphIC model during computing Z; and 6) Graph+PPR+BN
represents the full GraphIC model, integrating all components.

We conduct experiments leveraging
the Llama-3.1-8B-Instruct model across
four datasets, with the outcomes de-
tailed in Table 3. The findings under-
score that each component of GraphIC
plays a pivotal role in boosting model
performance, with the most significant
improvements observed when all three
components are utilized in conjunction.

Table 3: Ablation Study.

Model GSM8K AQUA MBPP ProofWriter

Text 74.15 50.39 60.8 73.75
FRR 78.31 50.78 60.4 82.50
Graph 78.46 54.72 60.4 83.50

+PPR 78.92 56.30 61.0 83.75
+BN 79.07 49.21 60.4 84.25
+PPR+BN 79.98 57.48 61.6 84.25

5.5 ANALYSIS
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Figure 4: Comparison of different numbers of ICEs on various datasets. The blue, red, and purple
lines indicate top 1, top 2, and top 3 performing baseline as shown in Table 1, respectively.

Impact of ICE Examples on Model Performance. We conduct an in-depth investigation into the
influence of the number of ICEs on the performance of our proposed GraphIC model and several
competitive baselines across four datasets. For each dataset, we select the top three baselines and
varied the number of examples in the set {1, 2, 4, 8}. Llama-3.1-8B-Instruct is employed as the
underlying LLM. Results in Figure 4 indicate a general trend of improved model performance with
an increase in the number of examples. Notably, The performance of GraphIC steadily improves as
the number of ICEs increases, unlike some baseline methods, which may experience performance
degradation when the number of ICEs increases. Furthermore, while GraphIC initially lags behind
the baselines in the low-shot settings, its performance exhibits a more pronounced improvement as
the number of examples grew. One can observe that GraphIC surpasses the baselines, demonstrating
superior performance and underscoring its robustness as the number of examples increases.
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(h) GraphIC

Figure 5: Ground truth matrix and score matrices of various models. The matrix values have been
linearly scaled to the range [0,1], and the diagonal elements have been set to 1.

Assumption of Symmetry. Our findings show that the GraphIC model uses an “asymmetric” ap-
proach, unlike the common symmetry assumption in most baseline models. To assess the validity of
this assumption, we conduct an experiment examining whether symmetry, in the context of retrieval
models, holds. Here, a retrieval model is considered symmetric if score(i, j) = score(j, i), where
score(i, j) represents the model’s assessment of example i as an ICE for example j. For example, the
Skill-kNN is symmetric as it uses inner product embeddings for score(j, i), while the Complex-CoT
model is asymmetric, calculating score(j, i) based on the complexity of example i.

We randomly select 10 examples from the GSM8K candidate set and use the top-7 performing
models to compute the score matrix S (Sij = score(i, j)), which we then compare against the
ground truth matrix Sgt. Here, Sgt

ij captures the probability that Llama-3.1-8B-Instruct provides the
correct answer when example i is used as an ICE for example j.

The experimental results show that the ground truth matrix (Figure 5 (a)) is asymmetric, undermin-
ing the symmetry assumption. Using symmetric models for inherently asymmetric data introduces
significant errors. For instance, the EPR model, trained on correct answer probabilities, struggles
with accuracy due to its symmetry reliance (Figure 5 (f)). In contrast, simple asymmetric methods
like Complex-CoT (Figure 5 (b)) and BM25 (Figure 5 (d)) perform well, ranking second and fourth
as Table 1 shows, and surpassing many symmetric models. However, their simplistic assumptions
limit their ability to capture ground truth nuances. In contrast, GraphIC (Figure 5 (h)), a sophisti-
cated asymmetric model, aligns closely with the ground truth, resulting in superior performance.

6 CONCLUSION

We introduce GraphIC, a graph-based method for in-context example (ICE) retrieval aimed at en-
hancing LLM performance on multi-step reasoning tasks. By modeling reasoning as “thought
graphs” and utilizing Bayesian Networks and personalized PageRank, GraphIC selects ICEs that
align with the task’s cognitive structure, overcoming the limitations of text-based embedding meth-
ods. Extensive experiments on four benchmarks show that GraphIC consistently outperforms both
training-free and training-based baselines, especially in mathematical and logical reasoning. Our
analysis of symmetry assumptions highlights the advantage of asymmetric retrieval models. A limi-
tation of the GraphIC model is that, as a training-free framework, it may face difficulties in capturing
more intricate thought patterns. Beyond this, GraphIC not only introduces a powerful ICEs retrieval
method, but more crucially, it provides a way to represent and understand the reasoning process. This
capability can be applied to various domains related to LLM reasoning, such as developing novel
graph-based reasoning methods, selecting high-quality and diverse training datasets, and more.
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A PROCESSING OF AQUA AND PROOFWRITER

Given the substantial size of the AQUA dataset, which incurs significant retrieval overhead during
testing, we followed the methodology outlined in DQ-LoRe (Xiong et al., 2024), using a 1,000-
sample subset for efficient evaluation.

For the ProofWriter dataset, we refined the subset selected by Logic-LM (Pan et al., 2023), excluding
instances labeled as “Unknown,” as these samples lacked explicit reasoning chains. Furthermore,
because the original training set did not provide reasoning in natural language, we leveraged the
GPT-4o-mini model to generate reasoning sequences for the training set, discarding any generated
outputs deemed incorrect. We evaluate the correctness of the reasoning process by the correctness
of the final result, which is a commonly used approach (Lightman et al., 2024; Xiong et al., 2024;
Khattab et al., 2022). This process resulted in a refined training set of 1,358 examples with their
Chains of Thought and 400 test samples from the original ProofWriter dataset.

B PROMPT TEMPLATES

For the four datasets under consideration, we design the following prompt templates to format the
ICEs and the question into a prompt, which is then fed into an LLM to generate answers.

GSM8K & AQUA:

Q: {{ice_question_1}}

A: {{ice_answer_1}}

...

Q: {{ice_question_k}}

A: {{ice_answer_k}}

Q: {{question}}

A:

MBPP:

Text: {{ice_question_1}}

Test Cases: {{ice_test_cases_1}}

Code: {{ice_code_1}}

...

Text: {{ice_question_k}}

Test Cases: {{ice_test_cases_k}}

Code: {{ice_code_k}}

Text: {{question}}

Test Cases: {{test_cases}}

Code:

ProofWriter:

Q: {{ice_question_1}}

Proof: {{ice_answer_1}}

...

Q: {{ice_question_k}}

Proof: {{ice_answer_k}}

Q: {{question}}
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Proof:

C SKILL-KNN

Since Skill-kNN does not offer prompts for skill generation in these three tasks, we referred to the
prompt designed for the semantic parsing task in the original paper to write prompts for the four
datasets we used. First, we applied the Complex-CoT method to select 8 examples, then employed
the GPT-4o model to generate skills in a zero-shot setting. Finally, we integrated these results to
construct the final prompt.

GSM8K:

Generate the skills needed to solve the following math problems.

Q: You can buy 4 apples or 1 watermelon for the same price. You bought 36 fruits evenly split
between oranges, apples and watermelons, and the price of 1 orange is $0.50. How much
does 1 apple cost if your total bill was $66?

Skills:
1. Algebraic Reasoning
2. Proportional Thinking
3. Numerical Operations
4. Logical Analysis
5. Problem Solving
6. Cost Analysis

...

Q: {{question}}

Skills:

AQUA:

Generate the skills needed to solve the following math problems.

Q: In a group of 6 boys and 4 girls, four children are to be selected. In how many different
ways can they be selected such that at least one boy should be there?

Options: A)209, B)210, C)211, D)213, E)215

Skills:
1. Selection Principles
2. Inclusion-Exclusion
3. Logical Analysis
4. Quantitative Reasoning

...

Q: {{question}}

Skills:

MBPP:

Generate the skills needed to solve the following coding problems.

Text: Write a function to generate a square matrix filled with elements from 1 to n raised to
the power of 2 in spiral order.

Test Cases:
assert generate_matrix(3)==[[1, 2, 3], [8, 9, 4], [7, 6, 5]]
assert generate_matrix(2)==[[1,2],[4,3]]
assert generate_matrix(7)==[[1, 2, 3, 4, 5, 6, 7], [24, 25, 26, 27, 28, 29, 8], [23, 40, 41,

42, 43, 30, 9], [22, 39, 48, 49, 44, 31, 10], [21, 38, 47, 46, 45, 32, 11], [20, 37, 36,
35, 34, 33, 12], [19, 18, 17, 16, 15, 14, 13]]

Skills:
1. Matrix Manipulation
2. Spiral Algorithm Design
3. Loop Control Flow
4. Boundary Handling
5. Efficient Implementation
6. Testing & Debugging
7. Sequence-to-Matrix Mapping
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...

Text: {{question}}

Test Cases: {{test_cases}}

Skills:

ProofWriter:

Generate the skills needed to solve the following logical reasoning problems.

Q: Triples:
1. Anne is not big.
2. Anne is cold.
3. Anne is red.
4. Dave is green.
5. Dave is rough.
6. Erin is green.
7. Erin is kind.
8. Erin is rough.
9. Fiona is green.
10. Fiona is not nice.
Rules:
1. If Erin is cold then Erin is rough.
2. If something is rough then it is nice.
3. All green, big things are kind.
4. If Dave is kind then Dave is cold.
5. If something is green and not rough then it is big.
6. All nice, rough things are big.
7. If Dave is cold and Dave is nice then Dave is red.
Based on the above information, is the following statement true or false? Dave is red.
A) True B) False

Skills:
1. Comprehension
2. Logical Deduction
3. Conditional Reasoning
4. Contrapositive Reasoning
5. Transitive Reasoning
6. Identify Necessary Conditions
7. Eliminate Contradictions
8. Pattern Recognition
9. Attention to Detail
10. Inference Making

...

Q: {{question}}

Skills:

D GRAPHIC

D.1 FORMALIZED REASONING REPRESENTATION

The prompt examples below are used to generate formalized reasoning representations for the four
datasets being considered. For the test question, since no answer is provided, we will remove the
section of the prompt highlighted in blue. This will allow the LLM to generate both the answer
and the formalized reasoning representation simultaneously, from which we can then extract the
formalized reasoning representation.

GSM8K:

Translate the given calculations into code form. Each line of code MUST follow the format
specified below:

output_variable = [description of operation](input_variable_1, ..., input_variable_n)

Q: You can buy 4 apples or 1 watermelon for the same price. You bought 36 fruits evenly split
between oranges, apples and watermelons, and the price of 1 orange is $0.50. How much
does 1 apple cost if your total bill was $66?

A: If 36 fruits were evenly split between 3 types of fruits, then I bought 36/3 =
<<36/3=12>>12 units of each
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fruit
If 1 orange costs $0.50 then 12 oranges will cost $0.50 * 12 = $<<0.5*12=6>>6
If my total bill was $66 and I spent $6 on oranges then I spent $66 - $6 = $<<66-6=60>>60 on

the other 2 fruit types.
Assuming the price of watermelon is W, and knowing that you can buy 4 apples for the same

price and that the price
of one apple is A, then 1W=4A
If we know we bought 12 watermelons and 12 apples for $60, then we know that $60 = 12W + 12A
Knowing that 1W=4A, then we can convert the above to $60 = 12(4A) + 12A
$60 = 48A + 12A
$60 = <<60=60>>60A
Then we know the price of one apple (A) is $60/60= $<<60/60=1>>1
#### 1

Code:
total_fruits = 36
types_of_fruits = 3
price_per_orange = 0.50
total_oranges = 12
total_bill = 66
equivalent_apples_for_watermelon = 4
total_apples_and_watermelons = 12
fruits_per_type = [divide](total_fruits, types_of_fruits)
cost_of_oranges = [multiply](total_oranges, price_per_orange)
remaining_budget = [minus](total_bill, cost_of_oranges)
price_per_apple = [construct and solve an equation](total_apples_and_watermelons,

equivalent_apples_for_watermelon, remaining_budget)

...

Q: {{question}}

A: {{answer}}

Code:

AQUA:

Translate the given calculations into code form. Each line of code MUST follow the format
specified below:

output_variable = [description of operation](input_variable_1, ..., input_variable_n)

Q: In a group of 6 boys and 4 girls, four children are to be selected. In how many different
ways can they be selected such that at least one boy should be there?

Options: A)209, B)210, C)211, D)213, E)215

A: To determine the number of ways to select 4 children from a group of 6 boys and 4 girls
such that at least one boy is included, we will use the method of complement counting.

First, let’s calculate the total number of ways to select 4 children from 10 children (6 boys
+ 4 girls):

\[
\binom{10}{4} = \frac{10!}{4!(10-4)!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times

2 \times 1} = 210
\]

Next, we calculate the number of ways to select 4 children with no boys, i.e., all girls.
Since there are only 4 girls, and we need to select all 4 of them:

\[
\binom{4}{4} = 1
\]

Now, subtract the number of ways to select all girls from the total number of ways to select 4
children to find the number of ways that include at least one boy:

\[
\binom{10}{4} - \binom{4}{4} = 210 - 1 = 209
\]

Thus, the number of ways to select 4 children with at least one boy is:

\[
\boxed{209}
\]
#### A

Code:
total_children = 10
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children_to_select = 4
boys = 6
girls = 4
total_ways_to_select = [combination](total_children, children_to_select)
all_girls_selection = [combination](girls, children_to_select)
ways_with_at_least_one_boy = [subtract](total_ways_to_select, all_girls_selection)

...

Q: {{question}}

A: {{answer}}

Code:

MBPP:

Text: Write a function to generate a square matrix filled with elements from 1 to n raised to
the power of 2 in spiral order.

Test Cases:
assert generate_matrix(3)==[[1, 2, 3], [8, 9, 4], [7, 6, 5]]
assert generate_matrix(2)==[[1,2],[4,3]]
assert generate_matrix(7)==[[1, 2, 3, 4, 5, 6, 7], [24, 25, 26, 27, 28, 29, 8], [23, 40, 41,

42, 43, 30, 9], [22, 39, 48, 49, 44, 31, 10], [21, 38, 47, 46, 45, 32, 11], [20, 37, 36,
35, 34, 33, 12], [19, 18, 17, 16, 15, 14, 13]]

Code:
def generate_matrix(n):

if n<=0:
return []

matrix=[row[:] for row in [[0]*n]*n]
row_st=0
row_ed=n-1
col_st=0
col_ed=n-1
current=1
while (True):

if current>n*n:
break

for c in range (col_st, col_ed+1):
matrix[row_st][c]=current
current+=1

row_st+=1
for r in range (row_st, row_ed+1):

matrix[r][col_ed]=current
current+=1

col_ed-=1
for c in range (col_ed, col_st-1, -1):

matrix[row_ed][c]=current
current+=1

row_ed-=1
for r in range (row_ed, row_st-1, -1):

matrix[r][col_st]=current
current+=1

col_st+=1
return matrix

...

Text: {{question}}

Test Cases:
{{test_list}}

Code:

ProofWriter:

Formalize the following proof process based on the given information. Where Each line of
formalized proof MUST follow the format specified below.

output_triple = [rule used](input_triple_1, ... , input_triple_n)

Q: Triples:
1. Anne is not big.
2. Anne is cold.
3. Anne is red.
4. Dave is green.
5. Dave is rough.
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6. Erin is green.
7. Erin is kind.
8. Erin is rough.
9. Fiona is green.
10. Fiona is not nice.
Rules:
1. If Erin is cold then Erin is rough.
2. If something is rough then it is nice.
3. All green, big things are kind.
4. If Dave is kind then Dave is cold.
5. If something is green and not rough then it is big.
6. All nice, rough things are big.
7. If Dave is cold and Dave is nice then Dave is red.
Based on the above information, is the following statement true or false? Dave is red.
A) True B) False

Proof: To determine if the statement "Dave is red" is true or false, let’s evaluate the given
information step by step:

From the triples:
1. Dave is green.
2. Dave is rough.

From the rules:
1. If something is rough then it is nice. (Dave is rough, so Dave is nice.)
2. If Dave is cold and Dave is nice then Dave is red. (However, there’s no information saying

Dave is cold, so we can’t use this rule directly.)
3. All nice, rough things are big. (Dave is nice and rough, so Dave is big.)

Now, we need to verify whether Dave being cold can be derived:
1. If Dave is kind then Dave is cold. (To use this, we need to verify if Dave is kind.)

- All green, big things are kind. (Dave is green and big, so Dave is kind.)
- Hence, Dave is kind, which according to rule 4, makes Dave cold.

Since now we know:
- Dave is cold.
- Dave is nice.

We can use rule 7:
- If Dave is cold and Dave is nice then Dave is red.

Since both conditions are satisfied, Dave is red.

The statement "Dave is red" is **True (A)**.

Formalized Proof:
"Dave is nice." = [rule2]("Dave is rough.")
"Dave is big." = [rule6]("Dave is nice.", "Dave is rough.")
"Dave is kind." = [rule3]("Dave is green.", "Dave is big.")
"Dave is cold." = [rule4]("Dave is kind.")
"Dave is red." = [rule7]("Dave is cold.", "Dave is nice.")

...

Proof: {{answer}}

Formalized Proof:

The pseudo-code of a parser that transforms formalized reasoning representations into a thought
graph is provided in Algorithm 1. Inputs, Output, and OperationName are extracted following the
pattern outlined below.

Output = [OperationName](input_1, ..., input_n)

D.2 VALUES OF λ

We select hyper parameter λ values from {0, 0.1, 0.2, 0.3}, and report the λ values chosen on various
datasets and LLMs in Table 4.
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Algorithm 1 Parsing Formalized Reasoning Representation

Require: formalized reasoning representation FRR
Ensure: Corresponding graph G(V,E)

1: NodeSet← ∅
2: EdgeSet← ∅
3: line← first line of FRR
4: while line ̸= NULL do
5: Extract Inputs, Output, and OperationName from line
6: for each input in Inputs do
7: if input /∈ NodeSet then
8: Add input to V
9: end if

10: end for
11: if Output /∈ V then
12: Add Output to V , labeled as OperationName
13: end if
14: for each input in Inputs do
15: Add directed edge from input to Output to E
16: end for
17: line← next line of FRR
18: end while
19: G = G(V,E)

Table 4: λ values chosen on various datasets and LLMs.

Engine GSM8K AQUA MBPP ProofWriter

GPT-4o-mini 0.2 0.2 0.1 0.1
Llama-3.1-8B-Instruct 0.3 0.2 0.2 0.0

GPT-3.5-Turbo 0.3 / / /

E SUPPLEMENTARY EXPERIMENTS

E.1 CORRECTNESS OF LLM GENERATED ANSWERS FOR CREATING THOUGHT GRAPHS

To analyze the consistency between LLM-generated answers and real solutions, we tested the ac-
curacy of these answers used to generate the thought graphs. The results are shown in the Table 5.
From Table 5, it can be seen that these answers used to generate the thought graph already have
relatively high accuracy, which ensures their consistency with the real solution. Furthermore, the
table demonstrates that using the thought graph to retrieve examples can further improve accuracy,
especially in mathematical reasoning and logical reasoning tasks. We use Llama-3.1-8B-Instruct for
testing.

Table 5: Correctness of LLM generated answers for creating thought graphs and final answers.

Accuracy GSM8K AQUA MBPP ProofWriter

Answer for Creating Thought Graphs 76.42 49.21 60.6 78.25
Final Answers 79.98 57.48 61.6 84.25
Improvement +3.56 +8.27 +1.00 +6.00
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E.2 PERFORMANCE OF GRAPHIC WHEN USING INCORRECT ANSWERS FOR CREATING
THOUGHT GRAPHS

To further investigate whether incorrect thought graphs could mislead the retrieval process, we se-
lected a subset from each dataset, containing all queries associated with incorrect thought graphs. We
evaluated GraphIC on these four subsets and compared its performance with that of top-performing
baselines, both training-based (DQ-LoRe) and training-free (Complex-CoT). The results, shown in
Table 6, reveal that even when GraphIC uses incorrect thought graphs to retrieve in-context exam-
ples, it still achieves a significant performance advantage. Note that the performance in the Table 6
is substantially lower than those in Table 1. This is because the queries that lead to incorrect thought
graphs are typically the most difficult ones.

Table 6: Performance of GraphIC and top training-free/training-based baseline on the subset where
GraphIC uses incorrect answers for creating thought graphs.

Model GSM8K AQUA MBPP ProofWriter

Complex-CoT 38.58 28.68 4.06 54.02
DQ-LoRe 40.83 33.33 16.75 65.51
GraphIC 43.08 33.33 15.23 70.11

E.3 COMPARISON OF COMPUTATION TIME WITH OTHER SIMILAR BASELINES.

Our method belongs to the category of methods that use the generated output of LLMs to select in-
context examples, which also includes methods such as Skill-kNN and DQ-LoRe. These approaches
involve using the LLM during the retrieval phase, resulting in longer retrieval times compared to
other baselines. However, by leveraging the power of LLMs, they are suitable for complex tasks.
The computation times for the three models are presented in the Table 7. Specifically, the retrieval
time for the GraphIC model is similar to that of DQ-LoRe, and slightly higher than Skill-kNN.
Despite this, GraphIC significantly outperforms Skill-kNN in terms of performance. Moreover,
compared to DQ-LoRe, which has the same retrieval time, GraphIC not only delivers superior per-
formance but also greatly reduces both the prepare time and training time required by DQ-LoRe.

Here, ”prepare time” refers to the time spent generating the necessary outputs for retrieval, such as
generating the required skills for all candidate examples in Skill-kNN. For our evaluation, we used
the GSM8K dataset with the LLM configured as Llama-3.1-8B-Instruct.

Table 7: Prepare time, training time, and retrieve time of GraphIC and other similar baselines.

Time Skill-kNN DQ-LoRe GraphIC

prepare time 0.7h 20h 1.5h
traning time - 16h -
retrieve time 0.3s 0.4s 0.4s

E.4 PERFORMANCE OF GRAPHIC AND TOP TRAINING-BASED/TRAINING-FREE BASELINES
ACROSS 1–8 SHOT SETTINGS

We find a difference in training-free methods compared to their training-based counterparts. Meth-
ods such as DQ-LoRe, which are training-based, directly optimize the probability of large language
models (LLMs) producing correct answers in 1-shot scenarios. As a result, they tend to achieve
superior performance in low-shot settings, particularly in 1-shot cases. However, as the number of
shots increases, the performance gains of these methods may decelerate or even decline.

To further clarify this phenomenon, we conducted a comparison of GraphIC with the top-performing
training-based and training-free baselines (DQ-LoRe and Complex-CoT) across 1–8 shot settings.
The results, presented in Figure 6, highlight the strengths and weaknesses of training-based versus
training-free approaches mentioned above.
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Figure 6: Performance of GraphIC and Top Training-based/Training-free Baselines (DQ-LoRe and
Complex-CoT) across 1–8 Shot Settings

E.5 THE EFFECTS OF λ

We analyzed the effect of λ values ranging from [0.0, 0.9] on the results across the four datasets
utilized in our study. The corresponding results are presented in Figure 7, confirming the robustness
of our method to the choice of lambda.
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Figure 7: The performance of GraphIC on different λ across four datasets.

E.6 THE PERFORMANCE ON MATH DATASET

We conducted a comparison of GraphIC with the top-performing training-based and training-free
baselines (DQ-LoRe and Complex-CoT) on MATH dataset. The results are presented in Table 8:
the GraphIC model has consistently achieved optimal performance. Due to computational resource
limitations, we randomly selected 500 samples from the training and testing data categorized as
”level 5” difficulty in MATH, which were used as the candidate set and test set.

Table 8: The Performance of GraphIC, Complex-CoT, and DQ-LoRe on MATH Dataset

Model Complex-CoT DQ-LoRe GraphIC

MATH 18.8 20.4 21.8
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E.7 THE PERFORMANCE ON MBPP WITH 16-SHOT SETTING

In order to analyze whether GraphIC can benefit from more than even more examples, we tested
the performance of GraphIC and other top-3 baselines in the 16-shot setting on MBPP dataset. The
experimental results are shown in the table below. The results indicate that while the performance
of other baselines declines at 16 shots, GraphIC maintains an improvement. This makes GraphIC
superior to the other baselines in the 16-shot scenario.

Table 9: The Performance of GraphIC and other top-3 baselines on MBPP with 16-shot Setting

Model BM25 EPR CEIL GraphIC

MBPP 60 60.6 60.6 62.6

F SUPPLEMENTARY EXPLANATION

F.1 THE MATRIX B

As shown in Figure 8, matrix A represents the adjacency matrix of a thought graph, corresponding
to the black edges in the graph. In this graph, vertices 1 and 2 have an in-degree of 0, indicating
the starting points of reasoning, while vertices 3 and 4 have non-zero in-degrees, representing in-
termediate steps or results of reasoning. Matrix B indicates the edges from vertices with non-zero
in-degrees to those with in-degree 0, corresponding to the edges from vertices 3 and 4 to vertices
1 and 2 in the graph (marked in green). Since vertices 3 and 4 are intermediate steps or results
of reasoning, and vertices 1 and 2 represent the starting points, these edges represent the retracing
process.
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Figure 8: The definition of matrix B and its corresponding edges in a graph.

F.2 THE LOSS OF SETTING THE RANK OF MATRIX W TO 1

First, we provide the optimal value and the optimal solution of the optimization problem defined by
Equation 11, under the assumption that no constraints are imposed on W .

Theorem F.1. Consider the following optimization problem:

max
W

tr(ZW⊤X⊤), W ∈ Rnf×nf , s.t. ||W ||F = 1. (17)

The optimal value of this problem is
(∑nf

i=1 σ
2
i

)1/2
, and the optimal solution is W ∗ = V Y U⊤,

where Y = diag(y11, y22, . . . , ynfnf
) with yii =

σi

(
∑nf

j=1 σ2
j )

1/2 .
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Proof. We begin by rewriting the objective function using the cyclic property of the trace:
tr(ZW⊤X⊤) = tr(W⊤X⊤Z).

Next, perform the Singular Value Decomposition (SVD) of X⊤Z:
X⊤Z = UΣV ⊤,

where U and V are orthogonal matrices, and Σ = diag(σ1, σ2, . . . , σnf
) is the diagonal matrix of

singular values.

Substituting this decomposition into the trace expression, we obtain:
tr(ZW⊤X⊤) = tr(W⊤UΣV ⊤).

Using the cyclic property of the trace again, we get:
tr(ZW⊤X⊤) = tr

(
(V ⊤W⊤U)Σ

)
.

Define Y = V ⊤W⊤U . Then the objective becomes:
tr(ZW⊤X⊤) = tr(Y Σ).

Since U and V are orthogonal, they preserve the Frobenius norm, i.e., ||Y ||F = ||W ||F = 1. Thus,
we are now tasked with maximizing tr(Y Σ) subject to ||Y ||F = 1.

We know that the trace tr(Y Σ) is maximized when Y is diagonal, i.e., when Y =
diag(y11, y22, . . . , ynfnf

). This follows because the off-diagonal elements of Y do not contribute to
tr(Y Σ), but they affect the Frobenius norm of Y . By setting these off-diagonal elements to zero and
redistributing the weight to the diagonal elements, we achieve a higher value of tr(Y Σ).

Thus, the optimization problem reduces to:

tr(ZW⊤X⊤) =

nf∑
i=1

σiyii, subject to
nf∑
i=1

y2ii = 1.

To find the optimal yii, we apply Cauchy-Schwarz inequality:
nf∑
i=1

σiyii ≤

( nf∑
i=1

σ2
i

)1/2( nf∑
i=1

y2ii

)1/2

.

Since
∑nf

i=1 y
2
ii = 1, this simplifies to:

nf∑
i=1

σiyii ≤

( nf∑
i=1

σ2
i

)1/2

.

The maximum value of
∑nf

i=1 σiyii is achieved when yii =
σi

(
∑nf

j=1 σ2
j )

1/2 . Thus, the optimal value

of the objective is
(∑nf

i=1 σ
2
i

)1/2
, and the corresponding optimal solution is W ∗ = V Y U⊤, where

Y = diag
(

σ1

(
∑nf

i=1 σ2
i )

1/2 , . . . ,
σnf

(
∑nf

i=1 σ2
i )

1/2

)
.

Based on the proof above, we know that without any constraints on W , the optimal value of the
optimization problem defined by Equation 11 is

(∑nf

i=1 σ
2
i

)1/2
. When a rank-1 constraint is added

to W , the optimal value of the problem becomes σ1. Therefore, we are interested in quantifying
the loss introduced by the ”rank-1 assumption,” which can be assessed by the ratio of their optimal
values, r = σ1/

(∑nf

i=1 σ
2
i

)1/2
. We computed the value of r on four datasets, and the results are

shown in Table 10. The table demonstrates that the loss caused by the ”rank-1 assumption” is less
than 0.1%, implying that it does not result in a significant loss of precision.

Table 10: The r value on four datasets.

Dataset GSM8K AQUA MBPP ProofWriter

r 0.99978 0.99991 0.99963 0.99921
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F.3 THE ASYMMETRY

We provide an example to illustrate the asymmetry. As shown in the example below, solving Ques-
tion B includes solving Question A, which involves further calculations to determine how long it
will take to reach the minimum age required by the company for employment. Therefore, in this
case, referencing B can help resolve A, but referencing A does not necessarily resolve B.
Question A:
In 3 years, Jayden will be half of Ernesto’s age. If Ernesto is 11 years old, how many years

old is Jayden now?

Answer A:
Ernesto = 11 + 3 = 14
Jayden = 14/2 = 7 in 3 years
Now = 7 - 3 = 4
Jayden is 4 years old.

Question B:
The minimum age required to be employed at a company is 25 years. Dara aspires to work for the

company and will be half the age of Jane in six years. If Jane is currently working for
the company and is 28 years old, how long is it before Dara reaches the minimum age
required by the company to be employed?

Answer B:
In six years, Jane will be 28+6 = 34 years old.
Dara will be half the age of Jane in six years, meaning she will be 34/2 = 17 years old in six

years.
Currently, Dara is 17-6 = 11 years old.
Dara has to wait for 25-11 = 14 more years to reach the company’s minimum age of employment.

F.4 EXAMPLES OF THOUGHT GRAPHS ON MATH

Candidate Example 1:

Figure 9: Thought graph of candidate example 1

Question:
[asy] fill(circle((4,0),4),grey); fill((0,0)--(8,0)--(8,-4)--(0,-4)--cycle,white); fill(circle

((7,0),1),white); fill(circle((3,0),3),white); draw((0,0)--(8,0),black+linewidth(1));
draw((6,0)--(6,sqrt(12)),black+linewidth(1)); MP("A", (0,0), W); MP("B", (8,0), E); MP("C
", (6,0), S); MP("D",(6,sqrt(12)), N); [/asy]

In this diagram semi-circles are constructed on diameters $\overline{AB}$, $\overline{AC}$,
and $\overline{CB}$, so that they are mutually tangent. If $\overline{CD} \bot \overline{
AB}$, then the ratio of the shaded area to the area of a circle with $\overline{CD}$ as
radius is:

$\textbf{(A)}\ 1:2\qquad \textbf{(B)}\ 1:3\qquad \textbf{(C)}\ \sqrt{3}:7\qquad \textbf{(D)}\
1:4\qquad \textbf{(E)}\ \sqrt{2}:6$

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Answer:
To make the problem much simpler while staying in the constraints of the problem, position

point $C$ halfway between $A$ and $B$. Then, call $\overline{AC} = \overline{BC}=r$ . The
area of the shaded region is then\[\frac{ \pi rˆ2 - \pi (r/2)ˆ2 - \pi (r/2)ˆ2}{2}=\frac

{\pi rˆ2}{4}\]Because $\overline{CD}=r$ the area of the circle with $\overline{CD}$ as
radius is $\pi rˆ2$. Our ratio is then\[\frac{\pi rˆ2}{4} : \pi rˆ2 = \boxed{1:4}\]

Candidate Example 2:

Figure 10: Thought graph of candidate example 2

Question:
The tail of a 1-mile long train exits a tunnel exactly 3 minutes after the front of the train

entered the tunnel. If the train is moving 60 miles per hour, how many miles long is the
tunnel?

Answer:
Because the train is moving 60 miles per hour, the front of the train moves 1 mile every

minute. Therefore, in the three minutes since the front of the train entered the tunnel,
the front of the train has moved three miles. At the end of these three minutes, we know
the front of the train is 1 mile beyond the end of the tunnel,because the train is one
mile long and its tail is just leaving the tunnel. So, the front of the train has moved 3
miles from the beginning of the tunnel and is now 1 mile beyond the end of the tunnel.

This tells us that the tunnel is $3-1 = \boxed{2\text{ miles}}$ long.

Candidate Example 3:
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Figure 11: Thought graph of candidate example 3

Question:
On the refrigerator, MATHEMATICS is spelled out with $11$ magnets, one letter per magnet. Two

vowels and four consonants fall off and are put away in a bag. If the T’s, M’s, and A’s
are indistinguishable, how many distinct possible collections of letters could be put in
the bag?

Answer:
We count the number of ways to choose the vowels and the consonants separately. There are four

vowels, of which two are As. If there are no As, then we must choose both the remaining
vowels, so there is $1$ choice; if there is one A, then we can choose the remaining vowel
in $2$ ways; and if there are two As, then there are no vowels left to choose, so there

is $1$ choice. This makes $1 + 2 + 1 = 4$ distinct pairs of vowels.

There are seven consonants, of which two are Ts and of which two are Ms. Since we must choose
four consonants, we must use at least one of the Ts and Ms.

If we use one T and no Ms, we have only $1$ choice (use the three remaining consonants); the
same is true if we use one M and no Ts.

If we use both Ts and no Ms, there are $\tbinom{3}{2} = 3$ choices for the two remaining
consonants; the same is true if we use both Ms and no Ts, or if we use one T and one M.

If we use both Ts and one M, there are $\tbinom{3}{1} = 3$ choices for the single remaining
consonant; the same is true if we use both Ms and one T.

Finally, if we use both Ts and both Ms, there are no more letters left to choose, so we get
$1$ more choice.

In total, we have $2(1) + 5(3) + 1 = 18$ distinct collections of consonants.

Therefore, the number of distinct collections of letters is $4 \cdot 18 = \boxed{72}.$

Query 1:
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Figure 12: Thought graph of query 1

Question:
For each positive integer $n$, the set of integers $\{0,1,\ldots,n-1\}$ is known as the $\

textit{residue system modulo}$ $n$. Within the residue system modulo $2ˆ4$, let $A$ be
the sum of all invertible integers modulo $2ˆ4$ and let $B$ be the sum all of non-
invertible integers modulo $2ˆ4$. What is $A-B$?

Answer:
Since $2ˆ4$ is a power of $2$, the invertible integers are the odd ones $

\{1,3,5,7,9,11,13,15\}$, and the non-invertible integers are the even ones $
\{0,2,4,6,8,10,12,14\}$. Thus, \begin{align*}

A-B & = (1+3+5+7+9+11+13+15)\\
& \qquad - (0+2+4+6+8+10+12+14)\\
& = (1-0)+(3-2)+(5-4)+(7-6)+(9-8)\\
&\qquad+(11-10)+(13-12)+(15-14)\\
& = 1+1+1+1+1+1+1+1=\boxed{8}.
\end{align*}

Query 2:

Figure 13: Thought graph of query 2
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Question:
How many integers between 100 and 500 have at least two 3s as digits?

Answer:
First consider the two $3$s to appear in the units and tens places. Between $100$ and $500$,

there are four such numbers: $133$, $233$, $333$, and $433$. Now consider the two $3$s to
appear in the units and hundreds places. The numbers will be in the $300$s, so we don’t

need to worry about if they are between $100$ and $500$. There are $10$ choices for the
tens digit, but we have already counted $333$, so such a scenario will add nine numbers.
Finally, consider the two $3$s to appear in the tens and hundreds places. Again, these
numbers are automatically between $100$ and $500$. There are $10$ choices for the units
digit, but we again discard $333$ for a final count of nine such numbers. Thus, our
answer is $4+9+9 = \boxed{22}$.

Query 3:

Figure 14: Thought graph of query 3

Question:
Given that $m$ and $n$ are positive integers such that $m\equiv 6\pmod 9$ and $n\equiv 0\pmod

9$, what is the largest integer that $mn$ is necessarily divisible by?

Answer:
If $m\equiv 6\pmod 9$, then we can write $m$ as $9a+6$ for some integer $a$. This is equal to

$3(3a+2)$, so $m$ is certainly divisible by $3$. If $n\equiv 0\pmod 9$, then $n$ is
divisible by $9$. Therefore, $mn$ must be divisible by $3\cdot 9 = 27$.

Note that $m$ can be 6 and $n$ can be 9, which gives us $mn = 54$. Also, $m$ can be 15 and $n$
can be 9, which gives us $mn = 135$. The gcd of 54 and 135 is 27.

Therefore, the largest integer that $mn$ must be divisible by is $\boxed{27}$.
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