
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPHIC: A GRAPH-BASED IN-CONTEXT EXAMPLE
RETRIEVAL MODEL FOR MULTI-STEP REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) enables large language models (LLMs) to generalize to
new tasks by incorporating a few in-context examples (ICEs) directly in the input,
without updating parameters. However, the effectiveness of ICL heavily relies on
the selection of ICEs, and conventional text-based embedding methods are often
inadequate for tasks that require multi-step reasoning, such as mathematical and
logical problem solving. This is due to the bias introduced by shallow semantic
similarities that fail to capture the deeper reasoning structures required for these
tasks. We present GraphIC, a novel approach that leverages graph-based represen-
tations of reasoning processes, coupled with Bayesian Networks (BNs) to select
ICEs. Graph structures inherently filter out shallow semantics while preserving
the core reasoning structure. Importantly, BNs capture the dependency of a node’s
attributes on its parent nodes, closely mirroring the hierarchical nature of human
cognition—where each thought is shaped by preceding ones. This makes BNs
particularly well-suited for multi-step reasoning tasks, aligning the process more
closely with human-like reasoning. Extensive experiments across three types of
reasoning tasks (mathematical reasoning, code generation, and logical reasoning)
demonstrate that GraphIC outperforms both training-free and training-based mod-
els in selecting ICEs, excelling in terms of both effectiveness and efficiency. We
show that GraphIC enhances ICL’s performance and interpretability, significantly
advancing ICE selection for multi-step reasoning tasks.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020) represents a paradigm in how large language models
(LLMs) perform inference by using a small number of in-context examples (ICEs) within the input
prompt. This technique enables LLMs to generalize to new tasks or enhance their performance
on existing tasks without updating parameters. However, previous studies have highlighted the
sensitivity of ICL performance to the specific ICEs selected (Zhao et al., 2021; Liu et al., 2022),
underscoring the importance of strategic ICE selection. Consequently, numerous methods have been
proposed to optimize the selection of ICEs, focusing on improving task performance and ensuring
greater robustness (Liu et al., 2022; Rubin et al., 2022; Ye et al., 2023; Gupta et al., 2024). These
methods frequently rely on text-based embeddings, where both the query and candidate ICEs are
embedded using a language encoder, with similarity scores guiding the selection process.

Current text-based embedding selection methods primarily focus on capturing semantic-level simi-
larity, demonstrating their utility in tasks such as semantic analysis (Liu et al., 2022) and machine
translation (Agrawal et al., 2023). However, these approaches encounter significant limitations in
multi-step mathematical and logical reasoning tasks, such as GSM8K (Cobbe et al., 2021) and
ProofWriter (Tafjord et al., 2021). The core issue lies in the fact that textual data often encodes
a substantial amount of shallow semantic information, which is largely irrelevant to the underlying
reasoning processes required for math and logic tasks. This extraneous information introduces bias
in the selection of ICEs (An et al., 2023), and can even lead the LLM to adopt misleading rea-
soning strategies, thereby degrading task performance. For example, in a problem involving speed
calculation (i.e., determining the rate of change of distance over time), text-based embeddings may
prioritize examples that focus on solving for time or distance due to their closer semantic similarity,
as shown in Figure 1 (left). This misalignment steers the LLM away from the correct problem-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Q: Jeannie hikes the 12 miles to Mount Overlook at a pace of 4 miles per

hour, and then returns at a pace of 6 miles per hour. How long did her hike

take, in hours?

A: Up, took 12 / 4 = 3 hours.

Down, took 12 / 6 = 2 hours.

Total time was 3 + 2 = 5 hours.

Q: Sadie, Ariana and Sarah are running a relay race. Each part of the race is

a different length and covers different terrain. It takes Sadie 2 hours to run

through the forest at an average speed of 3 miles per hour. Ariana sprints

across the open field on her section at 6 miles per hour for half an hour. If

Sarah runs along the beach at four miles per hour and their total time for the

race is four and half hours, what is the total distance of the race?

A: Sadie ran for 3 miles/hour * 2 hour = 6 miles.

Ariana covered a distance of 6 miles/hour * (1/2) hour = 3 miles.

Sarah ran for 4.5 hours - 2 hours - 0.5 hours = 2 hours.

In this time, Sarah traveled a distance of 4 miles/hour * 2 hours = 8 miles.

The total distance for the race was 6 miles + 3 miles + 8 miles = 17 miles.

…

Q: Rachel is stuffing envelopes. She has eight hours to complete the task,

and there are 1,500 envelopes. In the first hour, Rachel stuffs 135 envelopes.

The second hour she stuffs 141 envelopes. How many envelopes will Rachel

need to stuff per hour to finish the job?

A: Rachel has 1500 - 135 - 141 envelopes = 1224 envelopes remaining to

stuff.

Rachel has 8 hours - 2 hours = 6 hours left to finish the task.

Rachel needs to stuff 1224 envelopes / 6 hours = 204 envelopes per hour.

Q: Allie has 9 toys, which are in total worth $52. If we know that one toy is

worth $12, and all the other toys have the same value, how much does one of

the other toys cost?

A: Allie has 9 - 1 = 8 toys of the same value.

Without the value of the one $12 toy, all 8 other toys are worth in total 52 - 12

= $40.

That would mean, that one of the other toys is worth 40 / 8 = $5.

…

Text-based Retrieval: Graph-based Retrieval:

12 miles / 4 mph = 3 hours

She has already walked for 1 + 1 + 1 = 3 hours

She has 3 - 3 = 0 hours left to walk the remaining distance

She has 0 miles left to walk

 Marissa has walked 4 + 2 = 6 miles so far.

She has 12 - 6 = 6 miles left to walk.

She wants to walk the entire trail in 12 miles / 4 mph = 3 hours.

She has already walked for 1 + 1 = 2 hours.

She has 3 - 2 = 1 hour left to walk the remaining 6 miles.

She needs to walk 6 miles / 1 hour = 6 mph.

Output: Output:

Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another hour to walk the next two miles. If she

wants her average speed to be 4 miles per hour, what speed (in miles per hour) does she need to walk the remaining distance?

Question:

✓

Figure 1: ICL with different ICE retrieval mechanisms. The left panel shows examples retrieved
via BERT embedding (Devlin et al., 2019), while the right panel displays examples retrieved via
GraphIC. Semantically related terms are highlighted in blue, and quantities or variables needing
resolution are highlighted in green.

solving approach. Therefore, a novel representation is needed to enhance example retrieval for tasks
involving multi-step mathematical and logical reasoning.

Extensive research indicates that graph-based representations, in contrast to text, align more closely
with human cognitive processes and are better equipped to model multi-step reasoning (Friston,
2008; Besta et al., 2024; Yao et al., 2023). Graphs enable the filtering of irrelevant shallow seman-
tic content while preserving the core reasoning structure, thus facilitating the development of an
unbiased example retrieval mechanism. More critically, this representation offers a novel and inter-
pretable approach for constructing example retrievers. When solving multi-step reasoning problems,
the ideal examples are those whose reasoning processes can be directly applied to the query. In other
words, after extracting the thought pattern from these examples, the same logic can be reused to solve
the query question and arrive at the correct answer. Graph structures provide an explicit means to
model these reasoning processes, enabling us to extract implicit thought patterns and assess their
transferability to new problems.

More formally, a reasoning process can be modeled as a graph G with attributes (x1, . . . , xn),
where each xi represents the attribute of vertex vi, corresponding to the thought at vi. We fur-
ther assume that the probability density function governing the sequence of thoughts throughout the
reasoning process is given by p(x1, . . . , xn;G,W), where W denotes the parameters of the under-
lying thought pattern. Given a query question q and its associated reasoning graph Gq , our goal
is to retrieve ICEs with parameterized thought patterns W i that maximize the probability density
p(xq

1, . . . , x
q
n;G

q,W i), i.e., maximizing the likelihood of solving q correctly. To achieve this, we
employ a Bayesian Network (BN) (Pearl, 2014), a type of probabilistic graphical model, to repre-
sent the multi-step reasoning process and to parameterize the thought patterns. The motivation for
using BN lies in their inherent similarity to human cognition; they assume that the value of each
node (thought) is influenced by the values of preceding nodes, mirroring the way new ideas are con-
structed based on prior knowledge. This structure makes BNs particularly well-suited for capturing
the dependencies and progression of reasoning steps.

In this paper, we introduce GraphIC, a Graph-based In-Context Example Retrieval Model. The key
idea is to leverage graph representations of reasoning processes to enhance the retrieval of ICEs.
Specifically, we first prompt the LLM to generate “thought graphs” for both the candidate examples

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and the query question, where each graph encodes the reasoning steps involved. We then employ
a BN to model each thought graph of candidate examples and estimate the associated parameters
through maximum likelihood estimation, which we reformulate as a bilinear form maximization
problem with a closed-form solution. To better simulate human-like reasoning, we incorporate a
personalized PageRank (PPR) mechanism (Page, 1999), reflecting the cognitive tendency to re-
visit starting point during reasoning, a characteristic well-aligned with the assumptions behind PPR.
Once the thought graphs and their parameters are computed, we select examples whose parameters
maximize the probability density of thoughts on the query question’s thought graph. Note that we
leverage a graph model to aid ICE retrieval, not for direct problem-solving. The solution is driven
by the LLM’s reasoning capabilities. This approach ensures that the retrieved examples, though not
necessarily semantically similar to the query, align with the underlying reasoning process. As shown
in Figure 1(right), GraphIC retrieves examples that, while not focusing on semantically similar tasks,
share a common reasoning structure—for instance, solving for rates such as how the number of en-
velopes changes over time or how costs vary with the number of toys. This guides the LLM towards
the correct solution.

We evaluate GraphIC against 10 baseline models on three multi-step reasoning tasks: mathemat-
ical reasoning, code generation, and logical reasoning. Results show GraphIC excels in selecting
relevant ICEs, surpassing existing methods in effectiveness and efficiency. Additionally, GraphIC
shows faster performance improvements with more ICEs and exhibits asymmetry, mirroring real-
world reasoning. Key contributions are summarized as follows: 1) We introduce a novel graph-based
representation, the “thought graph”, to model multi-step reasoning processes. This approach effec-
tively filters out irrelevant shallow semantic information while preserving the essential reasoning
steps. 2) By leveraging BNs, we design a retrieval mechanism that maximizes the probability density
of solving the query problem, providing a more objective-driven and interpretable retrieval process.
3) Our experimental results indicate that GraphIC, despite being a training-free model, outperforms
both training-free and training-based models across various multi-step reasoning tasks.

2 RELATED WORK

Existing ICE selection techniques can be classified as either training-free or training-based, depend-
ing on whether a retriever needs to be trained.

Training-free approaches are generally divided into two types: (i) those that use heuristic criteria
such as similarity (Liu et al., 2022; Hu et al., 2022), diversity (Cho et al., 2023; Zhang et al., 2022b;
Levy et al., 2023; Hongjin et al., 2022; Zhang et al., 2023), complexity (Fu et al., 2022), or combi-
nations of these (Agrawal et al., 2023; Tonglet et al., 2023; Gupta et al., 2023) to select in-context
examples (ICEs); (ii) those that leverage feedback from LLMs, such as probability distributions (Wu
et al., 2023; Nguyen & Wong, 2023; Li & Qiu, 2023; Yang et al., 2023), perplexity (Gonen et al.,
2023), or the model’s generated output (An et al., 2023) to guide the selection process. While
training-free approaches avoid the computational and time overhead associated with model train-
ing, their relatively simplistic architecture often results in sub-optimal performance compared to
training-based methods.

Training-based methods are typically divided into two main categories. The first learns to select
individual examples and then extends this to k-shot scenarios (Rubin et al., 2022; Xiong et al., 2024;
Gupta et al., 2024). The second models the selection of a group of examples as a whole (Ye et al.,
2023; Wang et al., 2023; Zhang et al., 2022a; Scarlatos & Lan, 2023; Lu et al., 2022; Peng et al.,
2023; Xu et al., 2024). While training-based approaches usually achieve superior performance, their
reliance on repeated LLM queries and model training makes them both computationally intensive
and time-consuming.

Our proposed GraphIC method is not only training-free and inherently efficient but also incorporates
an advanced graph-based example retriever specifically designed for multi-step reasoning tasks.
This sophisticated design enables GraphIC to achieve a significant performance advantage, even
surpassing training-based methods.

3 PRELIMINARIES: BAYESIAN NETWORK

A Bayesian Network (BN) (Pearl, 1982; 1986; PEARL, 1988; Heckerman et al., 1995; Friedman
et al., 1997) is a probabilistic graphical model that represents conditional dependencies among ran-
dom variables via a directed acyclic graph (DAG). In a DAG G = (V,E), V = {v1, . . . , vn} denotes

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Question:

Every day, Wendi feeds each of her chickens three cups

of mixed chicken feed, containing seeds, mealworms

and vegetables to help keep them healthy.

She gives the chickens their feed in three separate

meals. In the morning, she gives her flock of chickens 15

cups of feed. In the afternoon, she gives her chickens

another 25 cups of feed.

How many cups of feed does she need to give her

chickens in the final meal of the day if the size of Wendi's

flock is 20 chickens?

Input Question: Thought Graph:

feed_per_chicken = 3

number_of_chickens = 20

morning_feed = 15

afternoon_feed = 25

total_feed_required = [multiply](feed_per_chicken,

number_of_chickens)

total_feed_given = [add](morning_feed,

afternoon_feed)

final_meal_feed = [minus](total_feed_required,

total_feed_given)

Formalized Reasoning Representation:

Predefined

rule-based

parsing

Prompt

based

generating

Prompt

based

generating

AugmentAugment Update

features

Update

features

Collect

QuestionQuestion

Candidate SetCandidate Set

Thought Graph

Generating

Thought Graph

Generating

Thought Graph of Candidate Examples

Thought Graph of Question

Parameter

estimate

Feature

extraction

original

self-loop

PPR

3 20 15 25

multiply

minus

add

3 20 15 25

multiply

minus

add

Collect

In-context

example 1

In-context

example 1

In-context

example k

In-context

example k

In-context

example 1

In-context

example k

Feature of Question

Parameter of Candidate Examples

Figure 2: The overall pipeline of GraphIC. First, the question and candidate examples are processed
through the thought graph generation module, where the LLM generates formalized reasoning rep-
resentations, which are then parsed into thought graphs. For the question’s thought graph, we extract
X (cognitive process per vertex) and compute aggregated feature Z. For candidates, parameters αi

and βi are estimated to capture relevant thought patterns. We then evaluate the applicability of these
patterns on the query’s thought graph, enabling ICE selection.

the vertices corresponding to random variables, and E denotes the conditional dependencies. Each
vertex vi is associated with a random variable Xi, and the joint probability distribution is factorized
as:

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi|pa(vi)), (1)

where xi ∈ Rnf denotes the value of the random variable Xi, pa(vi) refers to the set of parent
variables for vi, and p(xi|pa(vi)) is typically modeled as:

p(xi|pa(vi)) = g(dist(xi, x̂i)), (2)
with x̂i = Wzi and zi = f(pa(vi)). Here, x̂i represents the predicted value of xi based on zi,
where zi aggregates information from the parent nodes pa(vi). The weight matrix W is used to
predict x̂i, f(·) denotes the aggregation function, dist(·, ·) is a distance metric between xi and x̂i,
and g(·) is a function that satisfies: 1). monotonicity: g′(u) ≤ 0 for u ≥ 0; and 2) normalization:∫
x
g(dist(x, x̂i))dx = 1.

Given the aggregated features Z = (z1, . . . , zn)
⊤ where ⊤ denotes the transpose operation, or-

ganizing the individual feature vectors zi into a matrix where each row corresponds to a feature
vector, along with the distance function dist(·, ·) and function g(·), the joint probability density of
the dataset X = (x1, x2, . . . , xn)

⊤ can be computed.

4 THE PROPOSED GRAPHIC
In this work, we propose a novel approach called GraphIC for representing the problem-solving
process through a graph-based model, intending to select examples that maximize the probability
density of capturing the correct reasoning process. First, we introduce “thought graphs”, a formal
structure designed to represent the reasoning process underlying each example (Section 4.1). Build-
ing on this, we develop a probabilistic framework for modeling the thought graph, enabling us to
compute the probability density associated with a given thought graph (Section 4.2). This proba-
bilistic model serves as the foundation for our example selection strategy, which prioritizes examples

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

that maximize the probability density of thoughts on the thought graph of query question (Section
4.3). The overall framework is illustrated in Figure 2.

4.1 THOUGHT GRAPH AND ITS CONSTRUCTION

We begin by introducing the concept of a thought graph and its construction, inspired by the hier-
archical structure of human cognition in problem-solving. The human thought process, especially
when addressing complex problems, can be naturally modeled as a graph-like structure (Friston,
2008; Besta et al., 2024; Yao et al., 2023). In this work, we present the “thought graph” as a struc-
ture for modeling the cognitive process of LLMs during multi-step reasoning tasks. Formally, a
thought graph G is represented as a vertex-attributed graph, where each vertex is associated with
a natural language text, corresponding to the description of the operation performed or the inter-
mediate conclusion reached at that step. To facilitate computation, we further represent the vertex
attributes as the BERT embedding (Devlin et al., 2019) of corresponding text, denoted as xi.

Since LLMs are not natively equipped to output graph structures, we propose a methodology to gen-
erate these graphs from LLM outputs. As illustrated in Figure 2, we prompt the LLM to generate a
“formalized reasoning representation” (FRR), which is subsequently parsed to construct the thought
graph. The detailed prompt and parser pseudo-code are provided in Appendix D.

After constructing the thought graph, a straightforward way to select in-context examples (ICEs) is
to compare the similarities between graph embeddings. To compute these embeddings, we employ
a widely adopted method where each graph embedding is generated through iterative aggregation of
node information, as outlined by Togninalli et al. (2019). Specifically, this process is formalized as:

Xh+1 = ÃXh, X0 = X = (x1, x2, . . . , xn)
⊤, (3)

where Ã = D̃
− 1

2

A (A+I)D̃
− 1

2

A , D̃A = 1+
∑

j Aij . A represents the adjacency matrix of the thought
graph, where Aij = 1 indicates a directed edge from node vi to node vj , and Aij = 0 otherwise.

While this approach effectively captures the structural properties of human thought as represented in
the graph, it is constrained by its focus on graph similarity alone. Importantly, selecting an example
based solely on the similarity does not necessarily optimize the possibility of an LLM generating a
correct reasoning trajectory. To overcome this, we further propose a novel example retrieval model
that prioritizes the optimization of the probability density of producing a correct reasoning process
detailed in the next subsection, moving beyond a mere reliance on graph similarity.

4.2 PROBABILISTIC MODEL ON THOUGHT GRAPH

Building on the method for constructing thought graphs, we now turn to developing a probabilistic
model for this structure. BNs model the dependencies of a node’s attributes on its parent nodes,
which closely mirror the way human cognition functions—where new thoughts are informed by
prior ones (Oaksford & Chater, 2007; Jacobs & Kruschke, 2011). This makes them a well-suited
framework for modeling the thought graphs. In this section, we outline the construction of BNs for
thought graphs. As described in Section 3, calculating the joint probability density on the thought
graph requires the aggregate feature Z, the distance metric dist(·, ·), and the function g(·). We now
provide a detailed discussion of how each of these components is constructed.

Computing the Aggregated Feature Z. Traditional BNs, which rely on the Markov assumption
that a node’s feature distribution depends solely on its parent nodes, are insufficient for modeling a
thought graph where reasoning often requires referencing multiple prior steps. For example, prob-
lem solvers may need to iteratively review information from earlier steps or return to the beginning
to re-examine the entire reasoning process. To address this limitation, we first employ an iterative
aggregation mechanism that better captures the human reasoning processes. This iterative approach
is formalized in Equation (3). Next, inspired by the Personalized PageRank (PPR) algorithm (Page,
1999; Gasteiger et al., 2018), we refine this method to more accurately simulate the flow of informa-
tion during problem-solving. The PPR framework models a random walk where a user transitions
between web pages with some probability of returning to the start. This closely parallels the cogni-
tive process in complex problem-solving, where solvers often revisit initial hypotheses to reassess
their reasoning. Therefore, the iterative feature aggregation is defined as follows:

X(h+1) =
[
(1− λ)Ã+ λB̃

]
X(h), X(0) = (x1, x2, . . . , xn)

⊤, (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where λ ∈ (0, 1), B̃ = D̃
− 1

2

B (B + I)D̃
− 1

2

B , and D̃B = 1 +
∑

j Bij . The matrix B models the
retracing aspect of the thought process, where Bij = 1 if deg(vj) = 0 and deg(vi) > 0, otherwise
Bij = 0, with deg(vj) representing the in-degree of node vj .

After H iterations, the aggregated feature matrix Z is given by:

Z =
[
(1− λ)Ã+ λB̃

]H
X. (5)

Distance Metric dist(·) and Function g(·). In prior works (Rubin et al., 2022; Ye et al., 2023;
Xiong et al., 2024), the inner product has been a standard approach for quantifying vector similar-
ity. Building on this, we define the distance function dist(·) (see equation 1) in terms of the inner
production as follows:

dist(x1, x2) = l − x⊤
1 x2, (6)

where l is a sufficiently large constant chosen to ensure that dist(x1, x2) remains positive. A suitable
choice for l is the square of the maximum norm of the embeddings produced by the model:

l = max
t

[
Emb(t)⊤Emb(t)

]
, t ∈ NL, (7)

with Emb(·) denoting a text embedding model and NL denoting the set of all natural languages.
Additionally, we define gi(u) =

1
Ci

exp(−u) (see equation 1), allowing us to represent:

p(xi;G,X) = gi(dist(xi, x̂i)) =
1

Ci
exp

[
−(l − x̂⊤

i xi)
]
=

1

Ci
exp

[
−(l − z⊤i W⊤xi)

]
, (8)

where Ci is a normalization constant.

Note that this formulation establishes a probabilistic model for the thought graph. Given the param-
eters W , we can compute the probability density of each vertex attribute, which in turn allows us to
determine the probability density of the entire graph. In essence, the matrix W governs the gener-
ation of new attributes and is meant to capture or represent the underlying structure of reasoning or
connections between different concepts or ideas in the thought graph.

4.3 PROBABILISTIC EXAMPLE RETRIEVAL

As outlined in Section 4.2, the parameter W is meant to capture and represent the underlying struc-
ture of reasoning or connections between different concepts or ideas within the thought graph. The
task of computing the probability density of generating a particular thought graph given W can be
interpreted as evaluating the likelihood of producing the associated reasoning process based on the
thought pattern encoded within W . Building on this idea, we design an example retrieval mechanism
that estimates the model parameters for each candidate example and prioritizes those that maximize
the probability density of the thought graph corresponding to the query. These selected examples
serve as ICEs, offering the highest potential for accurately solving the problem at hand.

Estimation of Model Parameters. We estimate the parameter matrix W by maximizing the like-
lihood function LW of the thought graph features, which is computed as

LW =

n∏
i=1

p(xi|G), logLW =

n∑
i=1

log p(xi|G). (9)

To simplify the computation, this reduces to the following:

logLW = −
n∑

i=1

logCi +

n∑
i=1

[
−(l − z⊤i W⊤xi)

]
= −

n∑
i=1

logCi − nl + tr(ZW⊤X⊤). (10)

Hence, maximizing LW is equivalent to maximizing tr(ZW⊤X⊤), formally expressed as:

max
W

tr(ZW⊤X⊤), W ∈ Rnf×nf , s.t. ||W ||F = (

m∑
i=1

n∑
j=1

w2
ij)

1
2 = 1. (11)

This constraint ensures that the magnitude of W does not influence the optimization.

Typically, the number of vertices n in the thought graph is much smaller than the embedding dimen-
sionality nf (i.e., n≪ nf). For instance, in the GSM8K dataset, thought graphs often contain fewer
than 20 vertices, while the embeddings nf can be as high as 768 if BERT is used. This dimensional
disparity makes the solution for W non-unique. Moreover, storing and computing a matrix of size
nf × nf is computationally burdensome. To address both uniqueness and computational efficiency,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

we constrain W to to be of rank 1, reducing it to the form:
W = αβ⊤, ||α||2 = ||β||2 = 1, α, β ∈ Rnf . (12)

This simplifies the optimization to:
tr(ZW⊤X⊤) = tr(Zβα⊤X⊤) = tr(α⊤X⊤Zβ) = α⊤X⊤Zβ. (13)

Thus, we reformulated the problem as a bilinear form maximization problem:
max
α,β

α⊤X⊤Zβ, s.t. ||α||2 = ||β||2 = 1. (14)

The closed-form solution to this problem (Leon, 1994) can be obtaind as:
α = U [0, :], β = V [0, :], where U,Σ, V = SVD(X⊤Z). (15)

Selection of Examples. We extract parameters (α, β) from the thought graph of each candidate ex-
ample, denoted as {(α1, β1)}Ni=1, where N represents the size of the candidate set. For a given query
q, we construct its thought graph Gq and derive Zq , then we select the top k candidate examples that
maximize the probability density pi(X

q) of generating the correct reasoning process:
pi(X

q) = (αi)⊤(Xq)⊤Zqβi. (16)
These selected examples are taken as ICEs in ICL, where the detailed templates used in ICL are
given in Appendix B.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

We conduct a comprehensive evaluation of GraphIC model across four multi-step reasoning bench-
marks: two for mathematical reasoning (GSM8K (Cobbe et al., 2021) and AQUA (Ling et al.,
2017)), one for code generation (MBPP (Austin et al., 2021)), and one for logical reasoning
(ProofWriter (Tafjord et al., 2021)). For both GSM8K and MBPP, we utilize the original datasets
without further preprocessing. For AQUA and ProofWriter, we refine the original dataset to improve
the experimental setup, as detailed in Appendix A.

For GSM8K, AQUA, and ProofWriter, model performance is evaluated based on the accuracy of
the LLMs’ final answers. For MBPP, we adopt the pass@1 metric (Chen et al., 2021) to assess the
quality of code generation.

We employ GPT-4o-mini and Llama-3.1-8B-Instruct as LLMs. Unless explicitly mentioned other-
wise, all evaluations are conducted under an 8-shot paradigm. We set the temperature to 1e-5. We
set iterations H in Equation 5 to 3, with λ values from {0, 0.1, 0.2, 0.3}, based on the LLM and
dataset (see Appendix D for details). For GSM8K, AQUA, and ProofWriter, we prompt the LLM
to create a formalized reasoning representation (FRR) for thought graph construction, using vertex
features from a BERT model. For MBPP, we use the staticfg module to parse Python code
and generate the control flow graph, embedding each vertex’s features with CodeBERT (Feng et al.,
2020). Variable names in the code are anonymized with arbitrary symbols like ‘a’, ‘b’, and ‘c’.

5.2 BASELINES

Our model, GraphIC, is designed as a training-free retriever for ICE selection. We compare GraphIC
against six training-free retrieval methods spanning random, similarity-based, diversity-based, and
complexity-based approaches, including: 1) Random randomly selects k unique ICEs from the
candidate set; 2) BM25 (Robertson et al., 2009) selects the top k examples based on BM25 scoring;
3) BERT (Devlin et al., 2019) is a dense retriever using cosine similarity with BERT-base-uncased
embeddings; 4) Complex-CoT (Fu et al., 2022) selects k examples based on complexity, quantified
by newline characters; 5) Auto-CoT (Zhang et al., 2022b) clusters candidates and selects the closests
to each cluster center; and 6) Skill-kNN (An et al., 2023) prompts LLM to generate task-relevant
skills for query and candidates, followed by dense retrieval. Since Skill-kNN does not natively sup-
port datasets like GSM8K, we manually craft the instructions and examples, detailed in Appendix C.

We also compare with four training-based retrievers, which encompass both single-example and
combination-example retrieval strategies, including: 1) EPR (Rubin et al., 2022) is trained to
retrieve the single most relevant ICE, with top k examples being selected during inference;
2) CEIL (Ye et al., 2023) uses determinantal point processes to select ICEs balancing similarity
and diversity, where three CEIL models per dataset with scaling factors of 0.01, 0.05, and 0.1 are
trained and the best results are reported; 3) DQ-LoRe (Xiong et al., 2024) uses dual queries and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

low-rank approximation re-ranking to identify ICEs; and 4) GistScore (Gupta et al., 2024) encodes
task-specific information into gist tokens for selecting ICEs. Following Skill-kNN, We use GPT-J-
6B (Wang & Komatsuzaki, 2021) as the scoring LLM for EPR, CEIL, and DR-LoRe.

5.3 MAIN RESULTS

Figure 3 illustrates the thought graphs corresponding to each dataset. Table 1 evaluates our GraphIC
model against 10 baselines across two LLMs and four datasets. As a training-free method, GraphIC
consistently outperforms both training-free and training-based baselines in most settings. With the
GPT-4o-mini model, GraphIC achieves the highest performance, averaging 2.57% above the leading
training-free model and 1.18% above the best training-based model. For the Llama-3.1-8B-Instruct
model, GraphIC ranks first in three out of four datasets, with an average gain of 4.29% over the
top training-free competitor and 2.5% over the strongest training-based method. Our analysis shows
that the GraphIC model significantly enhances performance in mathematical and logical reasoning
tasks versus code generation, especially for complex problems. For instance, in the GSM8K dataset,
GraphIC outperforms all baselines by an average of 0.65% and 3.57% with two LLMs. In the more
challenging AQUA dataset, improvements rise to 3.47% and 7.64%.

divide

20 0.3 0.4

add

minusmultiply

1

seen = set()

for char in s:

return ‘None’

seen.add(char) return char

if char in seen:

set

seen.add
check order

round to
the nearest

thousand

round to
the nearest

ten

round to
the nearest

one

round to
the nearest

hundred

9824.119 “Anne is furry.” “Anne is nice.”

“Anne is kind.”“Anne is quiet.”

“Anne is young.”

“Anne is green.”

“Anne is furry.” “Anne is nice.”

“Anne is kind.”“Anne is quiet.”

“Anne is young.”

“Anne is green.”

GSM8K AQUA MBPP ProofWriter

Figure 3: Examples of thought graphs. For GSM8K and AQUA, Vertices indicated by dashed lines
represent the numbers entered during calculations, which will be removed in subsequent steps. The
purple vertice indicates the final step in the reasoning process.

Table 1: Main results on two LLMs and four datasets. For random retrieval, we present the mean
and standard deviation derived from five independent experiments. Bold numbers indicate the best
results, while underlined numbers represent the second-best results.

LLM Model GSM8K AQUA MBPP ProofWriter Avg.

GPT-4o-mini

Random 92.90 (0.31) 71.58 (0.72) 72.76 (0.74) 64.90 (0.93) 75.54 (0.36)
BM25 92.64 70.47 73.4 66.25 75.69
BERT 93.02 66.93 74.2 65.25 74.85

Complex-CoT 92.49 67.32 74.2 64.25 74.57
Auto-CoT 92.72 69.69 73.8 62.25 74.62
Skill-kNN 92.34 71.65 72.0 66.00 75.50

EPR 93.02 72.04 73.8 68.50 76.84
CEIL 92.57 72.44 73.8 69.50 77.08

DQ-LoRe 93.32 69.69 74.6 66.50 76.03
GistScore 93.25 69.69 72.8 67.00 75.69

GraphIC 93.48 73.62 75.2 70.75 78.26

Llama-3.1
-8B-Instruct

w/o ICL 46.47 35.43 43.4 40.75 41.51
Random 78.86 (0.87) 53.15 (1.85) 57.72 (1.06) 76.10 (2.45) 66.46 (0.84)
BM25 77.71 46.85 62.0 77.75 66.08
BERT 74.15 50.39 60.8 73.75 64.77

Complex-CoT 79.30 50.00 58.6 78.25 66.54
Auto-CoT 72.78 42.91 58.4 78.00 63.02
Skill-kNN 77.56 50.39 60.8 74.00 65.69

EPR 75.66 53.94 62.0 79.25 67.71
CEIL 75.51 51.97 62.4 81.00 67.72

DQ-LoRe 77.93 54.33 59.8 81.25 68.33
GistScore 74.60 44.49 60.4 79.50 64.75

GraphIC 79.98 57.48 61.6 84.25 70.83

Additionally, we observe that the GPT-4o-mini model’s performance on the GSM8K dataset is rel-
atively invariant to the selection of ICEs. So, we further perform an additional experiment on the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Results obtained using GPT-3.5-Turbo as the LLM on the GSM8K dataset.
Random BM25 BERT Complex-CoT Auto-CoT Skill-kNN EPR CEIL DQ-LoRe GistScore GraphIC

80.76(0.55) 82.10 80.89 81.65 82.03 81.50 81.65 81.72 82.10 81.72 82.79

GSM8K dataset using the GPT-3.5-Turbo model. As presented in Table 2, GraphIC model achieves
superior performance across all metrics.

5.4 ABLATION STUDY

We perform a series of ablation studies to systematically evaluate the contribution of each component
within the GraphIC framework, which is built upon three key pillars: the incorporation of thought
graphs, PPR for aggregating features, and BN-based retrieval.

To this end, we develop several variants of the GraphIC model: 1) Text relies solely on text embed-
dings, the same as the BERT approach; 2) FRR retrieves examples using BERT embeddings derived
from FRRs (or CodeBERT embeddings for the MBPP dataset); 3) Graph utilizes the formula (3) to
generate graph embeddings, which are employed for dense retrieval; 4) Graph+PPR uses the for-
mula (5) to obtain graph embeddings for dense retrieval; 5) Graph+BN excludes the backtracking
(or PPR) mechanism from the full GraphIC model during computing Z; and 6) Graph+PPR+BN
represents the full GraphIC model, integrating all components.

We conduct experiments leveraging
the Llama-3.1-8B-Instruct model across
four datasets, with the outcomes de-
tailed in Table 3. The findings under-
score that each component of GraphIC
plays a pivotal role in boosting model
performance, with the most significant
improvements observed when all three
components are utilized in conjunction.

Table 3: Ablation Study.

Model GSM8K AQUA MBPP ProofWriter

Text 74.15 50.39 60.8 73.75
FRR 78.31 50.78 60.4 82.50
Graph 78.46 54.72 60.4 83.50

+PPR 78.92 56.30 61.0 83.75
+BN 79.07 49.21 60.4 84.25
+PPR+BN 79.98 57.48 61.6 84.25

5.5 ANALYSIS

2 4 6 8
k shot

60

65

70

75

80

ac
cu

ra
cy

Complex-Cot
Random
EPR
GraphIC

(a) GSM8K

2 4 6 8
k shot

46

48

50

52

54

56

58

ac
cu

ra
cy

DQ-LoRe
EPR
Random
GraphIC

(b) AQUA

2 4 6 8
k shot

57

58

59

60

61

62

pa
ss

@
1

CEIL
BM25
EPR
GraphIC

(c) MBPP

2 4 6 8
k shot

68

70

72

74

76

78

80

82

84

ac
cu

ra
cy

DQ-LoRe
GistScore
CEIL
GraphIC

(d) ProofWriter

Figure 4: Comparison of different numbers of ICEs on various datasets. The blue, red, and purple
lines indicate top 1, top 2, and top 3 performing baseline as shown in Table 1, respectively.

Impact of ICE Examples on Model Performance. We conduct an in-depth investigation into the
influence of the number of ICEs on the performance of our proposed GraphIC model and several
competitive baselines across four datasets. For each dataset, we select the top three baselines and
varied the number of examples in the set {1, 2, 4, 8}. Llama-3.1-8B-Instruct is employed as the
underlying LLM. Results in Figure 4 indicate a general trend of improved model performance with
an increase in the number of examples. Notably, The performance of GraphIC steadily improves as
the number of ICEs increases, unlike some baseline methods, which may experience performance
degradation when the number of ICEs increases. Furthermore, while GraphIC initially lags behind
the baselines in the low-shot settings, its performance exhibits a more pronounced improvement as
the number of examples grew. One can observe that GraphIC surpasses the baselines, demonstrating
superior performance and underscoring its robustness as the number of examples increases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.59 0.45 0.59 0.55 0.18 0.057 0.45 0.072 0.14

0.2 1 0.51 0.58 0.61 0.2 0.083 0.39 0.091 0.17

0.19 0.58 1 0.62 0.57 0.15 0.05 0.47 0.12 0.14

0.2 0.56 0.46 1 0.56 0.13 0.12 0.49 0.2 0.13

0.14 0.58 0.51 0.54 1 0.097 0 0.38 0.046 0.17

0.16 0.61 0.47 0.6 0.57 1 0.039 0.4 0.025 0.2

0.16 0.58 0.48 0.64 0.58 0.12 1 0.43 0.28 0.17

0.14 0.58 0.49 0.62 0.57 0.18 0.061 1 0.12 0.13

0.14 0.56 0.49 0.63 0.57 0.1 0.17 0.43 1 0.16

0.2 0.59 0.47 0.61 0.56 0.13 0.077 0.44 0.2 1

(a) Ground Truth
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

0.4 0.4 1 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.4 0.4 0.4 1 0.4 0.4 0.4 0.4 0.4 0.4

0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 0.8

0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1

(b) Complex-CoT
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.21 0.17 0.37 0 0.071 0.38 0.062 0.25 0.23

0.21 1 0.14 0.24 0.11 0.13 0.24 0.15 0.25 0.21

0.17 0.14 1 0.21 0.062 0.23 0.28 0.1 0.26 0.22

0.37 0.24 0.21 1 0.057 0.15 0.45 0.2 0.29 0.32

0 0.11 0.062 0.057 1 0.16 0.1 0.024 0.13 0.1

0.071 0.13 0.23 0.15 0.16 1 0.23 0.041 0.32 0.16

0.38 0.24 0.28 0.45 0.1 0.23 1 0.22 0.46 0.25

0.062 0.15 0.1 0.2 0.024 0.041 0.22 1 0.18 0.14

0.25 0.25 0.26 0.29 0.13 0.32 0.46 0.18 1 0.23

0.23 0.21 0.22 0.32 0.1 0.16 0.25 0.14 0.23 1

(c) DQ-LoRe
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.39 0.79 0.57 0.74 0.86 0.77 0.78 0.87 0.67

0.85 1 0.66 0.91 0.65 0.87 0.85 0.9 0.85 0.85

0.95 0.48 1 0.9 0 0.67 0.86 0.52 0.86 0.61

0.79 0.85 0.89 1 0.75 0.85 0.66 0.85 0.88 0.78

1 0.72 0.49 0.92 1 0.74 0.9 0.86 0.74 0.7

0.95 0.7 0.63 0.81 0.31 1 0.83 0.77 0.81 0.3

0.88 0.71 0.78 0.56 0.63 0.79 1 0.81 0.76 0.83

0.89 0.73 0.39 0.8 0.58 0.75 0.82 1 0.88 0.67

0.94 0.61 0.77 0.84 0.14 0.72 0.74 0.86 1 0.62

0.88 0.76 0.67 0.81 0.41 0.48 0.92 0.77 0.8 1

(d) BM25

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 1 0.84 0.41 0.63 1 0.73 0.32 1 0.69

1 1 0.84 0.41 0.63 1 0.73 0.32 1 0.69

0.84 0.84 1 0.34 0.54 0.84 0.72 0.35 0.84 0.68

0.41 0.41 0.34 1 0.41 0.41 0 0.51 0.41 0.18

0.63 0.63 0.54 0.41 1 0.63 0.61 0.26 0.63 0.45

1 1 0.84 0.41 0.63 1 0.73 0.32 1 0.69

0.73 0.73 0.72 0 0.61 0.73 1 0.048 0.73 0.63

0.32 0.32 0.35 0.51 0.26 0.32 0.048 1 0.32 0.16

1 1 0.84 0.41 0.63 1 0.73 0.32 1 0.69

0.69 0.69 0.68 0.18 0.45 0.69 0.63 0.16 0.69 1

(e) Skill-kNN
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.2 0.31 0.19 0.034 0.23 0.25 0 0.13 0.16

0.2 1 0.27 0.086 0.15 0.25 0.14 0.1 0.16 0.17

0.31 0.27 1 0.34 0.25 0.55 0.34 0.2 0.26 0.34

0.19 0.086 0.34 1 0.069 0.32 0.19 0.037 0.13 0.18

0.034 0.15 0.25 0.069 1 0.34 0.084 0.029 0.11 0.08

0.23 0.25 0.55 0.32 0.34 1 0.23 0.12 0.26 0.21

0.25 0.14 0.34 0.19 0.084 0.23 1 0.11 0.21 0.15

0 0.1 0.2 0.037 0.029 0.12 0.11 1 0.036 0.09

0.13 0.16 0.26 0.13 0.11 0.26 0.21 0.036 1 0.074

0.16 0.17 0.34 0.18 0.08 0.21 0.15 0.09 0.074 1

(f) EPR
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.2 0.32 0.41 0.039 0.2 0.3 0.088 0.092 0.038

0.2 1 0.28 0.1 0.23 0.14 0.069 0.15 0.11 0.15

0.32 0.28 1 0.34 0.19 0.31 0.38 0.25 0.21 0.14

0.41 0.1 0.34 1 0.064 0.13 0.51 0.23 0.24 0.094

0.039 0.23 0.19 0.064 1 0.13 0.018 0.19 0.00018 0.012

0.2 0.14 0.31 0.13 0.13 1 0.093 0.043 0.11 0

0.3 0.069 0.38 0.51 0.018 0.093 1 0.14 0.36 0.1

0.088 0.15 0.25 0.23 0.19 0.043 0.14 1 0.051 0.14

0.092 0.11 0.21 0.24 0.00018 0.11 0.36 0.051 1 0.083

0.038 0.15 0.14 0.094 0.012 0 0.1 0.14 0.083 1

(g) CEIL
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1 0.72 0.42 0.78 0.88 0.043 0.05 0.44 0.053 0.067

0.0011 1 0.37 0.54 0.99 0.028 0.02 0.46 0.046 0.059

0.003 0.64 1 0.78 0.84 0.04 0.066 0.42 0.051 0.048

0.00086 0.49 0.41 1 0.64 0.033 0.06 0.35 0.036 0.04

0.0014 0.81 0.39 0.57 1 0.031 0.029 0.47 0.05 0.057

0.0078 0.67 0.43 0.77 0.85 1 0.054 0.43 0.05 0.057

0 0.54 0.46 0.83 0.73 0.036 1 0.38 0.044 0.039

0.0067 0.78 0.42 0.66 0.98 0.038 0.042 1 0.056 0.061

0.0098 0.75 0.45 0.74 0.94 0.043 0.055 0.47 1 0.062

0.012 0.76 0.4 0.71 0.92 0.04 0.04 0.45 0.052 1

(h) GraphIC

Figure 5: Ground truth matrix and score matrices of various models. The matrix values have been
linearly scaled to the range [0,1], and the diagonal elements have been set to 1.

Assumption of Symmetry. Our findings show that the GraphIC model uses an “asymmetric” ap-
proach, unlike the common symmetry assumption in most baseline models. To assess the validity of
this assumption, we conduct an experiment examining whether symmetry, in the context of retrieval
models, holds. Here, a retrieval model is considered symmetric if score(i, j) = score(j, i), where
score(i, j) represents the model’s assessment of example i as an ICE for example j. For example, the
Skill-kNN is symmetric as it uses inner product embeddings for score(j, i), while the Complex-CoT
model is asymmetric, calculating score(j, i) based on the complexity of example i.

We randomly select 10 examples from the GSM8K candidate set and use the top-7 performing
models to compute the score matrix S (Sij = score(i, j)), which we then compare against the
ground truth matrix Sgt. Here, Sgt

ij captures the probability that Llama-3.1-8B-Instruct provides the
correct answer when example i is used as an ICE for example j.

The experimental results show that the ground truth matrix (Figure 5 (a)) is asymmetric, undermin-
ing the symmetry assumption. Using symmetric models for inherently asymmetric data introduces
significant errors. For instance, the EPR model, trained on correct answer probabilities, struggles
with accuracy due to its symmetry reliance (Figure 5 (f)). In contrast, simple asymmetric methods
like Complex-CoT (Figure 5 (b)) and BM25 (Figure 5 (d)) perform well, ranking second and fourth
as Table 1 shows, and surpassing many symmetric models. However, their simplistic assumptions
limit their ability to capture ground truth nuances. In contrast, GraphIC (Figure 5 (h)), a sophisti-
cated asymmetric model, aligns closely with the ground truth, resulting in superior performance.

6 CONCLUSION

We introduce GraphIC, a graph-based method for in-context example (ICE) retrieval aimed at en-
hancing LLM performance on multi-step reasoning tasks. By modeling reasoning as “thought
graphs” and utilizing Bayesian Networks and personalized PageRank, GraphIC selects ICEs that
align with the task’s cognitive structure, overcoming the limitations of text-based embedding meth-
ods. Extensive experiments on four benchmarks show that GraphIC consistently outperforms both
training-free and training-based baselines, especially in mathematical and logical reasoning. Our
analysis of symmetry assumptions highlights the advantage of asymmetric retrieval models. A limi-
tation of the GraphIC model is that, as a training-free framework, it may face difficulties in capturing
more intricate thought patterns. Beyond this, GraphIC not only introduces a powerful ICEs retrieval
method, but more crucially, it provides a way to represent and understand the reasoning process. This
capability can be applied to various domains related to LLM reasoning, such as developing novel
graph-based reasoning methods, selecting high-quality and diverse training datasets, and more.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan Ghazvininejad.
In-context examples selection for machine translation. In Findings of the Association for
Computational Linguistics: ACL 2023, pp. 8857–8873, 2023.

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen, and Jian-
Guang Lou. Skill-based few-shot selection for in-context learning. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 17682–17690, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Hyunsoo Cho, Hyuhng Joon Kim, Junyeob Kim, Sang-Woo Lee, Sang-goo Lee, Kang Min Yoo, and
Taeuk Kim. Prompt-augmented linear probing: Scaling beyond the limit of few-shot in-context
learners. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12709–12718,
2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186,
2019.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. CodeBERT: A pre-trained model for programming and natural
languages. In The 2020 Conference on Empirical Methods in Natural Language Processing, pp.
1536–1547, 2020.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine learning,
29:131–163, 1997.

Karl Friston. Hierarchical models in the brain. Plos Computational Biology, 4(11):e1000211, 2008.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2022.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In The Eighth International Conference on
Learning Representations, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. Demystifying prompts
in language models via perplexity estimation. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023.

Shivanshu Gupta, Matt Gardner, and Sameer Singh. Coverage-based example selection for in-
context learning. In The 2023 Conference on Empirical Methods in Natural Language Processing,
2023.

Shivanshu Gupta, Clemens Rosenbaum, and Ethan R Elenberg. GistScore: Learning better rep-
resentations for in-context example selection with gist bottlenecks. In Forty-First International
Conference on Machine Learning, 2024.

David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The combi-
nation of knowledge and statistical data. Machine learning, 20:197–243, 1995.

SU Hongjin, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
Ostendorf, Luke Zettlemoyer, Noah A Smith, et al. Selective annotation makes language models
better few-shot learners. In The Eleventh International Conference on Learning Representations,
2022.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, Noah A Smith, and Mari Ostendorf. In-context
learning for few-shot dialogue state tracking. In The 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 2627–2643, 2022.

Robert A Jacobs and John K Kruschke. Bayesian learning theory applied to human cognition. Wiley
Interdisciplinary Reviews: Cognitive Science, 2(1):8–21, 2011.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive NLP. arXiv preprint arXiv:2212.14024, 2022.

Steven J Leon. Maximizing bilinear forms subject to linear constraints. Linear Algebra and its
Applications, 210:49–58, 1994.

Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context composi-
tional generalization. In Findings of the Association for Computational Linguistics: ACL 2023,
pp. 1401–1422, 2023.

Xiaonan Li and Xipeng Qiu. Finding support examples for in-context learning. In The 2023
Conference on Empirical Methods in Natural Language Processing, pp. 6219–6235, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Findings of the Association for
Computational Linguistics: ACL 2017, pp. 158–167, 2017.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, 2022.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In The Eleventh International Conference on Learning Representations,
2022.

Tai Nguyen and Eric Wong. In-context example selection with influences. arXiv preprint
arXiv:2302.11042, 2023.

Mike Oaksford and Nick Chater. Bayesian rationality: The probabilistic approach to human
reasoning. Oxford University Press, USA, 2007.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

L Page. The PageRank citation ranking: Bringing order to the Web. Technical report, Technical
Report, 1999.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: empowering large
language models with symbolic solvers for faithful logical reasoning. In The 2023 Conference on
Empirical Methods in Natural Language Processing, Dec 2023.

J PEARL. Probabilistic reasoning in intelligent systems; network of plausible inference. Morgan
Kaufmann, 1988, 1988.

Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. Probabilistic
and Causal Inference, 1982. URL https://api.semanticscholar.org/CorpusID:
14936636.

Judea Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29(3):
241–288, 1986.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier,
2014.

Yingzhe Peng, Xu Yang, Haoxuan Ma, Shuo Xu, Chi Zhang, Yucheng Han, and Hanwang Zhang.
ICD-LM: Configuring vision-language in-context demonstrations by language modeling. arXiv
preprint arXiv:2312.10104, 2023.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2655–2671,
2022.

Alexander Scarlatos and Andrew Lan. RetICL: Sequential retrieval of in-context examples with
reinforcement learning. arXiv preprint arXiv:2305.14502, 2023.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 3621–3634, 2021.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler-lehman graph kernels. In Advances in Neural Information Processing
Systems, volume 32, pp. 6436–6446, 2019.

Jonathan Tonglet, Manon Reusens, Philipp Borchert, and Bart Baesens. SEER: A knapsack ap-
proach to exemplar selection for in-context HybridQA. In The 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 13569–13583, 2023.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 billion parameter autoregressive language model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are latent variable models: Explaining and finding good demonstrations for in-
context learning. In Advances in Neural Information Processing Systems, volume 36, pp. 15614–
15638, 2023.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learn-
ing: An information compression perspective for in-context example selection and ordering. In
Findings of the Association for Computational Linguistics: ACL 2023, 2023.

Jing Xiong, Zixuan Li, Chuanyang Zheng, Zhijiang Guo, Yichun Yin, Enze Xie, Zhicheng YANG,
Qingxing Cao, Haiming Wang, Xiongwei Han, Jing Tang, Chengming Li, and Xiaodan Liang.
DQ-LoRe: Dual queries with low rank approximation re-ranking for in-context learning. In The
Twelfth International Conference on Learning Representations, 2024.

13

https://api.semanticscholar.org/CorpusID:14936636
https://api.semanticscholar.org/CorpusID:14936636
https://github.com/kingoflolz/mesh-transformer-jax

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Weijia Xu, Andrzej Banburski, and Nebojsa Jojic. Reprompting: Automated chain-of-thought
prompt inference through gibbs sampling. In Forty-First International Conference on Machine
Learning, 2024.

Zhao Yang, Yuanzhe Zhang, Dianbo Sui, Cao Liu, Jun Zhao, and Kang Liu. Representative demon-
stration selection for in-context learning with two-stage determinantal point process. In The 2023
Conference on Empirical Methods in Natural Language Processing, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Advances in Neural Information Processing Systems, volume 36, pp. 11809–11822, 2023.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars
for in-context learning. In Fortieth International Conference on Machine Learning, 2023.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-Hao Chen, Jiale Liu, Qingyun Wu, and
Tongliang Liu. IDEAL: Influence-driven selective annotations empower in-context learners in
large language models. In The Twelfth International Conference on Learning Representations.,
2023.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
The 2022 Conference on Empirical Methods in Natural Language Processing, pp. 9134–9148,
2022a.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2022b.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In Thirty-Eighth International Conference on Machine
Learning, pp. 12697–12706, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROCESSING OF AQUA AND PROOFWRITER

Given the substantial size of the AQUA dataset, which incurs significant retrieval overhead during
testing, we followed the methodology outlined in DQ-LoRe (Xiong et al., 2024), using a 1,000-
sample subset for efficient evaluation.

For the ProofWriter dataset, we refined the subset selected by Logic-LM (Pan et al., 2023), excluding
instances labeled as “Unknown,” as these samples lacked explicit reasoning chains. Furthermore,
because the original training set did not provide reasoning in natural language, we leveraged the
GPT-4o-mini model to generate reasoning sequences for the training set, discarding any generated
outputs deemed incorrect. We evaluate the correctness of the reasoning process by the correctness
of the final result, which is a commonly used approach (Lightman et al., 2024; Xiong et al., 2024;
Khattab et al., 2022). This process resulted in a refined training set of 1,358 examples with their
Chains of Thought and 400 test samples from the original ProofWriter dataset.

B PROMPT TEMPLATES

For the four datasets under consideration, we design the following prompt templates to format the
ICEs and the question into a prompt, which is then fed into an LLM to generate answers.

GSM8K & AQUA:

Q: {{ice_question_1}}

A: {{ice_answer_1}}

...

Q: {{ice_question_k}}

A: {{ice_answer_k}}

Q: {{question}}

A:

MBPP:

Text: {{ice_question_1}}

Test Cases: {{ice_test_cases_1}}

Code: {{ice_code_1}}

...

Text: {{ice_question_k}}

Test Cases: {{ice_test_cases_k}}

Code: {{ice_code_k}}

Text: {{question}}

Test Cases: {{test_cases}}

Code:

ProofWriter:

Q: {{ice_question_1}}

Proof: {{ice_answer_1}}

...

Q: {{ice_question_k}}

Proof: {{ice_answer_k}}

Q: {{question}}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof:

C SKILL-KNN

Since Skill-kNN does not offer prompts for skill generation in these three tasks, we referred to the
prompt designed for the semantic parsing task in the original paper to write prompts for the four
datasets we used. First, we applied the Complex-CoT method to select 8 examples, then employed
the GPT-4o model to generate skills in a zero-shot setting. Finally, we integrated these results to
construct the final prompt.

GSM8K:

Generate the skills needed to solve the following math problems.

Q: You can buy 4 apples or 1 watermelon for the same price. You bought 36 fruits evenly split
between oranges, apples and watermelons, and the price of 1 orange is $0.50. How much
does 1 apple cost if your total bill was $66?

Skills:
1. Algebraic Reasoning
2. Proportional Thinking
3. Numerical Operations
4. Logical Analysis
5. Problem Solving
6. Cost Analysis

...

Q: {{question}}

Skills:

AQUA:

Generate the skills needed to solve the following math problems.

Q: In a group of 6 boys and 4 girls, four children are to be selected. In how many different
ways can they be selected such that at least one boy should be there?

Options: A)209, B)210, C)211, D)213, E)215

Skills:
1. Selection Principles
2. Inclusion-Exclusion
3. Logical Analysis
4. Quantitative Reasoning

...

Q: {{question}}

Skills:

MBPP:

Generate the skills needed to solve the following coding problems.

Text: Write a function to generate a square matrix filled with elements from 1 to n raised to
the power of 2 in spiral order.

Test Cases:
assert generate_matrix(3)==[[1, 2, 3], [8, 9, 4], [7, 6, 5]]
assert generate_matrix(2)==[[1,2],[4,3]]
assert generate_matrix(7)==[[1, 2, 3, 4, 5, 6, 7], [24, 25, 26, 27, 28, 29, 8], [23, 40, 41,

42, 43, 30, 9], [22, 39, 48, 49, 44, 31, 10], [21, 38, 47, 46, 45, 32, 11], [20, 37, 36,
35, 34, 33, 12], [19, 18, 17, 16, 15, 14, 13]]

Skills:
1. Matrix Manipulation
2. Spiral Algorithm Design
3. Loop Control Flow
4. Boundary Handling
5. Efficient Implementation
6. Testing & Debugging
7. Sequence-to-Matrix Mapping

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

...

Text: {{question}}

Test Cases: {{test_cases}}

Skills:

ProofWriter:

Generate the skills needed to solve the following logical reasoning problems.

Q: Triples:
1. Anne is not big.
2. Anne is cold.
3. Anne is red.
4. Dave is green.
5. Dave is rough.
6. Erin is green.
7. Erin is kind.
8. Erin is rough.
9. Fiona is green.
10. Fiona is not nice.
Rules:
1. If Erin is cold then Erin is rough.
2. If something is rough then it is nice.
3. All green, big things are kind.
4. If Dave is kind then Dave is cold.
5. If something is green and not rough then it is big.
6. All nice, rough things are big.
7. If Dave is cold and Dave is nice then Dave is red.
Based on the above information, is the following statement true or false? Dave is red.
A) True B) False

Skills:
1. Comprehension
2. Logical Deduction
3. Conditional Reasoning
4. Contrapositive Reasoning
5. Transitive Reasoning
6. Identify Necessary Conditions
7. Eliminate Contradictions
8. Pattern Recognition
9. Attention to Detail
10. Inference Making

...

Q: {{question}}

Skills:

D GRAPHIC

D.1 FORMALIZED REASONING REPRESENTATION

The prompt examples below are used to generate formalized reasoning representations for the four
datasets being considered. For the test question, since no answer is provided, we will remove the
section of the prompt highlighted in blue. This will allow the LLM to generate both the answer
and the formalized reasoning representation simultaneously, from which we can then extract the
formalized reasoning representation.

GSM8K:

Translate the given calculations into code form. Each line of code MUST follow the format
specified below:

output_variable = [description of operation](input_variable_1, ..., input_variable_n)

Q: You can buy 4 apples or 1 watermelon for the same price. You bought 36 fruits evenly split
between oranges, apples and watermelons, and the price of 1 orange is $0.50. How much
does 1 apple cost if your total bill was $66?

A: If 36 fruits were evenly split between 3 types of fruits, then I bought 36/3 =
<<36/3=12>>12 units of each

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

fruit
If 1 orange costs $0.50 then 12 oranges will cost $0.50 * 12 = $<<0.5*12=6>>6
If my total bill was $66 and I spent $6 on oranges then I spent $66 - $6 = $<<66-6=60>>60 on

the other 2 fruit types.
Assuming the price of watermelon is W, and knowing that you can buy 4 apples for the same

price and that the price
of one apple is A, then 1W=4A
If we know we bought 12 watermelons and 12 apples for $60, then we know that $60 = 12W + 12A
Knowing that 1W=4A, then we can convert the above to $60 = 12(4A) + 12A
$60 = 48A + 12A
$60 = <<60=60>>60A
Then we know the price of one apple (A) is $60/60= $<<60/60=1>>1
1

Code:
total_fruits = 36
types_of_fruits = 3
price_per_orange = 0.50
total_oranges = 12
total_bill = 66
equivalent_apples_for_watermelon = 4
total_apples_and_watermelons = 12
fruits_per_type = [divide](total_fruits, types_of_fruits)
cost_of_oranges = [multiply](total_oranges, price_per_orange)
remaining_budget = [minus](total_bill, cost_of_oranges)
price_per_apple = [construct and solve an equation](total_apples_and_watermelons,

equivalent_apples_for_watermelon, remaining_budget)

...

Q: {{question}}

A: {{answer}}

Code:

AQUA:

Translate the given calculations into code form. Each line of code MUST follow the format
specified below:

output_variable = [description of operation](input_variable_1, ..., input_variable_n)

Q: In a group of 6 boys and 4 girls, four children are to be selected. In how many different
ways can they be selected such that at least one boy should be there?

Options: A)209, B)210, C)211, D)213, E)215

A: To determine the number of ways to select 4 children from a group of 6 boys and 4 girls
such that at least one boy is included, we will use the method of complement counting.

First, let’s calculate the total number of ways to select 4 children from 10 children (6 boys
+ 4 girls):

\[
\binom{10}{4} = \frac{10!}{4!(10-4)!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times

2 \times 1} = 210
\]

Next, we calculate the number of ways to select 4 children with no boys, i.e., all girls.
Since there are only 4 girls, and we need to select all 4 of them:

\[
\binom{4}{4} = 1
\]

Now, subtract the number of ways to select all girls from the total number of ways to select 4
children to find the number of ways that include at least one boy:

\[
\binom{10}{4} - \binom{4}{4} = 210 - 1 = 209
\]

Thus, the number of ways to select 4 children with at least one boy is:

\[
\boxed{209}
\]
A

Code:
total_children = 10

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

children_to_select = 4
boys = 6
girls = 4
total_ways_to_select = [combination](total_children, children_to_select)
all_girls_selection = [combination](girls, children_to_select)
ways_with_at_least_one_boy = [subtract](total_ways_to_select, all_girls_selection)

...

Q: {{question}}

A: {{answer}}

Code:

MBPP:

Text: Write a function to generate a square matrix filled with elements from 1 to n raised to
the power of 2 in spiral order.

Test Cases:
assert generate_matrix(3)==[[1, 2, 3], [8, 9, 4], [7, 6, 5]]
assert generate_matrix(2)==[[1,2],[4,3]]
assert generate_matrix(7)==[[1, 2, 3, 4, 5, 6, 7], [24, 25, 26, 27, 28, 29, 8], [23, 40, 41,

42, 43, 30, 9], [22, 39, 48, 49, 44, 31, 10], [21, 38, 47, 46, 45, 32, 11], [20, 37, 36,
35, 34, 33, 12], [19, 18, 17, 16, 15, 14, 13]]

Code:
def generate_matrix(n):

if n<=0:
return []

matrix=[row[:] for row in [[0]*n]*n]
row_st=0
row_ed=n-1
col_st=0
col_ed=n-1
current=1
while (True):

if current>n*n:
break

for c in range (col_st, col_ed+1):
matrix[row_st][c]=current
current+=1

row_st+=1
for r in range (row_st, row_ed+1):

matrix[r][col_ed]=current
current+=1

col_ed-=1
for c in range (col_ed, col_st-1, -1):

matrix[row_ed][c]=current
current+=1

row_ed-=1
for r in range (row_ed, row_st-1, -1):

matrix[r][col_st]=current
current+=1

col_st+=1
return matrix

...

Text: {{question}}

Test Cases:
{{test_list}}

Code:

ProofWriter:

Formalize the following proof process based on the given information. Where Each line of
formalized proof MUST follow the format specified below.

output_triple = [rule used](input_triple_1, ... , input_triple_n)

Q: Triples:
1. Anne is not big.
2. Anne is cold.
3. Anne is red.
4. Dave is green.
5. Dave is rough.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

6. Erin is green.
7. Erin is kind.
8. Erin is rough.
9. Fiona is green.
10. Fiona is not nice.
Rules:
1. If Erin is cold then Erin is rough.
2. If something is rough then it is nice.
3. All green, big things are kind.
4. If Dave is kind then Dave is cold.
5. If something is green and not rough then it is big.
6. All nice, rough things are big.
7. If Dave is cold and Dave is nice then Dave is red.
Based on the above information, is the following statement true or false? Dave is red.
A) True B) False

Proof: To determine if the statement "Dave is red" is true or false, let’s evaluate the given
information step by step:

From the triples:
1. Dave is green.
2. Dave is rough.

From the rules:
1. If something is rough then it is nice. (Dave is rough, so Dave is nice.)
2. If Dave is cold and Dave is nice then Dave is red. (However, there’s no information saying

Dave is cold, so we can’t use this rule directly.)
3. All nice, rough things are big. (Dave is nice and rough, so Dave is big.)

Now, we need to verify whether Dave being cold can be derived:
1. If Dave is kind then Dave is cold. (To use this, we need to verify if Dave is kind.)

- All green, big things are kind. (Dave is green and big, so Dave is kind.)
- Hence, Dave is kind, which according to rule 4, makes Dave cold.

Since now we know:
- Dave is cold.
- Dave is nice.

We can use rule 7:
- If Dave is cold and Dave is nice then Dave is red.

Since both conditions are satisfied, Dave is red.

The statement "Dave is red" is **True (A)**.

Formalized Proof:
"Dave is nice." = [rule2]("Dave is rough.")
"Dave is big." = [rule6]("Dave is nice.", "Dave is rough.")
"Dave is kind." = [rule3]("Dave is green.", "Dave is big.")
"Dave is cold." = [rule4]("Dave is kind.")
"Dave is red." = [rule7]("Dave is cold.", "Dave is nice.")

...

Proof: {{answer}}

Formalized Proof:

The pseudo-code of a parser that transforms formalized reasoning representations into a thought
graph is provided in Algorithm 1. Inputs, Output, and OperationName are extracted following the
pattern outlined below.

Output = [OperationName](input_1, ..., input_n)

D.2 VALUES OF λ

We select hyper parameter λ values from {0, 0.1, 0.2, 0.3}, and report the λ values chosen on various
datasets and LLMs in Table 4.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1 Parsing Formalized Reasoning Representation

Require: formalized reasoning representation FRR
Ensure: Corresponding graph G(V,E)

1: NodeSet← ∅
2: EdgeSet← ∅
3: line← first line of FRR
4: while line ̸= NULL do
5: Extract Inputs, Output, and OperationName from line
6: for each input in Inputs do
7: if input /∈ NodeSet then
8: Add input to V
9: end if

10: end for
11: if Output /∈ V then
12: Add Output to V , labeled as OperationName
13: end if
14: for each input in Inputs do
15: Add directed edge from input to Output to E
16: end for
17: line← next line of FRR
18: end while
19: G = G(V,E)

Table 4: λ values chosen on various datasets and LLMs.

Engine GSM8K AQUA MBPP ProofWriter

GPT-4o-mini 0.2 0.2 0.1 0.1
Llama-3.1-8B-Instruct 0.3 0.2 0.2 0.0

GPT-3.5-Turbo 0.3 / / /

E SUPPLEMENTARY EXPERIMENTS

E.1 CORRECTNESS OF LLM GENERATED ANSWERS FOR CREATING THOUGHT GRAPHS

To analyze the consistency between LLM-generated answers and real solutions, we tested the ac-
curacy of these answers used to generate the thought graphs. The results are shown in the Table 5.
From Table 5, it can be seen that these answers used to generate the thought graph already have
relatively high accuracy, which ensures their consistency with the real solution. Furthermore, the
table demonstrates that using the thought graph to retrieve examples can further improve accuracy,
especially in mathematical reasoning and logical reasoning tasks. We use Llama-3.1-8B-Instruct for
testing.

Table 5: Correctness of LLM generated answers for creating thought graphs and final answers.

Accuracy GSM8K AQUA MBPP ProofWriter

Answer for Creating Thought Graphs 76.42 49.21 60.6 78.25
Final Answers 79.98 57.48 61.6 84.25
Improvement +3.56 +8.27 +1.00 +6.00

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.2 PERFORMANCE OF GRAPHIC WHEN USING INCORRECT ANSWERS FOR CREATING
THOUGHT GRAPHS

To further investigate whether incorrect thought graphs could mislead the retrieval process, we se-
lected a subset from each dataset, containing all queries associated with incorrect thought graphs. We
evaluated GraphIC on these four subsets and compared its performance with that of top-performing
baselines, both training-based (DQ-LoRe) and training-free (Complex-CoT). The results, shown in
Table 6, reveal that even when GraphIC uses incorrect thought graphs to retrieve in-context exam-
ples, it still achieves a significant performance advantage. Note that the performance in the Table 6
is substantially lower than those in Table 1. This is because the queries that lead to incorrect thought
graphs are typically the most difficult ones.

Table 6: Performance of GraphIC and top training-free/training-based baseline on the subset where
GraphIC uses incorrect answers for creating thought graphs.

Model GSM8K AQUA MBPP ProofWriter

Complex-CoT 38.58 28.68 4.06 54.02
DQ-LoRe 40.83 33.33 16.75 65.51
GraphIC 43.08 33.33 15.23 70.11

E.3 COMPARISON OF COMPUTATION TIME WITH OTHER SIMILAR BASELINES.

Our method belongs to the category of methods that use the generated output of LLMs to select in-
context examples, which also includes methods such as Skill-kNN and DQ-LoRe. These approaches
involve using the LLM during the retrieval phase, resulting in longer retrieval times compared to
other baselines. However, by leveraging the power of LLMs, they are suitable for complex tasks.
The computation times for the three models are presented in the Table 7. Specifically, the retrieval
time for the GraphIC model is similar to that of DQ-LoRe, and slightly higher than Skill-kNN.
Despite this, GraphIC significantly outperforms Skill-kNN in terms of performance. Moreover,
compared to DQ-LoRe, which has the same retrieval time, GraphIC not only delivers superior per-
formance but also greatly reduces both the prepare time and training time required by DQ-LoRe.

Here, ”prepare time” refers to the time spent generating the necessary outputs for retrieval, such as
generating the required skills for all candidate examples in Skill-kNN. For our evaluation, we used
the GSM8K dataset with the LLM configured as Llama-3.1-8B-Instruct.

Table 7: Prepare time, training time, and retrieve time of GraphIC and other similar baselines.

Time Skill-kNN DQ-LoRe GraphIC

prepare time 0.7h 20h 1.5h
traning time - 16h -
retrieve time 0.3s 0.4s 0.4s

E.4 PERFORMANCE OF GRAPHIC AND TOP TRAINING-BASED/TRAINING-FREE BASELINES
ACROSS 1–8 SHOT SETTINGS

We find a difference in training-free methods compared to their training-based counterparts. Meth-
ods such as DQ-LoRe, which are training-based, directly optimize the probability of large language
models (LLMs) producing correct answers in 1-shot scenarios. As a result, they tend to achieve
superior performance in low-shot settings, particularly in 1-shot cases. However, as the number of
shots increases, the performance gains of these methods may decelerate or even decline.

To further clarify this phenomenon, we conducted a comparison of GraphIC with the top-performing
training-based and training-free baselines (DQ-LoRe and Complex-CoT) across 1–8 shot settings.
The results, presented in Figure 6, highlight the strengths and weaknesses of training-based versus
training-free approaches mentioned above.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

2 4 6 8
k shot

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

ac
cu

ra
cy

GraphIC
DQ-LoRe
Complex-CoT

(a) GSM8K

2 4 6 8
k shot

42

44

46

48

50

52

54

56

58

ac
cu

ra
cy

GraphIC
DQ-LoRe
Complex-CoT

(b) AQUA

2 4 6 8
k shot

40

45

50

55

60

pa
ss

@
1

GraphIC
DQ-LoRe
Complex-CoT

(c) MBPP

2 4 6 8
k shot

70

72

74

76

78

80

82

84

ac
cu

ra
cy

GraphIC
DQ-LoRe
Complex-CoT

(d) ProofWriter

Figure 6: Performance of GraphIC and Top Training-based/Training-free Baselines (DQ-LoRe and
Complex-CoT) across 1–8 Shot Settings

E.5 THE EFFECTS OF λ

We analyzed the effect of λ values ranging from [0.0, 0.9] on the results across the four datasets
utilized in our study. The corresponding results are presented in Figure 7, confirming the robustness
of our method to the choice of lambda.

0.0 0.2 0.4 0.6 0.8
30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

GSM8K
AQUA
MBPP
ProofWriter

Figure 7: The performance of GraphIC on different λ across four datasets.

E.6 THE PERFORMANCE ON MATH DATASET

We conducted a comparison of GraphIC with the top-performing training-based and training-free
baselines (DQ-LoRe and Complex-CoT) on MATH dataset. The results are presented in Table 8:
the GraphIC model has consistently achieved optimal performance. Due to computational resource
limitations, we randomly selected 500 samples from the training and testing data categorized as
”level 5” difficulty in MATH, which were used as the candidate set and test set.

Table 8: The Performance of GraphIC, Complex-CoT, and DQ-LoRe on MATH Dataset

Model Complex-CoT DQ-LoRe GraphIC

MATH 18.8 20.4 21.8

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.7 THE PERFORMANCE ON MBPP WITH 16-SHOT SETTING

In order to analyze whether GraphIC can benefit from more than even more examples, we tested
the performance of GraphIC and other top-3 baselines in the 16-shot setting on MBPP dataset. The
experimental results are shown in the table below. The results indicate that while the performance
of other baselines declines at 16 shots, GraphIC maintains an improvement. This makes GraphIC
superior to the other baselines in the 16-shot scenario.

Table 9: The Performance of GraphIC and other top-3 baselines on MBPP with 16-shot Setting

Model BM25 EPR CEIL GraphIC

MBPP 60 60.6 60.6 62.6

F SUPPLEMENTARY EXPLANATION

F.1 THE MATRIX B

As shown in Figure 8, matrix A represents the adjacency matrix of a thought graph, corresponding
to the black edges in the graph. In this graph, vertices 1 and 2 have an in-degree of 0, indicating
the starting points of reasoning, while vertices 3 and 4 have non-zero in-degrees, representing in-
termediate steps or results of reasoning. Matrix B indicates the edges from vertices with non-zero
in-degrees to those with in-degree 0, corresponding to the edges from vertices 3 and 4 to vertices
1 and 2 in the graph (marked in green). Since vertices 3 and 4 are intermediate steps or results
of reasoning, and vertices 1 and 2 represent the starting points, these edges represent the retracing
process.

1 2 3 4

1

2

3

4

j
i

1

1

1

1 2 3 4

1

2

3

4

j
i

1

1

1

Input degree : 0 2 10 2 1

1 2 3 4

1

2

3

4

j
i

1

1 1

0

1

A B

Figure 8: The definition of matrix B and its corresponding edges in a graph.

F.2 THE LOSS OF SETTING THE RANK OF MATRIX W TO 1

First, we provide the optimal value and the optimal solution of the optimization problem defined by
Equation 11, under the assumption that no constraints are imposed on W .

Theorem F.1. Consider the following optimization problem:

max
W

tr(ZW⊤X⊤), W ∈ Rnf×nf , s.t. ||W ||F = 1. (17)

The optimal value of this problem is
(∑nf

i=1 σ
2
i

)1/2
, and the optimal solution is W ∗ = V Y U⊤,

where Y = diag(y11, y22, . . . , ynfnf
) with yii =

σi

(
∑nf

j=1 σ2
j)

1/2 .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. We begin by rewriting the objective function using the cyclic property of the trace:
tr(ZW⊤X⊤) = tr(W⊤X⊤Z).

Next, perform the Singular Value Decomposition (SVD) of X⊤Z:
X⊤Z = UΣV ⊤,

where U and V are orthogonal matrices, and Σ = diag(σ1, σ2, . . . , σnf
) is the diagonal matrix of

singular values.

Substituting this decomposition into the trace expression, we obtain:
tr(ZW⊤X⊤) = tr(W⊤UΣV ⊤).

Using the cyclic property of the trace again, we get:
tr(ZW⊤X⊤) = tr

(
(V ⊤W⊤U)Σ

)
.

Define Y = V ⊤W⊤U . Then the objective becomes:
tr(ZW⊤X⊤) = tr(Y Σ).

Since U and V are orthogonal, they preserve the Frobenius norm, i.e., ||Y ||F = ||W ||F = 1. Thus,
we are now tasked with maximizing tr(Y Σ) subject to ||Y ||F = 1.

We know that the trace tr(Y Σ) is maximized when Y is diagonal, i.e., when Y =
diag(y11, y22, . . . , ynfnf

). This follows because the off-diagonal elements of Y do not contribute to
tr(Y Σ), but they affect the Frobenius norm of Y . By setting these off-diagonal elements to zero and
redistributing the weight to the diagonal elements, we achieve a higher value of tr(Y Σ).

Thus, the optimization problem reduces to:

tr(ZW⊤X⊤) =

nf∑
i=1

σiyii, subject to
nf∑
i=1

y2ii = 1.

To find the optimal yii, we apply Cauchy-Schwarz inequality:
nf∑
i=1

σiyii ≤

(nf∑
i=1

σ2
i

)1/2(nf∑
i=1

y2ii

)1/2

.

Since
∑nf

i=1 y
2
ii = 1, this simplifies to:

nf∑
i=1

σiyii ≤

(nf∑
i=1

σ2
i

)1/2

.

The maximum value of
∑nf

i=1 σiyii is achieved when yii =
σi

(
∑nf

j=1 σ2
j)

1/2 . Thus, the optimal value

of the objective is
(∑nf

i=1 σ
2
i

)1/2
, and the corresponding optimal solution is W ∗ = V Y U⊤, where

Y = diag
(

σ1

(
∑nf

i=1 σ2
i)

1/2 , . . . ,
σnf

(
∑nf

i=1 σ2
i)

1/2

)
.

Based on the proof above, we know that without any constraints on W , the optimal value of the
optimization problem defined by Equation 11 is

(∑nf

i=1 σ
2
i

)1/2
. When a rank-1 constraint is added

to W , the optimal value of the problem becomes σ1. Therefore, we are interested in quantifying
the loss introduced by the ”rank-1 assumption,” which can be assessed by the ratio of their optimal
values, r = σ1/

(∑nf

i=1 σ
2
i

)1/2
. We computed the value of r on four datasets, and the results are

shown in Table 10. The table demonstrates that the loss caused by the ”rank-1 assumption” is less
than 0.1%, implying that it does not result in a significant loss of precision.

Table 10: The r value on four datasets.

Dataset GSM8K AQUA MBPP ProofWriter

r 0.99978 0.99991 0.99963 0.99921

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F.3 THE ASYMMETRY

We provide an example to illustrate the asymmetry. As shown in the example below, solving Ques-
tion B includes solving Question A, which involves further calculations to determine how long it
will take to reach the minimum age required by the company for employment. Therefore, in this
case, referencing B can help resolve A, but referencing A does not necessarily resolve B.
Question A:
In 3 years, Jayden will be half of Ernesto’s age. If Ernesto is 11 years old, how many years

old is Jayden now?

Answer A:
Ernesto = 11 + 3 = 14
Jayden = 14/2 = 7 in 3 years
Now = 7 - 3 = 4
Jayden is 4 years old.

Question B:
The minimum age required to be employed at a company is 25 years. Dara aspires to work for the

company and will be half the age of Jane in six years. If Jane is currently working for
the company and is 28 years old, how long is it before Dara reaches the minimum age
required by the company to be employed?

Answer B:
In six years, Jane will be 28+6 = 34 years old.
Dara will be half the age of Jane in six years, meaning she will be 34/2 = 17 years old in six

years.
Currently, Dara is 17-6 = 11 years old.
Dara has to wait for 25-11 = 14 more years to reach the company’s minimum age of employment.

F.4 EXAMPLES OF THOUGHT GRAPHS ON MATH

Candidate Example 1:

Figure 9: Thought graph of candidate example 1

Question:
[asy] fill(circle((4,0),4),grey); fill((0,0)--(8,0)--(8,-4)--(0,-4)--cycle,white); fill(circle

((7,0),1),white); fill(circle((3,0),3),white); draw((0,0)--(8,0),black+linewidth(1));
draw((6,0)--(6,sqrt(12)),black+linewidth(1)); MP("A", (0,0), W); MP("B", (8,0), E); MP("C
", (6,0), S); MP("D",(6,sqrt(12)), N); [/asy]

In this diagram semi-circles are constructed on diameters \overline{AB}, \overline{AC},
and \overline{CB}, so that they are mutually tangent. If $\overline{CD} \bot \overline{
AB}$, then the ratio of the shaded area to the area of a circle with \overline{CD} as
radius is:

$\textbf{(A)}\ 1:2\qquad \textbf{(B)}\ 1:3\qquad \textbf{(C)}\ \sqrt{3}:7\qquad \textbf{(D)}\
1:4\qquad \textbf{(E)}\ \sqrt{2}:6$

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Answer:
To make the problem much simpler while staying in the constraints of the problem, position

point C halfway between A and B. Then, call $\overline{AC} = \overline{BC}=r$. The
area of the shaded region is then\[\frac{ \pi rˆ2 - \pi (r/2)ˆ2 - \pi (r/2)ˆ2}{2}=\frac

{\pi rˆ2}{4}\]Because $\overline{CD}=r$ the area of the circle with \overline{CD} as
radius is $\pi rˆ2$. Our ratio is then\[\frac{\pi rˆ2}{4} : \pi rˆ2 = \boxed{1:4}\]

Candidate Example 2:

Figure 10: Thought graph of candidate example 2

Question:
The tail of a 1-mile long train exits a tunnel exactly 3 minutes after the front of the train

entered the tunnel. If the train is moving 60 miles per hour, how many miles long is the
tunnel?

Answer:
Because the train is moving 60 miles per hour, the front of the train moves 1 mile every

minute. Therefore, in the three minutes since the front of the train entered the tunnel,
the front of the train has moved three miles. At the end of these three minutes, we know
the front of the train is 1 mile beyond the end of the tunnel,because the train is one
mile long and its tail is just leaving the tunnel. So, the front of the train has moved 3
miles from the beginning of the tunnel and is now 1 mile beyond the end of the tunnel.

This tells us that the tunnel is $3-1 = \boxed{2\text{ miles}}$ long.

Candidate Example 3:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 11: Thought graph of candidate example 3

Question:
On the refrigerator, MATHEMATICS is spelled out with 11 magnets, one letter per magnet. Two

vowels and four consonants fall off and are put away in a bag. If the T’s, M’s, and A’s
are indistinguishable, how many distinct possible collections of letters could be put in
the bag?

Answer:
We count the number of ways to choose the vowels and the consonants separately. There are four

vowels, of which two are As. If there are no As, then we must choose both the remaining
vowels, so there is 1 choice; if there is one A, then we can choose the remaining vowel
in 2 ways; and if there are two As, then there are no vowels left to choose, so there

is 1 choice. This makes $1 + 2 + 1 = 4$ distinct pairs of vowels.

There are seven consonants, of which two are Ts and of which two are Ms. Since we must choose
four consonants, we must use at least one of the Ts and Ms.

If we use one T and no Ms, we have only 1 choice (use the three remaining consonants); the
same is true if we use one M and no Ts.

If we use both Ts and no Ms, there are $\tbinom{3}{2} = 3$ choices for the two remaining
consonants; the same is true if we use both Ms and no Ts, or if we use one T and one M.

If we use both Ts and one M, there are $\tbinom{3}{1} = 3$ choices for the single remaining
consonant; the same is true if we use both Ms and one T.

Finally, if we use both Ts and both Ms, there are no more letters left to choose, so we get
1 more choice.

In total, we have $2(1) + 5(3) + 1 = 18$ distinct collections of consonants.

Therefore, the number of distinct collections of letters is $4 \cdot 18 = \boxed{72}.$

Query 1:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 12: Thought graph of query 1

Question:
For each positive integer n, the set of integers $\{0,1,\ldots,n-1\}$ is known as the $\

textit{residue system modulo}$ n. Within the residue system modulo $2ˆ4$, let A be
the sum of all invertible integers modulo $2ˆ4$ and let B be the sum all of non-
invertible integers modulo $2ˆ4$. What is $A-B$?

Answer:
Since $2ˆ4$ is a power of 2, the invertible integers are the odd ones $

\{1,3,5,7,9,11,13,15\}$, and the non-invertible integers are the even ones $
\{0,2,4,6,8,10,12,14\}$. Thus, \begin{align*}

A-B & = (1+3+5+7+9+11+13+15)\\
& \qquad - (0+2+4+6+8+10+12+14)\\
& = (1-0)+(3-2)+(5-4)+(7-6)+(9-8)\\
&\qquad+(11-10)+(13-12)+(15-14)\\
& = 1+1+1+1+1+1+1+1=\boxed{8}.
\end{align*}

Query 2:

Figure 13: Thought graph of query 2

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Question:
How many integers between 100 and 500 have at least two 3s as digits?

Answer:
First consider the two 3s to appear in the units and tens places. Between 100 and 500,

there are four such numbers: 133, 233, 333, and 433. Now consider the two 3s to
appear in the units and hundreds places. The numbers will be in the 300s, so we don’t

need to worry about if they are between 100 and 500. There are 10 choices for the
tens digit, but we have already counted 333, so such a scenario will add nine numbers.
Finally, consider the two 3s to appear in the tens and hundreds places. Again, these
numbers are automatically between 100 and 500. There are 10 choices for the units
digit, but we again discard 333 for a final count of nine such numbers. Thus, our
answer is $4+9+9 = \boxed{22}$.

Query 3:

Figure 14: Thought graph of query 3

Question:
Given that m and n are positive integers such that $m\equiv 6\pmod 9$ and $n\equiv 0\pmod

9$, what is the largest integer that mn is necessarily divisible by?

Answer:
If $m\equiv 6\pmod 9$, then we can write m as $9a+6$ for some integer a. This is equal to

$3(3a+2)$, so m is certainly divisible by 3. If $n\equiv 0\pmod 9$, then n is
divisible by 9. Therefore, mn must be divisible by $3\cdot 9 = 27$.

Note that m can be 6 and n can be 9, which gives us $mn = 54$. Also, m can be 15 and n
can be 9, which gives us $mn = 135$. The gcd of 54 and 135 is 27.

Therefore, the largest integer that mn must be divisible by is $\boxed{27}$.

30

	Introduction
	Related Work
	Preliminaries: Bayesian Network
	The Proposed GraphIC
	Thought Graph and its Construction
	Probabilistic Model on Thought Graph
	Probabilistic Example Retrieval

	Experiments
	Datasets and Implementation Details
	Baselines
	Main Results
	Ablation Study
	Analysis

	Conclusion
	Processing of AQUA and ProofWriter
	Prompt Templates
	Skill-kNN
	GraphIC
	Formalized Reasoning Representation
	Values of

	Supplementary Experiments
	Correctness of LLM Generated Answers for Creating Thought Graphs
	Performance of GraphIC when Using Incorrect Answers for Creating Thought Graphs
	Comparison of Computation Time with Other Similar Baselines.
	Performance of GraphIC and Top Training-based/Training-free Baselines across 1–8 Shot Settings
	The Effects of
	The Performance on MATH Dataset
	The Performance on MBPP with 16-shot Setting

	Supplementary Explanation
	The Matrix B
	The Loss of Setting the Rank of Matrix W to 1
	The Asymmetry
	Examples of Thought Graphs on MATH

