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Abstract—Gaining insight into the brain’s visual representation
through reconstructing what we see from brain activity is of
immense importance and interest. Though fMRI and MEG
achieve high-quality image reconstruction and classification, their
cost and size restrict broader real-world applications, particularly
outside clinical settings. In contrast, although Electroencephalog-
raphy (EEG) is a cost-effective, non-invasive tool producing high
temporal resolution signals, it remains less explored primarily
due to its susceptibility to noise and complex spatio-temporal
characteristics. To address these, we propose BrainDiffNet,
an effective EEG-to-Image generation model that leverages a
subject’s contextual and EEG spatio-temporal information to
guide a fine-tuned Stable Diffusion model, resulting in high-
quality, semantically relevant images from brain activity. A robust
Temporal Masked Autoencoder, designed for high-resolution
EEG, enables the model to effectively extract features and
manage noisy or incomplete EEG query representations. In-
depth evaluation using the large-scale EEG-ImageNet dataset
demonstrates the outperformance of BrainDiffNet in both tasks:
Object Classification and Image Reconstruction. In fact, the
model significantly outperforms state-of-the-art baseline methods,
achieving a 15− 20% higher accuracy in classification across all
granularity levels and a 7 − 12% improvement in all feature-
specific two-way identification metrics for image reconstruction.

Index Terms—Diffusion, Masked Auto-encoders, EEG decoder,
Image reconstruction

I. INTRODUCTION
The inherently multidimensional structure of Electroen-

cephalography (EEG) data provides a distinct means for
understanding diverse neurological phenomena [1]. In fact,
deciphering human brain activity through EEG signals has
consistently remained a central focus within neuroscience, for
its substantial potential in understanding cognitive processes,
mental states, and various spatio-temporal aspects of brain
function [2]. The advent of deep neural networks, especially
diffusion-based and transformer-based models, has even made
it possible to reconstruct human brain activities directly from
fMRI or MEG recordings [3]–[5]. However, the necessity of
costly, bulky machinery and specialized clinical expertise for
data acquisition severely restrict these techniques from broader
applications. Comparably EEG signals can be obtained non-
invasively by placing electrodes on the head, making it a gentle
way to monitor the brain activity. Further, exceptional temporal
resolutions make EEG ideal for studying rapid cognitive pro-
cesses like perception, attention, and event-related potentials
(ERPs). Despite these, only limited research [6], [7], has
addressed EEG-to-image reconstruction, and the fundamental
challenges are two-fold: (1) Analyzing EEG’s multidimen-

Fig. 1. Method Overview of BrainDiffNet

sional data requires a comprehensive look at both its spatial
and temporal aspects, unified within the subject’s specific
context during signal generation; (2) Noise sensitivity and
missing segments of EEG signals, stemming from interference
like muscle movements or eye blinks (noise sensitivity), and
sometimes parts of the data being incomplete or lost (missing
segments).

To address these, we propose BrainDiffNet, an effective
EEG-to-Image generation model that utilizes a subject’s con-
textual information alongside the spatial and temporal patterns
within their EEG signals. This comprehensive understanding
then guides the fine-tuning of a Stable Diffusion model, en-
abling the generation of semantically relevant images directly
from brain activity. Its primary contributions include:

1) A Unified Semantic Enhanced Spatio-Temporal EEG
Embedding that leverages both spatial and temporal
EEG signal patterns, augmented by the subject’s specific
context to design a comprehensive and compact EEG
embedding.

2) An effective Temporal Masked Auto-encoder (MAE)
based asymmetric feature extraction module, specifically
designed for high-resolution EEG signals. This module
is expertly tailored to handle incomplete mode repre-
sentations in query times by accurately approximating
missing data points, ensuring robust feature extraction



even with imperfect EEG signals.
3) Qualitative and Quantitative evaluation demonstrating

outperformance of the proposed BrainDiffNet against
state-of-the-art models in two tasks using only a sub-
ject’s EEG signals: Object Classification and Image
Reconstruction.

II. PROPOSED METHOD
Given a multichannel EEG signal (comprising of M

channel-specific 1D time sequences) xi obtained from a sub-
ject Si, our objective aims to reconstruct the image stimulus
I the subject is exposed to. Each image I corresponds to
a category c from a predefined set of object classes C. In
other words, we have xi = {e1i , e2i , . . . , eMi }, where emi ∈
RN×1 and N is the signal length and m ∈ {1, . . . ,M}.
Based on this input, BrainDiffNet aims to generate an image
I∗ ∈ Rn1×n2 that closely approximates I ∈ Rn1×n2 . Figure
1 gives an overview of the proposed multisensor fusion net-
work BrainDiffNet, comprised of two core task components:
Unified Semantic Enhanced Spatio-Temporal EEG Embedding
and Finetuning pretrained Stable Diffusion Model with EEG
encoder-image pairs.
A. Unified Semantic Enhanced Spatio-Temporal EEG Embed-
ding

EEG, which measures brain activity non-invasively, faces
challenges in precisely localizing activity sources due to
varying spatiotemporal resolutions that are often determined
by a subject’s demographics and cognitive state specifics. In
this section, we describe a unified spatiotemporal embedding
module that leverages two different types of encoders (Spatial
Convolution Network [8] and Temporal Masked auto-encoder
[6]) to form a fused spatio-temporal EEG representation.

1) Preprocessing: To ensure high-quality EEG data, we
implement a preprocessing pipeline addressing noise and ar-
tifacts. This involves applying a 0.5-80 Hz band-pass filter
to remove drifts, high-frequency noise, and 50 Hz line noise;
and systematically eliminating artifacts like eye blinks, muscle
artifacts, and head movement artifacts. Now on, unless specifi-
cally mentioned otherwise, each reference to emi the paper will
refer to a preprocessed EEG signal generated from channel m.

2) Spatial Convolution Network: Drawing inspiration from
Zhao et al. [9], the model uses a convolutional transformer
model that is particularly trained for EEG classification task
and is comprised of three components applied in sequence:
a Convolution block; a Transformer Encoder; and a Fully
Connected Classification head.

The Convolution block has a sequence of three convo-
lution layers and serves as the initial feature extractor, fo-
cusing on capturing local and spatial features from the raw
EEG time series. It transforms the initial raw multichannel
EEG signal into a more compact, higher-level representa-
tion. Specifically, it produces l0-dimensional features (fmi ∈
Rl0 ,m ∈ {1, . . . ,M}) for every approximately 1-second
channel-specific segment of the original EEG. All convo-
lutional layers are followed by batch normalization (BN),
which makes the training smoother and mitigates the risk of
overfitting.

These extracted features from the Convolution block are
then sent to a Transformer Encoder to capture broader, global
relationships. Multi-Head Attention (MHA) at the core of
this Transformer Encoder allows the model to weigh the
importance of different parts of the input feature sequence
(different time points or channels) relative to each other.
In our experiments, we use 3-layer Transformer Encoder,
wherein each layer has three main parts: MHA Layer blocks;
Residual Connections, and a Feed-Forward network. More
precisely, following the MHA self-attention operation, the
output features are additively combined with the original input
features via a residual connection. This combined output then
undergoes layer normalization to standardize its scale. The
normalized result is subsequently passed through a position-
wise fully connected feed-forward network, which applies the
same transformation independently to each position. The entire
Transformer Encoder processes the multichannel EEG repre-
sentation {f1i , f2i , . . . fMi } as input and produces a compact
EEG descriptor gspa

i ∈ Rl×d.
The flattened output of the Transformer Encoder is used

as the input to the Fully Connected Classification head
comprising of a fully connected layer followed by the
Softmax layer with |C| units, which is employed to map
gspa
i into a probabilistic classification decision. The multi-

class cross entropy loss function that evaluates the model’s
prediction output P (xi|θ) (where θ represents the clas-
sifier parameter) with ground truth label ci as LCE =

CrossEntropyLoss

(
P (xi|θ), ci

)
, is used to train the model.

3) Temporal Masked auto-encoder: Self-supervised pre-
training with masked modeling has proven highly effective
in NLP [10] and visual representation learning [11]. This
approach trains models to predict randomly masked input
tokens based on the remaining available tokens. To process
our data, we first divide each eim into time-domain tokens
of size p, i.e. each token represents p (in all experiments,
we use p = 3) consecutive temporal samples and randomly
hide a portion of them through masking. Next, these tokens
are converted into embeddings using a 1D convolution layer.
A Masked Auto-encoder (MAE) then leverages the temporal
context from the unmasked tokens to predict the masked ones,
allowing the MAE to build a robust understanding of the data’s
inherent temporal structure.

In particular, the MAE encoder architecture is adopted from
EEGViT [12], a hybrid Vision Transformer (ViT) [13] style
architecture designed for EEG data. It takes xi (represented
using M channel-specific signals {e1i , e2i , . . . , eMi }) as input
and features a two-step Convolutional block [14] integrated
with ViT layers followed by a projection layer to generate an
encoder output gtemp

i ∈ Rl×d. The ViT layers are initialized
with weights pre-trained on the ImageNet dataset to facilitate
downstream fine-tuning, while the projection layer learns its
weights during this fine-tuning process. The MAE decoder
consists of a series of Transformer blocks, which extract
low-level semantic information regarding the underlying raw
signal patterns. A reconstruction loss Lrec that evaluates the



alignment of the original emi with the reconstructed signal
em,∗
i , is used to train this module as:

Lrec = 1− 1

M

M∑
m=1

emi · em,∗
i

||emi ||||em,∗
i ||

(1)

4) Feature Fusion for Unified Semantic Enhanced Spatio-
Temporal EEG Embedding : The proposed spatio-temporal
representation of EEG signals specifically addresses the in-
dividual weaknesses of each pre-trained encoder (described
above) by blending them via a cross-attention mixer with
learnable queries. In particular, we use a randomly initialized
query Q ∈ R1×d, keys as Ki = [gspa

i gtemp
i ] ∈ R2×d where

gspa
i ,gtemp

i ∈ Rd is each encoder’s features averaged over the
sequence dimension l for efficient computation, and values as
Vi = [gspa

i gtemp
i ] ∈ R2×l×d. The resulting unified EEG em-

bedding zi is then defined as zi := CA(Q,Ki,Vi) ∈ Rl×d,

where CA(Q,Ki,Vi) = Softmax

(
QKT

i√
d

)
Vi.

To incorporate a better understanding of the EEG encoder-
image associations with underlying multimodal semantics, the
model is trained using a sigmoid contrastive learning [15] on
the (zi, z

SL
i ) pair, where zSL

i represents the SigLIP encoder
of image I . The resulting unified Semantic Enhanced Spatio-
Temporal EEG Embedding is produced as a system output.
Unless specifically mentioned otherwise, each reference to zi
in the next part of the paper will refer to the Unified Semantic
Enhanced Spatio-Temporal EEG Embedding of the input xi.
B. Finetuning pretrained Stable Diffusion Model with EEG
encoder-image pairs

Given the unified embedding zi of the input EEG xi, we
leverage a pretrained SD model [16] that utilizes a U-Net
architecture [17] to approximate the visual stimulus I that
the subject Si was exposed to. More specifically, the U-
Net starts with a random, noisy image and, guided by the
fused EEG representative (zi) fed into its intermediate layers,
gradually denoises the input. The process, further enhanced
with a cross-attention mechanism, enables flexible and precise
image generation, transforming the noise into an accurate
visual representation I∗ of the original stimulus I. In particular,
given I encoded by a VQ [18] encoder zimg

i = E(I), the
unified EEG embedding zi is fed into each intermediate jth

finetunable layer of the U-Net to produce a compact cross-
attentive layer output u(j)

i,t := CA(Qdiff ,Kdiff
i ,Vdiff

i ). The
terms Qdiff := W

(j)
Q · ϕ(j)(zimg

i,t ), Kdiff
i := W

(j)
K · zi,

and V := W
(j)
V · zi form the learnable query, key and

value respectively. The function ϕ(j)(.) is the transformation
function of the jth layer within the U-Net. The parameter
matrices W (j)

Q ∈ RNQ×dj

, W (j)
K ∈ Rd0×d, and W

(j)
V ∈ Rd0×d

represent the learnable weights. The stable diffusion loss
function defined below is used for fine-tuning.

LSD = EI,ϵ∼N (0,1),t

[
||ϵ− ϵden(It, t, zi)||22

]
(2)

While the proposed image reconstruction module adopts a
similar stable diffusion model architecture to [6], the core in-
novation lies in the process of conditioning the stable diffusion

TABLE I
THE AVERAGE PERFORMANCE OF ALL PARTICIPANTS IN THE

OBJECT CLASSIFICATION TASK AT DIFFERENT GRANULARITY
LEVELS.

Method Acc(All) Acc(coarse) Acc(fine)
Ridge Regression [7] 0.2859 0.3944 0.5833
Random Forest [7] 0.3489 0.4535 0.7288

Support Vector Machine [7] 0.3919 0.5057 0.7784
Multi-Layer Perceptron [19] 0.4037 0.5339 0.8163

EEGNet [14] 0.2604 0.3030 0.3645
RGNN [20] 0.4050 0.4703 0.7057
BrainDiffNet 0.5522 0.6713 0.8913

during fine-tuning. Instead of aligning EEG signals with their
text-image semantics during fine-tuning, the proposed uni-
fied embedding module first develops a compact multimodal-
semantic enhanced fused EEG encoder, which then conditions
the stable diffusion model during fine-tuning, significantly
simplifying the reconstruction process.

III. EXPERIMENTS

The proposed BrainDiffNet is evaluated using a recent
and large-scale EEG-ImageNet dataset [7] featuring EEG
recordings from 16 participants viewing 4, 000 images from
ImageNet object categories. Following the same evaluation
protocol followed by Zhu et al. [7], including its train-test data
distributions, we investigate the performance of BrainDiffNet
for two tasks: Object Classification and Image Reconstruction.
In classification, the goal is to identify image stimuli from a
subject’s corresponding EEG, while in image reconstruction,
the objective is to generate images that resemble the original
visual stimuli based on the subject’s concurrent EEG signal.
A. Results

1) Object Classification: Following the evaluation proto-
col proposed by the dataset authors in [7], experiments are
conducted at three coarse-to-fine granularity levels: all, coarse
(e.g., “animal,” “vehicle”), and fine (e.g., “dog” within “ani-
mal,” or “car” within “vehicle”). The “all” category represents
the 80-class classification accuracy, the “coarse” category
represents the 40-class classification accuracy, and the “fine”
category represents the average performance of five 8-class
classification tasks. The average accuracy scores of all partic-
ipants in the object classification task are reported in Table
1. As observed in the table, BrainDiffNet outperforms the
state-of-the-art methods, showing remarkable improvements of
15− 20% in accuracy across all granularity levels.

2) Image Reconstruction: As described by Zhu et al. [7],
for the image reconstruction task, we adopt Alex(2), Alex(5),
Inception Score, and CLIP ViT-L/14 as the comparison fea-
tures to calculate two-way identification for performance
evaluation. In particular, two-way identification is a method
where a generated image is presented alongside its original
and one distractor, with the task being to select the original
correctly. This evaluates the reconstruction pipeline’s ability to
produce distinguishable and recognizable images. The second
and fifth convolutional layers of AlexNet, the output before the
linear layer of Inception, and the embeddings from CLIP ViT-
L/14 are used as image features to compute Alex(2), Alex(5),
Inception Score, and CLIP ViT-L/14 two-way identification
scores, respectively. Table 2 reports the results that compare



TABLE II
THE AVERAGE RESULTS OF ALL PARTICIPANTS IN THE IMAGE

RECONSTRUCTION TASK. THE TWO-WAY IDENTIFICATION METRIC
[7] IS USED FOR PERFORMANCE EVALUATION.

Method Alex(2) Alex(5) Inception Score CLIP(ViT-L/14)
Baseline Rec. [7] 0.5605 0.6299 0.5675 0.6467

BrainDiffNet 0.6323 0.7489 0.6608 0.7683

Fig. 2. Some image reconstruction results. In each column, the top row
shows the image visual stimuli, the middle row shows the generated image
using the baseline reconstruction model [7], and the bottom row shows the
reconstructed images by the proposed BrainDiffNet. Two example bad cases
are shown in columns (6) and (7). As observed, while BrainDiffNet generated
images are comparably better than the ones generated by the baseline model,
some semantic details (e.g., color of the grapes, orientation of the ship) of
the ground truths are still not preserved in the generated images.

the performance of the proposed BrainDiffNet against a base-
line image reconstruction model [7] that uses a frozen Stable
Diffusion 1.4 backbone, conditioned by prompt embeddings
generated by a trained two-layer MLP encoder. Reconstruc-
tions are performed with 50 PNDM denoising timesteps,
yielding 512x512 images, and trained using MSE loss. As
reported in the table, BrainDiffNet outperforms the baseline
by demonstrating improvements of 7−12% across all feature-
specific two-way identification metrics. Figure 2 shows some
qualitative results. As seen, our results exhibit markedly higher
visual quality and recognizability. The reconstructed images
not only preserve finer details (e.g., cup shape) but also present
a more coherent and semantically aligned representation (e.g.,
pool table angle of view with its surrounding environment
patterns) of the original stimuli, making them significantly
more distinguishable.

IV. CONCLUSION

We introduce BrainDiffNet, a powerful framework for gen-
erating high-fidelity images from EEG signals that employs
a unified, semantic-enhanced spatio-temporal embedding to
guide a fine-tuned stable diffusion model. This approach
excels in handling noisy and incomplete data through semantic
enhanced fused spatio-temporal features, achieving state-of-
the-art results in both image reconstruction and object classi-
fication. Future research will focus on personalized calibration,
using EEG signals to rapidly adapt the model to unique neural
wave patterns for greater subject-specific precision.
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