
Illustrated Landmark Graphs for Long-Horizon
Policy Learning

Christopher Watson∗, Arjun Krishna∗, Rajeev Alur∗, and Dinesh Jayaraman∗
∗Department of Computer and Information Science

University of Pennsylvania, Philadelphia, USA

Abstract—To successfully apply learning-based approaches to
long-horizon sequential decision making tasks, a human teacher
must be able to specify the task in a way that provides appro-
priate guidance to the learner. The two most prominent policy
learning paradigms, reinforcement learning (RL) and imitation
learning, both require considerable human effort to specify a
long-horizon task, either through dense reward engineering or
providing many demonstrations that follow an approach that is
feasible for the learner. We propose the illustrated landmark graph
(ILG) as a form of task specification that exposes opportunities
for the learner to customize its approach to its unique capabilities
without the need for reward engineering, and allows the human
teacher to intuitively provide intermediate guidance without the
need for full-length demonstration. Each source-to-sink path
in the ILG represents a way to complete the task, and each
vertex along a path represents an intermediate landmark. To
communicate the meaning of a landmark to the learner, the
teacher provides illustrative observations drawn from states within
the landmark. We further propose ILG-Learn, an approach that
interleaves planning over the ILG, policy learning, and active
querying of the human teacher to guide the learner. Our ex-
perimental evaluation shows that ILG-Learn learns policies that
successfully complete a block stacking task and a 2D navigation
task, while approaches that receive specifications in the form
of final goal observations (RCE) or full-length demonstrations
(behavior cloning) fail. Additionally, we show that a multi-path
ILG allows ILG-Learn to adapt to the capabilities of a learner
with limited perception.

Index Terms—robotics, machine learning, specification

I. INTRODUCTION

How can a human best teach an agent to perform a new
long horizon task? The two most popular classes of approaches
today are reinforcement learning (RL) and imitation learning.
In RL, [1] the teacher specifies the task via a reward function
that assigns higher scores to more desirable environment con-
figurations. The agent then interacts with the environment to
learn how to achieve high rewards. For long-horizon tasks, the
efficiency of this trial-and-error exploration depends intimately
on the human teacher’s ability to design a well-shaped reward
function that encourages incremental progress towards the final
goal [2, 3, 4, 5]. As a concrete example, let us consider the
block stacking task (StackChoice) shown in Figure 1. The
task is to build a tower; the agent may choose to place block A
(red) on block B (green) or vice versa. The task itself is fully
specified by a simple “sparse” reward function that is 1 when
the blocks are stacked and 0 otherwise. However, in practice,
the human teacher must write a more sophisticated reward
function that provides “dense” rewards during task execution.

For example, it might incorporate small positive rewards for
reaching various milestones towards the task: moving the
gripper close to the block, grasping, lifting, aligning, and
finally placing the block. To write such a reward function, the
human teacher must be able to interpret the sensor readings
available to the learner and prudently balance the weight
given to each term in the reward function. In general, reward
engineering is difficult, error-prone and requires considerable
expertise, [6, 7, 8] limiting RL’s applicability to long-horizon
tasks.

Imitation learning [9, 10, 11] allows the human to teach
the agent by demonstrating desired behavior. Compared to
RL, imitation learning shifts the teaching burden from reward
engineering to demonstration. Although demonstrations are
an intuitive form of task specification, providing high-quality
demonstrations may not always be feasible [11]. The teacher
might not know how best to perform a task, or how to
manually operate the agent to do so, e.g. there may be no
good interfaces to manually operate a biped robot to run
smoothly. Even without these problems, demonstrations can
be cumbersome to provide: in the StackChoice task, the
teacher would need to teleoperate the robot and gather many
demonstrations to adequately cover the states that the agent
may encounter during deployment. Finally, demonstrations
must account for the learner’s limitations: e.g., stacking the
blocks in one order may be easier for the robot to learn and
perform than the other, because of limitations on its sensing,
perception, or actuation abilities. These limitations are not
always easily characterized in advance.

Reward functions and demonstrations occupy opposite ends
of a design spectrum: a reward function specifies what must
be achieved (perhaps without much intermediate guidance),
while a demonstration specifies how to achieve it (perhaps too
prescriptively). Ideally, the teacher could provide a specifica-
tion that balances the declarative nature of a reward function
(which exposes opportunities for the learner to customize its
approach according to its capabilities) with the prescriptive
nature of a demonstration (which provides fine-grained guid-
ance). To address this gap (visualized in Figure 2), we propose
the illustrated landmark graph (ILG) as a form of long-
horizon task specification. Each vertex of an ILG represents an
intermediate landmark, which is a subset of the environment’s
state space. To show the meaning of a landmark to the learner,
the teacher must be able to provide a handful of illustrative
observations drawn from states within the landmark. Each

Initial layout Grasp B

Initial layout
(Outwardview visualization)

Grasp B
(Outwardview perspective)

B

A

B

AB

A

start

grasp
A

grasp
B

stack

start grasp
A stack

StackChoice ILG structure

start grasp
B stack

start stack

StackAB ILG structure

StackBA ILG structure

Representation of example-based
control landmark density

Representation of imitation
learning landmark density

start stack

Fig. 1: Left: Renderings of the Stack task. At the start of
each episode, block A (red) starts closer to the robot than block
B (green). Both blocks initialize at randomized positions along
the centerline of the table. In the Outwardview condition,
block A initially occludes block B. Right: ILG structure for
variations of the Stack task.

directed edge (u, v) in the ILG represents the edge task of
transitioning the environment from the landmark represented
by u to the landmark represented by v. Each sink vertex
represents a final landmark. The long horizon task is to reach
any final landmark, passing through intermediate landmarks on
the way. Importantly, the ILG can contain multiple paths to a
final landmark, exposing opportunities for the learner find a
plan that suits its capabilities. Returning to our block stacking
task, a human teacher can identify that grasping a block before
placing it is a useful landmark and can communicate this to
the learner via the StackChoice ILG shown in Figure 1.

Demo

Declarative

C
on
cr
et
e

Prescriptive

A
bs
tr
ac
t

ILG

Goal
example

Sparse
reward

Dense
reward

Guidance provided to learner

A
bs

tr
ac

tn
es

s o
f s

pe
ci

fic
at

io
n

Fig. 2: The ILG bridges
the sparse, declarative guid-
ance provided by goal ex-
amples and the dense, pre-
scriptive guidance provided
by demonstrations.

To leverage the ILG for pol-
icy learning, we propose ILG-
Learn. At a high level, ILG-
Learn interleaves Dijkstra-style
planning over the ILG with
example-based control, [12, 13,
14] a lightweight alternative
to imitation learning that uses
goal observations instead of
full-length demonstrations, to
learn an edge policy for each
edge task. Beyond providing
the ILG and its associated il-
lustrated observations, the ILG-
Learn teacher need only re-
spond to binary success/failure
queries during training to in-
form the learner’s graph search. This intuitive teacher-learner
interface allows the learner to benefit from exploration without
requiring the teacher to engineer a reward function.

A key benefit of the ILG specification is the abil-
ity to represent multiple paths to overall success. The

StackChoice ILG includes multiple paths to the final
landmark (“stack”)—depending on the learner’s capabilities
it may be easier stack the blocks in one order or the other.
For example, if the agent were to perceive the world using
an outward-facing camera mounted opposite the robot on
the surface of the table (as shown in Figure 1), block B
would initially be occluded, making it easier to start by
grasping the (unoccluded) block A. By querying the teacher
for success/failure feedback, the ILG-Learn learner can focus
exploration along the most promising paths. Our experiments
show that ILG-Learn adapts to the occlusion condition and
learns a policy that grasps the unoccluded block first. This
capacity for train-time adaptation reduces the burden on the
human teacher to predict which approach will be most feasible
for the learner.

Another benefit of the ILG is that the teacher can choose a
landmark density (the number of intermediate vertices along
a path in the ILG) that is dense enough to guide efficient
exploration yet not so dense as to be overly prescriptive.
At one extreme, the teacher could provide a landmark graph
that comprises a single edge, thus recovering the free-form
exploration of ILG-Learn’s underlying example-based control
algorithm. At the other extreme, the teacher could identify
many intermediate landmarks to tightly scaffold exploration.
The ideal landmark density depends on the task of interest; we
believe that the intuitive structure of the ILG will enable the
teacher to apply domain knowledge to select an appropriate
landmark density without concerning themselves with the low-
level details of the robot’s perception and motor capabilities.
Our experimental evaluation shows that ILG-Learn outper-
forms baselines that use end-to-end example-based control
(which embodies minimal landmark density) and behavior
cloning (which uses full-length demonstrations). In summary:

• We introduce the ILG as a form of long-horizon task
specification that allows a human teacher represent mul-
tiple paths to success and provide intermediate landmarks
without explicit knowledge of the learner’s perception
capabilities and without the need to provide full-length
demonstrations of desired behavior.

• We propose ILG-Learn, a learning algorithm that lever-
ages the ILG’s interpretable-by-design nature to allow the
teacher to provide lightweight guidance as the learner
learns policies and a plan to suit its unique capabilities.

• We empirically show that providing a suitable ILG
enables ILG-Learn to learn successful policies, while
approaches that do not receive structured guidance (RCE
and bahavior cloning) struggle. Additionally, we show
that a multi-path ILG facilitates learning when the teacher
cannot fully anticipate the learner’s capabilities.

II. RELATED WORK

A. Hierarchical reinforcement learning and structured explo-
ration

Hierarchical reinforcement learning (HRL) [15, 16] decom-
poses a task into multiple subtasks that may be easier to learn.

2

Although an ILG specification does not fit precisely into the
traditional options framework [17] since the (1) the teacher
does not explicitly define entry and exit conditions for each
edge task and (2) the learner’s choice of which edge task to ex-
ecute is conditioned on the history of ILG edges traversed thus
far, ILG-Learn is related to recent approaches [18, 19, 20] that
start with human-specified options and simultaneously learn
intra-option control policies and a policy over options. The
main difference between ILG-Learn and these approaches is
that ILG-Learn leverages example-based control and teacher-
learner interaction to avoid the need for reward engineering
and explicit specification in terms of environment states.

ILG-Learn’s use of the ILG is directly inspired by DiRL’s
[21] use of the analogous abstract graph, which is built
according to the structure of a temporal logic specification.
The ILG-definable specifications are subsumed by LTL. The
main difference between ILG-Learn and specification-guided
reinforcement learning algorithms is that ILG-Learn uses
human-in-the-loop interaction to guide the learner instead of
an explicitly defined reward structure (see, e.g., [22, 23]).

Rather than reactively select a path through the ILG during
execution, ILG-Learn uses the ILG as a scaffold for efficient
exploration during training. During training, the learner freezes
a single path through the ILG that is well-suited to the learner’s
capabilities; there is thus no high-level policy performing
edge selection during deployment. This directed exploration
towards the frontiers of the ILG is reminiscent of Go-Explore
[24]. ILG-Learn differs from Go-Explore in that landmarks
serve as the task specification (avoiding the need for a reward
function), include human-defined relationships (in the form of
the ILG), and are illustrated to the learner via teacher-provided
observations (rather than reached organically).

B. Imitation learning and example-based control

As we argued in Section I, the price of imitation learn-
ing’s intuitive teacher-learner interface is rigidity: the learner
is vulnerable to compounding deviations from the teacher’s
demonstrations [25] and may not enjoy the flexibility to
adjust its approach to suit its own unique capabilities. To ad-
dress these challenges, inverse reinforcement learning [26, 27]
gleans the demonstrator’s intent, allowing the agent to learn
a policy through environmental interaction rather than rote
memorization. In the context of long horizon policy learning,
UVD [28] and Relay Imitation Learning [29] identify subgoals
within demonstrations that can be used for compositional
imitation inspired by goal-conditioned RL. Compared to ILG-
Learn, these approaches remove the need for the teacher to
identify landmarks, but in so doing reduce the teacher’s ability
to scaffold exploration and require the teacher to provide
demonstrations rather than illustrative observations.

Example-based control [12, 13, 14] allows the teacher to
provide single-timestep examples of the environment state
after task completion rather than full-length demonstrations.
It is often significantly easier for a human to provide a
single-timestep example than a full demonstration, and sparse
guidance allows the learner more flexibility. However, for

long-horizon tasks, such low landmark density may not pro-
vide the learner enough guidance to complete the task. At a
high level, our proposed method, ILG-Learn, scales example-
based control to long-horizon tasks by incorporating human
exploration biases in the form of intermediate landmarks. We
use the example-based control algorithm RCE [14] to learn
each edge policy that transitions the environment between
landmarks.

C. Human-in-the-loop policy learning

Reinforcement learning with human feedback (RLHF) [30,
31, 32] elicits guidance from a human during training to reduce
(or completely eliminate) reliance upon the environment’s
reward function. Some recent applications of RLHF to robotics
query human preference over states to discover subgoals for
HRL [33] or goal-conditioned exploration [34]. Instead of
using human preference to discover landmarks, ILG-Learn
requires the teacher to choose which landmarks to include in
the ILG before learning begins. ILG-Learn then incorporates
human feedback in the form of success/failure queries to
direct exploration towards paths that cater to the learner’s
capabilities.

Human feedback can also be used to facilitate imitation
learning. For example, HI-IRL [35] requires the human to
provide subgoal states alongside a full-length demonstration.
During training, the learner can ask for focused demonstra-
tions of particularly hard-to-learn subgoals. Another recent
approach, RLIF [36], builds upon the DAgger [25] family of
algorithms by allowing a user to intervene during training to
tell the learner when it behaves unsatisfactorily and provide
a short demonstration of better behavior. The aforementioned
techniques begin with a full-length demonstration of the task,
which contrasts with our ILG’s ability to express multiple
paths to success. In a similar vein, Memarian et al. [37]
combine automata learning and inverse reinforcement learning
to discover a subgoal decomposition alongside a policy to
complete a long-horizon task. Their approach allows the
learner to ask for specific guidance while discovering the
subgoal decomposition but is not immediately applicable to
continuous-state environments with difficult control tasks.

III. ILLUSTRATED LANDMARK GRAPHS

We introduce the illustrated landmark graph (ILG) as a form
of long-horizon task specification. A key feature of the ILG is
that the teacher communicates the meaning of each landmark
to the learner using illustrative observations and does not need
to provide explicit definitions in terms of the environment’s
state. In Section III-A we define the environment and policy
model before defining the ILG specification format in Sec-
tion III-B. The ILG is a useful form of specification because
of the way it facilitates teacher-learner interaction; we describe
our proposed interaction interface in Section III-C.

A. Preliminaries

As is standard in RL, we assume the agent interacts with
an environment that can be expressed as a Markov Decision

3

Process (MDP). An MDP comprises a continuous set of states
S, a continuous set of actions A, dynamics governed by
the transition probability distribution p(st+1 | st,at), and a
starting state distribution η. Instead of specifying the task via
a reward function (as is commonly done in MDPs), we will
use an ILG as the task specification and incorporate human
interaction to guide the learner.

At each timestep t, the agent receives an observation
o(st) ∈ Ω where Ω is a continuous observation space. The
observation function o : S → Ω represents the learner’s
perception capabilities. In a real-world setting, o(st) may
comprise raw sensor readings or the outputs of a pretrained
perception module. A policy is a function π : (Ω×A)∗×Ω→
∆(A) that maps a finite trace of observations and actions to
a distribution over next actions.

B. ILG and satisfaction

Each vertex of an ILG represents a landmark, which is
a subset of the state space S, and each edge in the the
ILG represents the edge task of transitioning between two
landmarks. The ILG must have at least one sink vertex; each
sink corresponds to a final landmark. The agent’s goal is to
reach a final landmark.

Formally, an ILG is a tuple (U,E, u0, β) with vertex set
U , directed edge set E, distinguished source vertex u0, and
landmark map β : U → 2S that maps each vertex to the set of
states that comprise the corresponding landmark. An ILG must
have at least one sink vertex. A trajectory ξ = s0a0s1a1 . . .
satisfies the landmark graph (U,E, u0, β) iff there exists a sink
vertex u ∈ U and a time t such that st ∈ β(u).

Figure 1 shows the structure of the StackChoice ILG.
There are two source-to-sink paths: “start → grasp A →
stack” and “start → grasp B → stack.” Any trajectory that
passes through a state in the landmark represented by the
sink vertex “stack” satisfies the specification. The vertices
“grasp A” and “grasp B” provide intermediate guidance to
a policy learner. This guidance takes the form of teacher-
learner interaction during training as detailed in the following
subsection.

C. Interaction and illustration

As is common in RL, we assume that the learner does not
begin with knowledge of the environment’s transition prob-
abilities; it must learn about environment dynamics through
interaction. Similarly, we assume that the learner does not
have explicit access to the ILG specification’s landmark map
β : U → 2S . During training, the learner begins with access
to the structure (U,E, u0) of the ILG (U,E, u0, β). In order
to obtain guidance toward the landmark represented by a
vertex u, the learner must interact with the teacher to request
illustrative observations drawn from states within β(u). The
learner may also request success/failure feedback from the
teacher to see if the current state of the environment lies within
a particular landmark.

During training, the learner interacts with the teacher and
with the environment using the following procedures. Training

proceeds as a sequence of episodes. At each timestep t within
an episode the learner receives an observation o(st) and may:

• reset() Reset the environment to a state s0 ∼ η. The
learner receives the observation o(s0).

• step(at) Provide an action at to the environment, which
causes the environment to transition to a state st+1 ∼
p(·|st,at). The learner receives the observation o(st+1).

• requestIllustration(u, ρ) where u ∈ U is the
vertex of the ILG to be illustrated and the second ar-
gument ρ ∈ U∗ lets the the learner tell the teacher which
path it wishes to extend to u. In response, the teacher pro-
vides a dataset of illustrative observations Ou ⊂ {o(s) ∈
Ω | s ∈ β(u)} of illustrative observations of states within
β(u). Although the path ρ does not affect the contract
that the teacher must uphold, it may help the teacher
choose a useful set of illustrative observations: in the
StackChoice example, a good teacher would respond
to requestIllustration(stack, start → grasp A)
with examples of block A stacked on top of block B
(not of B stacked on A).

• querySuccess(u) where u ∈ U is a vertex of the ILG.
The teacher provides binary success/failure feedback of
whether the current environment state st is in the land-
mark β(u).

Given an MDP M, observation function o, and ILG G, the
learner tries to learn a policy π that maximizes the probability
that a trajectory ξ drawn from π interacting with M while
receiving observations according to o satisfies G.

Importantly, the teacher is never asked to explicitly define
the landmark map β. Instead, the teacher must be able to
provide a set of illustrative observations for each landmark
and serve as an oracle for querySuccess. The teacher
can provide a set of illustrative observations by, for example,
physically positioning a robot and allowing its sensors to
perceive the environment. This intuitive interaction interface
allows the teacher to guide the learner without needing to
understand the low-level details of the learner’s perception
capabilities.

Underlying the ILG’s usefulness is its customizability. To
permit multiple approaches to complete the task, the human
can include multiple paths that lead to a final landmark.
In addition to using branching to expose options for high-
level planning, the teacher can adjust the landmark density
(the number of intermediate landmarks) along each path to
provide the appropriate granularity of guidance. In the context
of policy learning, low landmark density cedes resolution of
low-level control details to the underlying learning algorithm.
This is both convenient for the teacher and can result in
well-optimized motion if the learner can successfully tran-
sition between landmarks. On the other hand, excessively
low landmark density can render policy learning intractable,
as the underlying learning algorithm is left with insufficient
exploration bias.

4

IV. LEARNING ALGORITHM

We propose ILG-Learn, a human-in-the-loop approach to
policy learning for ILG specifications. At a high level, ILG-
Learn performs the following steps:

• Policy learning. For an edge (u, v) of the ILG, the learner
uses example-based control to learn an edge policy π(u,v)

that tries to transition the environment from the landmark
represented by u to the landmark represented by v.

• Success estimation. Given a learned path policy (a
sequence of edge policies), the learner queries the teacher
for binary success/failure feedback to estimate the success
probability of the policy.

• Planning. Letting the cost of a path be defined as the
negative logarithm of the associated path policy’s success
probability, the learner tries to find a source-to-sink path
of minimal cost.

At the outset, the learner receives the structure (U,E, u0)
of the ILG but does not the landmark map β : U → S.
ILG-Learn iteratively builds a tree of lowest-cost known paths
from the source to the other vertices of the ILG. Since the
cost of a path depends on the success probability of the edge
policies that ILG-Learn learns, ILG-Learn interleaves graph
search and policy learning to obtain the path costs on the
fly during training. Learning proceeds as a series of learning
intervals, each of which focuses on a single edge of the ILG.
Once ILG-Learn finds the lowest cost path ρ to a sink vertex,
ILG-Learn returns the plan ρ and the associated path policy.

Algorithm 1 sketches the full ILG-Learn algorithm and
Figure 3 illustrates the steps of a learning interval. In the
following textual description we will denote the landmark
graph component of the ILG specification as (U,E, u0, β)
and assume the learner has access to the environment M
and the human teacher through the interface described in
Section III-C. To make our description concrete, we will use
the StackChoice task introduced in Section I as a running
example. The structure (U,E, u0) of the StackChoice ILG
is shown in Figure 1.

a) Exploration order (selectEdge): ILG-Learn’s ex-
ploration order is determined by the selectEdge subroutine.
At the outset, ILG-Learn’s tree of known paths contains only
the “start” vertex u0. To extend this tree, selectEdge
chooses an edge leaving the tree for which to learn a con-
trol policy. ILG-Learn implements a fine-grained interleaving
(mediated by the successThreshold and intervalsLimit pa-
rameters) of policy and plan learning to accelerate learning.
For details, see Appendix A.

Let us suppose that selectEdge chooses the edge
(u, v) = (start, grasp A). This marks the start of a learning
interval dedicated to learning the edge policy π(u,v).

b) Human guidance (requestGoals): After selecting
an edge (u, v), ILG-Learn asks the human teacher to pro-
vide a dataset Ov containing illustrationCount illustrative
observations drawn from states within β(v). In our example,
the teacher would provide a set of observations that illustrate
“grasp A”.

Algorithm 1: ILG-Learn
Input:

• ILG structure (U,E, u0)
• Access to MDP M via reset and step.
• Access to human teacher via
requestIllustration and querySuccess.

Output: Path ρ and associated path policy
1 ρu0

← [];
2 πu0

← None;
3 reachProbu0

← 1;
4 reachProbu ← 0 ∀u ∈ V \ {u0};
5 while selectEdge() returns (u, v) do
6 O(v)← requestIllustration(v, ρu);
7 π(u,v) ← learnPolicy(Ov, ρu, πu);
8 π ← sequencePolicies(πu, π(u,v));
9 successProb← estimateProbability(v, π);

10 if successProb > reachProbv then
11 reachProbv ← successProb;
12 ρv ← ρu ◦ (u, v);
13 πv ← π;
14 u← argmaxu∈sinkVertices(G)(reachProbu);
15 return ρu, πu

c) Policy learning (learnPolicy): ILG-Learn runs
example based control for intervalLength episodes each of
episodeLength timesteps to learn an edge policy π(u,v). This
learning process does not require interaction with the human
teacher.

In our example, the learner would interact with the envi-
ronment, trying to reach states that look similar to the human-
provided examples of the “grasp A” landmark. Since this is
the first edge along a path, each learning episode starts from
the environment’s initial state distribution.

In a future learning interval, ILG-Learn may try to learn
the next step of the path, namely, how to stack block A on
top of block B (assuming block A is already grasped). Since
policy learning is sensitive to the starting state distribution,
ILG-Learn needs to start learning π(u,v) from the distribution
induced by the (already learned) path policy πu. So in the
case of learning to stack block A on block B, each episode
would start by executing the (start, grasp A) policy (for the
same fixed horizon episodeLength) to reach the appropriate
starting distribution for the (grasp A, stack) edge task.1

d) Success Estimation (estimateProbability):
The last step of each learning interval is to estimate the
probability that the learned edge policy π(u,v) successfully
reaches β(v). Just as it was important to start training π(u,v)

from the state distribution reached by executing πu, it is
important to evaluate π(u,v) from the distribution reached
by πu. The estimateProbability subroutine executes
estimationEpisodes additional rollouts of the sequenced pol-
icy, using querySuccess(u) at the last timestep of each

1In our experimental evaluation, we include the environment steps used
during resets in the total environment steps used.

5

1. The the learner selects an edge and requests
illustrative observations to guide learning.

2. The human teacher provides illustrative
observations of the destination landmark.

3. The learns an edge policy from environmental
interaction using example-based control.

4. The learner executes the edge policy and
queries the teacher for success/failure feedback.

Fig. 3: Stages of a learning interval.

rollout, to ask the human teacher whether the rollout was
successful. If this empirical path probability exceeds that of
the best known path ρv to v, ILG-Learn updates the best
known path and associated path policy πv . If the empirical
probability exceeds successThreshold (or the per-edge max
number of learning intervals intervalsLimit is reached) then
ILG-Learn will consider the edge fully explored. At this point,
the path cost (the negative logarithm of the success probability)
is solidified. No more learning intervals can be allocated to
(u, v). Future learning intervals can now be allocated to edges
that leave v.

e) Termination: Training is complete when the
selectEdge subroutine returns None, indicating that
ILG-Learn has found the lowest-cost path in the ILG and
the associated path policy. Otherwise, a new learning interval
will commence, focusing exploration along the edge chosen
by selectEdge.

ILG-Learn parameters

illustrationCount: illustrative observations per request.
episodeLength: fixed horizon for edge policy training.
intervalLength: training episodes per learning interval.
estimationQueries: # of rollouts (each with a suc-
cess/failure query) at the end of each learning interval.
successThreshold: lower bound on success probability
for an edge to be considered learned.
intervalsLimit: max # of learning intervals per edge.

V. EXPERIMENTS

Our experimental evaluation shows that ILG-Learn can learn
policies to successfully complete long horizon tasks. To better
understand the importance of allowing the teacher to choose
the ILG’s landmark density we evaluate ILG-Learn against
RCE, a state of the art example-based control algorithm that
does not use intermediate landmarks, and behavior cloning
(BC), an imitation learning algorithm that receives full-length
demonstrations. Since the ILG task specification is new, there
do not exist direct analogs of ILG-Learn to baseline against;

rather, RCE’s examples and BC’s demonstrations represent
two alternatives to ILG specifications.

We also show that ILG-Learn can discover the path through
multi-path (branching) ILG that suits the learner’s capabilities,
reducing the burden on the teacher to predict the best approach
to task completion a priori. We conduct our experiments in
simulation using the following environments:

a) Stack: Our Stack family of environments comprises
customized versions of the robosuite [38] block-stacking
environment. As introduced in Section I, the learner must
stack the blocks to build a tower. We include multiple
versions of the task: StackChoice (in which the agent
may stack the blocks in either order), StackAB (in which
the agent must stack the red block A on the green block
B), and StackBA (in which the agent must stack block
B on block A). The environment simulates a 7-DoF Frank
Panda arm that receives 55-dimensional state observations
and uses a 7 dimensional action space, which represents an
operational space controller with fixed impedance. To study
ILG-Learn’s ability to adapt to a learner’s unique capabilities,
we further include the StackChoice-Outwardview and
StackBA-Outwardview variants of the task, which simu-
late observations collected from an object-detector operating
from a camera mounted on the same side of the table as
the robot arm. Whenever a block is occluded, we mask the
corresponding components of the 55-dimensional observation
space. Figure 1 illustrates the Stack tasks; for more details
see Appendix D.

b) Point Maze: We use custom layouts of the Point
Maze environment from Gymnasium Robotics [39, 40]. The
task is to navigate from a starting position in the lower-left
room to the goal position in the upper-right room. The agent
is a force-actuated point-mass with a 2-dimensional action
space and receives 4-dimensional observations that comprise
its position and velocity. We include three variants of a
diagonal maze (DiagonalMaze3x3, DiagonalMaze5x5,
DiagonalMaze7x7) that differ in the length of the naviga-
tion task. We also include a DiagonalMaze7x7-Coarse
variant that has low landmark density and two variants of a 4x4
maze that differ only in their associated ILG specifications.
Representative illustrations are as shown in Figure 4.

A. Customizable landmark density

To disentangle the importance of allowing the teacher to
choose the ILG’s landmark density from the importance of
multi-path specifications, we first turn our attention to tasks
specified with a linear ILG. In the StackAB environment
(Figure 1), the ILG-Learn learner receives a linear ILG that
mandates placing the red block A on the green block B. The
blocks are initially placed along the centerline of the table,
with block A closer to the robot than block B. The exact
positions of each block are randomized. For each landmark,
the teacher provides 50 illustrative observations, for a total of
100 illustrative observations. At the end of each learning in-
terval (100k environment steps, exclusive of steps used during
resets) the teacher responds to 30 success/failure queries. To

6

DiagonalMaze3x3

DiagonalMaze5x5

Maze4x4-Fine

Maze4x4-Coarse

DiagonalMaze7x7

DiagonalMaze7x7-Coarse

Fig. 4: The Maze family of environments with ILGs superim-
posed (light pink). In each, the agent starts in the lower-left
room and must navigate to the upper-right room.

admit a fair comparison, the RCE baseline receives 100 goal
examples, all of block A having been stacked on block B. We
provide the BC baseline with 40 full-length demonstrations
gathered using a scripted policy that includes some random
variation (see appendix D for details). Each demonstration
is 200 timesteps in length and completes the task in ∼150
timesteps. We allow ILG-Learn and RCE to train for 10,000
environment steps and allow BC to train until the training loss
stops decreasing. We report the success rate achieved by the
best training checkpoint. Appendix F contains learning curves.

ILG-Learn achieves an average success rate of 0.752 for
the StackAB task (Table I). This is markedly higher than
the success rates achieved by the RCE baseline (0.050) or the
BC baseline (0.100). The fact that the RCE baseline achieves
near-zero success rate shows that single-frame observations
are too sparse to guide the learner towards success; allowing
the teacher to specify an ILG with the intermediate “grasp A”
landmark was crucial for ILG-Learn’s success. On the other
hand, the BC baseline, which receives very dense guidance
towards the goal, yields policies that rarely succeed, showing
that carefully mimicking a teacher’s detailed demonstrations
does not necessarily yield a successful policy.

The DiagonalMaze family of environments shows that
allowing the teacher to choose the landmark density be-
comes more important for tasks with longer horizons. In
each DiagonalMaze environment the learner must travel
from its initial position in the lower-left corner to a final
position in the upper-right corner. DiagonalMaze-3x3,
DiagonalMaze-5x5, and DiagonalMaze-7x7 differ
only in the length of the path that the learner must travel. In
each DiagonalMaze variant, we provide ILG-Learn with 10
illustrative observation per landmark, the RCE baseline with
100 examples all drawn from the final goal region, and the
BC baseline with 10 full-length demonstrations gathered by
a scripted policy. Looking again at Table I, we see that ILG-
Learn consistently matches or exceeds the performance of the

ILG-Learn (ours) RCE BC

StackAB 0.752 0.050 0.100
StackChoice-Outwardview 0.952 - -
StackBA-Outwardview 0.147 - -
DiagonalMaze3x3 1.00 0.00 0.990
DiagonalMaze5x5 0.991 0.00 0.826
DiagonalMaze7x7 0.971 0.00 0.476

DiagonalMaze7x7-Coarse 0.00 0.00 0.476
Maze4x4-Fine 1.00 0.400 -

Maze4x4-Coarse 0.800 0.400 -

TABLE I: Final success rates. Both ILG-Learn and RCE are
trained for a maximum of 10 million environment steps, see
Appendix D for experimental details and Appendix F for
learning curves. Entries marked with “-” indicate experiments
that were not needed for our investigation.

RCE and BC baselines. Importantly, BC achieves high success
rate for the relatively short-horizon DiagonalMaze3x3 task
but its performance deteriorates dramatically as the size of the
maze increases from 3x3 to 7x7. On the other hand, ILG-
Learn consistently yields near-perfect success rates regardless
of maze size. This supports the intuition that ILG-Learn
can scale to long horizon tasks by (1) allowing the learner
flexibility to explore and discover suitable policies to reach
each landmark and (2) incorporating success/failure feedback
during training to ensure each edge policy is learned suc-
cessfully before moving on to train successive policies. This
is in contrast to BC and other imitation learning algorithms
that are vulnerable to compounding deviations between the
demonstrations and the actual trajectories taken by the agent.

To realize ILG-Learn’s benefits, the human teacher
must provide an ILG with appropriate landmark
density. Given the excessively low landmark density of
DiagonalMaze7x7-Coarse, ILG-Learn consistently
fails to learn a successful policy (while the ILG of
DiagonalMaze7x7 yields near-perfect policies). Such a
failure occurs when the exploration needed to learn an edge
policy exceeds the capabilities of ILG-Learn’s underlying
example-based control algorithm. We provide advice for
selecting landmark density in Section VI.

B. Multi-path specifications

A critical attribute of the proposed ILG specification is
that it can include multiple source-to-sink paths, each rep-
resenting an approach to complete the long-horizon task.
To evaluate whether ILG-Learn can discover the path
that best suits the learner’s capabilities, we turn to the
StackChoice-Outwardview task introduced in Section I
and illustrated in Figure 1. The task is to stack the blocks (in
either order) to build a small tower. Importantly, the learner
observes the position of each block via a simulated object
detector that is situated on the same side of the table as the
robot, facing outward toward the blocks. Since the red block
A starts closer to the learner’s viewpoint than the green block
B, the learner cannot detect the position of block B until a
block is moved to break the occlusion.

7

start

grasp
A

grasp
B

stack
0.0

start

grasp
A

grasp
B

stack
0.0

0.0

start

grasp
A

grasp
B

stack

0.63

0.0
start

grasp
A

grasp
B

stack

0.63

0.0

start

grasp
A

grasp
B

stack

0.86

0.0
start

grasp
A

grasp
B

stack

0.86

0.0

0.10

start

grasp
A

grasp
B

stack

0.86

0.0

0.10

start

grasp
A

grasp
B

stack

0.86

0.0

0.86

1. 2.

3. 4.

5. 6.

7. 8.

Fig. 5: Learning intervals for StackChoice-
Outwardview. The most recently explored edge is
highlighted and results of estimateSuccess are annotated.

As expected, in all five trials of ILG-Learn (five dis-
tinct random seeds), the learner acquired a policy that
follows the path “start → grasp A → stack” in the
StackChoice-Outwardview environment, achieving an
average success rate of 0.952. Figure 5 illustrates the explo-
ration process followed by the learner during one represen-
tative trial of ILG-Learn. Initially, the learner explores the
ILG by alternating between allocating learning intervals to
the (start, grasp A) edge as well as the (start, grasp B) edge.
However, after 5 training intervals (about 700 thousand total
environment steps) the learner successfully acquires a policy
for the (start, grasp A) edge, and is thus able to reach the
“grasp A” landmark. ILG-Learn’s best-first search heuristic
(detailed in Appendix A) guides further exploration along
this path, focusing on the (grasp A, stack) edge. At the end
of the 8th learning interval (slightly more than 1 million
total environment steps), the learner has acquired a policy
that it estimates has a success probability of 0.86. Since
this exceeds the user-specified successThreshold of 0.8, ILG-
Learn terminates. Note that in reality, the success rate of the
final policy is 0.947 (estimated from 1000 evaluation trials)-
discrepancy between the learner’s estimate of its own success
probability can arise because (1) the learner only uses a modest
number (in this case 30, the value of the estimationQueries
parameter) of success/failure queries and (2) the learner only
queries the final timestep of each rollout while we allow
success to occur at any point along the trajectory.

The adaptive exploration scaffolded by the ILG described
above is crucial for the ILG-Learn learner to successfully
complete the task. To illustrate this, we compare against
the StackBA-Outwardview task, which differs from

StackChoice-Outwardview only in the ILG provided
to the learner. StackBA-Outwardview forces the learner
to start by grasping block B, which is very hard for the
learner, since block B is initially occluded. As expected,
ILG-Learn achieves a low average success rate of 0.147 on
StackAB-Inwardview.

If the human teacher were able to predict which path would
be easiest for the learner to follow, the teacher could simply
provide a linear ILG (in the the above example, “start →
grasp A → stack”). However, such upfront prediction may
pose a substantial burden to the teacher. A key benefit of
using illustrative observations to specify landmarks is that
the teacher does not need to be intimately familiar with the
learner’s perception capabilities—the same specification might
even be used for multiple robots with different camera view-
points. Moreover, using example-based control as a subroutine
to let the learner acquire policies to achieve each landmark
frees the teacher from having to worry about low-level details
of the learner’s motor capabilities. To fully realize these free-
doms afforded to the teacher, the high-level task specification
must also be, to some degree, agnostic to the intricacies of the
learner’s perception, control, and policy learning capabilities.
A branching ILG provides this freedom to the teacher: the
teacher can provide an ILG to scaffold exploration and allow
the learner to interact with the environment to discover a plan
that best fits its unique capabilities.

VI. DISCUSSION

In Section V we observed that ILG-Learn can learn suc-
cessful policies for manipulation and navigation tasks. In
this section, we discuss how the ILG definition affects the
feasibility and efficiency of learning, providing both advice
for users of ILG-Learn and highlighting directions for future
work.

a) Landmark graphs and feasibility: To apply ILG-
Learn, the human teacher must provide an ILG decomposition
that contains at least one path that can feasibly be learned via
iterated example based control. Although allowing the teacher
to provide a branching ILG reduces the teacher’s burden to
predict the best landmark decomposition, some tasks may
be hard for humans to effectively decompose. Future work
could dynamically revise the ILG during training by prompting
the teacher to provide new intermediate landmarks when the
learner struggles.

Another future direction is to reduce the burden on the
human teacher by prompting a foundation model to construct
the ILG from natural language and image descriptions of
the task and avoid the need for human-provided landmark
examples, taking inspiration from works such as SayCan [41]
and VIP [42] while incorporating lightweight human feedback
to ensure alignment with the teacher’s intent.

b) Subtask difficulty and graph exploration: As estab-
lished in Section V, decomposing a long-horizon task into
intermediate landmarks and providing a branching ILG that
permits multiple paths to success allows ILG-Learn to solve
long-horizon tasks. Applying ILG-Learn to a new task thus

8

raises the questions “What is the appropriate landmark den-
sity?” and “How much branching should the ILG include?” At
a minimum, the teacher should design an ILG that is coarse
enough that each landmark is meaningful to the human eye
(since the teacher must respond to success/failure queries).
Beyond this, we recommend that the teacher err on the side
of providing a dense ILG with many landmarks and a large
amount of branching. The best-first search pattern introduced
in Section IV and detailed in Appendix A is designed to avoid
exploring every edge in the ILG.

To gain empirical insight, we compared the performance
and efficiency of ILG-Learn on a 2D navigation task us-
ing a “fine” ILG (Maze4x4-Fine) versus a “coarse” ILG
(Maze4x4-Coarse). The tasks are visualized in Figure 4
and learning curves can be found in Appendix F. In this case,
either ILG suffices to learn a successful policy: we turn our
attention to how much efficiency we would lose by choos-
ing the excessively fine decomposition of Maze4x4-Fine.
Looking at the learning curves, it takes significantly more
(comparing medians, 7x as many) total environment steps
to learn a successful policy in Maze4x4-Fine than in
Maze4x4-Coarse. Although this loss of efficiency is re-
grettable, it is preferable to accidentally providing too coarse
an ILG and having learning fail altogether.

Moreover, we observed in our experiments with Maze tasks
that many learning episodes for each landmark are spent
learning how to smoothly decelerate the point-mass agent to
avoid overshooting the landmark. Since we perform tabula
rasa example-based control for at each edge, this learning
effort is duplicated many times, proportional to the number
of edges explored in the ILG. If future work develops an
example based control algorithm that can adapt more quickly
to novel tasks (perhaps by fine-tuning a pre-trained policy),
we could replace RCE with that algorithm in ILG-Learn’s
learnPolicy subroutine to reduce the efficiency reduction
introduced by an excessively fine ILG.

c) Human annotation burden: Finally, our
estimateProbability subroutine relies on human
annotation. While developing ILG-Learn, we tried to reduce
this dependence by using a small amount of human-annotated
data to train a binary success classifier for each landmark
in a manner inspired by VICE-RAQ [13]. We found that
even with hundreds of labeled positive examples gathered
from successful executions of the policy being trained,
there was often no threshold on the output of the classifier
neural net that reliably separated success from failure. In the
future, we plan to incorporate a pretrained vision-language
model, perhaps augmented with residual network trained on
in-domain data, to reduce the human annotation burden.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction. Cambridge, MA, USA: A Bradford
Book, 2018.

[2] A. D. Laud, Theory and application of reward shaping in
reinforcement learning. PhD thesis, University of Illinois
at Urbana-Champaign, USA, 2004. AAI3130966.

[3] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance
under reward transformations: Theory and application
to reward shaping,” in Proceedings of the Sixteenth
International Conference on Machine Learning, ICML
’99, (San Francisco, CA, USA), p. 278–287, Morgan
Kaufmann Publishers Inc., 1999.

[4] H. Sowerby, Z. Zhou, and M. L. Littman, “Designing
rewards for fast learning,” 2022.

[5] A. Gupta, A. Pacchiano, Y. Zhai, S. Kakade, and
S. Levine, “Unpacking reward shaping: Understanding
the benefits of reward engineering on sample complex-
ity,” in Advances in Neural Information Processing Sys-
tems (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, eds.), vol. 35, pp. 15281–15295,
Curran Associates, Inc., 2022.

[6] S. Booth, W. B. Knox, J. Shah, S. Niekum, P. Stone,
and A. Allievi, “The perils of trial-and-error reward
design: Misdesign through overfitting and invalid task
specifications,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, pp. 5920–5929, Jun. 2023.

[7] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schul-
man, and D. Mané, “Concrete problems in ai safety,”
2016.

[8] J. Skalse, N. Howe, D. Krasheninnikov, and D. Krueger,
“Defining and characterizing reward gaming,” in Ad-
vances in Neural Information Processing Systems
(S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, eds.), vol. 35, pp. 9460–9471, Curran
Associates, Inc., 2022.

[9] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne,
“Imitation learning: A survey of learning methods,” ACM
Comput. Surv., vol. 50, apr 2017.

[10] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi,
“A survey of imitation learning: Algorithms, recent de-
velopments, and challenges,” 2023.

[11] H. Ravichandar, A. S. Polydoros, S. Chernova, and
A. Billard, “Recent advances in robot learning from
demonstration,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 3, no. Volume 3, 2020,
pp. 297–330, 2020.

[12] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine, “Vari-
ational inverse control with events: A general framework
for data-driven reward definition,” in Advances in Neural
Information Processing Systems (S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

[13] A. Singh, L. Yang, K. Hartikainen, C. Finn, and
S. Levine, “End-to-end robotic reinforcement learning
without reward engineering,” 2019.

[14] B. Eysenbach, S. Levine, and R. Salakhutdinov, “Replac-
ing rewards with examples: Example-based policy search
via recursive classification,” in Advances in Neural Infor-
mation Processing Systems (A. Beygelzimer, Y. Dauphin,

9

P. Liang, and J. W. Vaughan, eds.), 2021.
[15] M. Hutsebaut-Buysse, K. Mets, and S. Latré, “Hierarchi-

cal reinforcement learning: A survey and open research
challenges,” Machine Learning and Knowledge Extrac-
tion, vol. 4, no. 1, pp. 172–221, 2022.

[16] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierar-
chical reinforcement learning: A comprehensive survey,”
ACM Comput. Surv., vol. 54, jun 2021.

[17] R. S. Sutton, D. Precup, and S. Singh, “Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning,” Artificial Intelligence, vol. 112,
no. 1, pp. 181–211, 1999.

[18] B. Araki, X. Li, K. Vodrahalli, J. Decastro, M. Fry, and
D. Rus, “The logical options framework,” in Proceed-
ings of the 38th International Conference on Machine
Learning (M. Meila and T. Zhang, eds.), vol. 139 of
Proceedings of Machine Learning Research, pp. 307–
317, PMLR, 18–24 Jul 2021.

[19] C. Neary, C. Verginis, M. Cubuktepe, and U. Topcu,
“Verifiable and compositional reinforcement learning
systems,” in Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 32, pp. 615–
623, 2022.

[20] C. Neary, C. Ellis, A. S. Samyal, C. Lennon, and
U. Topcu, “A multifidelity sim-to-real pipeline for ver-
ifiable and compositional reinforcement learning,” in
2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4349–4355, 2024.

[21] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur,
“Compositional reinforcement learning from logical
specifications,” in Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual (M. Ranzato, A. Beygelzimer,
Y. N. Dauphin, P. Liang, and J. W. Vaughan, eds.),
pp. 10026–10039, 2021.

[22] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “Reward machines: Exploiting reward func-
tion structure in reinforcement learning,” J. Artif. Int.
Res., vol. 73, May 2022.

[23] R. Alur, S. Bansal, O. Bastani, and K. Jothimurugan, A
Framework for Transforming Specifications in Reinforce-
ment Learning, pp. 604–624. Cham: Springer Nature
Switzerland, 2022.

[24] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and
J. Clune, “First return, then explore,” Nature, vol. 590,
pp. 580–586, Feb 2021.

[25] S. Ross, G. Gordon, and D. Bagnell, “A reduction
of imitation learning and structured prediction to no-
regret online learning,” in Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics (G. Gordon, D. Dunson, and M. Dudı́k, eds.),
vol. 15 of Proceedings of Machine Learning Research,
(Fort Lauderdale, FL, USA), pp. 627–635, PMLR, 11–13
Apr 2011.

[26] S. Arora and P. Doshi, “A survey of inverse reinforcement

learning: Challenges, methods and progress,” Artificial
Intelligence, vol. 297, p. 103500, 2021.

[27] S. Adams, T. Cody, and P. A. Beling, “A survey of in-
verse reinforcement learning,” Artif. Intell. Rev., vol. 55,
p. 4307–4346, aug 2022.

[28] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman,
Y. J. Ma, and L. Weihs, “Universal visual decomposer:
Long-horizon manipulation made easy,” in 2024 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 6973–6980, IEEE, 2024.

[29] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Haus-
man, “Relay policy learning: Solving long-horizon tasks
via imitation and reinforcement learning,” in Proceedings
of the Conference on Robot Learning (L. P. Kaelbling,
D. Kragic, and K. Sugiura, eds.), vol. 100 of Proceedings
of Machine Learning Research, pp. 1025–1037, PMLR,
30 Oct–01 Nov 2020.

[30] T. Kaufmann, P. Weng, V. Bengs, and E. Hüllermeier, “A
survey of reinforcement learning from human feedback,”
2024.

[31] C. Arzate Cruz and T. Igarashi, “A survey on interac-
tive reinforcement learning: Design principles and open
challenges,” in Proceedings of the 2020 ACM Designing
Interactive Systems Conference, DIS ’20, (New York,
NY, USA), p. 1195–1209, Association for Computing
Machinery, 2020.

[32] A. Najar and M. Chetouani, “Reinforcement learning
with human advice: A survey,” Frontiers in Robotics and
AI, vol. 8, 2021.

[33] X. Zhou, Y. Yuan, S. Yang, and J. Hao, “Mentor: Guiding
hierarchical reinforcement learning with human feedback
and dynamic distance constraint,” 2024.

[34] M. T. Villasevil, M. B. I. Pamies, Z. Wang, S. Desai,
T. Chen, P. Agrawal, and A. Gupta, “Breadcrumbs to
the goal: Supervised goal selection from human-in-the-
loop feedback,” in Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[35] X. Pan and Y. Shen, “Human-interactive subgoal super-
vision for efficient inverse reinforcement learning,” in
Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS ’18,
(Richland, SC), p. 1380–1387, International Foundation
for Autonomous Agents and Multiagent Systems, 2018.

[36] J. Luo, P. Dong, Y. Zhai, Y. Ma, and S. Levine, “RLIF:
Interactive imitation learning as reinforcement learning,”
in The Twelfth International Conference on Learning
Representations, 2024.

[37] F. Memarian, Z. Xu, B. Wu, M. Wen, and U. Topcu,
“Active task-inference-guided deep inverse reinforcement
learning,” in 2020 59th IEEE Conference on Decision
and Control (CDC), pp. 1932–1938, 2020.

[38] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n,
A. Joshi, S. Nasiriany, and Y. Zhu, “robosuite: A modular
simulation framework and benchmark for robot learning,”
in arXiv preprint arXiv:2009.12293, 2020.

[39] R. de Lazcano, K. Andreas, J. J. Tai, S. R. Lee, and

10

J. Terry, “Gymnasium robotics,” 2023.
[40] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine,

“D4rl: Datasets for deep data-driven reinforcement learn-
ing,” 2020.

[41] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Haus-
man, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth,
N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,
J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Ser-
manet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke,
F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng, “Do
as i can and not as i say: Grounding language in robotic
affordances,” in arXiv preprint arXiv:2204.01691, 2022.

[42] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Ku-
mar, and A. Zhang, “Vip: Towards universal visual re-
ward and representation via value-implicit pre-training,”
2023.

[43] I. Kostrikov, “JAXRL: Implementations of Reinforce-
ment Learning algorithms in JAX,” 10 2022. v2.

[44] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor,” Deep Reinforc-
ment Learning Symposium, 2017.

[45] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing
function approximation error in actor-critic methods,”
in Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018 (J. G. Dy and
A. Krause, eds.), vol. 80 of Proceedings of Machine
Learning Research, pp. 1582–1591, PMLR, 2018.

[46] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Vander-
Plas, S. Wanderman-Milne, and Q. Zhang, “JAX: com-
posable transformations of Python+NumPy programs,”
2018.

[47] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Ron-
depierre, A. Steiner, and M. van Zee, “Flax: A neural
network library and ecosystem for JAX,” 2024.

[48] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis,
G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG,
M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff,
J. J. Tai, A. T. J. Shen, and O. G. Younis, “Gymnasium,”
Mar. 2023.

[49] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control,” in 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pp. 5026–5033, IEEE, 2012.

APPENDIX

The selectEdge subroutine governs how ILG-Learn allo-
cates learning intervals while exploring the ILG. As described
in Section IV, ILG-Learn starts at the source of the ILG and
iteratively extends a tree of best-known policies to the other

vertices of the ILG. The key insights that inform the design
of selectEdge are:

• Training an edge policy π(u,v) can only begin once
the policy πu is learned (frozen), so it makes sense to
stop investing learning intervals along an edge once a
desired success probability successThreshold is reached.
This way, future learning intervals can be allocated to
downstream edges.

• Different edges of the ILG may require vastly different
numbers of training episodes to acquire a successful
policy, so it makes sense to dovetail learning intervals
between edges so we do not spend too much effort on a
particularly difficult edge.

• Only one feasible path needs to be found, so it makes
sense to use a best-first search heuristic to avoid exploring
the entire ILG.

Our edge selection algorithm is inspired by the exploration
order found in Dijkstra’s algorithm. In fact, if we set the
parameter intervalsLimit to 1, our selectEdge subroutine
implements an exploration order suitable for Dijkstra’s algo-
rithm. When intervalsLimit is greater than 1, selectEdge
incorporates dovetailed exploration with early stopping heuris-
tics to try to reduce the number of training episodes needed
to learn a satisfactory policy.

Appendix A describes the high-level structure of
selectEdge that implements dovetailed exploration
and early stopping. Appendix B details the heuristic scoring
function that selectEdge uses to implement best-first
exploration. ?? B0c provides advice for selection of relevant
parameters. The choice of parameters used for the experiments
in Section V are detailed in Table II.

A. Dovetailed exploration

To implement early stopping and dovetailed exploration,
ILG-Learn keeps track of these vertex and edge sets:

• exploredVertices. These are the vertices to which ILG-
Learn has learned and solidified a path policy.

• learnedEdges. These are edges for which we have fully
learned and frozen a policy. We freeze a policy once
either (1) the empirical success probability exceeds suc-
cessThreshold or (2) intervalsLimit learning intervals
have been allocated to the edge.

• abandonedEdges. These are edges that we will never
invest learning effort into because we have already found
a better path to get to all of their successors.

• frontierEdges. These are edges leaving the explored tree
(that is, leaving exploredVertices) that are neither fully
“learned” nor “abandoned”. At each iteration, we need to
choose one edge from this set to invest a learning interval
into.

All edge sets are initially empty. The logic for maintaining
these sets is shown in Algorithm 2. To reduce notational
clutter, we assume that frontierEdges, and learnedEdges, aban-
donedEdges are global variables that persists across calls to
selectEdge. We also assume global access to reachProb

11

(updated in line 15 of Algorithm 1) as well as the existence
of the bookkeeping functions:

• bestSuccessProb(u, v) returns the highest estimated
probability found by line 13 of Algorithm 1 during any
learning interval allocated to (u, v).

• intervalsElapsed(u, v) returns the number of learning
intervals that have been allocated to (u, v)

Algorithm 2: selectEdge
Input:

• ILG structure (U,E, u0)
• Parameters intervalsLimit and successThreshold

(introduced in Section IV)
• Scoring heuristic parameters extensionPenalty and

exploitationBonus (introduced in Appendix B)
• Global access to reachProb (maintained by Algorithm 1)

Output: Edge (u, v) for next learning interval, or
None if learning is complete.

1 learnedEdges← learnedEdges ∪
{(u, v)∈E | intervalsElapsed(u, v)≥intervalsLimit};

2 learnedEdges← learnedEdges ∪
{(u, v)∈E | bestSuccessProb(u, v)>successThreshold};

3 abandonedEdges← abandonedEdges ∪
{(u, v) | ∀u′, u≺u′→reachProbu<reachProbu′};

4 exploredVertices← {u0} ∪ {v ∈ U | (∃u, (u, v) ∈
learnedEdges) ∧ (∀u, (u, v) ∈ E → (u, v) ∈
learnedEdges ∪ abandonedEdges)};

5 frontierEdges← outgoingEdges(exploredVertices) \
learnedEdges \ abandonedEdges;

6 return argmax(u,v)∈frontierEdgesscore(u, v)

B. Score

The selectEdge subroutine (Algorithm 2) uses a heuris-
tic score function to implement best-first exploration. We
design score to balance the following desiderata:

• Exploitation. Perform best-first search by extending
paths that have low cost.

• Even exploration. Dovetail exploration of multiple
edges, trying to assign the same amount of training
intervals to all extensions of the “sufficiently low cost”
paths.

• Anticipation. Prefer extending paths that have few edges
remaining to a final vertex.

As in Appendix A, we will assume global access to reach-
Prob and access to the bookkeeping function intervalsElapsed.
The score of an edge comprises three terms:

score(u, v) =exploitationIncentive(u, v)−
intervalsElapsed(u, v)−
(minNumberOfEdgesToAFinalVertex(v)×
edgeExtensionPenalty)

We describe the components as follows:

a) Term 1: Exploitation: The exploitation incentive
strongly prioritizes investing training effort in edges that could
be part of the highest probability extension of some path in
the tree explored so far. Concretely, let

bestExtensionProb = max
(u,v)∈frontierEdges

reachProb(v)

Now let

exploitationIncentive(u, v) ={
exploitationBonus reachProb(u) ≥ bestExtensionProb
0 otherwise

where exploitationBonus is some very large number.
b) Term 2: Even exploration: Subtracting

intervalsElapsed(u, v) softens the best-first search by
trying to evenly allocate intervals to promising edges. This
term will be much less in magnitude than exploitationBonus,
so it acts as a tie-breaker within our soft best-first search.

c) Term 3: Anticipation: A high choice of edgeExten-
sionPenalty strongly strongly prioritizes extending paths that
are close to reaching a final vertex (in terms of how many
edges there are).

We now provide advice for how to select the ILG-Learn
parameters introduced in Section IV:

• illustrationCount: This should be enough goals so
that the underlying example-based control algorithm can
quickly learn a good policy. In our 2D navigation tasks,
we found 10 goal examples to be sufficient, while for our
robotic manipulation environments we found significantly
better performance with 50 examples than 10. Although
the choice of illustrationCount is tied to the specifics
of the underlying example-based control algorithm, we
believe that ILGs that include landmarks that admit a
diverse set of success observations (e.g. a robotic arm can
successfully grasp an object with a wide variety of arm
angles and grip positions) will benefit from a relatively
large number of success examples.

• episodeLength: The fixed time horizon used when train-
ing each edge policy must be long enough to allow the
example-based control algorithm to explore the environ-
ment. The ideal value is usually significantly more than
the number of timesteps needed for an expert to complete
any given edge task.

• intervalLength and intervalsLimit: The quantity
intervalLength × intervalsLimit should be enough
training episodes for example-based control to saturate
the success probability of the edge policy for any edge in
the ILG. Since the number of learning episodes needed
by example based control varies greatly depending
on random seed, we recommend over-estimating
this quantity. To avoid wasting training episodes on
already-good policies, we recommend choosing a
relatively low value for intervalLength: Since the
choice intervalLength governs the frequency of teacher-
intervention (in the form of responses to success/failure

12

queries), we recommend choosing intervalLength to
be large enough that there is only a modest amount
of teacher interaction, yet low enough that learning
episodes are not wasted.

• successThreshold: We recommend choosing a value of
successThreshold slightly lower than the success rate of
an optimal policy. Choosing a high successThreshold
causes ILG-Learn to spend a large amount of learning
effort on an edge before exploring deeper in the ILG,
which may increase the success rate of the final policy
at the cost of more environmental and student-teacher
interactions.

• estimationQueries: We recommend choosing a number
that gives adequate confidence in the success rate of
the learned policy. In practice, we have observed that
example based control often yields policies that either
succeed much more or much less than our desired
successThreshold, so relatively few estimationQueries
(e.g. 30) suffice. If there are multiple feasible tasks in
the ILG, choosing a high value of estimationQueries
will improve ILG-Learn’s ability to perform best-first
search. We chose not to implement a statistically-rigorous
version estimateProbability since doing so would
in general require the teacher to respond to many suc-
cess//failure queries and was not necessary for good end-
to-end performance in practice.

as well as the additional parameters introduced in Appendix B:
• exploitationBonus: We recommend choosing a very

high value, so that score function implements a
“soft” best first seach, in which the second and third
terms of the score function serve as tie-breakers.
To achieve this, one can choose parameters such that
exploitationBonus > intervalsLimit + diameter(G) ×
edgeExtensionPenalty where diameter(G) is the diame-
ter of the ILG.

• edgeExtensionPenalty: We recommend choosing edge-
ExtensionPenalty to be a guess of how many learning
intervals will be required to train an edge along a feasible
path to reach the successThreshold. Since choosing this
parameter requires considerable foresight, we recommend
choosing a relatively low value.

C. ILG-Learn and RCE

We implement ILG-Learn in Python. We re-implemented
RCE (following instructions of the RCE authors [14]) on top of
JaxRL2’s [43] implementation of SAC [44]. We use this RCE
implementation both as the example-based control subroutine
in our ILG-Learn algorithm and as the RCE baseline.

a) Hyperparameters: We use the same SAC+RCE hy-
perparameters as RCE [14], including the SAC-specific hy-
perparameters that were inherited from Haarnoja et al. [44],
although we increased the width of each hidden layer in the
actor and critic MLPs from 128 to 256. The original RCE im-
plementation varied the “n-step returns” and “Q combinator”
hyperparameters depending on the particular task. We use 10-
step returns for all tasks, and use min as the “Q combinator” in

our Stack family of environments (this is the typical choice
of Q combinator [45]). We found that the max combinator
works better in the Maze environments and use max for those
environments.

Our choice of ILG-Learn-specific parameters (detailed in
?? B0c) is shown in Table II.

b) Policy sequencing details: Underlying ILG-Learn’s
compositional approach to long-horizon policy learning is
the sequencePolicies subroutine that sequences edge
policies to form a path policy. As described in Section IV,
each edge policy is executed for a fixed horizon (governed
by the episodeLength parameter). To formalize the behavior
of sequencePolicies it is convenient to associate each
(path or edge) policy π with a horizon denoted horizonπ). We
assume that the array horizon of such bookkeeping variables
is in global scope and define the sequencePolicies
subroutine in Algorithm 3.

Algorithm 3: sequencePolicies
Input:

• Path policy πu and edge policy π(u,v)

• Parameter episodeHorizon
• Mutable bookkeeping dict horizon

Output: Path policy to reach v
1 Function πv(τ):
2 if |τ | ≤ horizonπu

then
3 return πu(τ);
4 else
5 return π(u,v)(τ);
6 horizonπv

← horizonπu
+ horizonπ(u,v)

;
7 return πv

If horizon is maintained such that horizonπ(u,v)
is episode-

Length for each edge policy π(u,v) then Algorithm 3 matches
the textual description of Section IV. In our implementation,
we noticed that running each edge policy for the fixed horizon
resulted in non-smooth motion, because the agent would
hesitate after having achieved each landmark (waiting for
the associated edge policy’s horizon to be fully consumed)
before moving on to the next. To reduce this “waiting time”
we slightly enriched the information provided by the teacher:
every time the learner uses querySuccess(v) at the end of
an episode to assess the success rate of an edge policy π(u,v),
if the teacher responds “Success” they also provide the index
of timestep at which the agent entered βv. Then we update
horizonπ(u,v)

to be the max of these success timestep indices,
plus an addition 15 timesteps of slack term. The results in
Section V were collected using the above procedure, although
we do not believe that the details of our sequencePolicy
heuristic is an important aspect of ILG-Learn.

c) Success estimation details: As described in Sec-
tion IV, theestimateProbability estimates the proba-
bility that a learned edge policy π(u,v) successfully reaches βv.
Since we start each rollout of π(u,v) from the state distribution
induced by executing the path policy πu, we naturally obtain

13

Di
ag
on
al
Ma
ze
3x
3

Di
ag
on
al
Ma
ze
5x
5

Di
ag
on
al
Ma
ze
7x
7

Di
ag
on
al
Ma
ze
7x
7-
Co
ar
se

Ma
ze
4x
4-
Fi
ne

Ma
ze
4x
4-
Co
ar
se

St
ac
kA
B

St
ac
kC
ho
ic
e-
Ou
tw
ar
dv
ie
w

St
ac
kB
A-
Ou
tw
ar
dv
ie
w

illustrationCount 10 10 10 10 10 10 50 50 50
episodeLength 400 400 400 1200 200 600 80 80 80
intervalLength 100k 100k 100k 100k 100k 100k 100k 100k 100k
intervalsLimit 100 100 100 100 100 100 100 100 100
successThreshold 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
estimationQueries 30 30 30 30 30 30 30 30 30
exploitationBonus 101 101 101 101 101 101 101 101 101
edgeExtensionPenalty 3 3 3 3 3 3 3 3 3

TABLE II: ILG-Learn-specific parameter selection.

an empirical estimate of the probability that the path policy
obtained by sequencing πu and π(u,v). We call attention to
this because our “Dijkstra-style” planning implemented by
selectEdge only receives the costs of paths, not individual
edges. If we assume that each edge has an intrinsic fixed cost,
then this is an inconsequential bookkeeping detail. However,
since π(u, v) could reach β(v) even if not started from β(u)
(and moreover because our cost estimates are empirical) it is
possible for the estimated cost of a path to be less than that
of one of its prefixes. Such ill-behaved path probabilities only
pose a problem for ILG-Learn if a high-cost prefix dissuades
selectEdge from exploring what would become the lowest-
cost source to sink path. Such a situation is only likely to arise
if the teacher provides an ILG that contains landmarks that
are both (1) hard to reach and (2) not necessary to scaffold
exploration towards subsequent landmarks.

D. BC baseline

We implemented the BC baseline in Python using
Jax [46] and Flax [47]. For each task, we pooled the
(observation, next action) pairs from all the demonstrations
and trained an MLP to predict the next action given the
current observation. Our MLP had 2 hidden layers (each of
width 512), we used the Huber loss and a learning rate of
0.0001. For each task, we had a heldout set of validation
demonstrations. We stopped training when the validation loss
stopped decreasing.

. Our manipulation environment is built in robosuite
[38]. Our maze environment is built in Gymnasium Robotics
[39] and is a customized of the Maze2D environment orig-
inally introduced in D4RL [40]. All our experiments use
Gymnasium [48] and MuJoCo [49].

E. Stack

We adapt the “Stack” environment that is included in
robosuite. This environment simulates a 7-DoF Franka
Panda robot arm. We use the provided 7-dimensional continu-
ous action space that includes an operational space controller
with fixed impedance. We also use the provided observation

space, which is 55-dimensional and comprises the robot’s
joint angles, joint velocities, end effector position, end effector
quaternion, gripper position, gripper velocity, the position of
each block, the quaternion of each block, the gripper-object
distance of each block, and the distance between the two
blocks.

We make the following modfications to the original envi-
ronment:

1) The side length of each cubical block is reduced from
0.05m to 0.04m. We do this so we can include more
randomness in the initial block placements.

2) The two blocks always initialize along the centerline
(parallel to the x-axis in the simulation, which is depth
from the perspective of the robot) of the table with block
A closer to the robot than block B. The exact positions
are determined randomly in each reset as follows: we
uniformly select two x coordinate values in the range
(−0.2, 0.2). If the values are at least 0.05 apart, we let
block A start at the lower x value and block B start at the
greater x value. Otherwise, we repeat this process until
we obtain sufficiently spaced x values.

3) For StackChoice-Outwardview we allow the blocks to
be stacked in either order; for StackBA-Outwardview
we require block B to be stacked on block A.

4) For StackChoice-Outwardview and StackBA-
Outwardview we implement simulated occlusion,
as if the observations are produced by an object detector
that is mounted on the same side of the table as the robot.
To do this, we position a MuJoCo camera at the position
indicated by the pink camera icon in Figure 1. At each
timestep, if no pixel belonging to either block A or block
B is present in the ground-truth object segmentation
yielded by this camera we mask all components of the
observation corresponding to that cube with the value −2
(which is far from the observation values encountered in
normal operation).

To generate the landmark examples and demonstrations for
behavior cloning, we use a handwritten scripted policy. We

14

inject noise into this scripted policy so that it covers a variety
of grip locations and arm paths. We also tried using tele-
operated demonstrations (and examples gathered therefrom)
for the StackAB task and did not find significantly different
performance so we elected to use scripted policies to generate
all data.

The example observations for the “grasp” landmarks are
taken after the arm has grasped and lifted the block by ∼0.02m.
We found that slightly lifting the block greatly improves RCE’s
ability to learn a successful policy, even in the absence of
occlusion. We believe this is because grasps that do not lift the
block are very close in observation space to “near grasps” that
do not make firm contact with the block, yielding a difficult
discrimination task for the RCE critic.

To simulate the teacher’s response to the querySuccess
queries during training, we defined β(grasp A) to be all states
where block A is at least 0.021m above the surface of the
table (and similarly for β(grasp B). We defined β(stack) anal-
ogously to the success condition of the original robosuite
stacking environment: the cubes must be touching eachother,
the gripper cannot be touching the block on top of the tower,
and the block on top must be both above the surface of the
table and aligned horizontally with the other block.

F. Maze

We customized Gymnasium Robotics’ Maze2D environ-
ment; our layouts are shown in Figure 4. The agent is a
force-actuated point mass with a 2-dimensional continuous
action space. The observation is continuous and 4-dimensional,
comprising the agent’s current position and velocity, but not
the goal location or the location of any of the maze’s walls.

Each landmark is the center of a room, as illustrated in Fig-
ure 4. Each square room has a side-length of 3.6; the landmark
region is a circle of diameter 1 centered within the room. Only
the agent’s position (not velocity) determines membership in
a landmark. To provide illustrative observations, we include
one illustrative observation from the center of the landmark,
with the remaining illustrative observations drawn uniformly
at random from positions within the landmark. All illustrative
observations contain 0 velocity.

The demonstrations are gathered with handwritten scripted
policies that include a small amount of noise to better cover
the state space. For each task, all demonstrations traverse the
same sequence of rooms to reach the final goal.

Learning curves are found in Figure 6. We report the overall
success rate of the entire task; for ILG-Learn this means that
the learner must explore a source-to-sink path before achieving
nonzero success rate. Note that some trials of ILG-Learn stop
before reaching 10m environment steps, because ILG-Learn
allows early stopping. In this case, we extend the success rate
of the final policy for the rest of the 10m steps (even though
no further training occurs).

15

Fig. 6: Learning curves showing success rate over total environment steps (including environment steps used during resets and
calls to estimateSuccess. The light lines show individual random seeds, the dark lines show the mean of 5 random seeds.

16

	Introduction
	Related work
	Hierarchical reinforcement learning and structured exploration
	Imitation learning and example-based control
	Human-in-the-loop policy learning

	Illustrated landmark graphs
	Preliminaries
	ILG and satisfaction
	Interaction and illustration

	Learning algorithm
	Experiments
	Customizable landmark density
	Multi-path specifications

	Discussion
	Appendix
	Dovetailed exploration
	Score
	ILG-Learn and RCE
	BC baseline
	Stack
	Maze

