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ABSTRACT

EEG-based connectomes offer a low-cost and portable method to identify brain
disorders using deep learning. With the growing interest in model interpretabil-
ity and transparency, explainable artificial intelligence (XAI) is widely applied
to understand the decision of deep learning models. However, most research fo-
cuses solely on interpretability analysis based on the insights from XAI, over-
looking XAI’s potential to improve model performance. To bridge this gap,
we propose a dynamical-system-inspired architecture, XAI guided transformer
(XAIguiFormer), where XAI not only provides explanations but also contributes
to enhancing the transformer by refining the originally coarse information in self-
attention mechanism to capture more relevant dependency relationships. In order
not to damage the connectome’s topological structure, the connectome tokenizer
treats the single-band graphs as atomic tokens to generate a sequence in the fre-
quency domain. To address the limitations of conventional positional encoding
in understanding the frequency and mitigating the individual differences, we in-
tegrate frequency and demographic information into tokens via a rotation matrix,
resulting in a richly informative representation. Our experiment demonstrates that
XAIguiFormer achieves superior performance over all baseline models. In addi-
tion, XAIguiFormer provides valuable interpretability through visualization of the
frequency band importance. Our code will be publicly available after acceptance.

1 INTRODUCTION

Scalp electroencephalography (EEG), an objective physiological method for detecting the human
brain’s neural activity, has been widely used in various applications, including disease diagnosis
(Yang et al., 2024), seizure detection (Tang et al., 2022), action and motor imagery recognition
(Venkatachalam et al., 2020), and emotional analysis (Yi et al., 2024). These non-invasive signals are
collected by electrodes placed on the curved surface of the scalp, resulting in inherent non-Euclidean
structures. The so-called connectome is a widely used metric to characterize the complex patterns
and connectivity of the brain in this non-standard geometry (Pang et al., 2022). Additionally, EEG
contains rich frequency domain information and is often analyzed over specific frequency bands.
Consequently, multi-frequency band graphs are a powerful way to identify brain disorders using
EEG signals.

In the past few years, transformer-based models have achieved great success in versatile applications,
such as natural language processing (Vaswani et al., 2017), computer vision (Dosovitskiy et al.,
2020), and brain signal processing (Yang et al., 2024). Across these diverse modalities, it is essential
for transformers to design specific token generation methods based on the characteristics of the
data. Existing approaches typically treat words, image patches, or time series segments as the basic
units for embedding tokens. However, this segmentation strategy for tokenizing multi-band graphs
disrupts their topological structure. Therefore, it is necessary to develop a novel tokenizer that
divides multi-band graphs into atomic tokens while preserving sufficient graph structure.

Second, since transformers lack inherent mechanisms to capture the position of the input, explicitly
injecting positional encoding is a common solution to perceive such latent information. However,
is this necessary for multi-band connectomes deriving from EEG data? The primary purpose of
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positional encoding is to explicitly add information that transformers struggle to learn inherently,
and this type of information is crucial for characterizing specific modalities. Accordingly, explicitly
adding information to the input embeddings should take into account the intrinsic properties of the
data. In the case of the multi-frequency band connectomes, each connectome inherently implies
a specific frequency range and demographic information (i.e., age and gender) that also leads to
significant anatomical, functional, and biochemical differences in the brain (Zaidi, 2010). However,
conventional positional encoding methods fail to encode these intrinsic characteristics in EEG data.
Therefore, another challenge is to inject implicit information, including frequency and individual
differences due to demographics, into the transformer in a manner similar to positional encoding.

Third, the widespread application of transformers in medical diagnosis might be hindered by their
black-box nature, as clinicians are concerned not only with the performance of transformers but also
with the clinical rationale. To open the black box of deep learning models, explainable artificial
intelligence (XAI) provides a promising solution for bringing transparency to complex and opaque
deep learning models. Some interpretable models have emerged to offer various insights into a
model’s decision (Zhao et al., 2022; Li et al., 2021). However, almost all research in neuroimaging
stops at the visualization purpose of explanation, neglecting to use this information for improving
the performance of the transformer. On the other hand, transformers, especially large models, always
benefit from transfer learning, knowledge distillation and convolutional operators. The common idea
behind these techniques is to introduce additional knowledge from external datasets, teacher models
or prior knowledge, respectively. Interestingly, XAI is also able to provide valuable insights to the
transformer from the perspective of “self-refinement” without the demand for additional datasets
and models (Stammer et al., 2023). In other words, XAI-based transformer improvement is perfectly
suited for the limited amount of EEG data. Therefore, a key challenge is to take full advantage of
XAI to improve the performance of the transformer.

To address the above-mentioned challenges, we propose XAI guided transformer (XAIguiFormer), a
novel architecture for EEG-based brain disorder classification. XAIguiFormer takes multi-frequency
band connectomes as input, constructed by two complementary methods (i.e. coherence (COH) and
weighted phase lag index (wPLI), see Appendix A for details) from preprocessed EEG signals.
XAIguiFormer consists of three key components: connectome tokenizer, rotary frequency encoding
with demographics (dRoFE), and XAI guided self-attention. The connectome tokenizer treats each
single-band graph as an atomic token, forming a graph-wise frequency sequence. Compared to
fragmenting the graph, our method can capture more comprehensive brain connectivity patterns in
the frequency domain. In contrast to conventional positional encoding that adds position information
to tokens, we explicitly integrate frequency and demographic information into tokens by the rotation
matrix, thereby creating a more informative representation. To introduce valuable explanations to
improve the transformer, XAIguiFormer employs XAI to refine the originally coarse query and key
vectors within the self-attention mechanism, resulting in a more concentrated attention.

To the best of our knowledge, this is the first study employing XAI to enhance transformer perfor-
mance in neuroimaging data, extending its benefits beyond mere interpretability analysis. The main
contributions of this paper are as follows:

• we propose a novel approach to tokenize the connectome across frequency bands without
destroying the topological structure of single-band graphs. It can be easily extended to
other multi-graph scenarios, such as dynamic functional connectivity.

• we propose a fusion method to explicitly inject the frequency and demographic information
into tokens, improving the model’s understanding of frequency and mitigating the negative
effects of individual differences.

• we propose to use XAI to directly enhance transformer performance rather than focusing
only on analysing the visual interpretability. Inspired by the dynamical system, we propose
an XAI guided self-attention mechanism along with an XAI guided loss function, directing
the model’s focus towards more relevant dependency relationships.

2 RELATED WORK

Positional Encoding. Generally, there are two primary types of positional encoding for trans-
formers. One is the absolute positional encoding (Vaswani et al., 2017), which injects the absolute
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position of tokens to the input embeddings through sinusoidal or learnable embeddings. The other
is the relative positional encoding (Shaw et al., 2018), which encodes relative position information
into the self-attention mechanism. Rotary Positional Embedding (RoPE) (Su et al., 2024) is a spe-
cial relative position embedding that uses the absolute position to represent the relative position
via a rotation matrix. In addition to these general-purpose methods, several task-specific positional
encodings have been developed to exploit the unique properties of specific types of data. For in-
stance, Informer (Zhou et al., 2021) considers the intrinsic characteristics of time series, such as
week, month, year and holidays, and proposes hierarchical (local-global) time stamps as positional
encoding to forecast long sequence time series. Brain-JEPA (Dong et al.) also considers the inherent
functional relationships among brain regions, thereby developing brain gradient positioning to inject
temporal, spatial and functional information into tokens. In the EEG field, MMM (Yi et al., 2024)
introduces multi-dimensional position encoding to capture intrinsic geometric layout of electrodes.
To preserve the spatiotemporal features of EEG data, BIOT (Yang et al., 2024) adds channel em-
bedding and relative position embedding to each token. However, those techniques fail to integrate
frequency bands and individual differences into tokens, causing missing essential information in
multi-band connectomes.

Explainable Artificial Intelligence. The increasing demand for model transparency and trust-
worthiness in recent years has driven the development of various explanation methods for black-box
deep learning models. A prominent category is the saliency method, which identifies the most im-
portant input features contributing to the model’s decision, such as LRP (Bach et al., 2015) and
SHAP (Lundberg & Lee, 2017). In contrast, some inherently interpretable deep learning models
have been proposed to provide explanations during training, such as CRATE (Yu et al., 2024) and
BrainGNN (Li et al., 2021). Although these visualizations of explanations can help researchers iden-
tify flawed model reasoning, they often lack the ability to directly guide improvements in the model’s
internal parameters or architecture during training. To this end, Weber et al. (2023) conducted a com-
prehensive overview of XAI techniques for enhancing various properties of deep learning models,
demonstrating how explanations can be leveraged to improve components in deep learning models,
including data, feature representations, loss functions, gradients, and trained models. However, few
studies have fully utilized XAI to improve transformers.

3 PRELIMINARY KNOWLEDGE

Rotary Positional Embedding. The RoPE is a novel position embedding method originally de-
signed for natural language processing to encode the relative positions among tokens in a sequence,
which is widely applied in large language models. The core idea behind RoPE is to rotate the query
q and the key k by certain angles to characterize the position m. In the complex domain, the rotary
matrix is defined as

Rd
Θ,m = eimΘ (1)

where d is the embedding dimension, i is the imaginary number, and Θ is a pre-defined parameter
given by

Θ = {θt = 10000−2t/d | t ∈ {0, 1, · · · , d/2− 1}} (2)
The rotary matrix is then applied to q and k for injecting the position information by

f{q,k}(xm;W{q,k}) = Rd
Θ,mW{q,k}xm (3)

where xm is the m-th token in a sequence and W{q,k} represents the weights specific to the q and
k. Finally, the attention value with RoPE is calculated by

Am,n = Re < fq(xm;Wq), fk(xn;Wk) >

where Re < · > denotes the real part of the complex number. In this formulation, RoPE naturally
incorporates relative position information through the inner product of the rotation matrix, which
exhibits remarkable performance.

Understanding Self-attention Mechanism via Dynamical System Perspective. Huang et al.
(2023) explain the self-attention mechanism from the mathematical perspective of dynamical sys-
tem. In such a framework, the transformer with residual block can be written as

x̂t+1 = xt + fv(xt;Wv)︸ ︷︷ ︸
Feature map

⊗ϕ(fq(xt;Wq), fk(xt;Wk))︸ ︷︷ ︸
Attention value

(4)
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Figure 1: The architecture of XAIguiFormer. XAIguiFormer forward process can be described as
follows: (i) construct multi-frequency band connectomes and generate a sequence in the frequency
domain by connectome tokenizer, (ii) forward pass the frequency sequence by vanilla transformer,
(iii) obtain refined features by explaining the vanilla transformer, (iv) feedforward refined features
and the frequency sequence through XAI guided transformer. Subsequently, the MLP is employed
as the classification head to predict the label of the brain disorder.

where xt is the input sequence of the linear layer f(·;W{q,k,v}) with the learnable parameters
W{q,k,v} in the t-th block, ⊗ denotes the Hadamard product and ϕ is the self-attention module.
Further, equation 4 can be reformulated as an ordinary differential equation (ODE)

fv(xt;Wv) =
xt+1 − xt

∆t
(5)

Here, ∆t can be interpreted as the attention value generated by the self-attention module ϕ(fq, fk),
which serves as an adaptive step size in ODE. Assuming f{q,k,v} are all invertible, the attention
value function ϕ can be transformed to

ϕ(fq(xt;Wq), fk(xt;Wk)) = ϕ(fq ◦ f−1
v (v), fk ◦ f−1

v (v))
∆
= ϕ̃(v) = ϕ̃( fv(xt;Wv︸ ︷︷ ︸

Coarse Info

)) (6)

Here, fv(xt;Wv) = 1
∆t (xt+1 − xt) is a kind of coarse stiffness information in feature trajectory

at xt. Taking into account all these equations, it can be concluded that the attention value function
ϕ takes coarse information fv(xt;Wv) as input and refines it to obtain a finer estimation of infor-
mation, further generating adaptive attention values. This implies the importance of establishing
better input for self-attention and the resulting attention values to capture refined information in the
transformer.

4 METHODOLOGY

In this study, we introduce the XAI guided transformer, a novel architecture that not only interprets
the model’s decisions but also utilizes explanations to enhance the performance of the transformer in
an end-to-end fashion. Instead of only considering the position in the sequence, our model integrates
the frequency and demographic information into tokens by a specially designed rotary matrix. As
illustrated in Figure 1, the model architecture consists of 4 steps: (i) generate a token for each fre-
quency band connectome using the graph neural network, (ii) pass the frequency sequence through
the vanilla transformer encoder while inject the frequency and demographic information to tokens
by dRoFE, (iii) explain the vanilla transformer to obtain refined features, (iv) run the feedforward
path again by feeding refined query and key to XAI guided transformer. Finally, the XAI guided
loss function is employed to train the entire model.

4
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4.1 PROBLEM FORMULATION

Let the multi-graph G = {Gδ,Gθ, . . . ,Gθ/β} represent the brain connectomes across various fre-
quency bands Freq = {δ, θ, low α, high α, low β,mid β, high β, low γ, θ/β ratio}. For
each frequency band connetome Gf = (V, Ef ), EEG channels are defined as graph nodes V =
{v1, v2, . . . , vc}, where c is the number of EEG channels and f ∈ Freq. The node features at fre-
quency band f are denoted by Hf

COH = [hf
v1 ,h

f
v2 , . . . ,h

f
vc ]

T , where hf
vi is the coherence-based

connectivity patterns of node vi at frequency band f (see Appendix A for details). The edge features
at frequency band f are indicated by Ef

wPLI = [efi,j ], where efi,j is the wPLI-based connectivity be-
tween nodes vi and vj at frequency band f . The adjacency matrix of the single-band graph Gf is
represented as Af ∈ Rc×c. In addition, let Demog = [age, gender] be the demographic informa-
tion. The main objective of this study is to establish the mapping from (G, Demog) to brain disorder
diagnosis Y by learning a function F : (G, Demog) → Y .

4.2 CONNECTOME TOKENIZER

A fundamental operation for transformers is the design of tokenizers tailored to specific data modali-
ties. For images, ViT splits the image into a sequence of flattened patches (Dosovitskiy et al., 2020).
Although the multi-frequency band connectome G can be regarded as a multi-channel “image” due
to its grid-like structure, partitioning the connectome into patches risks destroying its connectivity
and results in the loss of topological information. Inspired by the tokenization method of DETR
(Carion et al., 2020), we adopt a strategy where the entire single-band connectome Gf serves as the
basic unit to generate tokens. To this end, the GINEConv operator (Hu et al., 2020) is employed to
update node representations at l-th layer by

h
(l+1)
vi,f

= MLP((1 + ϵ) · h(l)
vi,f

+
∑

vj∈N(vi)

ReLU(h
(l)
vj ,f

+ efj,i)) (7)

where N(vi) represents the set of nodes adjacent to vi and ϵ is a trainable parameter. Notably, lever-
aging the GNN also introduces a beneficial inductive bias to our model, particularly on relatively
small datasets. Subsequently, a single-band token xf is obtained by averaging the node embeddings
at the last layer of GNN using

xf = MEAN({hf
vi | vi ∈ V}) (8)

Finally, those token embeddings xf are flattened into a frequency sequence X =

[xδ,xθ, . . . ,xθ/β ]
T ∈ R|Freq|×d, which are then fed into the XAI-guided transformer encoder.

4.3 ROTARY FREQUENCY ENCODING WITH DEMOGRAPHICS

Conventional RoPE only considers intrinsic positional properties of the sequential data in text and
image. However, positional information is less valuable in the frequency sequence X because its
order can be arbitrary, and treating X as a simple sequence risks losing the intrinsic frequency infor-
mation. Hence, we encode the frequency information by rotating each frequency band embedding
with angles determined by frequency bounds

Rd
f,2t = eiflθt , Rd

f,2t+1 = eifuθt (9)

where fl, fu is the lower and upper bound of the frequency band f , and i is the imaginary number.
To achieve smoother frequency encoding in the short sequence X compared to the exponentially
scaled one in the language sequence, the θ at the t-th dimension of tokens is defined as

θt = 4πt/d, t ∈ {0, 1, . . . , d/4− 1} (10)

Moreover, age and gender are known to influence differences in individual connectomes (Mijalkov
et al., 2023). To alleviate the individual differences, we propose to integrate demographics into
rotary frequency encoding (dRoFE) by encoding demographic information as the magnitude of the
vector. Taking together, the rotation matrix of dRoFE is defined as

Rd
f,Demog,2t = age · eiflθt + gender, Rd

f,Demog,2t+1 = age · eifuθt + gender (11)

5
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Finally, dRoFE is applied on the query q and key k to explicitly inject frequency and demographic
information by

dRoFE{q,k}(xf , f,Demog) = Rd
f,DemogW{q,k}xf (12)

In practical implementation, dRoFE introduces the multiplication of Euler’s formula to q and k,
which can produce the same attention value qkT = Re[qik

∗
i ] but reduces computational burden

(Heo et al., 2024). Here, Re[·] denotes the real part of the complex number and qi, ki refer to the
complex vectors.

4.4 XAI GUIDED TRANSFORMER

XAI Guided Self-Attention. According to the insights from the section 3 preliminary knowledge,
the ability to properly generate refined input and attention value is essential for the performance of
the self-attention mechanism. To enhance the transformer’s ability to capture refined information,
we propose a theoretic-inspired self-attention mechanism, named XAI guided self-attention. The
value of XAI lies in its capability to identify important features and filter out irrelevant information
for self-attention input. Consequently, the XAI-generated importance maps for Q and K are more
refined than the original ones. Further, the attention value is calculated based on these underlying
important features identified by XAI, effectively removing noise to generate a more precise attention
distribution that concentrates on important dependency relationships by

Attn(Qexpl,Kexpl,V ) = softmax

(
QexplK

T
expl√

d

)
V (13)

where Qexpl and Kexpl are the feature importance scores generated by DeepLift (Shrikumar et al.,
2017). To access those valuable explanations, we first process the frequency sequence X via the
vanilla transformer encoder. We then employ DeepLift to pinpoint which parts are most influential
for the vanilla transformer. In general, the explanation algorithm can be realized with any local
explanation method from XAI. By making use of XAI, we can improve originally coarse informa-
tion to capture more focused attention value, ultimately enhancing the representative ability of the
transformer.

Finally, the XAIguiFormer model comprises a stack of several encoder blocks. As illustrated in
Figure 1, each XAIguiFormer block consists of an XAI guided multi-head self-attention module,
followed by a 2-layer MLP with GeGLU activation function. A residual connection is applied after
XAI guided multi-head attention and the feed forward network, followed by an RMSNorm layer for
normalization.

XAI Guided Loss Function. To boost the performance of model under the supervision of XAI,
we propose a joint loss function to optimize the parameters

L = (1− α)LCE ( ŷcrs,y)︸ ︷︷ ︸
Coarse Prediction

+ αLCE (ŷexpl,y)︸ ︷︷ ︸
Refined Prediction

(14)

where LCE refers to cross-entropy loss, ŷcrs and ŷexpl denote the labels predicted by vanilla and
XAI guided self-attention mechanisms, respectively. The parameter α controls the magnitude of
XAI guidance. In our experiments, XAIguiFormer is not very sensitive to α as long as it is larger
than 0.3.

5 EXPERIMENTS

5.1 DATASETS

We evaluated the performance of our XAIguiFormer model on two publicly available datasets:

• The TUH Abnormal EEG Corpus (TUAB) is one of the largest open-source EEG datasets, which
collects data from 1385 healthy controls (normal) and 998 subjects having a brain disorder (abnor-
mal), with a total of 2993 sessions (Obeid & Picone, 2016). All electrophysiology recordings contain
19 common EEG channels and 2 reference channels across subjects. We employ the XAIguiFormer
to perform binary classification for identifying brain disorders on this dataset.

6
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Figure 2: Comparison of attention maps between XAI guided multi-head self-attention and vanilla
multi-head self-attention. As shown in the figure, XAI guided attention exhibits a more refined pat-
tern, suggesting a concentration on more crucial dependency relationships and the elimination of dis-
tractions from irrelevant tokens. Attention entropy, as detailed in the Appendix B, is used as a quan-
titative measure to assess the concentration of attention maps. Smaller attention entropy indicates
that the attention is more concentrated. To facilitate visual comparison, an identical colorbar is used
for each attention map. In each attention map, the rows from top to bottom and columns from left to
right represent the frequency sequence δ, θ, low α, high α, low β,mid β, high β, low γ, θ/β ratio.

• The Two Decades-Brainclinics Research Archive for Insights in Neurophysiology (TDBRAIN)
is a clinical lifespan EEG biobank comprising diverse patients with major depressive disorder, at-
tention deficit hyperactivity disorder and obsessive-compulsive disorder (Van Dijk et al., 2022). We
utilized eyes-closed condition with 26 channels of EEG data to carry out multi-class classification
to distinguish brain disorders.

For further details on the demographic distribution and preprocessing steps of those datasets, as well
as the construction method of XAIguiFormer’s input connectomes, please refer to the Appendix A.

5.2 BASELINES AND METRICS

To comprehensively compare our method with relevant baseline methods, we consider the following
models: (i) FFCL (Li et al., 2022b) fuses multilevel spatial–temporal features based on CNN and
LSTM architecture, (ii) SPaRCNet (Jing et al., 2023) is a 1D-CNN based model with dense residual
connections, (iii) BIOT (Yang et al., 2024) is a biosignal transformer that learns embeddings from
EEG signals of various formats, (iv) S3T (Song et al., 2021) is a EEG transformer to perceive the
spatial and temporal features for decoding EEG signals, (v) LaBraM (Jiang et al., 2024) is a pre-
trained foundation model that can handle diverse EEG signals with varying channels and lengths,
(vi) Corr-DCRNN (Tang et al., 2022) is a self-supervised graph neural network that captures dy-
namic brain connectivity, (vii) LGGNet (Ding et al., 2024) is a neurologically inspired graph neural
network to learn local-global-graph representations from EEG.
To evaluate the performance, we use the following metrics: balanced accuracy (BAC), area under
precision-recall curve (AUC-PR) and area under the receiver operating characteristic curve (AU-
ROC) for the TUAB and TDBRAIN datasets. We report the average performance and standard
deviation across five different random seeds on the TUAB and TDBRAIN datasets. In all scenarios,
the best models are trained on the training set, selected from the validation set, and evaluated on
the test set. The BAC is employed as the monitor scores to select the best model for the TUAB and
TDBRAIN datasets.

5.3 IMPLEMENTATION DETAILS

Our experiments are implemented using Python 3.10.12, PyTorch 2.0.1+CUDA11.8 and PyTorch-
Geometric 2.3.1 on a single NVIDIA A100 GPU. The connectome input dimensions are 19 for

7
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Table 1: Comparison of model performance with baseline methods on the TUAB dataset.

Methods Model Size FLOPs TUAB

BAC AUC-PR AUROC

FFCL (2022b) 2.4M 0.83G 0.7848 ± 0.0038 0.8448 ± 0.0065 0.8569 ± 0.0051
SPaRCNet (2023) 0.79M 0.26G 0.7896 ± 0.0018 0.8414 ± 0.0018 0.8676 ± 0.0012
BIOT (2024) 3.2M 1.9G 0.7959 ± 0.0057 0.8792 ± 0.0023 0.8815 ± 0.0043
S3T (2021) 3.5M 0.22G 0.7966 ± 0.0023 0.8521 ± 0.0026 0.8707 ± 0.0019
LaBraM-Base (2024) 5.8M 2.7G 0.8140 ± 0.0019 0.8965 ± 0.0016 0.9022 ± 0.0009
Corr-DCRNN (2022) 0.69M 0.21G 0.7672 ± 0.0050 0.8586 ± 0.0044 0.8564 ± 0.0040
LGGNet (2024) 1.4M 0.64G 0.7711 ± 0.0030 0.8594 ± 0.0010 0.8574 ± 0.0011

XAIguiFormer (Ours) 3.5M 1.6G 0.8205 ± 0.0027 0.8965 ± 0.0079 0.9000 ± 0.0046

Table 2: Comparison of model performance with baseline methods on the TDBRAIN dataset.

Methods Model Size FLOPs TDBRAIN

BAC AUC-PR AUROC

FFCL (2022b) 2.4M 0.83G 0.5394 ± 0.0400 0.4258 ± 0.0278 0.5583 ± 0.0490
SPaRCNet (2023) 0.79M 0.26G 0.4786 ± 0.0153 0.3448 ± 0.0194 0.4580 ± 0.0224
BIOT (2024) 3.2M 1.9G 0.6320 ± 0.0082 0.6007 ± 0.0205 0.7175 ± 0.0176
S3T (2021) 3.5M 0.22G 0.4937 ± 0.0214 0.3500 ± 0.0174 0.4739 ± 0.0195
LaBraM-Base (2024) 5.8M 2.7G 0.6456 ± 0.0089 0.5438 ± 0.0058 0.7147 ± 0.0145
Corr-DCRNN (2022) 0.69M 0.21G 0.6045 ± 0.0058 0.4951 ± 0.0131 0.6586 ± 0.0158
LGGNet (2024) 1.4M 0.64G 0.6152 ± 0.0098 0.5058 ± 0.0161 0.6929 ± 0.0174

XAIguiFormer (Ours) 3.5M 1.6G 0.6635 ± 0.0080 0.5961 ± 0.0136 0.7814 ± 0.0156

TUAB and 26 for TDBRAIN, both of which are mapped into 128 as hidden dimensions. The model
consists of a 4-layer GNN and a 12-layer XAIguiFormer with 4 attention heads, training by AdamW
optimizer with β = (0.9, 0.99) and ϵ = 1e-8. For the TUAB dataset, the learning rate is set to 4e-5
with a weight decay of 1e-4, while for the TDBRAIN dataset, the learning rate is set to 5e-5 with
a weight decay of 1e-5. The loss weight for XAI-guided training is set to 0.7. Due to the different
sizes of the TUAB and TDBRAIN datasets, the batch sizes are set to 512 and 64, respectively. More
details about hyperparameters can be found in the Appendix D.

5.4 COMPARISON WITH BASELINE METHODS

Table 1 and 2 present the performance comparison between XAIguiFormer and baseline models on
the TUAB and TDBRAIN datasets, where we report subject-wise performance by averaging the
predictions of all 30-second samples belonging to the same subject. The results demonstrate that
XAIguiFormer outperforms all baselines on various evaluation metrics for both datasets, except for
the AUC-PR in the TDBRAIN dataset. In particular, on the relatively small TDBRAIN dataset, the
XAIguiformer achieved a significant improvement in performance, suggesting that incorporating
intrinsic and explanation information can help the model better understand latent patterns that are
challenging to learn from the small dataset. Despite being trained from scratch, our model exhibits
superior performance compared to the pretrained BIOT and self-supervised Corr-DCRNN model,
which implies our model can effectively capture more valuable information through the dRoFE and
XAI modules. Furthermore, while the majority of baseline methods are the black box, the XAIgu-
iFormer can elucidate its decision-making process, thereby enhancing interpretability alongside its
performance.

5.5 ABLATION STUDIES

To analyze the effectiveness of our proposed dRoFE and XAI guided transformer, we conducted
ablation experiments on both datasets as illustrated in Table 3. In general, it is observed that both
algorithms contribute to the overall performance improvement.
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Table 3: Ablation studies on dRoFE algorithm and XAI guided transformer.
Datasets Metric XAIguiFormer w/o dRoFE w/o XAI guided

TUAB
BAC 0.8205 ± 0.0027 0.8018 ± 0.0048 0.8070 ± 0.0066

AUC-PR 0.8965 ± 0.0079 0.8791 ± 0.0046 0.8971 ± 0.0047
AUROC 0.9000 ± 0.0046 0.8846 ± 0.0047 0.8997 ± 0.0032

TDBRAIN
BAC 0.6635 ± 0.0080 0.6249 ± 0.0097 0.6357 ± 0.0060

AUC-PR 0.5961 ± 0.0136 0.5135 ± 0.0092 0.5347 ± 0.0164
AUROC 0.7814 ± 0.0156 0.6983 ± 0.0096 0.7101 ± 0.0131

Effectiveness of dRoFE. To rigorously verify the effectiveness of dRoFE, we replace dRoFE with
RoPE for our model instead of simply removing it. This setting ensures a fair comparison, as the
transformer without any positional information would inherently lack a sense of position, skewing
the results. Table 3 reveals that dRoFE leads to a significant enhancement in performance, achieving
+1.87% BAC on the TUAB and +3.86% BAC on the TDBRAIN. This suggests that incorporating
frequency and demographic information is more beneficial for the frequency sequence than simple
relative position. As a result, dRoFE can effectively capture more comprehensive information and
mitigate the influence of individual differences.

Figure 3: Warmup start XAI to guide transformer, which shows average balanced accuracy and
standard deviation across five random seeds on the TUAB. Each point on the line, from left to
right, corresponds to a different model configuration where XAI is activated at 0% (normal XAIgu-
iFormer), 10%, 20%, 30%, and 100% (without XAI guidance) of the total epochs.

Effectiveness of XAI Guided Transformer. In this experiment, we ablate the XAI guided self-
attention mechanism and exclude the XAI guided item from the entire loss function. As shown
in Table 3, the inclusion of XAI guidance results in a BAC increase of +1.35% on the TUAB and
+2.78% on the TDBRAIN, demonstrating that XAI does contribute to enhancing the performance
of the model by introducing additional knowledge. Interestingly, the TDBRAIN dataset benefits
more from XAI guidance. This is likely because the model trained on a small dataset relies more
on supplementary information to learn complex representations. In contrast, the model trained on
a larger dataset, like TUAB, can learn relatively general knowledge and thus reduce its dependence
on the additional knowledge.
Moreover, Figure 2 visually compares the attention maps generated by the XAI guided and vanilla
multi-head self-attention mechanisms. It is evident that XAI guided attention maps focus more on
specific dependency relationships, whereas the vanilla attention maps appear more scattered. This
improvement is because XAIguiFormer can calculate a more precise attention score based on the
refined query and key. Consequently, XAIguiFormer captures core dependency relationships and
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generates adaptive values from the perspective of the dynamical system, leading to more effective
representations.

Warmup Start XAI Guidance. We hypothesize that XAIguiFormer benefits from explanations
derived from a relatively good source model. Since the source model would improve during training,
we explore a warmup start strategy where XAI guidance is activated after 10%, 20%, and 30% of
the total training epochs on the TUAB dataset. As illustrated in Figure 3, while warm-started XAI
guidance consistently outperforms the vanilla transformer, it achieves lower performance compared
to starting XAI from the beginning of training. This is because activating XAI guidance during
training alters the parameter optimization space of the model, as reflected by the observed jitter in
the loss function when starting XAI guidance. Despite this, it indirectly verifies the effectiveness of
XAI in enhancing model performance.

Figure 4: Frequency band importance on the TUAB and TDBRAIN datasets

5.6 VISUALIZATION OF INTERPRETABILITY

Figure 4 represents the importance of different frequency bands in our model for the TUAB and
TDBRAIN datasets. The frequency band importance can be directly extracted from the explainer
used in XAIguiFormer. As depicted, the theta/beta ratio significantly contributes to our model.
In psychiatry, this ratio serves as a biomarker for attentional control (Putman et al., 2014), stress
assessment (Wen & Aris, 2020) and anxious inhibition (Putman et al., 2010). Consequently, it is
able to capture functional aspects of normal and abnormal subject behavior (Schutter & Kenemans,
2022). The low and high alpha bands also play a crucial role in our model, though their functions
differ slightly (Debnath et al., 2021). The connectome of high alpha is negatively correlated with
elevated mood, whereas the amplitude in low alpha is positively correlated (Petsche et al., 1997).
This distinction is why we split the alpha band into subbands. Furthermore, the analysis of narrow
EEG bands has proven to be more useful for assessing EEG alterations (Ponomareva et al., 2014).
Overall, identifying these frequency bands significantly enhances the interpretability of our model.

6 CONCLUSION

In this paper, we propose a theoretically inspired architecture, XAI guided transformer (XAIgu-
iFormer) that not only provides trustworthy explanations but also leverages XAI insights to improve
the performance of the transformer. XAIguiFormer takes advantage of multi-band connectomes
constructed from EEG signals as input. By treating the single-band graph as an atomic token, the
connectome tokenizer preserves the interaction between brain regions. To overcome the model’s
difficulty in learning the intrinsic information of EEG data, we introduce dRoFE to integrate the
intrinsic frequency and demographic information into tokens, thereby mitigating the negative im-
pact of individual differences. Our experiment demonstrates that XAIguiFormer outperforms all
baseline methods in the brain disorder classification task. Future efforts can explore self-supervised
pretraining of larger models and expand to additional EEG tasks. Finally, we hope this research
can draw attention to employing XAI to enhance EEG-based deep learning models, extending its
benefits beyond visualization.
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dac Vidal-Piñeiro, Stefano Romeo, Giovanni Volpe, and Joana B Pereira. Sex differences in mul-
tilayer functional network topology over the course of aging in 37543 uk biobank participants.
Network Neuroscience, 7(1):351–376, 2023.

Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. Frontiers in neuro-
science, 10:195498, 2016.

Jiaoyan Pang, Hanning Guo, Xiaochen Tang, Yu Fu, Zhengwu Yang, Yongchao Li, Na An, Jing
Luo, Zhijun Yao, and Bin Hu. Uncovering the global task-modulated brain network in chunk
decomposition with chinese characters. Neuroimage, 247:118826, 2022.

H Petsche, Steven Kaplan, A Von Stein, and O Filz. The possible meaning of the upper and lower al-
pha frequency ranges for cognitive and creative tasks. International journal of psychophysiology,
26(1-3):77–97, 1997.

Natalya Ponomareva, Sergey Klyushnikov, Natalya Abramycheva, Daria Malina, Nadejda Sche-
glova, Vitaly Fokin, Irina Ivanova-Smolenskaia, and Sergey Illarioshkin. Alpha–theta border eeg
abnormalities in preclinical huntington’s disease. Journal of the neurological sciences, 344(1-2):
114–120, 2014.

Peter Putman, Jacobien van Peer, Ioulia Maimari, and Steven van der Werff. Eeg theta/beta ratio in
relation to fear-modulated response-inhibition, attentional control, and affective traits. Biological
psychology, 83(2):73–78, 2010.

Peter Putman, Bart Verkuil, Elsa Arias-Garcia, Ioanna Pantazi, and Charlotte van Schie. Eeg
theta/beta ratio as a potential biomarker for attentional control and resilience against deleteri-
ous effects of stress on attention. Cognitive, Affective, & Behavioral Neuroscience, 14:782–791,
2014.

Dennis J. L. G. Schutter and J. Leon Kenemans (eds.). Theta-Beta Power Ratio: An Electrophysio-
logical Signature of Motivation, Attention and Cognitive Control. Oxford University Press, The
Oxford Handbook of EEG Frequency, 08 2022.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions, 2018.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMLR, 2017.

Yonghao Song, Xueyu Jia, Lie Yang, and Longhan Xie. Transformer-based spatial-temporal feature
learning for eeg decoding, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wolfgang Stammer, Felix Friedrich, David Steinmann, Hikaru Shindo, and Kristian Kersting. Learn-
ing by self-explaining, 2023.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Siyi Tang, Jared Dunnmon, Khaled Kamal Saab, Xuan Zhang, Qianying Huang, Florian Dubost,
Daniel Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved
electroencephalographic seizure analysis. In International Conference on Learning Representa-
tions, 2022.

Hanneke Van Dijk, Guido Van Wingen, Damiaan Denys, Sebastian Olbrich, Rosalinde Van Ruth,
and Martijn Arns. The two decades brainclinics research archive for insights in neurophysiology
(tdbrain) database. Scientific data, 9(1):333, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

K Venkatachalam, A Devipriya, J Maniraj, M Sivaram, A Ambikapathy, and S Amiri Iraj. A novel
method of motor imagery classification using eeg signal. Artificial intelligence in medicine, 103:
101787, 2020.

Leander Weber, Sebastian Lapuschkin, Alexander Binder, and Wojciech Samek. Beyond explaining:
Opportunities and challenges of xai-based model improvement. Information Fusion, 92:154–176,
2023. ISSN 1566-2535.

Tee Yi Wen and SA Mohd Aris. Electroencephalogram (eeg) stress analysis on alpha/beta ratio
and theta/beta ratio. Indonesian Journal of Electrical Engineering and Computer Science, 17(1):
175–182, 2020.

Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
the wild. Advances in Neural Information Processing Systems, 36, 2024.

Ke Yi, Yansen Wang, Kan Ren, and Dongsheng Li. Learning topology-agnostic eeg representations
with geometry-aware modeling. Advances in Neural Information Processing Systems, 36, 2024.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin Ha-
effele, and Yi Ma. White-box transformers via sparse rate reduction. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Zeenat F Zaidi. Gender differences in human brain: a review. The open anatomy journal, 2(1),
2010.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Kanhao Zhao, Boris Duka, Hua Xie, Desmond J Oathes, Vince Calhoun, and Yu Zhang. A dynamic
graph convolutional neural network framework reveals new insights into connectome dysfunc-
tions in adhd. NeuroImage, 246:118774, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(12):11106–11115, May 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DEMOGRAPHICS, PREPROCESSING AND CONNECTOME CONSTRUCTION

Demographic Distribution. As demographic information plays a crucial role in our proposed
dRoFE, it is essential to ensure unbiased dataset splits on demographic distribution. For TUAB
dataset, we follow the official train and eval splits. We further split the official train set randomly into
our train and val sets, while using the official eval set as our test set. For TDBRAIN, we randomly
split the entire dataset into train/val/test sets. Tables 4, 5 and 6 illustrate the demographic distribu-
tions (e.g., age, gender, and brain disorder categories) across the train/val/test splits for TUAB and
TDBRAIN. Overall, the distributions of age, gender, and brain disorder status are balanced across
the splits, minimizing bias and ensuring fair model evaluation.

Table 4: Gender statistics of the TUAB dataset.
Splits Abnormal Normal

train 602 (M) vs. 609 (F) 544 (M) vs. 690(F)
val 65 (M) vs. 70 (F) 59 (M) vs. 78 (F)
test 63 (M) vs. 63 (F) 65 (M) vs. 85 (F)

Table 5: Gender statistics of the TDBRAIN dataset.
Splits ADHD MDD OCD

train 89 (M) vs. 42(F) 117 (M) vs. 110(F) 21 (M) vs. 17(F)
val 13 (M) vs. 15 (F) 13 (M) vs. 36 (F) 6 (M) vs. 2(F)
test 22 (M) vs. 6 (F) 25 (M) vs. 24 (F) 5 (M) vs. 3(F)

Table 6: Age distributions of the TUAB and TDBRAIN datasets.

Age distributions TUAB TDBRAIN

train val test train val test

0-10 7 1 0 34 5 6
10-20 59 3 6 52 9 8
20-30 360 32 34 63 15 18
30-40 321 41 49 69 21 18
40-50 490 45 52 81 16 20
50-60 511 59 51 59 12 11
60-70 381 51 32 27 4 4
>70 316 40 52 11 3 0

Preprocessing. The raw EEG signals are preprocessed with MNE-Python 1.2.1 (Gramfort et al.,
2013), following these steps: Initially, bad channels are automatically detected and removed using
pyprep 0.4.2 (Bigdely-Shamlo et al., 2015; Appelhoff et al., 2022). Subsequently, the signals are
filtered with a 1-45 Hz band-pass zero-phase Hamming windowed sinc FIR filter (-6dB). The filtered
signals are resampled to 250 Hz and segmented into 30-second samples. Next, these samples are
subjected to independent component analysis (ICA) using the Infomax algorithm and then artifactual
components identified by the pretrained classifier MNE-ICLabel 0.4 (Li et al., 2022a) are rejected.
The previously detected bad channels are then repaired using the spherical spline interpolation.
Finally, artifact-free samples are recomputed against the average reference.

Connectome Construction. The multi-frequency band connectomes are constructed using MNE-
Connectivity 0.5.0. First, the 30-second preprocessed signals are further segmented into ten 3-
second epochs. For these 3-second epochs, two complementary methods—coherence and weighted
phase lag index (wPLI) are employed to estimate channel-level functional connectivity on the fol-
lowing 9 frequency bands: delta (2-4Hz), theta (4-8Hz), low alpha (8-10Hz), high alpha (10-12Hz),
low beta (12-18Hz), mid beta(18-21Hz), high beta (21-30Hz), low gamma (30-45Hz) as well as
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the theta/beta ratio serving as a reliable biomarker of attention deficit hyperactivity disorder (Ange-
lidis et al., 2016). Next, the functional connectivity from both methods in each frequency band are
averaged over the ten epochs. The motivation for employing two complementary construction meth-
ods lies in their ability to capture distinct brain activity patterns (Li et al., 2021), thereby providing
multi-view information. Finally, we aggregate two types of functional connectivity by using co-
herence to build node features and wPLI to build edge connections, generating the multi-frequency
band connectomes.

B ATTENTION ENTROPY

Although Figure 2 clearly shows that XAI guided self-attention is more concentrated, we introduce
the attention entropy to quantitatively measure the concentration of attention maps. The attention
entropy for each token (row) is defined as

E(Ai) = −
|Freq|∑
j=1

Ai,j log(Ai,j) (15)

where A represents the attention map. The overall attention entropy for each head is averaged over
all token-wise attention entropy. A small attention entropy suggests that the attention tends to be
concentrated while a large attention entropy indicates that the attention is more distributed across
various tokens.
As illustrated in Figure 2 and the attention entropy, XAI guided self-attention maps are generally
more concentrated than vanilla attention maps. This suggests that XAI guided self-attention is better
at focusing attention on the most relevant dependency relationships, as the attention score is calcu-
lated based on underlying important features. In contrast, the lack of concentration in the vanilla
self-attention can lead to the failure to extract the most relevant information.
To further explore the impact of concentrated attention on the model performance, we conduct ex-
periments to quantitatively evaluate the relationship between attention entropy and BAC under dif-
ferent scenarios. Specifically, we analyzed the entropy-BAC pairs from (1) different training epochs
within the same XAIguiFormer model (Figure 5A) and (2) different warm-up XAI models (Figure
5B). These results show that the correaltion coefficients between attention entropy and BAC are
-0.7 and -0.75, respectively. This negative correlation suggests that more concentrated attention,
characterized by lower entropy, is associated with improved performance.

Figure 5: The attention entropy and BAC relationship curve on the TUAB dataset. (A) The attention
entropy and BAC relationship under different epochs. The pair of attention entropy and BAC is
obtained during the training process. Each point on the scatter plot corresponds to an entropy-BAC
pair at a specific training epoch. (B) The attention entropy and BAC relationship under different
warmup XAI models. The points from left to right correspond to the activation of XAI at 100%
(without XAI), 10%, 30%, 20%, 0% (normal XAIguiFormer) of the total training epoch.
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C DATA AUGMENTATION

Mixup (Zhang et al., 2018) is a popular data augmentation technique in computer vision and natural
language processing, where random pairs of data samples and their corresponding labels are linearly
interpolates to generate synthetic data. However, directly applying Mixup to graph data remains a
challenging problem due to the characteristics of graphs: they have irregular node, not well-aligned
node order and unique typology in non-Euclidean space. Although the multi-band connectomes
in this study have regular node numbers and aligned node order, it is essential to ensure that the
generated connectomes preserve the key topological features of the source connectomes during data
augmentation. Therefore, G-Mixup (Han et al., 2022) is employed to augment connectomes, which
linearly interpolates the estimated graphons from graphs and then generate synthetic graphs from
the mixed graphons. Formally,G-Mixup can be described as

Graphon Estimation: G1 → WG1 ,G2 → WG2 (16)
Graphon Mixup: WI = λWG1

+ (1− λ)WG2
(17)

Graph Generation: {I1, I2, · · · , In}
i.i.d∼ G(k,WI) (18)

Label Mixup: yI = λyG1 + (1− λ)yG2 (19)

where WG1
and WG2

are the estimated graphons, λ controls the contribution for both estimated
graphons, I = {I1, I2, · · · , In} is the set of synthetic graphs generated from mixed graphon WI ,
G(k,WI) is a random graph with k nodes, and the yG1

and yG2
are the ground-truth labels.

Moreover, inspired by G-Mixup and CutMix (Yun et al., 2019), we extend this strategy into G-
CutMix. Instead of applying CutMix directly to non-Euclidean graph data, we replace the removed
structure in the graphon WG1

with the corresponding structure from WG2
, ensuring that the aug-

mented connectomes retain critical topological features from the source connectomes. Finally, both
G-Mixup and G-CutMix are employed as the data augmentation strategies in the XAIguiFormer.

D HYPERPARAMETER CONFIGURATIONS

Table 7: Hyperparameter configurations of XAIguiFormer on the TUAB and TDBRAIN datasets.
Hyperparameters TUAB TDBRAIN

Connectome tokenizer
Input dimensions 19 26

Hidden dimensions 128 128
Layer number 4 4

XAIguiFormer

Head number 4 4
MLP ratio 4 4

Layer scale init 1e-3 1e-3
Layer number 12 12

Training settings

Optimizer AdamW AdamW
Adam β (0.9,0.99) (0.9,0.99)

Peak learning rate 4e-5 5e-5
Warmup learning rate 1e-7 1e-7

Learning rate scheduler Cosine Cosine
Batch size 512 64

Weight decay 1e-4 1e-5
Warmup epochs 5 5
Training epochs 50 100
Label smoothing 0.1 0.1

XAI guided loss weight 0.7 0.7

Data augmentation G-Mixup probability 1.0 1.0
G-CutMix probability 0.5 0.5
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E ROBUSTNESS ANALYSIS OF DIFFERENT EXPLAINERS

To assess the robustness of different XAI algorithms in the XAI guided attention mechanism, we
employ two additional popular XAI methods, GradCAM and Integrated Gradients, as explainers.
Tables 8 and 9 present the performance achieved by these XAI methods on the TUAB and TD-
BRAIN datasets. The results indicate that substituting the original DeepLift does not result in a
significant decline in performance. In fact, a slight improvement in the overall performance is ob-
served when DeepLift is replaced with GradCAM. Consequently, XAIguiFormer is able to achieve
stable performance without being over reliant on a specific XAI algorithm. In addition, the time
complexity of different XAI methods impacts the computational efficiency of XAIguiFormer. Con-
sidering both performance and efficiency, GradCAM and DeepLift are recommended as preferred
explainers for the XAIguiFormer.

Table 8: Robustness analysis of different explainers on the TUAB dataset.

Explainers FLOPs TUAB

BAC AUC-PR AUROC

DeepLift 1.6G 0.8205 ± 0.0027 0.8965 ± 0.0079 0.9000 ± 0.0046
GradCAM 0.95G 0.8240 ± 0.0082 0.8963 ± 0.0039 0.9010 ± 0.0030
Integrated Gradients 35.7G 0.8210 ± 0.0047 0.8923 ± 0.0069 0.8964 ± 0.0051

Table 9: Robustness analysis of different explainers on the TDBRAIN dataset.

Explainers FLOPs TDBRAIN

BAC AUC-PR AUROC

DeepLift 1.6G 0.6635 ± 0.0080 0.5961 ± 0.0136 0.7814 ± 0.0156
GradCAM 0.95G 0.6553 ± 0.0163 0.6149 ± 0.0155 0.7996 ± 0.0143
Integrated Gradients 35.7G 0.6569 ± 0.0138 0.5979 ± 0.0231 0.7874 ± 0.0194

Furthermore, we evaluate the robustness of the calculated frequency band importance by changing
the XAI algorithms. Figures 6 and 7 illustrate the frequency band importance generated by Grad-
CAM and Integrated Gradients, respectively. The rankings of the theta/beta ratio, high and low α
on TUAB remain consistent across different XAI methods. Similarly, on the TDBRAIN dataset, the
rankings of the theta/beta ratio, low α and high β are largely consistent. These results demonstrate
that the ranking of the most important frequency bands remains stable, indicating strong robustness
across different XAI algorithms.

Figure 6: Frequency band importance generated by GradCAM on the TUAB and TDBRAIN datasets
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Figure 7: Frequency band importance generated by Integrated Gradients on the TUAB and TD-
BRAIN datasets

F ABLATION STUDIES ON THE CONTROLLING PARAMETER α

To investigate the impact of the controlling parameter α in the XAI guided loss function, we con-
duct a series of experiments with different settings ranging from 0.1 to 0.9 in increments of 0.1.
Figure 8 presents the mean and standard deviation of the BAC across five different random seeds on
the TUAB and TDBRAIN datasets, where GradCAM is employed as the explainer within XAIgu-
iFormer. The results indicate that the optimal α value is 0.8 for TUAB and 0.9 for TDBRAIN.
However, when alpha reaches 0.9 on TUAB, the BAC begins to decline. Therefore, we conclude
that alpha = 0.7 or 0.8 serves as a generally effective setting for both datasets. In addition, these
experimental results indicate that when α is lower than 0.3, the performance declines significantly.
This is likely because, with a low α, the explainer’s guidance becomes insufficient to meaningfully
influence the learning process, leading to degraded performance.

Figure 8: Ablation studies of the controlling parameter α on the TUAB and TDBRAIN datasets

G LIMITATIONS AND OUTLOOK

First, although we have evaluated XAIguiFormer on two large-scale clinical datasets (TUAB and
TDBRAIN), they may not fully capture the diversity of real-world clinical scenarios. Our work
represents an initial step toward exploring the positive impact of explanation-guided learning on
enhancing performance in the EEG field. Second, it should be noted that XAIguiFormer currently
provides explanations at the frequency band level, rather than at the level of functional connectivity.
This limitation arises because XAIguiFormer focuses on token importance (query, key, and value
vectors) to calculate refined attention values, which restricts explanations to the token level. As a
result, the explanations are confined to the token (frequency band) level and do not offer detailed
insights into the functional connectivity patterns. In the future, we plan to explore additional clinical
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datasets to further verify the effectiveness of our model. Additionally, we aim to explore pretraining
strategies for XAIguiFormer to further improve its performance.
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