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Abstract

The increasing reliance on ML models in high-stakes tasks has raised a major
concern about fairness violations. Although there has been a surge of work that
improves algorithmic fairness, most are under the assumption of an identical
training and test distribution. In many real-world applications, however, such an
assumption is often violated as previously trained fair models are often deployed
in a different environment, and the fairness of such models has been observed to
collapse. In this paper, we study how to transfer model fairness under distribution
shifts, a widespread issue in practice. We conduct a fine-grained analysis of how
the fair model is affected under different types of distribution shifts and find that
domain shifts are more challenging than subpopulation shifts. Inspired by the
success of self-training in transferring accuracy under domain shifts, we derive
a sufficient condition for transferring group fairness. Guided by it, we propose
a practical algorithm with fair consistency regularization as the key component.
A synthetic dataset benchmark, which covers diverse types of distribution shifts,
is deployed for experimental verification of the theoretical findings. Experiments
on synthetic and real datasets, including image and tabular data, demonstrate that
our approach effectively transfers fairness and accuracy under various types of
distribution shifts'.

1 Introduction

Machine learning’s social impact has broadened as it is widely used to aid decision-making in
real-world applications, such as hiring, loan approval, facial recognition, and criminal justice. To
avoid discrimination against a subset of the population (e.g., w.r.t race or gender), many efforts on
algorithmic fairness have been carried out [12, 21, 65, 44, 46, 15, 7]. Although existing work has
achieved remarkable success in ensuring fairness, most of them assume the distribution of data at
test time is identical to that in the training set. However, recent studies show that the fairness of a
model is likely to collapse when encountering a distribution shift. For example, [19] observes that a
fair income predictor trained with data from one state might not be fair when used in other states.
[50] tries to maintain fairness in healthcare settings, but a model that performs fairly according to the
metric evaluated in “Hospital A” shows unfairness when applied to “Hospital B”. Such observations

'Code is available at https://github.com/umd-huang-lab/transfer-fairness.
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Figure 1: Illustration of intra-group expansion assumption in the input space. An example of
gender classification task with the sensitive attribute being race. Intra-group expansion assumes that
different groups are separated but every group is self-connected under certain transformations. If a
model has consistent predictions under those transformations, we can propagate labels within each
group. Under this assumption, we propose to obtain fairness and accuracy in both domains by a
self-training algorithm with fair consistency regularization.

motivate us to find the reason behind the collapse of fairness and investigate how to transfer fairness
under distribution shifts. Specifically, when we have labeled data in the source domain and unlabeled
data in the target domain, we investigate how to adapt the fair source model to a target domain with
the goal of achieving both accuracy and fairness in both domains.

Intuitively, the fairness of a model in the target domain strongly depends on the nature of distribution
shifts. In this paper, we only consider cases where the oracle model is the same in two domains. We
characterize distribution shifts by assuming two domains share the same underlying data generation
process where data is generated from a set of latent factors with a fixed generative model, and the shift
is caused by the shift of the marginal distribution of some factors. We categorize distribution shifts
into three types [32]: 1) Domain shift where source and target distributions comprise data from related
but distinct domains (e.g., train a model in hospital A but test it in hospital B). 2) Subpopulation shift
where two domains overlap, but relative proportions of subpopulations differ (e.g., the proportion of
female candidates increases at test time). 3) Hybrid shift where domain shift and subpopulation shift
happen at the same time. We find domain shift more challenging for transferring fairness since the
model’s performance is unpredictable in unseen domains. Such a finding is supported empirically on
a synthetic dataset that is developed to simulate diverse types of distribution shifts. While recent work
explores methods to transfer fairness [54, 48, 23], most considered settings fall into subpopulation
shifts. In this paper, we consider all three types of distribution shifts. Our analysis suggests we
encourage consistent fairness under different factor values.

We draw inspiration from recent progress on self-training in transferring accuracy under domain
shifts [61, 5, 70, 3, 49, 55]. The success of self-training is due to an expansion assumption and a
consistency regularization algorithm. The expansion assumption also assumes two domains share
one underlying generative model and the support of the distribution on each class is a connected
compact set under data transformations (i.e., has a good continuity). Under the expansion assumption,
[61] and [5] prove that self-training, which enforces consistent predictions for the same input under
different transformations (i.e., under shifts of nuisance factors), can propagate labels from the source
to the target domain. This approach exhibits superior performance in transferring accuracy [70, 49],
but does not consider fairness.

Taking demography into consideration, we relax the expansion assumption to a more realistic intra-
group expansion assumption, as shown in Figure 1, which only requires continuity of the underlying
distribution within every group (i.e., data points with the same class and sensitive attribute) rather
than the entire class. Based on the intra-group expansion assumption, we derive a sufficient condition
that guarantees fairness in both source and target domains. This sufficient condition suggests that
ensuring the trained model gains the same consistency across groups under a fair teacher classifier
guarantees fairness in both domains. However, such a teacher classifier is not available in practice,
and we need a practical treatment.

Guided by the theoretical algorithm, we propose a practical self-training algorithm to minimize
and balance consistency loss across groups. Our algorithm builds upon Laftr [42], an adversarial
learning method for fairness, and FixMatch [55], a self-training framework. To encourage similar
consistency in different groups, we propose a novel fair consistency regularization. By reweighting
the consistency loss of each group dynamically according to the model’s performance, the algorithm



encourages the model to pay more attention to the high-error group while training. Our method
results in a model that is fair in source and has similar consistency across groups. As indicated by
our theory, it would have similar accuracy across groups in the target domain so that we can transfer
fairness. We evaluate our method under different types of distribution shifts with the synthetic and
real datasets. Experiments show that our approach achieves high accuracy and fairness in the target
domain without sacrificing performance in the source domain. To the best of our knowledge, this is
the first work using self-training to transfer fairness under distribution shifts.

Summary of contributions: (1) We provide a fine-grained analysis of fairness under distribution
shifts and develop a synthetic dataset to study model fairness under different types of distribution
shifts. (2) Theoretically, we derive a sufficient condition for transferring fairness under distribution
shifts. (3) Algorithmically, we propose a theory-guided algorithm for transferring fairness with a
fair consistency regularization as the key component. (4) Experimentally, we evaluate our method
on synthetic data, real image data, and real tabular data. All results show the effectiveness of our
approach in transferring fairness.

2 Preliminaries and Notations

Transfer Fairness. Let X, A, Y and X', A, ) denote random variables and sample space of input
features, sensitive attribute, and label. For simplicity, we assume binary sensitive attribute and binary
classification, while our method can easily extend to multi-sensitive attributes and multi-class cases
(see Appendix E). We aim to learn a classifier g : X — ) and are interested in its fairness under
distribution shifts. Specifically, with .S and T" denoting source and target domains, we study how
to transfer fairness and accuracy when Pg(X, A,Y) # Pr(X, A,Y), with the access to X, A, Y in
the source domain, but only X, A in the target domain. In the self-training algorithm, we use gy to
denote a teacher classifier, and g* to denote the oracle classifier. We use the word “group” to denote
the set of data that has the same label and sensitive attribute.

Fairness Metric. Since we consider classification problems in this paper, we expect the fairness
metrics could encourage models to achieve similar classification performance across groups. We use
two metrics in this paper, equalized odds and variance of group accuracy. Equalized odds [27] is a
widely used unfairness metric in classification problems that requires the true positive rate and the true

negative rate to be the same among groups. It is defined as Agqqs = 2 211/:0 |}P’(Y =ylA=0,Y =
y)—PY =ylA=1Y =y) /
the variance of group accuracy which is defined as Ve = Var({P(Y = y|A = a,Y =y),Va,y}).
Smaller V.. indicates the model is fairer since it performs similarly across groups. Note that the

variance of group accuracy can help avoid trivial fairness where a model with constant output has
Aoqds = 0, but such fairness is meaningless.

,where Y = g(X) is the prediction. Additionally, we also evaluate

3 Fairness under Distribution Shifts

In this section, we provide a fine-grained analysis of fairness under various types of distribution shifts
based on a unified framework of distribution shift characterization.

A Unified Framework to Characterize Distribution Shifts. Following [62], we characterize
distribution shifts by assuming a unified latent variable model for the underlying data generation
process. We denote the underlying factors as Y', Y2, ..., Y and data point as X . Two of the factors
are label Y (i.e. Y) and sensitive attribute Y'¢ (i.e. A). We call other factors nuisance factors since
they are irrelevant to the classification task.

Assumption 1. (Underlying data generation process) We assume the data is generated from a latent
generative model as y** ~ P(Y'E) and x ~ P(X|Y1E = yUK). The generative model is fixed
Ps(X|Y1E = ylE) = Pp(X|YVE = y1K) but the marginal distribution of factors varies in two
domains Pg(Y V) £ Pp(Y'ER), causing the distribution shift Ps(Y VK X) #£ Pp(YEE | X)),

It is realistic to assume two domains share the same data generation process. For example, the
underlying physical process of cell imaging is fixed, while the distribution of underlying factors (e.g.
gender, age or equipment) may vary in two hospitals (i.e. two domains), resulting in the distribution
shift of the observed tissue images. Based on the unified framework, we consider two major types



of distribution shifts, namely subpopulation shift and domain shift, which are widely considered in
many practical applications [32].

Definition 3.1. (Subpopulation shift) We say it is a subpopulation shift, if for any factor Y, the
sample space of it remains the same in two domains (i.e., Vi = V%), but the marginal distribution
of at least one factor changes (e.g., Ps(Y7) # Pr(Y7)), resulting in Ps(Y V) # Pp(Y1E) and
Pgs(Y1HE X) # Pp(YEE X).

Definition 3.2. (Domain shift) We say it is a domain shift, if at least one nuisance factor Yii#li#
a, has different sample space in two domains, Jy* € Vi, but y' ¢ Vi, resulting in Ps(Y15) #
Pr(YUE) and Ps(YK, X) # Pp(YEE, X).

Intuitively, under subpopulation shift, the sample space overlaps, and only the marginal distributions
of factors vary in the two domains. For example, the proportion of females versus males in training
and deployment time differs. In contrast, under domain shift, the source model has never seen the
data with factor values that only exist in the target domain. For instance, the source model is unaware
of the equipment used for cell imaging at deployment time.

Why do distribution shifts cause unfairness? Suppose the marginal distributions of a binary
nuisance factor Y differ in two domains with Pg(Y"*) # Pp(Y"). The unfairness in two domains are

Adigs =Ps(Y' =0) x AL iulyico + Ps (YT = 1) x ASyulyiza (D
A;Fdds = IP)T(Yi =0) x AdeS yi=0 T ]P’T(Yi =1) x Ades yi=1-

Due to the same generation process where Pg(X|Y? = ') = Pp(X|Y? = y'), we have
A5 slvizyi = AT Jyizyi, Vy' € {0,1}. Under subpopulation shift, Y* has the same sample space
in two domains but with different proportions (e.g., Ps(Y* = 0) = 0.9,Ps(Y? = 1) = 0.1, P (Y =
0) = 0.1,P7(Y* = 1) =0.9), while under domain shift the sample space differs (e.g. Ps(Y* = 0) =
1,Pr(Y? =1) = 1). Itis easy to see from (1) that if a model is perfectly fair on data with Y* = 0
but unfair on data with Y = 1, then the model is highly fair in the source domain but highly unfair
in the target domain under both cases. Therefore, if the model has inconsistent performance on data
generated from different nuisance factor values, then the shifted marginal distribution of those factors
may cause fairness collapse.

How to transfer fairness under distribution shifts? Based on the above analysis, one way is to
train the model to be fair under any values of factors. It is possible under subpopulation shift as stated
in the following proposition (see proof and discussion in Appendix B).

Proposition 3.1. (Transfer fairness under subpopulation shift) Consider the subpopulation shift that
is caused by the shifted marginal distribution of nuisance factor Y (i.e., Ps(Y") # Pp(Y")), while
Y = V5 =Y. If model f is strictly fair in source domain under any value of factor Y satisfying
Ps(g(X) = ¢'[Y* =0,V = ¢, Y = ) = Ps(g(X) = ¢/|[Y* = LY = ¢/, Y’ = ¢), Wy’ €
Vi yt € {0, 1}, then model g is also fair in target domain with A 445 = 0.

Our empirical results (Figure 3) also support this finding. However, domain shift is more challenging.
The source model’s performance on target data is unpredictable due to the distinct sample space. One
promising way to tackle domain shift is to enforce the model’s invariance to nuisance factors so that
the source model would have the same behavior on target data. Note that this solution also works for
subpopulation shift since it leads to the case in Proposition 3.1 directly. The above analysis motivates
us to transfer fairness by encouraging consistent fairness under different nuisance factor values.

4 Transfer Fairness via Fair Consistency Regularization

4.1 Theoretical Analysis: A Sufficient Condition for Transferring Fairness

In reality, distribution shifts are usually hybrid, and we may not know all the underlying factor values.
In this section, we consider a general case where we only have access to input X, label Y, and
sensitive attribute A. We use data transformations to simulate the shift of nuisance factors. Our
theory is based on [01] and [5] which prove that encouraging consistency under transformations can
propagate labels so that to transfer accuracy. In this section, we find that in order to transfer fairness,
we need a fair label propagation process that requires the model to have similar consistency across
groups. We introduce assumptions and our findings as follows.



Assumption 2 (Separability of the input). Ler SY and TY denote the sample space of X|a=q,y =y
in source and target domains. The ground truth class and sensitive attribute for x € SY UTY are
consistent, which are y € {0,1} and a € {0,1}. We assume the sample spaces of X in two domains
are S = Uy, U, SY and T = U, U, TY, where groups are separated with 1) SY N SY, = TY N TY, =

SYNTY =0,Vy,a# d, and2) ngsgf :ngﬂT(f,/ = S}l’ﬂTg =0,Va,a',y # v

This is a realistic assumption as illustrated in Figure 1 where the data from two domains are from
the same underlying conditional distribution X |y 4, and groups are separated by label and sensitive
attribute. We define UY = 3 (SY +TY) as the group distribution, and U as the population distribution
on the entire data. Next, we characterize the good continuity of group distributions with the definition
of neighbor and intra-group expansion assumption.

Definition 4.1 (Neighbor). Let T denote a set of input transformations and define the transformation
setof x as B(x) £ {x'|3t € T,s.t. ||z’ —t(z)|| < r}. Foranyx € SYUTY, we define the neighbor

of x as N'(x) :== (SYUTY)N{x'|B(x) N B(x') # 0} and define the neighbor of a set V € X as
N(V) = UmeVm(uyuaSZ{UTf)N(x)-

Intuitively, two examples are neighbors if they are near each other after applying some transformations.
Note that we only consider neighbors that have the same class and sensitive attribute (i.e., from the
same group). Based on this definition, we characterize the continuity of group distribution with
intra-group expansion assumption where any small set has a large neighbor in its group.

Assumption 3 (Intra-group expansion). We say that UY satisfies (o, ¢)-multiplicative expansion for
some constant o« € (0,1) and ¢ > 1, if for all V- C UY with Py (V') < «, the following holds:
Pyy (N (V) = min{cPyy (V). 1}

Different from the expansion assumption proposed in [0 1] which considers the class continuity, intra-
group expansion assumes group continuity. As shown in Figure 1, this is more realistic since groups
are separated by both label and sensitive attribute. We can also interpret it as the transformations that
change the value of nuisance factors will generate neighbors within the same group.

This assumption allows us to propagate labels within the group from one domain to another by

encouraging consistency under transformations. We use Ry»(g) = Py 3’ € B(z),s.t. g(z) #
g(x")] to denote the consistency loss of classifier g on the group distribution UY, which is the fraction
of examples where g is not robust to input transformations. Since we only have partial supervision
(i.e., no labels in the target domain), we use a self-training framework to obtain a model that is
accurate and fair in both domains (i.e., on UY). Based on the theory of self-training in [61], we
derive a sufficient condition in Theorem 4.1 that bounds the unfairness and error on the population

distribution. We use 0-1 loss to evaluate the error of g as eyv (g) = Pyv[g(x) # g* ()], and the

disagreement between g and a teacher classifier g as Ly (g, gic) = Pyv[g(z) # gie(2')].

Theorem 4.1 (Guarantee fairness). Suppose we have a teacher classifier g;. with bounded unfairness

such that |e v (gee) — ey’ (9ic)] < 7v,Va,d’ € Aandy,y € Y. We assume intra-group expansion

where UY satisfies (@, E)rimultiplicative expansion and ey (gie) < @ < 1/3 and ¢ > 3,Va,y. We

define ¢ = min{1/a, ¢}, and set ju < ey (gec), Va, y. If we train our classifier with the algorithm
minmax Rig(g), st Luz(9.90) <p Va.y

geG ay
then the error and unfairness of the optimal solution § on the distribution U are bounded with
2c
g) < )+ —Ru(9), 2
e(9) < ——qeu(gee) + —— Ru(9) 2
. 2 .
Rodds(9) < ——7 (v + p+ cmax Ryy () 3)

Remark. This sufficient condition suggests we fit a teacher classifier which is fair on the population
distribution and minimize the consistency loss in every group. The unfairness of the resulting model is
bounded by the quality (unfairness and error) of the teacher classifier and the worst-group consistency
loss. Intuitively, we can understand the consistency loss as the model invariance to the nuisance
factors. With a group-balanced consistency loss, the model would have similar invariance to the
nuisance factors resulting in similar group performance on the unseen data so that to transfer accuracy
and fairness. We also bound the variance of group accuracy with the variance of consistency loss
(Appendix C). Both bounds suggest we balance and minimize the consistency loss across groups.

5



4.2 Practical Algorithm: Fair Consistency Regularization

There are two challenges in realizing the theoretical algorithm in Theorem 4.1. First, we need a
high-quality teacher model, but the model trained with labeled source data is only fair and accurate
in the source domain. Second, existing consistency regularization methods do not consider fairness.
We tackle the first problem by leveraging the iterative self-training paradigm that updates the teacher
model with the student model while training, thus making it fairer and fairer. We tackle the second
problem by proposing a novel fair consistency regularization.

Algorithm. Figure 2 shows the overall

training diagram. There are three ma- - N

; Adversary [ —@
jor components:

(1) In every training epoch, we use revorsl oyer

the student model obtained in the last

|
epoch as the teacher model and auto- Z

prediction pseudo-label

matically fit the teacher model by ini- gt
. P B shared shared
tializing the student model to be the | pared 3
same as the teacher model. In other I [: ey

. .. . Encod| Classifi
words, only one model is training itself e CLLES
iteratively.

. Fi 2: Training di .
(2) To ensure the accuracy and fairness teure raming clagram

in the source domain, we adopt Laftr

[42], an adversarial learning method consisting of a classification loss L., and a fairness loss L 4.
(3) To transfer fairness and accuracy, we do consistency training on all unlabeled data (including
source and target data). Following FixMatch [55], we use the pseudo-labels generated by the teacher
model as supervision for consistency training where the model should have consistent predictions
under transformations. Different from FixMatch, we propose a fair consistency regularization with a
balanced group consistency 108S L fconsis-

We train the model with the weighted summation of these three losses as shown in Figure 2. We defer
the detailed loss functions of L5 and L 4, with a detailed algorithm description to Appendix D.

Fair Consistency Regularization. To tighten the upper bound of the unfairness in Theorem 4.1, we
need to minimize and balance consistency loss across groups. However, the consistency regularization
in FixMatch [55] does not distinguish groups and might amplify the bias as observed in [76] and
our experiments. Instead, we propose to use a fair consistency regularization that evaluates the
consistency loss per group and minimizes the balanced consistency 10ss L fconsis defined as below.

1 1
Lfconsis(g) = ZZ)‘ZLZ(Q) (4)
y=0a=0

le max(gie(23)) 2 7) H(argmax(gee (€7)), 9(H(27)))  (5)

a

here LY
w u(g) = Zwa]l

where ¥ denotes an input with sensitive attribute A = a and class Y = y. LY(g) is model g¢’s
consistency in the group of {x¥}, and \Y is the corresponding weight of the group consistency
loss. Here, we abuse the usage of g(x) to denote the output logits of model g on input « and thus,
argmax(gs.(x?)) is the pseudolabel generated by teacher classifier. ¢(z¥) is the transformed input
as defined in Definition 4.1. We use a cross-entropy loss H (+) to encourage the consistency under
transformation ¢(-) and only consider examples that the teacher model has high confidence in with a
confidence threshold 7. Note that data is classified into groups according to the true sensitive attribute
and pseudolabels. To balance the group consistency loss, we propose to weigh each group inversely
with the number of confident pseudolabels, and set A\¥ as

A\ 1 Yy — \Y \Y
M T =) T ©
The weights will dynamically change while training. Heuristically, if the teacher model is only
confident in a few examples in a group, the model’s consistency in this group is more likely to be low.
With the proposed weights, a larger penalty will be applied to such groups. Therefore, the proposed
fair consistency regularization will enforce the model to pay more attention to high-error groups. By
doing so, the trained model would enjoy similar consistency loss across groups. Together with the
self-training algorithm, it would have similar accuracy across groups in the target domain.
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Figure 3: Accuracy and unfairness (error bar denotes the standard deviation) in two domains under
subpopulation shifts (Sshift 1, Sshift 2), domain shift (Dshift), and hybrid shift (Hshif). (S) and (T)
denotes the evaluation in the source and target domains respectively. Results show that domain shift
is more challenging than subpopulation shift, and our method can effectively transfer accuracy and
fairness under all the distribution shifts considered.

5 Related Work

This section features related work for transferring fairness. Another discussion of related work in fair
machine learning, domain adaptation, and self-training is deferred to Appendix A. Out-of-distribution
fairness remains an under-explored area. We categorize prior works into five classes. 1) Group-wise
distribution matching. [51] derives an upper bound for fairness in the target domain which suggests
training a fair model in the source domain and matching the distributions of relevant groups from
two domains in feature space at the same time. [64] also applies group-wise distribution matching
but with Wasserstein distance. Such methods are hard to achieve if we do not have supervision in
the target domain and it also shares the drawback of distribution matching methods. 2) Reweighting.
When the proportions of groups differ in two domains, reweighting the examples in the source domain
can approximate the target distribution. [16] uses reweighting to deal with fairness problems under
covariate shift and [23] uses reweighting together with a fairness test to guarantee fairness under
demographic shift. Reweighting methods strongly rely on the support cover assumption which is
not satisfied under domain shift. 3) Distributionally robust optimization (DRO). This line of work
considers unknown target data that can be any arbitrary weighted combinations of the source dataset
and train a fair model that is robust to the worst-case shift [48, 43]. These methods also assume
subpopulation shift instead of domain shift. 4) Causal inference. [54] conducts causal domain
adaptation and DRO based on a well-characterized causal graph that describes the data construction
and distribution shift. Causal methods highly rely on the correct causal graph which is hard to obtain
in reality. For example, [50] finds that the causal graph in real applications (e.g. predicting the
skin condition in dermatology) is far more complicated which violates normal assumptions, thus
making those approaches inapplicable. 5) Others. [10] derives bound for fairness violation under
distribution shifts. There are also studies that aim to maintain fairness under distribution shifts
through online learning [69], and loss curvature matching [59]. To the best of our knowledge, this
is the first work that uses self-training to transfer fairness. Some work also studies self-supervised
learning and fairness, yet they use unlabeled data and self-training to improve the in-distribution
fairness [14, 68, 9] which is different from our goal.

6 Experiments

6.1 Evaluation under Different Types of Distribution Shifts with a Synthetic Dataset

In order to study the fairness under distribution shifts and verify our theoretical findings, we develop
a synthetic dataset to simulate different types of distribution shifts.

Synthetic dataset. The synthetic dataset is adapted from the 3dshapes dataset [3 1] which contains im-
ages of 3D objects generated from six independent latent factors (shape, object hue, scale, orientation,
floor hue, wall hue). This dataset satisfies our assumption on the shared underlying data generation
process. We simulate different types of distribution shifts by varying the marginal distributions of the
latent factors and sample the data accordingly (see Appendix D.1 for details).



Distribution shifts. We set the image as input X, and select three latent factors to be class (Y =
shape), sensitive attribute (A = object hue), and a nuisance factor that might shift (D = scale). We
consider four widely observed distribution shifts in reality ( Pg(X,Y, A, D) # Pr(X,Y, A, D)):
(1) Sshift 1: Subpopulation shift where only the nuisance factor shift (i.e. more small objects in
source but more large objects in target), Pg(Y, A) = Pp (Y, A), Ps(D) # Pp(D).

(2) Sshift 2: Subpopulation shift where A and Y have different correlations in two domains (i.e. most
red objects are cubes in source but are capsules in target), Ps(Y, A) # Pr(Y, A), Ps(D) = Pr(D).
(3) Dshift: Domain shift where the nuisance factor has different sample spaces (i.e. only small objects
in source but only large objects in target), Ps(Y, A) = P (Y, A), Ps(D) # P7(D), Y # V4.

(4) Hshift: Hybrid shift of (2) and (3).

Baselines. We do shape classification task with an MLP model and compare our method with
four baselines: Base (standard ERM); Laftr; Laftr+DANN (a combination of Laftr and a domain
adaptation method [22]); Laftr+FixMatch. In our method, we also use Laftr and FixMatch but with
the proposed fair consistency regularization. Since the shifted nuisance factor is scale, we use random
padding and cropping as transformations in our method and Laftr+FixMatch. We train Base and Laftr
with labeled source data and train others with unlabeled target data as well.

Domain shift is more challenging than subpopulation shift. Figure 3 shows that under subpopula-
tion shifts, the fair source model trained with Laftr also has high accuracy and fairness in the target do-
main although it has not seen any target date. This is because the sample space is shared (e.g. small and
large objects both exist in the source data), and the model has similar performance under all factor val-
ues. Thus, good performance remains even if the proportion of data changes, verified Proposition 3.1.
In contrast, under domain shift and hybrid shift, the fair source model performs poorly in the target
domain where data is sampled from a different sample space, suggesting the difficulty of domain shift.

Our method can transfer fairness and accuracy under various types of distribution shifts. Under
domain shift, the domain adaptation method DANN does not help in transferring fairness or accuracy.
Consistency regularization forces the model to behave consistently under cropping and padding,
resulting in a model that has similar predictions regardless of the object’s scale and thus transfers
accuracy. However, it may cause bias as shown in the results of Laftr+FixMatch. With the proposed
fair consistency regularization, the model gains similar consistency across groups, resulting in a
similar accuracy in all groups in the target domain and thus transfers fairness. Therefore, our method
achieves high accuracy and fairness in two domains under all the considered distribution shifts.

Source Target
Acc Unfairness Acc Unfairness

Method Vacc Aodds Vacc Aodds

Base 92.85+049  2.30+0.97 4.81x0.69 74.49+0.83  5.79+349  9.90+1.27
Laftr 93.24+041  1.19+0.46  2.44+0.51 74.35+1.46  6.92+0.72  9.79+1.54
CFair 92.51+0.22  1.76+0.53  4.75+0.85 73.53+0.89  7.51x0.73  7.26+1.95
Laftr+DANN 91.33+0.08  2.12+1.72  2.700.67 74.28+1.63  6.25+259  8.27+2.11
CFair+DANN 90.89+0.76  2.01x0.70  4.43+1.36 74.62+1.06  6.23x0.90  5.26+2.07
Laftr+FixMatch ~ 96.62:0.06  0.77+021  2.23:0.44 83.87+0.48  8.21:0.67  9.32x1.01
CFair+FixMatch ~ 96.13:053  1.28+053  2.78:0.74 83.11x049  7.87+1.86  7.89+0.40
Ours (w/ Laftr) 96.08+0.07  0.96+039  2.59+0.35 85.52+0.40  2.82:087 5.70:0.52
Ours (w/ CFair) 95.65+0.22  1.56x037  3.85+0.97 84.48+0.42  2.88+0.99  5.43+0.65

Table 1: Transfer fairness and accuracy from UTKFace to FairFace

6.2 Evaluation on Real Datasets

Evaluation on images. We use UTKFace [71] as the source data and FairFace [30] as the target
data. Although both are facial images, there is a distribution shift between them due to different
image sources. We consider a gender classification task with race as the sensitive attribute. We use
VGG16 [53] as the model and RandAugment [ | 8] (excluding transformations that may change the
group) as the transformation function. Additional to previous baselines, we also use CFair [73] as
the method for in-distribution fairness. As shown in Table 1, there is indeed a distribution shift as
the source model trained with Laftr or CFair is no longer accurate or fair in the target domain. The
domain adaptation method has a limited effect on transferring accuracy and fairness. As expected,
self-training (Laftr+Fixmatch and CFair+Fixmatch) significantly improves the accuracy in the target
domain, but the unfairness is high. With the proposed fair consistency regularization, our method
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Figure 4: Comparison of Pareto frontiers. Upper left is preferred. Our method outperforms baseline methods in
achieving accuracy and fairness at the same time.
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Figure 5: Unfairness and accuracy tested on NewAdult. CA as the source domain (red star) and other states as
the target domain (blue dots). Red lines indicate the average of unfairness. The relative decrease is calculated by
comparing with Laftr.

outperforms it remarkably on fairness with a 70% decrease in the variance of group accuracy and a
30% decrease in the equalized odds. We further sweep the weights of losses and draw Pareto frontiers.
As shown in Figure 4, our method significantly outperforms others in achieving accuracy and fairness
at the same time.

Evaluation on tabular data. We further evaluate our method on the NewAdult dataset [ 19] which
contains census data from all states of the United States. We consider gender as the sensitive attribute
and do income classification with an MLP as the model. We set CA as the source domain and all
the other states as the target domain. We use random perturbation on tabular data (see details in
Appendix D) as the transformations. Results are shown in Figure 5. When applied to other states,
the fair model trained on CA becomes unfair (Figure 5a). Our method improves the fairness in
most states with a slight improvement in accuracy (Figure 5b). Compared with the one without fair
consistency regularization, our method achieves better fairness with a decrease in unfairness in most
states (Figure 5c¢).

6.3 Ablation Study

The role of transformation. We design transformation functions based on our domain knowledge
of latent factors. To investigate the importance of transformations, we test a weaker set of trans-
formations, which includes only cropping and flipping, on the UTKFace-FairFace experiment and
report the performance in Table 2. Compared with RandAugment in Table 1, consistency under
weak transformations leads to a less effective transfer of accuracy since the neighbor generated
transformations is much smaller. The limited transformations also restrict the performance of our
method on tabular data (see Appendix E). Though the ability to transfer accuracy is limited by weak



Source Target

Acc Unfairness Acc Unfairness
Method Vace ANodds Vace ANodds
Laftr+FixMatch ~ 94.08+0.70  1.64+046 3.51+1.46 77.05+£026 12.23+3.83  6.55+1.54
CFair+FixMatch  94.09:033  0.97:036  2.160.97 77.25£021 12932266  9.77+0.95
Ours (w/ Laftr) 94.25+022  1.0620.46  2.09:0.55 77.32+021  2.35+1.67 4.27+1.41

Ours (w/ CFair)  94.24:026 1.67:038 4.43:0.63 77.96+0.38  3.34+1.08 5.70+1.14

Table 2: Transfer fairness and accuracy from UTKFace to FairFace with weak transformations

transformations, our method can still make the transfer process fair as there’s a significant decrease in
unfairness, as shown in Table 2.

Fair consistency is essential in transferring fairness.

To see whether enhanced consistency improves accuracy %0 L R
and whether unbalanced consistency leads to unfairness g:: ésa

as suggested by Theorem 4.1, we evaluate the accuracy £, £

and consistency of each group in the UTKFace-FairFace o
experiment on the target data. The consistency is mea- epoch epoch
sured by testing the model’s agreement on the outputs 100 = =

under two random transformations. As shown in Figure 6, 7 = g%

groups that obtain higher consistency have higher accuracy, g ® % j:

which validates the ability of consistency regularization w0 %

for transferring accuracy. The training methods that use O e B0 Mo e e

standard consistency regularization (e.g. Laftr+FixMatch)  Figure 6: Per-group accuracy and consis-
have been observed to be unfair in the target domain. Fig- tency. Compared with the standard consis-
ure 6 shows that it is because the model has imbalanced tency regularization (SCR), the model trained
consistency across groups. With our fair consistency reg- with fair consistency regularization (FCR)
ularization, the model gains similar consistency for all has more balanced consistency and accuracy.
groups, resulting in similar group accuracy.

The role of components in fair consistency regu-

. . . Acc Unfairness
larization. Table 3 shows the ablation study. We  Method Ve Dodas
can see that the consistency in both domains matters. oy 85.52:040 2.82:087 5.702052

Giving every group the same Welght instead of using w/o consistency in target ~ 82.43+1.05  6.80£1.30  5.85:0.40
d . iohts lead . d fai Fi w/o consistency in source  82.51.58 6.63x0.71  8.18x1.27

ynamic weig ts leads to mcreased unfairness. Fix- w/o dynamic weights 84.34+0.19  6.86:0.50  7.680.81
ing the teacher classifier to be the fair source model, _ w/o updating gic 79.13:052  3.49:063  6.65:131
we Qbserve a significant decre:ase n the accuracy, SUg- - myple 3: Ablation study on UTKFace-FairFace task
gesting the important role of iterative self-training in

our algorithm.

7 Conclusion

In this paper, we explore how to transfer fairness under distribution shifts. We derive a sufficient
condition and present a theory-guided self-training algorithm based on an intra-group expansion
assumption. The key component of our algorithm is fair consistency regularization. We simulate
different types of distribution shifts with a synthetic dataset and examine our theoretical findings with
it. Abundant experiments with synthetic data and real data have shown that our method has superior
performance in transferring fairness and accuracy. Like other self-training methods, one limitation
of our method is the reliance on a well-defined data transformation set. Future work will relax this
limitation for application to more real-world problems.
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(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see Section D

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] see Section D

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |
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