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Abstract

Attention weight is a clue to interpret how
a Transformer-based model makes an infer-
ence. In some attention heads, the attention fo-
cuses on the neighbors of each token. This al-
lows the output vector of each token to depend
on the surrounding tokens and contributes to
make the inference context-dependent. We
analyze the mechanism behind the concentra-
tion of attention on nearby tokens. We show
that the phenomenon emerges as follows: (1)
learned position embedding has sinusoid-like
components, (2) such components are trans-
mitted to the query and the key in the self-
attention, (3) the attention head shifts the
phases of the sinusoid-like components so that
the attention concentrates on nearby tokens at
specific relative positions. In other words, a
certain type of Transformer-based model ac-
quires the sinusoidal positional encoding to
some extent on its own through Masked Lan-
guage Modeling.

1 Introduction

The architecture of Transformer (Vaswani et al.,
2017) is symmetric with respect to the token po-
sition and it captures word order only through the
position embedding included in the input. Thanks
to this design, Transformer can flexibly learn re-
lationships between tokens while allowing paral-
lelization. To derive a representation of a context,
previous language models have used, for instance,
recurrent units to process tokens in the given token
order, or convolution to aggregate tokens within
a given range. In these models, the property of
translation invariance of language has been cap-
tured through the architecture of the models. In
contrast, Transformer receives all tokens at the
same time and does not restrict the positions of the
tokens on which each token depends; in exchange
for it, the translation invariance has to be learned
rather than imposed by the architecture.

Position embedding is thus the key to make in-
ferences in Transformer context-dependent. While
Transformer uses deterministic sinusoidal position
embedding, BERT (Devlin et al., 2019) uses a
learnable absolute position embedding. The latter
learns the positional representation only through
word cooccurrences. Clark et al. (2019) and
Kovaleva et al. (2019) investigated the attention
weights of the self-attention in BERT and found
that the attention in some heads is largely deter-
mined by relative positions (Figure 1). This im-
plies that even when the absolute position embed-
ding is used, self-attention can make an inference
depending on relative position.

Wang et al. (2021) compared various position
embedding methods based on the performance in
downstream tasks. Their results showed that lo-
cal translation invariance and asymmetric position
bias with respect to the direction improved the
performance. Ravishankar and Søgaard (2021)
observed that some columns of absolute position
embedding were periodic. Chang et al. (2022)
showed that position representation was periodic
even in hidden representations. However, it is not
clear how the periodicity is used in the model.

In this work, we analyze how attention de-
pends on relative position. As a result, we show
that the relative positional dependence of attention
emerges due to the following factors.

• The learnable absolute position embedding
has sinusoid-like waves with several limited
frequencies (§4.1.1).

• Attention heads extract periodic components
derived from position embedding from the
hidden states. It is made explicit by applying
Singular Value Decomposition to the parame-
ters of the pre-trained language model (§4.2).

• The self-attention shifts the phase of the peri-
odic components in the query and the key to
decide the direction of attention (§4.3, §4.4).



Thus, it becomes partially clear how the self-
attention equipped with learnable absolute posi-
tion embeddings makes inferences based on con-
text. However, it is suggested that, when the atten-
tion is strongly concentrated on the adjacent to-
kens, the word embedding is also a factor that en-
ables inference based on relative position (§5).

2 Background

In this section, we review the multi-head self-
attention mechanism and position embedding.

2.1 Multi-Head Self-Attention
The self-attention mixes the representations of to-
kens at different positions. The input to the l-th
attention layer is a matrix Xl ∈ RT×d whose k-
th row corresponds to the hidden representation of
the k-th token as a vector in Rd. The output of the
self-attention layer is defined as follows:

Alh = softmax

(
XlW

Q
lh(XlW

K
lh )

T√
d/n

)
(1)

Olh = AlhXlW
V
lh (2)

MultiHeadl = concat(Ol1, . . . , Oln)W
O
l (3)

where WQ
lh , WK

lh , W V
lh ∈ Rd×(d/n) and WO

l ∈
Rd×d are the parameters, n is the number of atten-
tion heads per layer, and the subscripts l and h are
the indices of the layer and the head, respectively.

In this paper, we refer to the h-th head in the l-th
layer as “head(l, h)” for short, and omit the sub-
scripts l, h when the discussions are common to
all layers and heads. The matrices XWQ, XWK ,
and A are called query, key, and attention weight,
respectively. If the (i, j) element of A is large,
it is interpreted that the i-th token in the sentence
attends to the j-th token.

2.2 Position Embedding
Transformer’s position embedding is defined as
follows (Sinusoidal Position Embedding; SPE):

SPE(pos,2i) = sin(pos/100002i/d) (4)

SPE(pos,2i+1) = cos(pos/100002i/d). (5)

Vaswani et al. (2017) hypothesized that it allows
the model to easily learn to attend by relative po-
sitions, since the offset between two tokens can be
expressed as a matrix product:[

sinxi cosxi
] [cos θ − sin θ

sin θ cos θ

]
=
[
sin(xi + θ) cos(xi + θ)

]
. (6)

BERT’s position embedding is a learnable pa-
rameter. It is called the Absolute Position Embed-
ding (APE) because each row represents an abso-
lute position in the input sequence.

RoBERTa (Liu et al., 2019) is identical to BERT
in architecture. RoBERTa is pre-trained with 512
tokens for all steps whereas BERT is pre-trained
with 128 tokens for 90% of the steps. Hence,
RoBERTa’s APE recieves the same number of up-
dates regardless of the positions. Wang and Chen
(2020) showed that RoBERTa’s APE is more or-
derly than BERT’s. We thus use RoBERTa for all
experiments to analyze the position dependence of
inference.

3 Relative Position Dependence of
Attention

In this section, we demonstrate that the attention
depends on the relative position. Specifically, we
analyze in how many heads the attention is de-
pendent on the relative position, and the variation
in the direction and concentration of the attention
across the heads. The visualizations of the atten-
tion weight Alh in Figure 1 shows that, in (a) and
(d), each token strongly attends only to the adja-
cent token, while in (b) and (e), the attention is put
on a few nearby tokens on the left or right side. We
show that such a pattern is largely invariant with
respect to the inputs, by clustering the patterns of
the attention on different inputs.

To focus on the relation between the attention
and the relative positions, we summarized the at-
tention weight for each input in each head into
a vector and applied k-means clustering to them.
For that, we defined t-offset trace trt as follows:

trt(A) =

{∑T−t
i=1 (A)i,i+t (t ≥ 0)∑T+t
i=1 (A)i−t,i (t < 0)

(7)

and transformed Alh to a vector:

alh = [tr−10(Alh), . . . , tr10(Alh)] ∈ R21. (8)

These vectors represent the trend of attention Alh

with respect to relative position.
We input 100 sentences of length 512 cre-

ated from wikitext-2 (Merity et al., 2017) into
RoBERTa and computed vectors alh for every
head. Figure 2 shows the results of applying the
k-means to a total of 100 × 12 × 12 vectors alh

when the number of clusters was set to 6. In
the clusters named leftward and next-to-left
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Figure 1: Attention weights for the first 15 tokens of an
input text.

(resp. rightward and next-to-right), the at-
tention is concentrated on the nearby tokens on
the left (resp. right). Particularly, in the clus-
ters named next-to-left and next-to-right,
the attention is strongly concentrated on the ad-
jacent tokens. We found that, for each head, the
vectors alh corresponding to the 100 inputs were
grouped into one or two clusters. This means that
there are some heads that always attended to the
same direction for all the input.

4 Attention to Nearby Tokens

In this section, we show that the attention depends
on relative position due to periodic components
in the position embeddings. First, we show that
the learnable absolute position embeddings ac-
quire several limited frequency components. Sec-
ond, we show that some attention heads extract the
periodicity derived from position embeddings. Fi-
nally, we show that the concentration of attention
on the nearby tokens is due to the periodicity.

4.1 Learned Representation of Positions

First, we show that APE includes sinusoid-like
components using the Discrete Fourier Transform
(DFT). Next, we show that the position embed-
dings are confined to a relatively low-dimensional
subspace (~15 dimensions) using Principal Com-
ponent Analysis (PCA). Finally, we show that the
encoded positional information occupies a simi-
lar number of dimensions in the hidden states as
in the position embedding, and the dimensionality
becomes smaller in the higher layers using Canon-
ical Correlation Analysis (CCA).

4.1.1 APE Includes Sinusoid-like Waves
We view the RoBERTa’s position embedding
Epos ∈ RT×d as a collection of d time series of

1
 1

2 3 4 5 6 7 8 9 101112

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

head

la
ye

r

next-to-left
next-to-right

leftward
rightward

itself
other

Figure 2: For each head, a pie chart illustrates the per-
centage of labels assigned to 100 vectors alh (Eq. (7)).

length T . We computed the amplitude spectrum
of each column of Epos by applying DFT:

speci = abs(DFT(Epos ei)) (9)

where ei ∈ Rd is the i-th elementary unit vec-
tor. The vector Eposei is hence the i-th column of
Epos.

Figure 3a shows the mean and the quartile range
of the amplitude spectra of d = 768 time series.
The amplitude spectra peak at some frequencies,
indicating that the learnable APE has acquired pe-
riodicity through pre-training, even though it is
not explicitly defined using sinusoidal waves as
in Transformer. In contrast, there are no peaks in
the amplitude spectrum of a word embedding se-
quence of a sample text.1 The periodicity is thus an
unique property of learned position embeddings.

We investigated whether similar properties are
present in pre-trained models other than RoBERTa
(Figure 3b and 13). The amplitude spectra of the
encoder-only models are similar to RoBERTa re-
gardless of language, but ones of GPT-2 (Radford
et al., 2019) are higher at lower frequencies.

The decoder model probably can focus atten-
tion on the neighboring tokens of itself without
periodicity-based mechanisms (§4.3). For exam-
ple, if attention is paid more strongly to the back-
ward token, in BERT, attention is focused on the
end of the sentence, but in a decoder with causal
attention mask, attention is focused on itself. We
leave it to future research to clarify whether this

1The text taken from abstract and introduction of
(Vaswani et al., 2017) was used as input to create the figures
in this paper, unless otherwise stated.
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Figure 3: Amplitude spectra of position embeddings.
Blue line is the mean of speci and blue area is the quar-
tile range. Orange line is the spectrum of word embed-
dings for an input before adding position embeddings.

phenomenon really occurs in the causal model,
and in this paper we focus on the case where self-
attention is symmetric with respect to position.

4.1.2 Dimensionality of Positional
Representation

We applied PCA to the position embeddings to see
how many dimensions were used to represent the
positions. The cumulative principal component
contribution rate of the position embedding was
50.51% for the top 4 dimensions, and 92.23% for
the top 12 dimensions (see Figure 12 in Appendix
A for a plot). This means that the positions are
mostly encoded in a low dimensional subspace.

We then employed CCA to show how much the
input to the self-attention layers included the posi-
tional representation. CCA is a method for investi-
gating the relation of two sets of variables by find-
ing the parameters a and b that maximizes the cor-
relation between two synthetic variables Xa and
Y b given two inputs X and Y . Raghu et al. (2017)
showed that CCA allows layer-to-layer compari-
son of deep learning models. We used the repre-
sentation of neurons and layers proposed by them
and computed the correlation between the hidden
layer and the position embeddings.

In this study, the i-th neuron zl
i of layer l and

the l-th layer Z l are represented as follows:

zl
i =

[
zli(x1), . . . , z

l
i(xm)

]T
(10)

Z l =
[
zl
1, . . . , z

l
n

]
(11)

0 10 20 30 40 50
dimension i

0.0

0.2

0.4

0.6

0.8

1.0

C
C

A
 c

oe
f ½

i

layer l
1
2
3
4
5
6
7
8
9
10
11
12

Figure 4: CCA coefficient for each layer compared to
position embedding.

where zli(xj) is the response of the i-th neuron to
input xj . We input 200 sentences of length 512
created from wikitext-2 into RoBERTa and col-
lected the responses of each layer for the input of
m = 200× 512 tokens. We then maximized their
correlation coefficients ρk:

ρk = max
ak,bk

Corr(Z l1ak, Z
l2bk) (12)

where ak is chosen such that it is orthogonal to
a1, . . . ,ak−1 and similarly for bk. The CCA co-
efficients in Figure 4 show that the hidden states of
higher layers have lower correlations with the po-
sition embeddings. This is in agreement with Lin
et al.’s (2019) result that BERT phases out posi-
tional information as it passes through the layers.

The CCA result indicates that the number of
components that are highly correlated with posi-
tion embedding is only 5~20-dimensions, and the
PCA result suggests that it is enough to accommo-
date the positional representation. This indicates
that the hidden states include positional represen-
tation in a low-dimensional subspace, similarly to
position embedding.

4.2 Positional Representation in
Self-Attention

It is not at all clear how the positional representa-
tion in the hidden states contribute to the inference
in self-attention. We thus analyzed how attention
weight is calculated, which is one of the most im-
portant process in self-attention.

4.2.1 Rethinking About Query and Key
The attention weight A is determined by the in-
ner product of the rows of the query and the key
matrix. We thus expect that the relative position
dependence of the attention can be explained by
analyzing the relationship between the query and
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the key. We begin by rethinking about their defi-
nition. The two parameter matrices WQ and WK

contribute to the attention only through their prod-
uct WQ(WK)T (Eq. (1)). Hence, they can be seen
as a parametrization of a rank-restricted d× d ma-
trix, and we may consider another decomposition
of the product WQ(WK)T .

We found that some sinusoid-like components
were obtained from the query and the key by ap-
plying Singular Value Decomposition (SVD) to
WQ(WK)T . Specifically, the query and the key
are redefined as the product of the hidden state and
the singular vectors:

WQ(WK)T = UQS(UK)T (13)

Q = XUQ, K = XUK (14)

where the matrix S ∈ Rd×d is a diagonal matrix
diag(s1, . . . , sd/n, 0, . . . , 0) and each element si is
a singular value. In the rest of this paper, we refer
to Q and K defined above as the query and the key,
respectively. As shown in Figure 5, in the head in
which the attention depends on relative position,
sinusoid-like waves appear in several columns of
the redefined query Q and the key K. Moreover,
a sine wave is paired with a cosine wave of the
same frequency, as the 5-th and the 6-th column
for head(1, 1) shown in Figure 5.

Furthermore, the introduction of SVD provides
a new theoretical interpretation of self-attention.
Let R be the orthogonal matrix R = (UQ)TUK .
Then UK can be written as UK = UQR due to
the orthogonality of the singular vectors. Thus,
the key K can be written as:

K = XUK = XUQR = QR (15)

That is to say, the rows of the key are the result
of an orthogonal transformation of the rows of the
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Figure 6: The frequency-wise maxima of the amplitude
spectra. The l-th row of the heat map corresponds to
max-specl. The top figure is a reiteration of Figure 3a.

query. The relation between the query and the key
is thus summarized in the matrix R.

In addition, since the singular value matrix S is
diagonal, the product of the query and the key can
be written as follows:

XWQ(XWK)T = QSKT =

d/n∑
i=1

siqik
T
i (16)

where qi and ki are the i-th columns of Q and
K, respectively. Eq. (16) says that the subsets of
queries [qi] and keys [ki] corresponding to the top
singular values [si] are more important in the cal-
culation of the attention distribution. We hereafter
call the matrix QSKT attention score (i.e., atten-
tion before applying softmax).

4.2.2 Spectral Analysis of Query and Key
We computed the amplitude spectrum of each col-
umn of the query Qlh in each head, using the same
procedure for the position embeddings in §4.1.1:

speclhi = abs(DFT(Qlhei)) (17)

max-specl = [max
h,i

(speclhi)f ]f=0,...,T/2. (18)

By taking the maximum of speclhi among the
heads and the columns of Qlh, we check if there
are high peaks in the spectra of the queries in the
l-th layer (similarly for the keys and hidden states).



Figure 6 show that the query and key spectra
peak at the same frequency bands as the posi-
tion embeddings, indicating that attention heads
extract periodic representations derived from the
position embeddings. Furthermore, some of the
peaks disappear in the higher layers (downward
in the Figure 6), indicating that the periodic com-
ponents derived from the position embeddings are
not dominant in the higher layers. This is consis-
tent with the result that the correlation between the
position embeddings and the hiddem states of each
layer gradually decreases (§4.1.2). It also agrees
with the result shown by Lin et al. (2019) that posi-
tion information is discarded between the 3rd and
4th layers.

4.3 Attention Based on Relative Position is
due to the Phase Shift

As shown in Figure 5, there are phase shifts in the
sinusoid-like components of the query and the key.
In this subsection, we focus on the phase shifts,
and clarify that the direction and the width of the
phase shifts determine where the attention is con-
centrated. We measure the direction and the width
of the phase shift by cross-covariance and cross-
correlation, defined as follows:

xcovj(t) =

{∑T−t
i=1 qi,jki+t,j (t ≥ 0)∑T+t
i=1 qi−t,jki,j (t < 0)

(19)

xcorrj(t) =
xcovj(t)− Et[xcovj(t)]

∥qj∥∥kj∥
(20)

For example, Figure 7 shows the cross-correlation
between the queries and keys in Figure 5. Both
xcorr5(t) and xcorr6(t) attain a maximal value at
t = −2 and t = −3. It means that the phase
shift between the queries and the keys are approx-
imately 2.5 tokens.

It can be explained theoretically that the direc-
tion of phase shift coincides with the direction of
attention. The cross-covariance is related to the
product of query and key (Eq. (16)):

trt(QSKT ) =
T−t∑
i=1

(QSKT )i,i+t (21)

=
T−t∑
i=1

d/n∑
j=1

sjqi,jki+t,j (22)

=

d/n∑
j=1

sjxcovj(t) (23)
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Figure 7: The cross-correlation xcorri(t) between the
queries and the keys in Figure 5.
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singular values (Eq. (23))
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Figure 9: The cross-correlations xcorrj(t) correspond-
ing to the top 10 singular values.

where trt is the t-offset trace defined in Eq. (7)
and s1, . . . , sd/n are the singular values of
WQ(WK)T . According to Eq. (21-23), the sum
of the attention scores at relative position t is equal
to the weighted sum of the inner product of qj and
kj shifted by t. Therefore if the xcovj(t)s corre-
sponding to the top singular values attain maximal
values at the same t, the attention is likely to be
concentrated around relative position t.

Figure 8 and 9 show that it is actually the
case. Figure 9 presents the cross-correlations of
the query qj and the key kj for js correspond-
ing to the top singular values. We can see how
the concentration of attention on nearby tokens is
formed by the weighted superposition of the cross-
correlations. In head(1, 1), the maxima of the
cross-correlations near t = −1 stack up, while
the maxima away from t = −1 cancel with the
minima of other components. Since there are mul-
tiple periodic components with different frequen-
cies (Figure 3a), the attention is not concentrated
away from each token. In contrast, in head(8, 9),
some cross-correlations have narrow peaks only at
t = −1, and it makes the attention be very con-
centrated only on the adjacent tokens. However,
it is unlikely that the cause of the narrow peaks



is the sinusoid-like waves, because their period is
approximately 8 tokens or more.2

4.4 Phase Shift Width is the Same even if
Frequencies are Different

We saw in the previous subsection that the main
factor of the concentration of attention is that
the phases of multiple sinusoid-like waves are all
shifted by the same number of tokens. In this sub-
section, we explain it based on the property of the
eigenvalues and the eigenvectors of the matrix R
that relates the query Q to the key K.

Let pi ∈ Cd and λi ∈ C be an eigenvector and
an eigenvalue of the matrix R, respectively. Since
R is an orthogonal matrix, its eigenvalue can be
expressed as λi = ejθi where j is the imaginary
unit. From Eq. (15), the following relation be-
tween the query and the key holds:

Kpi = QRpi = Qλipi = Qpi · ejθi . (24)

Let two conditions be assumed: (1) for each
i = 1, . . . , d, the time series Qpi is sinusoidal with
a single frequency fi and (2) the ratio of the argu-
ment θi of the eigenvalue λi to the frequency fi
is constant regardless of i. Then Eq. (24) implies
that the phases of Qpi and Kpi differ by a con-
stant number of tokens for any eigenvector pi:

(Qpi)t = (Kpi)t+∆ (25)

where ∆ = (T/2π) · (θi/fi). Furthermore, Qt =
Kt+∆ follows from Eq. (25). We provide the
proofs in Appendix D.

We verify whether the two conditions hold by
analyzing the periodicity of Qpi and the ratio of
the frequency to the argument θi of the eigenvalue
λi. To do so, we define the bivariate functions g
for frequency and argument as follows:

g(f, θi) = abs(DFT(Qpi))f (26)

This function g is shown in Figure 10 as a 2D his-
togram. Figure 10 shows that the spectrum of Qpi

has peaks in different frequency bands according
to θi. It means that the component along each
eigenvector pi is fairly band-limited, namely they
are sinusoid-like. Furthermore, the spectral peaks

2Figure 3a shows that the maximum frequency of the po-
sition embeddings is around 60. The minimum period is
hence 512/60 (> 8) tokens.
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Figure 10: 2D histogram of the function g(f, θ). The
section at θ = θi is the amplitude spectrum of Qpi.

appear around a straight line. Specifically, the ra-
tio ∆(f, θ) of frequency to phase defined as fol-
lows is nearly constant:

∆(f, θ) =
T

2π
· θ
f
. (27)

Hence, the two conditions are in fact approxi-
mately hold. Thus, by multiplying the matrix R,
the sinusoid-like components in the key are offset
by a certain number of tokens relative to the query.

5 Attention to the Adjacent Tokens

Figure 9 shows that, in head(8, 9), there are not
only sinusoid-like waves but also spikes at the rel-
ative position t = −1. In this section, we dive
deeper into the fact that, in some heads, the atten-
tion is focused only on the adjacent token. We an-
alyze how the attention changes when we modify
either the position embedding or the word embed-
ding component. The following are the results on
the modified inputs and insights from them.

Baseline The input is the sum of word embedding
and position embedding as usual. This result
is shown in Figure 8 and 9.

Only position embedding The word embeddings
are replaced with zero vectors. Figure 11a
shows that spikes of cross-correlation do not
appear for this case. This suggests that posi-
tion embedding is not the only cause of the
spikes.

Only word embedding The position embeddings
are replaced with zero vectors. Figure 11b
shows that most of the cross-correlations are
flat for this case. It suggests that word em-
bedding contributes less to make the atten-
tion dependent on relative position. However,



it is interesting that the cross-covariance at
t = −1 (i.e., left neighbor) is relatively large
even without position information.

Shuffling word embeddings The order of word
embeddings is shuffled. Figure 11c shows
that spikes appear at the relative position t =
−1 even for this case. It suggests that the
contribution of position embedding is signifi-
cant in determining the direction of attention,
since the attention is focused on the preced-
ing word regardless of what it actually is.

As mentioned at the end of Section 4.3 and also
suggested by Figure 11a, it is unlikely that po-
sition embedding is the only cause of the strong
concentration of attention on the adjacent to-
kens. However, if the word embeddings identi-
fied the adjacent tokens (i.e., if the narrow peak
of cross-correlation appeared due to an interaction
of the word embeddings of a frequently occurring
bigram), the attention would have been moved
to non-neighboring positions by the shuffling of
word embeddings, but this was not the case. It
is thus suggested that the concept of adjacency in
RoBERTa is built upon both word meaning and
positional information.

6 Remark on the Learning Process of
Position Embeddings

The training data of the masked language model-
ing is only word sequences without positional in-
formation. It suggests that the relative position de-
pendence of attention is acquired by the combina-
tion of two factors: (1) the linguistic property that
related words tend to appear nearby due to gram-
matical rules and collocations, and (2) the property
that attention is focused on the word that is syn-
tactically or semantically related and hence gives
clue to fill the masked token. In appendix E, we
demonstrate that the position representation can be
acquired with a much smaller amount of training
data than pre-training.

7 Related Works

Ravishankar and Søgaard (2021) observed that
some columns of absolute position embedding
were periodic and sinusoidal position embedding
was more effective in multilingual models than
other embedding methods. Chang et al. (2022)
showed that position representation was periodic
even in hidden representations by using Linear

−15−10 −5 0 5 10 15
t

−1

0

1

−15−10 −5 0 5 10 15
t

−20

−10

0

£104

(a) Only position embedding

−15−10 −5 0 5 10 15
t

−1

0

1

−15−10 −5 0 5 10 15
t

−2

−1
£104

(b) Only word embedding

−15−10 −5 0 5 10 15
t

−1

0

1

−15−10 −5 0 5 10 15
t

−5

0

5
£104

(c) Shuffling word embeddings

Figure 11: The cross-correlations (left) and the
weighted sum of cross-covariances (right) in head(8, 9)
when we modify either the position embedding or the
word embedding component of the input.

Discriminant Analysis, i.e., by identifying the axes
separating the different position representations.
We showed that sinusoid-like components could
be extracted from the hidden states by applying
SVD to the pre-trained parameters of the self-
attention even though SVD does not have the ob-
jective of separating positional representations.

Vaswani et al. (2017) stated that the sinusoidal
position embedding allowed position offsets to be
represented by a rotation transformation (Eq. (6)),
and this could prompt learning of attention that de-
pends on relative position. We showed that the
query and the key in the self-attention included
sinusoid-like components and the learned param-
eters in the self-attention shift the phase of the
query and the key relatively. This means that the
mechanism hypothesized by Vaswani et al. is in
fact acquired through pre-training by masked lan-
guage modeling. However, the frequencies ac-
quired by the position embedding of RoBERTa are
only in the specific frequency bands, whereas si-
nusoidal position embedding has d/2 frequencies
(Eq. (4)-(5)). RoBERTa thus seems to have ac-
quired a more economical positon embedding than
sinusoidal position embedding.

Recently, there are many variants of position



embedding and Dufter et al. (2022) surveyed them
exhaustively. In particular, Rotary Position Em-
bedding (RoPE) (Su et al., 2022), a type of Rel-
ative Position Embedding (RPE) (Shaw et al.,
2018), relates to the property that the self attetnion
acquires the rotation matrix through pre-training.
To acquire relative positional dependence, RoPE
widens the angle between query and key propor-
tionally to the relative position, while pre-trained
self-attention rotates the hidden states containing
absolute positional bias by the same angle regard-
less of position. In other words, APE and self-
attention, which are distant components, must ac-
quire frequency and angle of rotation, respectively,
to satisfy the relation Eq. (27). If translation in-
variance is essential to language understanding,
the cost of discovering this relation is a possible
reason why APEs are inefficient to learn compared
to RPEs.

8 Conclusion

We analyzed the concentration of attention based
on relative position in the self-attention using the
learnable absolute position embedding. As a re-
sult, we showed that it is due to relative phase
shifts of the periodic components in the query and
the key derived from position embeddings. Our re-
sults explain in part that absolute position embed-
ding allows inference based on relative position.

9 Limitations

As mentioned in §4.1.1, the positional representa-
tion of the GPT-2 differs significantly from ones
of the encoder models. Thus, it is impossible to
interpret the inferences of the decoder-only model
in the same way as in this study.

In the tasks of predicting sentence structure
(e.g., dependency parsing), the relative order of
two tokens is important regardless of the distance
between them. However, we analyzed the depen-
dence of the output of each token only on the
nearby tokens. Thus, it is unclear whether position
embedding provides relative position information
that helps determine which of the distant tokens
precedes the other.

We obtained an interpretable representation by
decomposing the attention scores before apply-
ing softmax function (Eq. (16)). When analyz-
ing the contribution of the decomposed represen-
tations to downstream components (e.g., Value in

self-attention), the non-linearity of softmax func-
tion should be taken into account.
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A Cumulative Principal Component
Contribution Rate
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Figure 12: Cumulative principal component contribu-
tion rate of RoBERTa position embedding.

B Amplitude Spectra of Various Models

We computed the amplitude spectra of the
position embeddings of bert-base-uncased,
cl-tohoku/bert-base-japanese-whole-word
-masking, xlm-roberta-base, and gpt2 in the
same way as Figure 3a. In Figure 13, the encoder
models BERT and RoBERTa both have peaks
in their amplitude spectra, and RoBERTa has a
higher peaks. On the other hand, the GPT-2 de-
coder model has only low-frequency components.
This suggests that the representation of absolute
position embedding is similar between encoder
models, regardless of language, but differs signifi-
cantly between encoder models and decoder mod-
els. In fact, Irie et al. (2019) and Kazemnejad et al.
(2023) showed that the position embeddings is un-
necessary for the decoder models.

C Comparing Different Architectures

This paper analyzed an encoder-only model
(RoBERTa). In this section, we apply our methods
to other transformer-based architectures: decoder-
only and encoder-decoder. The target pre-trained
models are GPT-2 (gpt2) for decoder-only and
BART (facebook/bart-base) (Lewis et al., 2020)
for encoder-decoder, both of which use absolute
position embedding and are available on hugging-
face. To reduce the gap between architectures,
when analyzing the decoders, we use the attention
scores, which is the matrix before causal masking
and softmax function are applied, instead of the
attention weights.

The attention matrices of GPT-2 show two main
patterns: one related to position and the other not.
Figure 14a shows that the attention head of GPT-
2 pays stronger attention to the closer tokens by
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Figure 13: Amplitude spectra of position embedding of
various models.

concentrating attention on the backward tokens,
which are masked in the subsequent processing.
Figure 15 shows the result of clustering the atten-
tion scores of GPT-2 using k-means. The number
of clusters was set to 2 and the inputs to k-means
were t-offset traces (Eq.(8)) from t = −30 to 30.
The heads that depend on position are found in the
lower layers.

Along §4.4, we investigate the relationship be-
tween the frequency of the hidden state and the
angle of the rotation matrix inherent in the param-
eters of attention head. Figure 16a differs from
the case of RoBERTa (Figure 10) in that the peaks
appear horizontally rather than holding a constant
ratio between frequency and angle. Furthermore,
according to Figure 13, the dominant components
in position embedding of GPT-2 are those with fre-
quencies below 10, i.e., with periods longer than
51.2 (= 512/10) tokens. These differences from
RoBERTa imply that even when the attention is
focused within a few tokens in a particular head,
it cannot be attributed to the mechanism described
in §4.3.

In BART, the tendency in the positional depen-
dence of attention differs between encoder and



decoder. In encoder, the patterns of attention
weights (Figure 17) and their trend (Figure 18),
such as direction and strength, are similar to those
of RoBERTa (Figure 1 and 2). On the other hand,
comparing Figure 14 and Figure 20, the patterns
of decoder is different from those of GPT-2. Such
patterns in the BART decoder could not be clus-
tered based on the strength or direction of attention
using k-means. Like in GPT-2, Figure 21 shows
that the peaks appear horizontally in the decoder.

Figures for GPT-2
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Figure 14: Attention scores of GPT-2 for the first 300
tokens of an input text.

1
 1

2 3 4 5 6 7 8 9 101112

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

head

la
ye

r

rightward other

Figure 15: Trend of attention scores in GPT-2.
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Figure 16: 2D histogram of the function g(f, θ) in
GPT-2.

Figures for BART encoder
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Figure 17: Attention weights of BART encoder for the
first 15 tokens of an input text.
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Figure 18: Trend of attention weights in BART en-
coder.
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Figure 19: 2D histogram of the function g(f, θ) in
BART encoder.

Figures for BART decoder
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Figure 20: Attention scores of BART decoder for the
first 300 tokens of an input text.
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Figure 21: 2D histogram of the function g(f, θ) in
BART decoder.

D Theorems About the Phase Shift
Between the Query and the Key

Theorem 1. The following two assumptions are
given:

1. Qpi is sinusoidal with a single frequency fi.

2. The ratio of the argument θi of an eigenvalue
λi to the frequency fi is constant regardless
of i.

In this case, Eq. (25) is derived from Eq. (24):

Kpi = Qpi · ejθi (24)

=⇒ (Qpi)t = (Kpi)t+∆ (25)

Proof. Since Qpi is sinusoidal, the t-th element in
polar form is as follows:

(Qpi)t = ri exp[j2πfit/T ] (28)

where ri is the absolute value of (Qpi)t. Then the
t-th element of Kpi can be written as follows from
Eq. (24):

(Kpi)t = ri exp[j2πfit/T ] · exp[jθi] (29)

= ri exp[j(2πfit/T + θi)] (30)

= ri exp[j2πfi(t+∆i)/T ] (31)

where ∆i = (T/2π) ·(θi/fi). Now, since the ratio
of the argument θi to the frequency fi is constant,
∆i is independent of i, namely, ∆i can be replaced
with a constant ∆. Thus, (Qpi)t = (Kpi)t+∆

holds from Eq. (28) and Eq. (31).

Let the matrix P = [p1,p2, . . . ,pd], then the
following equation holds:

(QP )t = (KP )t+∆. (32)

Theorem 2. When, in a given basis, the position
of each token in the key is offset by ∆(∈ Z) tokens
relative to the query, then in any basis, there is an

offset of ∆ tokens between the query and the key.
That is,

∃P ∈ Cd×d s.t. |P | ̸= 0 and (QP )t = (KP )t+∆

(33)

=⇒ ∀B ∈ Cd×n, (QB)t = (KB)t+∆

(34)

where Q,K ∈ RT×d are the query and the key
respectively and n ∈ N is less than or equal to d.
The subscript t indicates the t-th row of the matrix.

Proof. Let B be an arbitrary matrix. Then,

(QB)ti = (QPP−1B)ti (35)

=

d∑
k=1

(QP )tk(P
−1B)ki (36)

=

d∑
k=1

(KP )t+∆,k(P
−1B)ki (∵ Eq. (33))

(37)

= (KPP−1B)t+∆,i (38)

= (KB)t+∆,i (39)

In particular, when B = I , the equation Qt =
Kt+∆ is obtained.

E How the Relative Position Dependence
of Attention Emerges

How does a masked language model acquire the
concept of “neighborhood” even though absolute
position embedding learns without the informa-
tion about the order of the tokens? In this sec-
tion, we demonstrate the process of acquiring the
ability to focus attention on nearby tokens by re-
learning the position embedding under the masked
language modeling.

Suppose that the following sentence is input
into a pre-trained model:

“This <unk> is <unk> an <unk> <mask> .”

Since this sentence is collapsed with many UNK
tokens, the model cannot fill the MASK correctly.
If we re-learn the position embedding, will the
model be able to fill it?
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Figure 22: Attention weight with relearned position
embedding

PE predicted top-5 tokens
relearned exercise essay experiment

article adventure
RoBERTa base and the , . to

Table 1: Top 5 MASK candidates when 3 UNKs are
put between each token in “This is an MASK.”

E.1 Experiment

We additionally train RoBERTa with the following
configurations.

Dataset We used 8645 samples consisting of
more than 128 tokens from wikitext-2.

Putting UNK token Three UNK tokens were in-
serted after each token in all sentences; the
token sequence [t1, t2, ..., t128] was expanded
to [t1, unk, unk, unk, t2, unk, unk, unk, . . . ,
t128, unk, unk, unk].3

Freezing parameters We freezed all parame-
ters except position embeddings. This
encourages the position embeddings to
learn to focus attention only on position
t = 1, 5, 9, 13, · · · and prevents position-
independent shortcut solutions (e.g., shorten-
ing the UNK embedding to ignore it).

Position embedding The position embeddings
were initialized with random values follow-
ing a normal distribution N (0, 0.022) before
training.

E.2 Results

Table 1 shows that, before the additional training,
RoBERTa cannot fill MASK with the appropriate
tokens (in this case, nouns beginning with a vowel)
when UNKs are inserted, but after the additional

3Since Transformer is symmetric with respect to position,
this process is similar to padding. However, the PAD token
of RoBERTa published on hugging face is zero-vector, which
is inconvenient for analyzing interactions between word em-
beddings. Thus, we choose UNK tokens.

training, the models can predict them. The at-
tention weights during inference are visualized in
Figure 22. Since the attentions are concentrated
every fourth token, the model with relearned posi-
tion embeddings recognizes the relative positions
of the non-UNK tokens. This result suggests that
the attention is not focused on the tokens that co-
occur frequently, but on the tokens that are infor-
mative to fill the MASK token. Thus, the relative
position dependence of attention is simply caused
by the fact that related words appear nearby.

In summary, this experiment indicates that the
relative position dependence of attention is caused
by the combination of two factors: (1) the lin-
guistic property that related words tend to appear
nearby due to grammatical rules and collocations,
and (2) the property that attention is focused on
words that are related in some sense.


