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Abstract

Modern tokenizers employ deterministic algo-
rithms to map text into a single “canonical” token
sequence, yet the same string can be encoded
as many non-canonical tokenizations using the
tokenizer vocabulary. In this work, we investi-
gate the robustness of LMs to text encoded with
non-canonical tokenizations entirely unseen dur-
ing training. Surprisingly, when evaluated across
20 benchmarks, we find that instruction-tuned
models retain up to 93.4% of their original per-
formance when given a randomly sampled tok-
enization, and 90.8% with character-level tok-
enization. We see that overall stronger models
tend to be more robust, and robustness diminishes
as the tokenization departs farther from the canon-
ical form. Motivated by these results, we then
identify settings where non-canonical tokeniza-
tion schemes can improve performance, finding
that character-level segmentation improves string
manipulation and code understanding tasks by
up to +14%, and right-aligned digit grouping en-
hances large-number arithmetic by +33%. Finally,
we investigate the source of this robustness, find-
ing that it arises in the instruction-tuning phase.
We show that while both base and post-trained
models grasp the semantics of non-canonical to-
kenizations (perceiving them as containing mis-
spellings), base models try to mimic the imagined
mistakes and degenerate into nonsensical output,
while post-trained models are committed to flu-
ent responses. Overall, our findings suggest that
models are less tied to their tokenizer than previ-
ously believed, and demonstrate the promise of
intervening on tokenization at inference time to
boost performance. !
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1. Introduction

Tokenizers segment text into a sequence of discrete tokens
in the language model’s (LM) vocabulary. Most of today’s
LMs use deterministic subword tokenization, which pro-
duces a single canonical token sequence for a given piece
of text, and further, for each whitespace-delimited word.
One commonly discussed limitation of this approach is that,
by mapping byte strings to symbolic token IDs, the ortho-
graphic makeup of tokens is obscured to the LM (Provilkov
et al., 2020; Edman et al., 2024). This can be especially
harmful for LM understanding of numbers (Nogueira et al.,
2021; Thawani et al., 2021; Singh & Strouse, 2024) and
morphologically rich languages (Arnett & Bergen, 2025;
Hofmann et al., 2021), and has motivated efforts to model
text directly at the byte level (Clark et al., 2022; Xue et al.,
2022; Wang et al., 2024b; Tay et al., 2022; Yu et al., 2023;
Nawrot et al., 2023; Pagnoni et al., 2024; Ahia et al., 2024;
Limisiewicz et al., 2024).

To shed more light on this perceived limitation, in this
work we study whether LMs can adapt at inference time,
without any additional training, to a different tokenization
scheme than the one they were trained with. While the
tokenizer deterministically outputs a canonical tokeniza-
tion of any text into tokens (usually by applying an or-
dered list of merge rules), non-canonical tokenizations of
the same text using the same vocabulary are generally pos-
sible (see example in Figure 1). Here, we evaluate how
LMs trained with deterministic tokenizers behave when
given non-canonical tokenizations of text. Surprisingly, we
find that instruction-tuned LMs across many model fam-
ilies are extremely robust to non-canonical tokenizations
(section 2). For example, when evaluated across 20 bench-
marks, Qwen—-2.5-7B—-Instruct retains 93.4% of its
original performance when presented with a random non-
canonical tokenization, and 90.8% when presented with
character-level tokens (see Figure 1). Thus, far from not
understanding the makeup of their tokens, LMs are able to
compose token sequences in entirely new ways at inference
time (Kaplan et al., 2025).

This leads to an intriguing possibility: if LMs can process
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Figure 1. Left: An example of how Llama-3.1-8B-Instruct responds when given canonically tokenized input, versus a

and . The responses are surprisingly similar, demonstrating their ability to handle non-canonical
tokenizations. In particular, LMs generally respond with correctly tokenized output regardless of the tokenization scheme used for
the context. Right: Performance of Qwen-2.5-7B-Instruct across various benchmarks and segmentation strategies. The model
preserves much of its original performance when presented with non-canonical tokenizations. Note that even when presented with
non-canonical tokenizations, models produce outputs that are canonically tokenized.

non-canonical tokenizations, can we use different tokeniza-  a plausible explanation: while both base and post-trained
tion schemes at inference time to improve performance? For ~ models grasp the semantics of non-canonical tokenizations,
instance, prior work has found that better segmentation of  they also perceive them as containing misspellings (sub-
large numbers can improve accuracy on arithmetic (Singh section 4.2). Base models attempt to mimic the imagined
& Strouse, 2024; Sathe et al., 2025). Indeed, we identify mistakes and degenerate into nonsense, whereas post-trained
several settings where non-canonical tokenization schemes models are not bound by the style of the instruction and thus
improve performance for Llama-3.1-Instruct (sec-  able to produce fluent responses.

tion 3): character-level tokenization brings up to +14% im-
provement on string manipulation and code understanding
tasks, perhaps by granting LMs more direct access to or-
thographic cues. Meanwhile, right-aligned digit groups,
which provide a consistent grouping of digits by powers
of a thousand, improves arithmetic on large numbers by
+33%. These performance gains are achieved without any
model finetuning, pointing to the promise of tokenization as
a means of inference-time control.

Overall, despite being trained with deterministic tokeniza-
tion, instruction-tuned LMs readily accommodate new tok-
enizations at inference time, suggesting that LMs are less
constrained by their tokenizer than previously believed
(Minixhofer et al., 2024). Moreover, in settings where differ-
ent representations of text are beneficial, we can intervene
on tokenization at inference time for performance gains. We
hope our work sheds new light on the discussion of strengths
and limitations of tokenization, and points to the possibility
Finally, we investigate the origins of model robustness of dynamically finding the optimal representation of text
to non-canonical tokenizations (section 4). Across mul-  after pretraining.

tiple model families, we find that pretrained-only LMs
consistently fail to produce fluent continuations given non-
canonically tokenized context. By studying models at dif-
ferent stages of post-training, we identify that robustness
arises during the supervised instruction-tuning (SFT) phase In our main experiments, we evaluate the robustness of
(subsection 4.1). We then ablate differences between pre-  LMs to non-canonical tokenizations by comparing their
training and SFT procedures and find that the separation of  performance on downstream tasks when given different
the instruction and response as distinct turns of conversation tokenizations of the input.

is key (subsection 4.2). From here, we provide evidence for

2. Language Models are Robust to
Non-Canonical Tokenizations
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Table 1. Evaluated across many benchmarks, models are surprisingly robust to non-canonical tokenizations of the context. We
show the absolute drop in performance when given a randomly sampled non-canonical tokenization (Rand A) and character-level
tokenization (Char A), relative to the canonical (Canon) tokenization. We also summarize the model’s ability to retain performance
across benchmarks and tokenization strategies (bottom).

QWEN-2.5-7B-INSTRUCT

LLAMA-3.1-8B-INSTRUCT

OLMO-2-7B-INSTRUCT

Benchmark Canon Rand A Char A Canon Rand A Char A Canon Rand A Char A
Multiple choice (MC)

ARC-C 86.4 —-1.80 -2.60 76.2 -14.10 -22.40 77.0

ARC-E 94.4 -2.20 -3.60 91.3 —12.60 -21.50 85.4

COPA 97.0 -1.80 -7.40 97.2 -9.60 —14.80 93.8 -21.40

Winogrande 46.0 —4.60 -3.00 59.6 +2.00 -5.00 58.6 —7.80 —7.00

Winograd 72.4 -16.80 —26.60 74.4 -9.40 —-13.00 72.4 -8.60 = —19.00

CSQA 85.6 —-8.60 -9.20 77.6 —11.40 —20.00 75.4

OpenbookQA 87.2 —7.00 —7.80 82.0 —13.80 -20.20 76.2 _

PIQA 87.0 -6.00 —-14.00 84.0 -12.60 —-18.40 78.2 -17.40  -25.00

MMLU 71.7 -3.70 —7.30 68.2 —11.60 -24.00 59.5 -16.30 = —29.10

BoolQ 84.8 -5.00 —4.80 86.2 -19.20 -17.20 71.0 —4.00 -9.20

HellaSwag 79.6 -6.20 —7.40 68.6 —14.20 -23.40 68.0 —26.80 [7=39:807

Short answer (SA)

WikidataQA 81.2 —7.60 -9.00 78.6 —12.40 —-18.00 73.2 -28.80  —32.20

TOFU 77.8 +0.00 -1.70 82.1 +1.70 +0.80 82.9 -12.80 = —23.90

TriviaQA 70.0 —1.00 -3.80 76.6 -9.80 —13.60 70.0 -22.20 [ =34.80 "

JeopardyQA 49.4 -5.60 -8.00 43.6 -2.20 -10.20 42.6 -21.60 -24.20

AlpacaEval 50.0 -3.70 —1.80 50.0 -5.70 —7.50 50.0 -2.10 —11.30

MATH 53.9 -2.40 -2.70 32.0 —4.20 -9.70 22.7 -5.20 -9.20

CUTE 70.0 —4.90 —-8.80 68.0 —11.10 —15.30 55.3 -10.20 -5.70

GSMSK 87.3 —-6.10 -8.50 82.0 —11.70 —-16.00 73.9 -23.10 [7=35:807

DROP 88.2 -0.80 +0.00 88.8 -0.60 -5.00 77.0 -5.60 —7.60

Avg MC Retention (%) 9244597 89.24933 85.6+6.86 76.847.90 T1.24147 59.2417.8

AVg SA Retention (%) 94.64+3.97 92.745.35 90.316.78 82.7+9.65 75.44151 65.4117.4

Avg Overall Retention (%)  93.4+515 90.847.81 87.7+7.05 79.41005 73.1t147 62.01175

2.1. Background

Most LMs today, and all the models we study, use the Byfe-
Fair Encoding (BPE) (Sennrich et al., 2016) algorithm for
tokenization. The BPE tokenizer is learned by splitting a
corpus of text into bytes, which form the initial vocabulary,
then iteratively merging the most frequent pair of tokens
into a new token that is added to the vocabulary. To encode
a new text, it is split into bytes, and the learned merges are
applied in the same order. As a result, a BPE tokenizer
always produces the same token sequence for the same
text. Further, because BPE tokens do not cross whitespace
boundaries, the same whitespace-delimited word is always
represented with the same token or token sequence.

A natural observation is that given a tokenizer vocabulary,
there exist many token sequences that decode to the same
text. For instance, cat could be tokenized as [cat], [, cat],
[, c, atl, [, c, a, t], etc. In general, the number of non-
canonical tokenizations grows exponentially with the length
of the text. Many previous works have argued that the
probability of a string should be calculated as the sum of

probabilities of all possible tokenizations (Cao & Rimell,
2021; Chirkova et al., 2023; Geh et al., 2024). However, less
attention has been paid to how non-canonical tokenizations
affect LMs in generative settings.

2.2. Setup

‘We consider two non-canonical tokenization schemes. (1)
Random tokenization produces a tokenization (uniformly
at random) from the set of tokenizations more granular
than the canonical one. This can be achieved by recur-
sively splitting individual tokens into a valid pair of to-
kens, similarly to (Sims et al., 2025); the pseudocode and
a proof of correctness is provided in Appendix A. (2)
Character-level tokenization decomposes the string into
character tokens, i.e., using no subword token from the
vocabulary. For text containing only English letters and
punctuation (where each character is exactly one byte), this
produces the most granular possible tokenization. We con-
sider three models, L1ama—-3.1-8B-Instruct (Meta,
2024), OLMO2-7B-Instruct (OLMo et al., 2024), and
Qwen-2.5-7B-Instruct (Qwen, 2025), which we
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Figure 2. Model performance generally declines as the tokenization becomes more granular. We achieve variation in tokenization
length using different values of p in BPE-dropout, and group tokenizations into buckets based on how many times longer it is than the

canonical tokenization.

evaluate on 20 benchmarks shown in Table 1. Please see
subsection B.1 for further description of the datasets and
evaluation setup.

2.3. Results

Shown in Table 1, while random tokenization consistently
leads to worse performance compared to the canonical tok-
enization, the effect is small. On average across benchmarks,
Qwen-2. 5 retains 93.4% of its performance when given
random tokenization, followed by L1lama-3.1 at 87.7%
and Olmo-2 at 73.1%. The performance drops further
with character-level tokenization, with retention of 90.8%,
79.4%, and 62.0% for the three models, respectively. This
ranking of models in terms of retention is consistent with
their ranking in absolute accuracy (under canonical tokeniza-
tion), suggesting that stronger models are generally more
robust to non-canonical tokenization strategies.

We also observe that all models retain performance better on
short answer (SA) benchmarks (where the model generates
an output in free-form) compared to multiple choice (MC)
benchmarks (where the model is instructed to directly output
the correct answer choice). In addition, LMs consistently
produce correct token sequences even when conditioning
on non-canonical tokenizations. We hypothesize that, in the
SA setting, models benefit from eventually conditioning on
recent correctly-tokenized context.

2.4. Analysis: How does granularity of the tokenization
affect robustness?

We next study whether tokenization fine-grainedness cor-
relates in general with model robustness. We measure the
fine-grainedness of a given non-canonical tokenization by
how many times longer it is (in tokens) than the canonical
tokenization, which we call the “length ratio.” Finer-grained
tokenizations have higher ratios, while coarser ones have
ratios closer to 1. We produce tokenizations with diverse
length ratios by applying BPE dropout (Provilkov et al.,
2020) with p € [0.1,0.2, ...,0.9], which controls the prob-
ability with which each merge is dropped. (High p leads
to finer-grained segmentations, and p = 0.0 corresponds to
conventional BPE.)

Figure 2 shows the relationship between the length ratio
and the average performance retention relative to canonical
tokenization, with finer-grained tokenization generally lead-
ing to worse performance. When performance retention is
averaged across tasks, the negative correlation is statistically
significant under Kendall’s 7 with p = 0.003.

3. Can non-canonical tokenizations improve
model performance?

If LMs can process non-canonical tokenizations, this points
to the exciting possibility that tokenization schemes can
be modified completely at inference-time. This would be
useful if, in certain settings, there exists a better represen-
tation of text than what the tokenizer produces. In this
section, we develop a suite of tasks that intuitively require
understanding of the orthography of the text, and show that
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Table 2. Examples from tasks we construct
Llama-3.1-7B-Instruct (section 3).

where non-canonical

tokenizations lead to improved performance for

Counting characters: Count the number of the letter 'r' in the word
strawberry.
Acronyms: Come up with a sequence of words where the first letters would

form this acronym: isman

Codeline Description: What does the following code do:

A. Counts paths from a point to reach Origin

B. Program to check if a matrix is symmetric

C. Longest subsequence from an array of pairs having first element
increasing and second element decreasing

D. Count the number of strings in an array whose distinct characters are

less than equal to M

Arithmetic: 8492079913 + 4877278482 =

Llama-3.1-8B-Instruct performs better under non-
canonical tokenization schemes.

3.1. Tasks

Please see Table 5 for an example question in each task and
Table B.2 for further details on dataset construction. For all
tasks except Arithmetic, we use character-level tokenization.

Counting Characters This task asks the model to count
the number of occurrences of the most common letter in
5-10 character tokens in L1lama-3.1’s vocabulary, and
contains 1001 samples.

Acronyms This task asks models to generate a list of
words whose first letters form a given acronym. We con-
struct 3594 5-letter acronyms by sampling each letter uni-
formly at random from the alphabet.

Code Description For a more real-world application, we
construct a task where the model is given a code snippet
and asked to identify the function of the code in natural
language from four MC options. The setup is inspired by
the Codeline Description task from BIG-Bench (bench au-
thors, 2023), but to increase the difficulty we use more
complex code snippets and corresponding natural language
descriptions from XLCoST (Zhu et al., 2022). To collect
incorrect answers, we sample three other code descriptions
from the dataset. This task contains 4800 samples across 6
programming languages.

Arithmetic Prior work has suggested that arithmetic is
difficult for LMs in part due to poor segmentation of digits
(Nogueira et al., 2021; Thawani et al., 2021). We curate
a simple arithmetic dataset by constructing addition and
subtraction tasks for 10 digit numbers. Here, we use a dif-
ferent segmentation strategy. The L1ama-3.1 tokenizer

segments numbers into groups of three left-to-right (e.g.,
1000000 is encoded as [“1 007, “000”, “0”]), due to the pre-
tokenization regular expression looking for matches greedily
from the left. Inspired by (Singh & Strouse, 2024), we in-
stead segment digits into groups of three right-to-left (e.g.,
[“1”, “000”, “000]). This task contains 1000 addition
and subtraction questions in total.

3.2. Results

Shown in Table 3, in all the tasks we construct, the non-
canonical tokenization strategy leads to substantially better
performance compared to the canonical tokenization. In
particular, we observe a +14.3% improvement on code de-
scription and +33.7% on arithmetic. Our results show that
the tokenization scheme used in training is not necessarily
the optimal one at inference-time, and replacing them with
intuitively meaningful tokenizations can bring substantial
performance gains. We leave automatically identifying the
optimal tokenization as a promising direction for future
work.

4. Investigating the Source of Robustness

T3]

Thus far, our experiments have used post-trained “instruct
models. In this section, we find that pretrained-only models
are actually unable to produce fluent continuations of unusu-
ally tokenized context (subsection 4.1), perform ablations to
identify the conditions enabling robustness (subsection 4.2),
and finally provide support for an explanation of why gener-
ative robustness arises during post-training (subsection 4.3).

4.1. When does robustness appear in model training?

We first quantify the robustness of models at different stages
of the model development pipeline by using the O1mo2
and Tulu3 (Lambert et al., 2025) model families which
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Table 3. On several tasks, L1lama-3.1-8B-Instruct achieves substantially betfer performance when using a non-canonical
tokenization scheme. For the first three tasks, the input is tokenized at the character level; for Arithmetic, we segment digits into groups

of three digits from right to left.

Task Canonical  Alternative A

Counting Characters 66.5 73.5 +6.99
Acronyms 49.7 574 +7.74
Code Description 68.6 82.9 +14.3
Arithmetic 36.5 70.2 +33.7

include the base, SFT, DPO, and final instruct models. For
simplicity, we focus on AlpacaEval and use character-level
tokenization. For base models, we construct the prompt
by placing the instruction in a question-answer template
(Question: _\nAnswer ). We de-
fine three simple measures of generation quality.

Spelling We measure the proportion of (whitespace-
delimited) words in the generation that can be found in a
collection of the top 10,000 most common English words.?

Grammaticality We wuse LanguageTool’s grammar
checker® to count the number of grammatical mistakes,
which we normalize by the number of words in the gen-
eration and subtract from 1 to produce a grammaticality
score where higher is better.

Win rate To measure overall generation quality, we use
alpaca_eval_gpt4 as an LM judge in the AlpacaEval
framework and report the win rate of the generation given
alternative against canonical tokenizations of the context.
Unlike the previous two metrics, this measures not only the
quality of the generation but also its relevance to the context.

Shown in Figure 3, the base models of Olmo2 and
Llama-3.1 are both unable to produce sensible output
conditioned on character-level tokenizations of context, scor-
ing at best 0.317 on spelling and 0.260 on grammaticality.
Qualitatively, generations are extremely difficult to parse
and often involve odd character substitutions and repetitions
(e.g., Yoou, haviin). Despite this, they sometimes reflect
an understanding of the prompt. Consider, for example,

In contrast, the post-trained models are more robust across
all three metrics, with much of the improvement coming
from the SFT stage alone.

Mttps://github.com/first20hours/
google-10000-english

*https://github.com/languagetool-org/
languagetool

Question: I like to host guests at my
home from time to time [...]
Can you give me a recipe for Canjeero?

Answer: I aam glade tio hear tio hear
tio hear tio hear that yoou enjoy
haviin gauests at yoour hoome an tio

keeep tio keeep tio keeep

4.2. Why do instruction-tuned models become robust?

We first replicate the finding from subsection 4.1 that SFT
yields robustness to non-canonical tokenizations by fine-
tuning the Llama-3.2-1B base model on the Tulu 3
SFT Personas Instruction Following dataset.
Then, we perform the following interventions on the SFT
training data and procedure to shed light on the possible
source.

Gradient over full sequence SFT on instruction-response
pairs conventionally uses a loss mask over the instruction
tokens, so that only the response tokens contribute to the loss.
We remove this loss mask and instead compute gradients
over the entire instruction and response.

Question/answer template We replace the
chat template with a simple question-answer

template, Question:
Answer: _, both for training and evalua-
tion.

Removing the chat template We remove the chat tem-
plate by concatenating the instruction and response without
any special formatting. In evaluation, we again provide the
instruction alone.

Removing the instruction After SFT training, the LM’s
goal is no longer to continue a given text prefix, but rather
to generate a response to the given instruction. To ablate the
nature of the data itself, we take only the responses from
the SFT data, and randomly split each into a new “prompt”
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Figure 3. Pretrained-only models completely fail to generate coherent output conditioned on non-canonical tokenizations of
context; robustness is gained in the SFT stage. We evaluate the spelling, grammaticality, and AlpacaEval win rate of model generations.
Note that since Tulu3 uses L1ama-3 as the base model, its base scores are computed using L.1ama—3’s base model scores.

and “response,” which we format with the SFT template.*
At test time, we similarly provide an incomplete response
within “instruction” tags. Since the purpose of the passage
is generally inferrable from the first few words of the gold
response (“Sure, here’s a recipe for Kubdari...”), we are able
to evaluate generated responses under the same AlpacaEval
framework.

Our results are shown in Figure 4. We replicate the finding
that SFT (No ablation) leads the model to be able to handle
non-canonical tokenizations. This persists when comput-
ing gradients over the entire instruction and response (Full
gradient) so that the training procedure matches regular
pretraining. Replacing the original chat template with a
simple question-answer template (QA template) also main-
tains model robustness. However, the usage of a template is
crucial — when directly concatenating the instruction and
response (Removing chat template), the model fails to pro-
duce coherent generations, with the spelling score dropping
from 0.786 in the no ablation setting to 0.0698. Inserting
the chat template into pretraining-style data (Removing the
instruction) also does not yield robustness, with a spelling
and grammaticality scores remaining low at 0.181 and 0.158,
respectively. Overall, these findings suggest that in order for
the LM to generate fluent continuations given non-canonical
tokenizations, the context and expected continuation need

*We match the instruction length distribution by counting the
number of tokens n in the original instruction, and formatting the
first n tokens of the response as the new “instruction.”

to represent separate turns of dialogue, and additionally, be
demarcated with a special template.

4.3. Disentangling understanding from generation

One plausible explanation for our findings thus far is that
both base and instruction-tuned models grasp the seman-
tics of non-canonical tokenizations, yet falsely perceive
them as containing misspellings. While base LMs attempt
to faithfully continue these mistakes and degenerate into
nonsensical output, instruction-tuned models are trained to
provide fluent responses regardless of the instruction, lead-
ing to the results observed in subsection 4.1. To test this
hypothesis, we construct two simple tests:

1. Word Repeat: To determine if a model perceives the
meaning of a word with non-canonical tokenization,
we prompt the model to repeat a given word (while
correcting any typos).

2. Identifying Misspellings: To determine if a model
perceives a misspelling, we ask it to identify the word
with a misspelling among two options: a (correctly
tokenized) misspelling of a word and an non-canonical
tokenization of that word (correctly spelled).

Results are shown in Table 4. Consistent with our hypothe-
sis, we find that both the base and instruct models from the
Llama-3.1-8B family score highly (> 90%) on Word
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Figure 4. Ablations on the SFT training data and procedure indi-
cate that the separation of the context and expected continuation —
as different turns of dialogue demarcated with a special token —
is key to robustness to non-canonical tokenizations.

Repeat. This means that the base model, despite its poor per-
formance in subsection 4.1, actually recognizes the correct
form of non-canonical tokenizations as well as its post-
trained counterpart. In addition, both models perform at ran-
dom when asked to distinguish non-canonical tokenization
from true misspellings. In other words, the instruct model
produces fluent responses (section 2) while interpreting the
instruction as heavily misspelled! While instruct models
evidently overcome this, the base model likely attempts
to mimic the (perceived) idiosyncratic surface form, thus
producing nonsensical (yet sometimes relevant) outputs.

Table 4. Both base and instruct models from the L1ama-3. 1 fam-
ily recognize words represented with non-canonical tokenizations
(performing well on Word Repeat), but incorrectly perceive that
there are misspellings (performing at random on Identifying Mis-
spellings).

Word Repeat  Identifying Misspellings

Llama-3.1-8B 90.8 482

Llama-3.1-8B-Instruct 92.0 55.8
5. Related Work

Robustness to tokenization The extent to which LMs
are limited by their tokenization is a topic of much debate,
with the story evolving as LMs become larger and more
capable. It is commonly argued that tokenization obscures
orthographic information about tokens from the LM, leading
to unexpected failures (Edman et al., 2024; Chai et al., 2024;
Wang et al., 2024a). As a result, there have been many
efforts towards linguistically-informed tokenization that
make derivational, compound, and morphological bound-
aries within words explicit (Klein & Tsarfaty, 2020; Hof-
mann et al., 2021; 2022; Yehezkel & Pinter, 2023; Bauwens
& Delobelle, 2024). Similarly, BPE-dropout (Provilkov

et al., 2020) and related methods (Sims et al., 2025) intro-
duce variation in how a given string is tokenized to make
models more robust to rare, misspelled, and unseen words.

However, other evidence suggests that LMs naturally over-
come these limitations. For instance, token embeddings
have been found to robustly encode character-level infor-
mation, especially in larger models (Kaushal & Mahowald,
2022; Itzhak & Levy, 2022). This may be because word
variants that do not share tokens in common (consider
e.g., [dictionary] and [diction, aries], astok-
enized by GPT-2) incentivize the model to learn spelling as
a general solution to understanding their relations (Kaushal
& Mahowald, 2022). Other works argue that LMs main-
tain an implicit vocabulary, and can compose arbitrary to-
ken sequences (including non-canonical ones) into useful
higher-level representations (Feucht et al., 2024; Kaplan
et al., 2025). Even in domains like biomedical text where
terms are highly agglutinative, using tokenizers that seg-
ment on meaningful components does not lead to improved
models (Jimenez Gutierrez et al., 2023). Recent works have
even found that coarser superword tokenization (Liu et al.,
2025; Schmidt et al., 2025), which capture common word
sequences in a single token, preserve character-level un-
derstanding while providing benefits in compression and
downstream performance.

Our work informs this conversation by showing that LMs
can effectively leverage character-level knowledge of their
tokens and glean potential benefits of improved representa-
tion at inference time.

Non-canonical tokenizations It has long been recognized
that there are many possible ways to segment a string into
tokens with a fixed vocabulary (Church, 2020), which in
principle should be considered in the calculation of a string’s
likelihood (Cao & Rimell, 2021; Chirkova et al., 2023; Geh
et al., 2024). In contemporaneous work, Geh et al. (2025)
also show that LMs retain semantic understanding of non-
canonical tokenizations. However, they only study this
over a small set of 15 examples, as their main focus is to
show that non-canonical tokenizations can be constructed
adversarially to trigger unsafe completions. In contrast, we
provide a more systematic study of LM robustness using
benchmark evaluations and additionally study its source.

Somewhat relatedly, other works have provided algorithms
for sampling at the character- or byte-level from tokenizer-
based LMs (Phan et al., 2024; Vieira et al., 2024; Athi-
waratkun et al., 2024; ?). Together, these directions suggest
that despite being trained with one deterministic tokeniza-
tion scheme, LMs can both condition on and produce token
sequences over a different (sub)vocabulary.
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6. Conclusion

Despite being trained with deterministic tokenization algo-
rithms, we show that instruction-tuned language models are
surprisingly robust to token sequences not seen in training.
In certain domains, such as arithmetic or code, more intu-
itively meaningful tokenizations can even be swapped-in at
inference time for improved performance. We analyze the
source of this robustness, and find that while the base and in-
struct models both perceive the semantics of non-canonical
tokenizations, only instruct models are capable of providing
fluent continuations. Our work demonstrates a way in which
LMs are not necessarily tied to tokenizer they were trained
with, and highlights the potential of finding more optimal
representations of text after pretraining.
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A. Random Non-Canonical Tokenization

In this section, we provide our algorithm for producing a random non-canonical tokenization, and a proof that each
non-canonical tokenization that is more fine-grained than the canonical one has equal probability of being output.

A.1. Algorithm

We will split each token in a canonical tokenization into smaller tokens (that each exists in the tokenizer’s vocabulary). We
formulate our problem as: Given a valid token ¢, and a set of vocabulary V, construct a sequence of tokens seq using tokens
that exist in VV and form ¢ when concatenated together. We produce seq using a recursive algorithm. Since there can be
many possible seq for each ¢, we need to randomly choose one and guarantee that each possible seq is chosen with equal
probability. We achieve this by considering recursion as producing a tree. Each path down the tree corresponds to one
possible way to segment ¢. Each node of the tree represents a segmentation state where we have chosen some number of
sub-tokens. At each node, we weigh the choice of which child node to visit by the number of leaves in the sub-tree that is
rooted at each child node. This guarantees that each path down the tree is chosen with equal probability since the number of
paths down a tree is equal to the number of leaf nodes in that tree. The pseudocode for the algorithm is in 1.
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Algorithm 1 Random Token Segmentation

0: function COUNTSEGMENTS(start) {Cached (using memoization)}

0:

SRR

LI

if start = |token| then
return 1 {Reached end; valid segmentation}
end if
total + 0
for end + start + 1 to [token| do
substring + token[start : end)]
if substring € vocabulary then
total < total + COUNTSEGMENTS (end)
end if
end for
return total

end function
: function BUILDSEGMENTS(start)

if start = |token| then
return & {Empty segmentation}
end if
validSegments < [|
weights < ||
for end + start + 1 to |token| do
substring + token[start : end]
if substring € vocabulary then
segCount <~ COUNTSEGMENTS (end)
if segCount > 0 then
Append substring to validSegments
Append segCount to weights
end if
end if
end for
if validSegments is empty then
return &
end if

chosenSegment < weightedRandomChoice(validSegments, weights)

return [chosenSegment] | BUILDSEGMENTS(start + |chosenSegment|) {Concatenate chosen segment with
segmentation of remaining token}

end function

procedure SEGMENTTOKEN(token, vocabulary)

if COUNTSEGMENTS(0) = 0 then

return & {No valid segmentation exists}
else

return BUILDSEGMENTS(0)
end if

end procedure=0

A.2. Proof

Goal: To prove that the random segmentation algorithm chooses one valid segmentation from all possible valid segmenta-

tions with uniform probability.

Notation: Let W (3) denote the number of valid segmentation completions (i.e., the number of leaves in the recursive tree)
for the substring starting at index . In particular, W (|token|) = 1. Note that W (4) is calculated by the memoized recursive
function countSegments(i), which calculates the number of leaves of the subtree rooted at 4.
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Base Case: Consider the node corresponding to i = [token| (the end of the token). Here, there is exactly one valid
segmentation (the empty segmentation), so the algorithm returns it with probability 1. That is, every segmentation (in this
case, the only one) is chosen with probability

R N
W (|token]) 1

Thus, the base case holds.

Inductive Hypothesis: Assume that for any node corresponding to an index j with j > ¢ (i.e., deeper in the recursion tree),
every complete segmentation (leaf) in the subtree rooted at j is chosen with probability

1
W(j)
Inductive Step: Now consider a node corresponding to index i (with ¢ < |token|). Suppose that from ¢ there are k valid

branches corresponding to choosing substrings that end at indices j1, jo, . . . , jx, where for each j we have i < j < |token|
and the substring token[i : j] is in the vocabulary. By definition,

k
W(i)=>_ W(r).

The algorithm selects the branch from ¢ to a specific child j with probability
J4))

P(i—j)= W)

Once branch 7 — j is chosen, by the inductive hypothesis every complete segmentation (leaf) in the subtree rooted at j is

chosen with probability
1

W(5)
Thus, the probability P(S) of obtaining a particular complete segmentation ) that starts at ¢ by first taking the branch i — j
and then following a specific path in the subtree rooted at j is
W) 1 1

PE=3w6) we) = woey

Since the factor W (j) cancels, the probability P(S) is independent of the particular child j chosen.

Conclusion: By the inductive step, every complete segmentation (leaf) in the subtree rooted at any index ¢ is chosen with

probability %@ In particular, when ¢ = 0 (the start of the token), every valid segmentation of the entire token is selected

with uniform probability . This completes the proof.

1
W(0)
B. Evaluation Details

B.1. General benchmarks

For short-answer benchmarks, the system prompt is:
You are a helpful assistant.
For multiple-choice benchmarks, the system prompt is:

You are a helpful assistant. For the following multiple choice questions,
return the answer only, without any additional reasoning or explanation.

MATH MATH is a dataset composed of fairly difficult, competition level math problems (Hendrycks et al., 2021b). The
test set is composed of short answer problem that describe some scenario and asks the model to output a mathematically
correct answer.
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GSM8K GSMSK is a dataset consisting of relatively simple math questions that would appear in grade school math exams
(Cobbe et al., 2021). For GSM8K, the evaluations were done in the same manner as MATH.

MMLU MMLU is a benchmarks comprising of multiple choice questions from a wide variety of subjects. (Hendrycks
et al., 2021a) We sampled 500 questions from MMLU for our evaluation. We instructed the model to only output one answer
to each question without any explanation.

Alpaca Eval Alpaca Eval is an evaluation benchmark where generations from language models against given prompts are
compared and judged by an annotator model. (Dubois et al., 2023) The metric used was raw winrate of the perturbed model
as judged by a language model. The annotator we used was alpaca_eval_gpt4, which has been shown to have the highest
Spearman and Pearson correlation coefficient with human annotators.

ARC Challenge and ARC Easy Contains multiple choice questions with four options each, taken from grade school
science exams (Clark et al., 2018). ARC Easy is tests basic science knowledge while ARC Challenge requires some

procedural reasoning.

BoolQ Contains true or false questions along with a context passage that provides the answer to the question. (Clark et al.,
2019)

CommonsenseQA Contains multiple choice questions with five options each that requires common sense knowledge to
answer. (Talmor et al., 2019)

COPA Contains multiple choice questions with two options each that tests knowledge of cause and effect. (Roemmele
etal., 2011)

CUTE Contains questions that require the model to manipulate sentence-level, word-level, and character-level structure
for strings. (Edman et al., 2024)

DROP contains questions that potentially require reasoning multiple pieces of information present in a given passage.
(Dua et al., 2019)

HellaSwag contains multiples choice questions with four options each that asks for the most natural continuation to some
given context. (Zellers et al., 2019)

JeopardyQA contains short answer questions from the “Jeopardy!” game show. (Kaggle, 2019)

OpenbookQA contains multiple choice questions with four options each that require some multi-step and common sense
reasoning. (Mihaylov et al., 2018)

PIQA contains multiple choice questions that require reasoning about the physical world. (Bisk et al., 2020)
TriviaQA contains short answer questions that requires knowledge of the world. (Joshi et al., 2017)

Winograd contains multiple choice questions with two options that asks to determine what a pronoun might refer to.
Answering these questions require knowledge of commen sense and surrounding context. (Levesque et al., 2012)

Winogrande contains questions in the same format of Winograd but there are more questions and the questions are harder.
(Sakaguchi et al., 2021)

TOFU contains general short answer questions that tests the model’s ability to process world knowledge. This is the retain
set of the task of fictitious unlearning dataset. (Maini et al., 2024)

WikidataQA require models to complete factual statements. (bench authors, 2023)
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Table 5. System prompt for tasks in section 3. See Table 5 for example instructions.

Counting characters: You are a helpful assistant. The following
prompt will ask you to return a sequence of words. Only return the
sequence, separated by spaces. Do not provide any additional text or
explanation.

2) Choose the correct option (A, B, C, or D) from the provided
choices.

Your response must be a single letter: A, B, C, or D. Do not provide
any additional text, explanation, or formatting unless explicitly
requested.

Code Description: You are a programming assistant trained to analyze and
interpret code snippets. When provided with a code snippet and a set
of answer choices (A, B, C, or D), your task is to evaluate the code,
determine its behavior, and select the answer that best describes

this behavior. Your response must be a single letter: A, B, C, or

D. Do not provide explanations or additional text unless explicitly

requested.

Arithmetic: You are a computational assistant trained to evaluate
arithmetic operations. When provided with an arithmetic expression,
calculate the result and round it to the nearest integer. Respond
only with the rounded result, without any additional text or
explanation.

B.2. Constructed Benchmarks

In this section, we provide more detail on how datasets we use in section 3 are constructed.

Count Characters Task The prompt asks the model to count the number of occurrences of a given character in a
10-character word; we always use the most frequently occurring character. Evaluation was done, similar to GSM and MATH,
by finding the last number in the generated response. Generations without any numbers are considered incorrect.

Generate Acronym Task The model is asked to generate a sequence of words whose first letters form a randomly sampled
five character string. For evaluation, we take the first character of each whitespace-delimited word and check if it matches
the desired acronym.

Codeline Description Task The model is asked to comprehend a piece of code and choose the best description from four
options.

Arithmetic Task The model is asked to perform addition or subtraction with 10 digit numbers. We use regex to extract
numbers from the generation, which are then compared to the ground truth answer.

B.3. Metrics of generation quality

Here we provide additional details on the metrics defined in subsection 4.1.

Spelling We use the top 10000 most frequently appearing English words in Google’s trillion word corpus. We only
consider words with more than one character. This is because sometimes base models will repeatedly generate the same
letter, and since all English letters are in the word list, the generation would receive a high score.

Grammaticality One drawback with this evaluation method is that oftentimes the model would repeat the same letter over
and over again, or start counting numbers. In both of these cases, there are no detected grammar mistakes, however they are
still obviously gibberish. Therefore, we only calculate grammaticality scores for generations that receive a score > 0.5 on
spelling; otherwise, we give it a grammaticality score of 0.
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Table 6. Data format of ablations in subsection 4.2.

No ablation: <|user|>Provide a detailed analysis of Candace Parker’s
defensive techniques in her recent games, excluding the words
"aggressive" and "blocking", in the format of a sports commentary
script. <Jassistant|>[Sports Commentary Script]

[Opening Scene...

QA Template: Question: Provide a detailed analysis of Candace
Parker’s defensive techniques in her recent games, excluding the words
"aggressive" and "blocking", in the format of a sports commentary
script. Answer: [Sports Commentary Script]

[Opening Scene...

Removing the chat template: Provide a detailed analysis of Candace
Parker’s defensive techniques in her recent games, excluding the words
"aggressive" and "blocking", in the format of a sports commentary
script. [Sports Commentary Script]

[Opening Scene...

Removing the instruction: < |user |>[Sports Commentary Script]

[Opening Scene: A packed basketball arena, with fans eagerly awaiting
the analysis of Candace Parker’s recent performances on the court.]
Commentator 1: Welcome back, basketball fans! <|assistant|>Tonight,
we’re diving into the defensive prowess of Candace Parker...

Win rate Similar to evaluation in section 2, we also used alpaca_eval_gpt4 as the evaluator and report raw win rate.
In 4.1, the win rate is calculated against generations conditioned on input with canonical tokenization. In 4.2, the win rate is
against generations from the No Ablation setting when also given character-level tokenization. By construction, the win
rate of the No Ablation setting itself is 50%.

B.4. Ablation Settings

For ablations on the data format, see examples of formatted data in Table 6. Our finetuning code was forked from
allenai/open-instruct.

B.5. Disentangling understanding from generation

For these tasks, we use 500 words randomly sampled from Google’s 10000 English word list>.
Word Repeat An example prompt is shown below.
Repeat each word directly, while correcting any typos.

Question: guarantees
Answer: guarantees

Question: revelation {Character—-level tokenization}
Answer:

Identifying Misspellings We obtain the misspelled word by randomly adding, removing, or substituting a single character
from the word. An example prompt is shown below.

Question: Which of the two words contains a misspelling? Respond directly
with the answer option.

Question:

Shttps://github.com/first20hours/google-10000-english/blob/master/google-10000-english.txt

19


https://github.com/allenai/open-instruct

Title Suppressed Due to Excessive Size

A. guarantees
B. garantees

Answer: B
{9 more in context examples}
Question:

A. farmer {Character-Level tokenization}
B. farme {Canonical tokenization}

20



