
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Broken Tokens? Your Language Model can
Secretly Handle Non-Canonical Tokenizations

Anonymous Authors1

Abstract

Modern tokenizers employ deterministic algo-
rithms to map text into a single “canonical” token
sequence, yet the same string can be encoded as
many non-canonical tokenizations using the lan-
guage model vocabulary, including tokenizing by
character. In this paper, we investigate the robust-
ness of LMs to input encoded with non-canonical
tokenizations entirely unseen during training. Sur-
prisingly, when evaluated across 20 benchmarks,
we find that instruction-tuned models retain up to
93.4% of their original performance when given a
randomly sampled tokenization, and 90.8% with
character-level tokenization. We find that over-
all stronger models tend to be more robust, and
that robustness diminishes as the tokenization de-
parts farther from the canonical form. Motivated
by these results, we then identify settings where
non-canonical tokenization schemes can improve
performance, finding that character-level segmen-
tation improves string manipulation and code un-
derstanding tasks by up to 15%, and right-aligned
digit grouping enhances large-number arithmetic
by over 33%. Finally, we investigate the source
of this robustness, finding that it arises in the
instruction-tuning phase. We show that while both
base and post-trained models grasp the seman-
tics of non-canonical tokenizations (perceiving
them as containing misspellings), base models try
to mimic the imagined mistakes and degenerate
into nonsensical output, while post-trained mod-
els are committed to fluent responses. Overall,
our findings suggest that models are less tied to
their tokenizer than previously believed, and high-
light the promise of intervening on tokenization
at inference time to boost performance.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Tokenizers segment text into a sequence of discrete tokens
in the language model’s (LM) vocabulary. Most of today’s
LMs use deterministic subword tokenization, which pro-
duces a single canonical token sequence for a given piece
of text, and further, for each whitespace-delimited word.
One commonly discussed limitation of this approach is that,
by mapping byte strings to symbolic token IDs, the ortho-
graphic makeup of tokens is obscured to the LM (Provilkov
et al., 2020; Edman et al., 2024). This can be especially
harmful for LM understanding of numbers (Nogueira et al.,
2021; Thawani et al., 2021; Singh & Strouse, 2024) and
morphologically rich languages (Arnett & Bergen, 2025;
Hofmann et al., 2021), and has motivated efforts to model
text directly at the byte level (Clark et al., 2022; Xue et al.,
2022; Wang et al., 2024b; Tay et al., 2022; Yu et al., 2023;
Nawrot et al., 2023; Pagnoni et al., 2024; Ahia et al., 2024;
Limisiewicz et al., 2024).

To shed light on this topic, in this work we investigate
whether LMs can adapt at inference time, without any addi-
tional training, to a different tokenization scheme than the
one they were trained with. While the tokenizer determin-
istically outputs a canonical tokenization of any text into
tokens (usually by applying an ordered list of merge rules),
non-canonical tokenizations of the same text using the same
vocabulary are generally possible (see example in Figure 1).
Here, we evaluate how LMs trained with deterministic to-
kenizers behave when given non-canonical tokenizations
of text. Surprisingly, we find that instruction-tuned LMs
across many model families are extremely robust to non-
canonical tokenizations (section 2). For example, when eval-
uated across 20 benchmarks, Qwen-2.5-7B-Instruct
retains 93.4% of its original performance when presented
with a random non-canonical tokenization, and 90.8% when
presented with character-level tokens (see Figure 1). Thus,
far from not understanding the makeup of their tokens, LMs
are able to compose token sequences in entirely new ways
at inference time (Kaplan et al., 2025).

This leads to an intriguing possibility: if LMs can pro-
cess non-canonical tokenizations, can we use different to-
kenization schemes at inference time to improve perfor-
mance? For instance, prior work has found that better
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Figure 1. Left: An example of how Llama-3.1-8B-Instruct responds when given canonically tokenized input, versus a random
tokenization and character-level tokenization. The responses are surprisingly similar, demonstrating their ability to handle non-canonical
tokenizations. In particular, LMs generally respond with correctly tokenized output regardless of the tokenization scheme used for
the context. Right: Performance of Qwen-2.5-7B-Instruct across various benchmarks and segmentation strategies. The model
preserves much of its original performance when presented with non-canonical tokenizations. Note that even when presented with
non-canonical tokenizations, models produce outputs that are canonically tokenized.

segmentation of large numbers can improve accuracy on
arithmetic (Singh & Strouse, 2024; Sathe et al., 2025). In-
deed, we identify several settings where non-canonical to-
kenization schemes dramatically improve performance for
Llama-3.1-Instruct (section 3). Character-level tok-
enization brings up to +15% improvement on string manip-
ulation and code understanding tasks, perhaps by granting
LMs more direct access to orthographic cues. Meanwhile,
right-aligned digit groups, which provide a consistent group-
ing of digits by powers of a thousand, improves arithmetic
on large numbers by +33%. These performance gains are
achieved without any finetuning, pointing to the promise of
tokenization as a means of inference-time control.

Finally, we investigate the origin of model robustness to non-
canonical tokenizations (section 4). Across multiple model
families, we find that pretrained-only LMs consistently fail
to produce fluent continuations given non-canonically tok-
enized context. By studying models at different stages of
post-training, we identify that robustness arises during the
supervised instruction-tuning (SFT) phase (subsection 4.1).
We then ablate differences between pretraining and SFT
procedures and find that the separation of the instruction
and response as distinct turns of conversation is key (sub-
section 4.2). From here, we provide evidence for a plausible
explanation: while both base and post-trained models re-
tain the semantics of non-canonical tokenizations, they also
perceive them as containing misspellings (subsection 4.2).

Base models attempt to mimic the imagined mistakes and
degenerate into nonsense, whereas post-trained models are
not bound by the style of the instruction and thus able to
produce fluent responses.

Overall, despite being trained with deterministic tokeniza-
tion, instruction-tuned LMs readily accommodate new tok-
enizations at inference time, suggesting that LMs are less
constrained by their tokenizer than previously believed
(Minixhofer et al., 2024). Moreover, in settings where differ-
ent representations of text are beneficial, we can intervene
on tokenization at inference time for performance gains. We
hope our work sheds new light on the discussion of strengths
and limitations of tokenization, and points to the possibility
of dynamically finding the optimal representation of text
after pretraining.

2. Language Models are Robust to
Non-Canonical Tokenizations

In our main experiments, we evaluate the robustness of
LMs to non-canonical tokenizations by comparing their
performance on downstream tasks when given different
tokenizations of the input.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

Table 1. Evaluated across many benchmarks, models are surprisingly robust to non-canonical tokenizations of the context. We
show the absolute drop in performance when given a randomly sampled non-canonical tokenization (Rand ∆) and character-level
tokenization (Char ∆), relative to the canonical (Canon) tokenization. We also summarize the model’s ability to retain performance
across benchmarks and tokenization strategies (bottom).

QWEN-2.5-7B-INSTRUCT LLAMA-3.1-8B-INSTRUCT OLMO-2-7B-INSTRUCT
Benchmark Canon Rand ∆ Char ∆ Canon Rand ∆ Char ∆ Canon Rand ∆ Char ∆

Multiple choice (MC)

ARC-C 86.4 –1.80 –2.60 76.2 –14.10 –22.40 77.0 –37.40 –44.60
ARC-E 94.4 –2.20 –3.60 91.3 –12.60 –21.50 85.4 –37.00 –49.00
COPA 97.0 –1.80 –7.40 97.2 –9.60 –14.80 93.8 –21.40 –33.60
Winogrande 46.0 –4.60 –3.00 59.6 +2.00 –5.00 58.6 –7.80 –7.00
Winograd 72.4 –16.80 –26.60 74.4 –9.40 –13.00 72.4 –8.60 –19.00
CSQA 85.6 –8.60 –9.20 77.6 –11.40 –20.00 75.4 –31.60 –40.00
OpenbookQA 87.2 –7.00 –7.80 82.0 –13.80 –20.20 76.2 –30.80 –40.80
PIQA 87.0 –6.00 –14.00 84.0 –12.60 –18.40 78.2 –17.40 –25.00
MMLU 71.7 –3.70 –7.30 68.2 –11.60 –24.00 59.5 –16.30 –29.10
BoolQ 84.8 –5.00 –4.80 86.2 –19.20 –17.20 71.0 –4.00 –9.20
HellaSwag 79.6 –6.20 –7.40 68.6 –14.20 –23.40 68.0 –26.80 –39.80

Short answer (SA)

WikidataQA 81.2 –7.60 –9.00 78.6 –12.40 –18.00 73.2 –28.80 –32.20
TOFU 77.8 +0.00 –1.70 82.1 +1.70 +0.80 82.9 –12.80 –23.90
TriviaQA 70.0 –1.00 –3.80 76.6 –9.80 –13.60 70.0 –22.20 –34.80
JeopardyQA 49.4 –5.60 –8.00 43.6 –2.20 –10.20 42.6 –21.60 –24.20
AlpacaEval 50.0 –3.70 –1.80 50.0 –5.70 –7.50 50.0 –2.10 –11.30
MATH 53.9 –2.40 –2.70 32.0 –4.20 –9.70 22.7 –5.20 –9.20
CUTE 70.0 –4.90 –8.80 68.0 –11.10 –15.30 55.3 –10.20 –5.70
GSM8K 87.3 –6.10 –8.50 82.0 –11.70 –16.00 73.9 –23.10 –35.80
DROP 88.2 –0.80 +0.00 88.8 –0.60 –5.00 77.0 –5.60 –7.60

Avg MC Retention (%) 92.4±5.97 89.2±9.33 85.6±6.86 76.8±7.99 71.2±14.7 59.2±17.8

Avg SA Retention (%) 94.6±3.97 92.7±5.35 90.3±6.78 82.7±9.65 75.4±15.1 65.4±17.4

Avg Overall Retention (%) 93.4±5.15 90.8±7.81 87.7±7.05 79.4±9.05 73.1±14.7 62.0±17.5

2.1. Background

Most LMs today, and all the models we study, use the Byte-
Pair Encoding (BPE) (Sennrich et al., 2016) algorithm for
tokenization. The BPE tokenizer is learned by splitting a
corpus of text into bytes, which form the initial vocabulary,
then iteratively merging the most frequent pair of tokens
into a new token that is added to the vocabulary. To encode
a new text, it is split into bytes, and the learned merges are
applied in the same order. As a result, a BPE tokenizer
always produces the same token sequence for the same
text. Further, because BPE tokens do not cross whitespace
boundaries, the same whitespace-delimited word is always
represented with the same token or token sequence.

A natural observation is that given a tokenizer vocabulary,
there exist many token sequences that decode to the same
text. For instance, cat could be tokenized as [cat], [, cat],
[, c, at], [, c, a, t], etc. In general, the number of non-
canonical tokenizations grows exponentially with the length
of the text. Many previous works have argued that the
probability of a string should be calculated as the sum of

probabilities of all possible tokenizations (Cao & Rimell,
2021; Chirkova et al., 2023; Geh et al., 2024). However, less
attention has been paid to how non-canonical tokenizations
affect LMs in generative settings.

2.2. Setup

We consider two non-canonical tokenization schemes: (1)
Random tokenization produces a tokenization (uniformly at
random) from the set of tokenizations more granular than the
canonical one. This can be achieved by recursively splitting
individual tokens into a valid pair of tokens, similarly to
(Sims et al., 2025); the pseudocode and proof of correctness
is provided in Appendix A. (2) Character-level tokenization
decomposes the string into character tokens, i.e., using no
subword token from the vocabulary. For text containing
only English letters and punctuation (where each character
is exactly one byte), this produces the most granular possible
tokenization.

We consider three models,
Llama-3.1-8B-Instruct (Meta, 2024),
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Figure 2. Model performance generally declines as the tokenization becomes more granular. We achieve variation in tokenization
length using different values of p in BPE-dropout, and group tokenizations into buckets based on how many times longer it is than the
canonical tokenization.

OLMO2-7B-Instruct (OLMo et al., 2024), and
Qwen-2.5-7B-Instruct (Qwen, 2025), which we
evaluate on 20 benchmarks shown in Table 1. Please see
subsection B.1 for further description of the datasets and
evaluation setup.

2.3. Results

Results in Table 1 show that while random tokenization con-
sistently leads to worse performance compared to the canon-
ical tokenization, the effect is small. On average across
benchmarks, Qwen-2.5 retains 93.4% of its performance
when given random tokenization, followed by Llama-3.1
at 87.7% and Olmo-2 at 73.1%. The performance drops
further with character-level tokenization, with retention of
90.8%, 79.4%, and 62.0% for the three models, respectively.
This ranking of models in terms of retention is consistent
with their ranking in absolute accuracy (under canonical
tokenization), suggesting that stronger models are generally
more robust to non-canonical tokenization strategies.

We also observe that all models retain performance better
on short answer (SA) benchmarks (where the model gen-
erates an output in free-form) compared to multiple choice
(MC) benchmarks (where the model is instructed to directly
output the correct answer choice). We observe that LMs
consistently produce correct token sequences even when
conditioning on non-canonical tokenizations, and therefore
hypothesize that, in the SA setting, models benefit from
eventually conditioning on recent correctly-tokenized con-
text.

2.4. Analysis: How does granularity of the tokenization
affect robustness?

We next study whether tokenization fine-grainedness cor-
relates in general with model robustness. We measure the
fine-grainedness of a given non-canonical tokenization by
how many times longer it is (in tokens) than the canonical
tokenization, which we call the “length ratio.” Finer-grained
tokenizations have higher ratios, while coarser ones have
ratios closer to 1. We produce tokenizations with diverse
length ratios by applying BPE dropout (Provilkov et al.,
2020) with p ∈ [0.1, 0.2, ..., 0.9], which controls the prob-
ability with which each merge is dropped. (High p leads
to finer-grained segmentations, and p = 0.0 corresponds to
conventional BPE.)

Figure 2 shows the relationship between the length ratio
and the average performance retention relative to canonical
tokenization, with finer-grained tokenization generally lead-
ing to worse performance. When performance retention is
averaged across tasks, the negative correlation is statistically
significant under Kendall’s τ with p = 0.003.

3. Can non-canonical tokenizations improve
model performance?

If LMs can process non-canonical tokenizations, this points
to the exciting possibility that tokenization schemes can
be modified solely at inference-time. This would be use-
ful if, in certain settings, there exists a better representa-
tion of text than what the tokenizer produces. In this sec-
tion, we develop a suite of tasks that intuitively require
understanding of the orthography of the text, and show that

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

Table 2. Examples from tasks we construct where non-canonical tokenizations lead to improved performance for
Llama-3.1-7B-Instruct (section 3).

Counting characters: Count the number of the letter 'r' in the word
strawberry.

Acronyms: Come up with a sequence of words where the first letters would
form this acronym: isman

Common Morphemes: What is the common morpheme among these words:
alloenzyme, azyme, azymite, enzyme? A. vom- B. maxim- C. zym- D. log-

Codeline Description: What does the following code do:

{code block here}
A. Counts paths from a point to reach Origin
B. Program to check if a matrix is symmetric
C. Longest subsequence from an array of pairs having first element
increasing and second element decreasing .
D. Count the number of strings in an array whose distinct characters are
less than equal to M

Arithmetic: 8492079913 + 4877278482 =

Llama-3.1-8B-Instruct performs better under non-
canonical tokenization schemes.

3.1. Tasks

Please see Table 5 for an example question in each task and
Table B.2 for further details on dataset construction. For all
tasks except Arithmetic, we use character-level tokenization.

Counting Characters This task asks the model to count
the number of occurrences of a given letter (e.g., r) in 10-
character tokens in Llama-3.1’s vocabulary, and contains
331 samples.

Acronyms This task asks models to generate a list of
words whose first letters form a given acronym. We con-
struct 3594 5-letter acronyms by sampling each letter uni-
formly at random from the alphabet.

Common Morphemes To test whether models understand
the morphological makeup of words, we construct a task that
asks models to identify the morpheme shared in common by
a given set of words, among four multiple choice options.
This task is built on top of the BIG-Bench task (bench au-
thors, 2023) with the same name, by adding more examples
from a public morpheme dataset.1 Additionally, we modify
the answer choices to contain the morphemes themselves
(e.g., ambul-) rather than the meaning of the morphemes
(e.g., walk). We sample three incorrect responses for each
question from the other morphemes in the dataset. This task
contains 1443 examples.

1https://github.com/colingoldberg/
morphemes/tree/master/data

Code Description For a more real-world application, we
create a task where each example provides a code snippet
and asks the model to identify, from four options, the func-
tion of the code in natural language. Again we are inspired
by a similar BIG-Bench task (bench authors, 2023) called
Codeline Description, but to increase the difficulty of the ex-
amples we use more complex code snippets from XLCoST
(Zhu et al., 2022). To collect incorrect answers, we sample
three other code descriptions from the dataset. This task
contains 4800 samples across 6 programming languages.

Arithmetic Prior work has suggested that arithmetic is
difficult for LMs in part due to poor segmentation of digits
(Nogueira et al., 2021; Thawani et al., 2021). We curate
a simple arithmetic dataset by constructing addition and
subtraction tasks for 10 digit numbers. Here, we use a dif-
ferent segmentation strategy. The Llama-3.1 tokenizer
segments numbers into groups of three left-to-right (e.g.,
1000000 is encoded as [“100”, “000”, “0”]), due to the pre-
tokenization regular expression looking for matches greedily
from the left. Inspired by (Singh & Strouse, 2024), we in-
stead segment digits into groups of three right-to-left (e.g.,
[“1”, “000”, “000”]). This task contains 1000 addition
and subtraction questions in total.

3.2. Results

Shown in Table 3, in all the tasks we construct, the non-
canonical tokenization strategy leads to substantially better
performance compared to the canonical tokenization. In
particular, we observe a +15.0% improvement on code de-
scription and +33.7% on arithmetic. Our results show that
the tokenization scheme used in training is not necessarily
the optimal one at inference-time, and replacing them with
intuitively meaningful tokenizations can bring substantial

5
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Table 3. On several tasks, Llama-3.1-8B-Instruct achieves substantially better performance when using a non-canonical
tokenization scheme. For the first four tasks, the input is tokenized at the character level; for Arithmetic, we segment digits into groups
of three digits from right to left.

Task Canonical Alternative ∆

Counting Characters 67.9 78.9 +11.0
Acronyms 49.7 56.7 +7.00
Common Morphemes 94.7 98.3 +3.60
Code Description 68.1 83.1 +15.0
Arithmetic 36.5 70.2 +33.7

performance gains. We leave automatically identifying the
optimal tokenization as a promising direction for future
work.

4. Investigating the Source of Robustness
Thus far, our experiments have used post-trained “instruct”
models. In this section, we find that pretrained-only mod-
els are actually unable to produce fluent continuations of
usually tokenized context (subsection 4.1), and perform abla-
tions to better understand the conditions enabling robustness
(subsection 4.2).

4.1. When does robustness appear in model training?

We first quantify the robustness of models at different
stages of the model development pipeline, by using the
Olmo2 and Tulu3 model families which include the
base, SFT, DPO, and final instruct models. For simplic-
ity, we focus on AlpacaEval and use character-level to-
kenization. For base models, we construct the prompt
by placing the instruction in a question-answer template
(Question: {instruction} Answer:). We de-
fine three simple measures of generation quality.

Spelling We measure the proportion of (whitespace-
delimited) words in the generation that can be found in a
collection of the top 10,000 most common English words.2

Grammaticality We use LanguageTool’s grammar
checker3 to count the number of grammatical mistakes,
which we normalize by the number of words in the gen-
eration and subtract from 1 to produce a grammaticality
score where higher is better.

Win rate To measure overall generation quality, we use
alpaca eval gpt4 as an LM judge in the AlpacaEval
framework and report the win rate of the generation given

2https://github.com/first20hours/
google-10000-english

3https://github.com/languagetool-org/
languagetool

alternative against canonical tokenizations of the context.
Unlike the previous two metrics, this measures not only the
quality of the generation but also its relevance to the context.

Shown in Figure 3, the base models of Olmo2 and
Llama-3.1 are both unable to produce sensible output
conditioned on character-level tokenizations of context, scor-
ing at best 0.236 on spelling and 0.207 on grammaticality.
Qualitatively, generations often involve odd character sub-
stitutions and repetitions (e.g., Yoou, haviin). However,
despite the output being extremely difficult to parse, it some-
times reflects an understanding of the prompt. For example:

Question: I like to host guests at my
home from time to time [...]
Can you give me a recipe for Canjeero?

Answer: I aam glade tio hear tio hear

tio hear tio hear that yoou enjoy

haviin gauests at yoour hoome an tio

keeep tio keeep tio keeep

In contrast, the post-trained models are more robust across
all three metrics, with much of the improvement coming
from the SFT stage alone.

4.2. Why do instruction-tuned models become robust?

We first replicate the finding from subsection 4.1 that SFT
yields robustness to non-canonical tokenizations by fine-
tuning the Llama-3.2-1B base model on the Tulu 3
SFT Personas Instruction Following dataset.
Then, we perform the following interventions on the SFT
training data and procedure to shed light on the possible
source.

Gradient over full sequence SFT on instruction-response
pairs conventionally uses a loss mask over the instruction
tokens, so that only the response tokens contribute to the loss.
We remove this loss mask and instead compute gradients
over the entire instruction and response.
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Figure 3. Pretrained-only models completely fail to generate coherent output conditioned on non-canonical tokenizations of
context; robustness is gained in the SFT stage. We evaluate the spelling, grammaticality, and AlpacaEval win rate of model generations.
Note that since Tulu3 uses Llama-3 as the base model, its base scores are computed using Llama-3’s base model scores.

Question/answer template We replace the
chat template with a simple question-answer
template, Question: {instruction}
Answer: {response} , both for training and evalua-
tion.

Removing the chat template We remove the chat tem-
plate by concatenating the instruction and response without
any special formatting. In evaluation, we again provide the
instruction alone.

Removing the instruction After SFT training, the LM’s
goal is no longer to continue a given text prefix, but rather
to generate a response to the given instruction. To ablate the
nature of the data itself, we take only the responses from
the SFT data, and randomly split each into a new “prompt”
and “response,” which we format with the SFT template.4

At test time, we similarly provide an incomplete response
within “instruction” tags. Since the purpose of the passage
is generally inferrable from the first few words of the gold
response (“Sure, here’s a recipe for Kubdari...”), we are able
to evaluate generated responses under the same AlpacaEval
framework.

Our results are shown in Figure 4. We replicate the finding

4We match the instruction length distribution by counting the
number of tokens n in the original instruction, and formatting the
first n tokens of the response as the new “instruction.”

that SFT (No ablation) leads the model to be able to handle
non-canonical tokenizations. This persists when comput-
ing gradients over the entire instruction and response (Full
gradient) so that the training procedure matches regular
pretraining. Replacing the original chat template with a
simple question-answer template (QA template) also main-
tains model robustness. However, the usage of a template is
crucial — when directly concatenating the instruction and
response (Removing chat template), the model fails to pro-
duce coherent generations, with the spelling score dropping
from 0.786 in the no ablation setting to 0.0698. Inserting
the chat template into pretraining-style data (Removing the
instruction) also does not yield robustness, with a spelling
and grammaticality scores remaining low at 0.181 and 0.158,
respectively. Overall, these findings suggest that in order for
the LM to generate fluent continuations given non-canonical
tokenizations, the context and expected continuation need
to represent separate turns of dialogue, and additionally, be
demarcated with a special template.

4.3. Disentangling understanding from generation

One plausible explanation for our findings thus far is that
both base and instruction-tuned models grasp the seman-
tics of non-canonical tokenizations, yet falsely perceive
them as containing misspellings. While base LMs attempt
to faithfully continue these mistakes and degenerate into
nonsensical output, instruction-tuned models are trained to
provide a fluent response regardless of the instruction. To

7
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Figure 4. Ablations on the SFT training data and procedure indi-
cate that the separation of the context and expected continuation —
as different turns of dialogue demarcated with a special token —
is key to robustness to non-canonical tokenizations.

test this hypothesis, we construct two simple tests:

1. Word Repeat: To determine if a model perceives the
meaning of a word with non-canonical tokenization,
we prompt the model to repeat a given word (while
correcting any typos).

2. Identifying Misspellings: To determine if a model
perceives a misspelling, we ask it to identify the word
with a misspelling among two options: a (correctly
tokenized) misspelling of a word and an non-canonical
tokenization of that word (correctly spelled).

Results are shown in Table 4. Consistent with our hypothe-
sis, we find that both the base and instruct models from the
Llama-3.1-8B family score highly (> 90%) on Word
Repeat. This means that the base model, despite its poor per-
formance in subsection 4.1, actually recognizes the correct
form of non-canonical tokenizations as well as its post-
trained counterpart. In addition, both models perform at
random when asked to distinguish non-canonical tokeniza-
tion from true misspellings. In other words, the instruct
model produces fluent responses (section 2) while interpret-
ing the instruction as heavily misspelled! While instruct
models evidently overcome this, the base model likely at-
tempts to mimic the (perceived) idiosyncratic surface form,
thus producing nonsensical outputs.

5. Related Work
Robustness to Tokenization The extent to which LMs
are limited by their tokenization is a topic of much debate,
with the story evolving as LMs become larger and more
capable. It is commonly argued that tokenization obscures
orthographic information about tokens from the LM, leading
to unexpected failures (Edman et al., 2024; Chai et al., 2024;

Table 4. Both base and instruct models from the Llama-3.1 fam-
ily recognize words represented with non-canonical tokenizations
(performing well on Word Repeat), but incorrectly perceive that
there are misspellings (performing at random on Identifying Mis-
spellings).

Word Repeat Identifying Misspellings

Llama-3.1-8B 90.8 48.2
Llama-3.1-8B-Instruct 92.0 55.8

Wang et al., 2024a). As a result, there have been many
efforts towards linguistically-informed tokenization that
make derivational, compound, and morphological bound-
aries within words explicit (Klein & Tsarfaty, 2020; Hof-
mann et al., 2021; 2022; Yehezkel & Pinter, 2023; Bauwens
& Delobelle, 2024). Similarly, BPE-dropout (Provilkov
et al., 2020) and related methods (Sims et al., 2025) intro-
duce variation in how a given string is tokenized to make
models more robust to rare, misspelled, and unseen words.

However, other evidence suggests that LMs naturally over-
come these limitations. For instance, token embeddings
have been found to robustly encode character-level infor-
mation, especially in larger models (Kaushal & Mahowald,
2022; Itzhak & Levy, 2022). This may be because word
variants that do not share tokens in common (consider
e.g., [dictionary] and [diction, aries], as tok-
enized by GPT-2) incentivize the model to learn spelling as
a general solution to understanding their relations (Kaushal
& Mahowald, 2022). Other works argue that LMs main-
tain an implicit vocabulary, and can compose arbitrary to-
ken sequences (including non-canonical ones) into useful
higher-level representations (Feucht et al., 2024; Kaplan
et al., 2025). Even in domains like biomedical text where
terms are highly agglutinative, using tokenizers that seg-
ment on meaningful components does not lead to improved
models (Jimenez Gutierrez et al., 2023). Recent works have
even found that coarser superword tokenization (Liu et al.,
2025; Schmidt et al., 2025), which capture common word
sequences in single tokens, can be a promising path forward.

Our work informs this conversation by showing that LMs
can effectively leverage character-level knowledge of their
tokens, and glean potential benefits of improved representa-
tion at inference time.

Non-Canonical Tokenizations It has long been recog-
nized that there are many possible ways to segment string
into tokens with a fixed vocabulary (Church, 2020), which
in principle should be considered in the calculation of a
string’s likelihood (Cao & Rimell, 2021; Chirkova et al.,
2023; Geh et al., 2024). In contemporaneous work, Geh
et al. (2025) also show that LMs retain semantic understand-
ing of non-canonical tokenizations. However, they only
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study this over a small set of 15 examples, as their main
focus is to show that non-canonical tokenizations can be
constructed adversarially to trigger unsafe completions. In
contrast, we provide a more systematic study of LM robust-
ness using benchmark evaluations and perform experiments
to understand the source.

Somewhat relatedly, other works have provided algorithms
for sampling at the character- or byte-level from tokenizer-
based LMs (Phan et al., 2024; Vieira et al., 2024; Athi-
waratkun et al., 2024). Together, these directions suggest
that despite being trained with one deterministic tokeniza-
tion scheme, LMs can both condition on and produce token
sequences over a different (sub)vocabulary.

6. Conclusion
We show that instruction-tuned language models are surpris-
ingly robust to token sequences not seen in model training.
In fact, in certain domains, such as arithmetic or code, more
meaningful tokenizations can be swapped-in at inference
time for improved performance. We investigate the source
of this robustness, and find that instruction-tuning is key
to language models producing fluent continuations to non-
canonical tokenizations. Our work suggests that LMs are
not necessarily tied to tokenizer they were trained with, and
highlights the potential of finding more optimal representa-
tions of text after pretraining.
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A. Random Non-Canonical Tokenization
In this section, we provide our algorithm for producing a random non-canonical tokenization, and a proof that each
non-canonical tokenization that is more fine-grained than the canonical one has equal probability of being output.

A.1. Algorithm

We will split each token in a canonical tokenization into smaller tokens (that each exists in the tokenizer’s vocabulary). We
formulate our problem as: Given a valid token t, and a set of vocabulary V , construct a sequence of tokens seq using tokens
that exist in V and form t when concatenated together. We produce seq using a recursive algorithm. Since there can be
many possible seq for each t, we need to randomly choose one and guarantee that each possible seq is chosen with equal
probability. We achieve this by considering recursion as producing a tree. Each path down the tree corresponds to one
possible way to segment t. Each node of the tree represents a segmentation state where we have chosen some number of
sub-tokens. At each node, we weigh the choice of which child node to visit by the number of leaves in the sub-tree that is
rooted at each child node. This guarantees that each path down the tree is chosen with equal probability since the number of
paths down a tree is equal to the number of leaf nodes in that tree. The pseudocode for the algorithm is in 1.
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Algorithm 1 Random Token Segmentation

0: function COUNTSEGMENTS(start) {Cached (using memoization)}
0: if start = |token| then
0: return 1 {Reached end; valid segmentation}
0: end if
0: total← 0
0: for end← start+ 1 to |token| do
0: substring ← token[start : end]
0: if substring ∈ vocabulary then
0: total← total + COUNTSEGMENTS(end)
0: end if
0: end for
0: return total
0: end function
0: function BUILDSEGMENTS(start)
0: if start = |token| then
0: return ∅ {Empty segmentation}
0: end if
0: validSegments← []
0: weights← []
0: for end← start+ 1 to |token| do
0: substring ← token[start : end]
0: if substring ∈ vocabulary then
0: segCount← COUNTSEGMENTS(end)
0: if segCount > 0 then
0: Append substring to validSegments
0: Append segCount to weights
0: end if
0: end if
0: end for
0: if validSegments is empty then
0: return ∅
0: end if
0: chosenSegment← weightedRandomChoice(validSegments, weights)
0: return [chosenSegment] ∥ BUILDSEGMENTS(start + |chosenSegment|) {Concatenate chosen segment with

segmentation of remaining token}
0: end function
0: procedure SEGMENTTOKEN(token, vocabulary)
0: if COUNTSEGMENTS(0) = 0 then
0: return ∅ {No valid segmentation exists}
0: else
0: return BUILDSEGMENTS(0)
0: end if
0: end procedure=0

A.2. Proof

Goal: To prove that the random segmentation algorithm chooses one valid segmentation from all possible valid segmenta-
tions with uniform probability.

Notation: Let W (i) denote the number of valid segmentation completions (i.e., the number of leaves in the recursive tree)
for the substring starting at index i. In particular, W (|token|) = 1. Note that W (i) is calculated by the memoized recursive
function countSegments(i), which calculates the number of leaves of the subtree rooted at i.
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Base Case: Consider the node corresponding to i = |token| (the end of the token). Here, there is exactly one valid
segmentation (the empty segmentation), so the algorithm returns it with probability 1. That is, every segmentation (in this
case, the only one) is chosen with probability

1

W (|token|)
=

1

1
= 1.

Thus, the base case holds.

Inductive Hypothesis: Assume that for any node corresponding to an index j with j > i (i.e., deeper in the recursion tree),
every complete segmentation (leaf) in the subtree rooted at j is chosen with probability

1

W (j)
.

Inductive Step: Now consider a node corresponding to index i (with i < |token|). Suppose that from i there are k valid
branches corresponding to choosing substrings that end at indices j1, j2, . . . , jk, where for each j we have i < j ≤ |token|
and the substring token[i : j] is in the vocabulary. By definition,

W (i) =

k∑
r=1

W (jr).

The algorithm selects the branch from i to a specific child j with probability

P (i→ j) =
W (j)

W (i)
.

Once branch i→ j is chosen, by the inductive hypothesis every complete segmentation (leaf) in the subtree rooted at j is
chosen with probability

1

W (j)
.

Thus, the probability P (S) of obtaining a particular complete segmentation V that starts at i by first taking the branch i→ j
and then following a specific path in the subtree rooted at j is

P (S) =
W (j)

W (i)
· 1

W (j)
=

1

W (i)
.

Since the factor W (j) cancels, the probability P (S) is independent of the particular child j chosen.

Conclusion: By the inductive step, every complete segmentation (leaf) in the subtree rooted at any index i is chosen with
probability 1

W (i) . In particular, when i = 0 (the start of the token), every valid segmentation of the entire token is selected
with uniform probability 1

W (0) . This completes the proof.

B. Evaluation Details
B.1. General benchmarks

For short-answer benchmarks, the system prompt is:

You are a helpful assistant.

For multiple-choice benchmarks, the system prompt is:

You are a helpful assistant. For the following multiple choice questions,
return the answer only, without any additional reasoning or explanation.

MATH MATH is a dataset composed of fairly difficult, competition level math problems (Hendrycks et al., 2021b). The
test set is composed of short answer problem that describe some scenario and asks the model to output a mathematically
correct answer.
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GSM8K GSM8K is a dataset consisting of relatively simple math questions that would appear in grade school math exams
(Cobbe et al., 2021). For GSM8K, the evaluations were done in the same manner as MATH.

MMLU MMLU is a benchmarks comprising of multiple choice questions from a wide variety of subjects. (Hendrycks
et al., 2021a) We sampled 500 questions from MMLU for our evaluation. We instructed the model to only output one answer
to each question without any explanation.

Alpaca Eval Alpaca Eval is an evaluation benchmark where generations from language models against given prompts are
compared and judged by an annotator model. (Dubois et al., 2023) The metric used was raw winrate of the perturbed model
as judged by a language model. The annotator we used was alpaca eval gpt4, which has been shown to have the highest
Spearman and Pearson correlation coefficient with human annotators.

ARC Challenge and ARC Easy Contains multiple choice questions with four options each, taken from grade school
science exams (Clark et al., 2018). ARC Easy is tests basic science knowledge while ARC Challenge requires some
procedural reasoning.

BoolQ Contains true or false questions along with a context passage that provides the answer to the question. (Clark et al.,
2019)

CommonsenseQA Contains multiple choice questions with five options each that requires common sense knowledge to
answer. (Talmor et al., 2019)

COPA Contains multiple choice questions with two options each that tests knowledge of cause and effect. (Roemmele
et al., 2011)

CUTE Contains questions that require the model to manipulate sentence-level, word-level, and character-level structure
for strings. (Edman et al., 2024)

DROP contains questions that potentially require reasoning multiple pieces of information present in a given passage.
(Dua et al., 2019)

HellaSwag contains multiples choice questions with four options each that asks for the most natural continuation to some
given context. (Zellers et al., 2019)

JeopardyQA contains short answer questions from the “Jeopardy!” game show. (Kaggle, 2019)

OpenbookQA contains multiple choice questions with four options each that require some multi-step and common sense
reasoning. (Mihaylov et al., 2018)

PIQA contains multiple choice questions that require reasoning about the physical world. (Bisk et al., 2020)

TriviaQA contains short answer questions that requires knowledge of the world. (Joshi et al., 2017)

Winograd contains multiple choice questions with two options that asks to determine what a pronoun might refer to.
Answering these questions require knowledge of commen sense and surrounding context. (Levesque et al., 2012)

Winogrande contains questions in the same format of Winograd but there are more questions and the questions are harder.
(Sakaguchi et al., 2021)

TOFU contains general short answer questions that tests the model’s ability to process world knowledge. This is the retain
set of the task of fictitious unlearning dataset. (Maini et al., 2024)

WikidataQA require models to complete factual statements. (bench authors, 2023)
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Table 5. System prompt for tasks in section 3. See Table 5 for example instructions.

Counting characters: You are a helpful assistant. The following
prompt will ask you to return a sequence of words. Only return the
sequence, separated by spaces. Do not provide any additional text or
explanation.

Common Morphemes: You are a linguistic assistant trained to analyze
lists of words and identify common morphemes. When given a list of
English words, you will:
1) Identify the common morpheme shared by the words.
2) Choose the correct option (A, B, C, or D) from the provided
choices.
Your response must be a single letter: A, B, C, or D. Do not provide
any additional text, explanation, or formatting unless explicitly
requested.

Code Description: You are a programming assistant trained to analyze and
interpret code snippets. When provided with a code snippet and a set
of answer choices (A, B, C, or D), your task is to evaluate the code,
determine its behavior, and select the answer that best describes
this behavior. Your response must be a single letter: A, B, C, or
D. Do not provide explanations or additional text unless explicitly
requested.

Arithmetic: You are a computational assistant trained to evaluate
arithmetic operations. When provided with an arithmetic expression,
calculate the result and round it to the nearest integer. Respond
only with the rounded result, without any additional text or
explanation.

B.2. Constructed Benchmarks

In this section, we provide more detail on how datasets we use in section 3 are constructed.

Count Characters Task The prompt asks the model to count the number of occurrences of a given character in a
10-character word; we always use the most frequently occurring character. Evaluation was done, similar to GSM and MATH,
by finding the last number in the generated response. Generations without any numbers are considered incorrect.

Generate Acronym Task The model is asked to generate a sequence of words whose first letters form a randomly sampled
five character string. For evaluation, we take the first character of each whitespace-delimited word and check if it matches
the desired acronym.

Common Morpheme Task We source data from colingoldberg/morphemes, which contains English morphemes
with example words that contained them. We generate multiple-choice questions by pairing a particular morpheme with four
random words that contain it, and then sampling three other morphemes from the same dataset that are not contained by
those four words.

Evaluation was performed with a regex search of the valid answer choices in the generated response. In the extremely rare
case that there are multiple instances of the letter A, B, C, or D in the generate response, the last generated character was
taken as the model’s response. The metric used was exact match against ground truth.

Codeline Description Task The model is asked to comprehend a piece of code and choose the best description from four
options.

Arithmetic Task The model is asked to perform addition or subtraction with 10 digit numbers. We use regex to extract
numbers from the generation, which are then compared to the ground truth answer.
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Table 6. Data format of ablations in subsection 4.2.

No ablation: <|user|>Provide a detailed analysis of Candace Parker’s
defensive techniques in her recent games, excluding the words
"aggressive" and "blocking", in the format of a sports commentary
script. <|assistant|>[Sports Commentary Script]
[Opening Scene...

QA Template: Question: Provide a detailed analysis of Candace
Parker’s defensive techniques in her recent games, excluding the words
"aggressive" and "blocking", in the format of a sports commentary
script. Answer: [Sports Commentary Script]
[Opening Scene...

Removing the chat template: Provide a detailed analysis of Candace
Parker’s defensive techniques in her recent games, excluding the words
"aggressive" and "blocking", in the format of a sports commentary
script. [Sports Commentary Script]
[Opening Scene...

Removing the instruction: <|user|>[Sports Commentary Script]
[Opening Scene: A packed basketball arena, with fans eagerly awaiting
the analysis of Candace Parker’s recent performances on the court.]
Commentator 1: Welcome back, basketball fans! <|assistant|>Tonight,
we’re diving into the defensive prowess of Candace Parker...

B.3. Metrics of generation quality

Here we provide additional details on the metrics defined in subsection 4.1.

Spelling We use the top 10000 most frequently appearing English words in Google’s trillion word corpus. We only
consider words with more than one character. This is because sometimes base models will repeatedly generate the same
letter, and since all English letters are in the word list, the generation would receive a high score.

Grammaticality One drawback with this evaluation method is that oftentimes the model would repeat the same letter over
and over again, or start counting numbers. In both of these cases, there are no detected grammar mistakes, however they are
still obviously gibberish. Therefore, we only calculate grammaticality scores for generations that receive a score ≥ 0.5 on
spelling; otherwise, we give it a grammaticality score of 0.

Win rate Similar to evaluation in section 2, we also used alpaca eval gpt4 as the evaluator and report raw win rate.
In 4.1, the win rate is calculated against generations conditioned on input with canonical tokenization. In 4.2, the win rate is
against generations from the No Ablation setting when also given character-level tokenization. By construction, the win
rate of the No Ablation setting itself is 50%.

B.4. Ablation Settings

For ablations on the data format, see examples of formatted data in Table 6. Our finetuning code was forked from
allenai/open-instruct.

B.5. Disentangling understanding from generation

For these tasks, we use 500 words randomly sampled from Google’s 10000 English word list5.

Word Repeat An example prompt is shown below.

Repeat each word directly, while correcting any typos.

Question: guarantees

5https://github.com/first20hours/google-10000-english/blob/master/google-10000-english.txt
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Answer: guarantees

Question: revelation {Character-level tokenization}
Answer:

Identifying Misspellings We obtain the misspelled word by randomly adding, removing, or substituting a single character
from the word. An example prompt is shown below.

Question: Which of the two words contains a misspelling? Respond directly
with the answer option.

Question:

A. guarantees
B. garantees

Answer: B

{9 more in context examples}

Question:

A. farmer {Character-Level tokenization}
B. farme {Canonical tokenization}
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