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PhysReaction: Physically Plausible Real-Time Humanoid Reaction
Synthesis via Forward Dynamics Guided 4D Imitation

Anonymous Authors

Figure 1: We introduce the Forward Dynamics Guided 4D Imitation method, a novel approach that employs a neural model to
simulate human forward dynamics in real-time at 30 fps(speed up x33). This model guides the process of 4D imitation learning,
enabling the generation of reactions that are not only physically plausible but also closely mimic human behavior.

ABSTRACT
Humanoid Reaction Synthesis is pivotal for creating highly interac-
tive and empathetic robots that can seamlessly integrate into human
environments, enhancing the way we live, work, and communicate.
However, it is difficult to learn the diverse interaction patterns of
multiple humans and generate physically plausible reactions. Cur-
rently, the predominant approaches involve kinematics-based and
physics-based methods. The kinematic-based methods lack physi-
cal prior limiting their capacity to generate convincingly realistic
motions. The physics-based method often relies on kinematics-
based methods to generate reference states, which struggle with
the challenges posed by kinematic noise during action execution.
Moreover, these methods are unable to achieve real-time inference
constrained by their reliance on diffusion models. In this work, we
propose a Forward Dynamics Guided 4D Imitation method to gener-
ate physically plausible human-like reactions. The learned policy is
capable of generating physically plausible and human-like reactions
in real-time, significantly improving the speed(x33) for inference
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and quality of reactions compared with the existing methods. Our
experiments on the InterHuman and Chi3D datasets, along with
ablation studies, demonstrate the effectiveness of our approach.
More visualizations are available in supplementary materials.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing; Motion processing; Physical simulation.

KEYWORDS
Physics-based Animation, Reaction Synthesis, Imitation Learning

1 INTRODUCTION
Humanoid Reaction Synthesis refers to the technology involved
in enabling humanoid robots to mimic human reactions in a way
that feels authentic and natural. The ultimate goal is to achieve a
level of interaction where robots can engage with humans seam-
lessly, understanding and responding to social cues, emotions, and
environmental factors just as a human would. The development of
humanoid reaction synthesis represents notable progress in robot-
ics and artificial intelligence, aiming toward the creation of robots
that could enhance their roles in social contexts, such as acting as
assistants, support systems, or team members in various settings.
The enhancement of robots’ capabilities to interpret and emulate
human reactions plays a crucial role in generating smoother and
more practical interaction between humans and robots.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Previous research[3, 10, 11, 18, 22, 40, 57, 58, 60–64] has largely
concentrated on generating images of individual humans and their
interactions with objects. More recently, there has been a shift
towards investigating the text-conditioned generation of interac-
tions [25, 57] involving two humans, exemplified by studies like
InterGen[25]. Another line of method[5, 23, 44] for generating
human motions leverages physics, utilizing training within simu-
lation environments to ensure that the produced motions comply
with actual physical laws. A standout example in this domain is
InsActor[44], a text-driven, physics-based approach to human mo-
tion generation. However, existing methods have the following lim-
itations. Firstly, the kinematics-based approaches face challenges,
including issues like floating feet, sliding, penetration, and other
problems that defy physical plausibility. The absence of physical
priors in these methods often hampers their ability to produce con-
vincingly realistic motions. Secondly, the existing physics-based
method often relies on kinematics-based methods to generate refer-
ence states, which struggle with the challenges posed by kinematic
noise during action execution. For example, InsActor starts by using
a kinematics-based diffusion model to generate a reference state.
Actions are then derived from these reference states and the current
state of motion. If the kinematics-based diffusion model in InsAc-
tor produces the reference state with noise, generating reasonable
reactions based on these noisy reference states and the current
state becomes unfeasible. Thirdly, both of the above methods can-
not be directly extended to the reaction synthesis task, because
in reality, reaction synthesis is an online setting, meaning actions
beyond the current moment are not known. Moreover, practical
scenarios demand the capacity for real-time prediction, yet both
discussed methods rely on diffusion models, which inherently lack
the capability for real-time inference.

Our key idea is to learn the mapping between interaction states
directly and reactor actions bypassing the need for a reference
state. Consequently, this approach can generate physically plausible
reactions while avoiding the noise impact from kinematics-based
methods. Moreover, instead of using kinematics-based diffusion
models, our method utilizes lightweight networks to achieve real-
time inference at 30 fps(speed up x33), making its deployment on
real robots possible. Besides, we model the problem as an online
setting, which was not considered in previous methods.

Specifically, we introduce a Forward Dynamics Guided 4D Imita-
tion method aimed at developing a reactor policy for synthesizing
reactions. This method takes as input the current actions of both the
actor and the reactor, along with the next state of the actor, to deter-
mine the action the reactor should execute at the current moment.
However, directly learning this mapping is not a trivial task, as mi-
nor variations in actions can result in drastically different outcomes.
To address this, we propose employing a Forward Dynamics Model
to guide the imitation learning process, thereby establishing a stable
correlation between states and actions. Our approach is structured
into four main components: Demonstration Generation Process,
Forward Dynamics Model Training, Iterative Generalist-Specialist
Learning Strategy, and Forward Dynamics Guided 4D Imitation
Learning. We employ a universal motion tracker to convert mo-
tion capture data in the simulation environment seamlessly for
demonstration generation. Subsequently, our Forward Dynamics

Guided 4D Imitation method, coupled with an Iterative Generalist-
Specialist Learning Strategy, is deployed to train the final reactor
policy for reaction synthesis.

To evaluate the efficacy of our approach, we conducted ex-
periments on the InterHuman[25] and Chi3D[13] datasets. Our
method consistently and significantly surpasses the previous meth-
ods across all evaluated metrics. Unlike kinematic-based methods,
our approach can produce physically plausible reactions. Moreover,
when compared to the InsActor method, our method effectively
mitigates the influence of kinematic noise on policy learning, facili-
tating the establishment of a stable relationship between states and
actions. We also conducted comprehensive ablation experiments to
verify the effectiveness of each component. Analytical experiments
further demonstrate our method’s superior performance, especially
in terms of resistance to noise and efficiency with small training
datasets.

The key contributions of this paper are threefold: i) We intro-
duce a new task focused on the physics-based online synthesis
of humanoid reactive motions; ii) We present a novel approach,
the Forward Dynamics Guided 4D Imitation, designed to produce
realistic and physically plausible reactions, enabling real-time at
30 fps(speed up x33) and online inference; iii) Experiments on In-
terHuman and Chi3D demonstrate that our method significantly
outperforms existing methods. Additionally, detailed ablation stud-
ies and analytical experiments have been conducted to prove the
effectiveness of our approach.

2 RELATEDWORK
2.1 Human Reaction Synthesis
Some recent research [25, 45, 47, 57] have shifted focus towards the
synthesis of human-human interactions. [25] introduced a dataset
featuring natural language descriptions and developed a diffusion
model to generate human-human interactions. However, their ap-
proach faces limitations in reaction synthesis due to its reliance on a
fixed CLIP branch for text feature extraction. In contrast, [57] intro-
duced a GAN-based Transformer designed for action-conditioned
motion generation. Our research pivots towards generatingmotions
that are conditioned on the movements of another human. This fo-
cus is particularly crucial for generating human reactions based on
an actor’s motion, a key aspect in advancing VR/AR technologies
and humanoid robotics, where generating appropriate responses is
essential. [9] have proposed a Transformer network that incorpo-
rates both temporal and spatial attention mechanisms to generate
reactions, while [4] have focused on predicting human intent in
human-to-human interactions. Nevertheless, these methods pri-
marily address the generation of body motions without considering
the physical properties of those movements. [44] introduce InsAc-
tor, a text-driven, physics-based methodology for human motion
generation that initiates with a kinematics-based diffusion model
to create reference trajectories. Subsequent actions are obtained
from the reference state and the current state. While this method
depends on an accurate reference state, it struggles with the chal-
lenges posed by kinematic noise during action execution, which
can adversely affect policy learning. Our approach distinguishes
itself as the first to propose a physics-based method for reaction
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generation, effectively immune to the noise issues associated with
kinematics-based methods.

2.2 Imitation Learning and Policy Distillation
Previous studies have leveraged imitation learning techniques, such
as behavior cloning [24, 49], enriching Reinforcement Learning
with augmented demonstrations [12, 41, 42, 46, 56], and employing
Inverse Reinforcement Learning [1, 14, 20, 26, 33] to capitalize on ex-
pert demonstrations or policies. Several approaches [16, 21, 32, 48]
have embraced the Generalist-Specialist Learning concept, wherein
a cohort of specialists (teachers) is trained on distinct segments of
the task spectrum. Subsequently, their knowledge is distilled into a
single generalist (student) across the entire task domain, employing
the aforementioned imitation learning and policy distillation tech-
niques. In this work, we introduce a Forward Dynamics Guided
Imitation approach, incorporating an iterative Generalist-Specialist
learning strategy to train the reactor policy.

2.3 Motion Tracking
Simulated characters, constrained by physics [6, 8, 15, 17, 19, 31, 34,
36–39, 52, 53, 59], excel in generating natural human motions and
interactions, both human-to-human [27, 55] and human-object [31,
38]. However, the non-differentiability of most physics simulators
necessitates the use of time-intensive and expensive reinforcement
learning (RL) for training. Motion imitators have shown remarkable
capability in mimicking reference motions, especially with high-
quality MoCap data, but primarily in smaller datasets. Innovations
like ScaDiver [54] and MoCapAct [50] have made significant strides
in scaling imitation to larger datasets, achieving up to 80% effective-
ness. UHC [29] notably imitates 97% of the AMASS dataset, with
its successor, PHC [28], improving on this by eliminating the need
for external forces. Our work leverages PHC [28] for high-fidelity
motion capture in simulations, transforming the motion capture
data into state-action pairs for policy learning. The training result
on these state-action pairs showcases the superior performance of
our physics-based method over kinematics-based motion tracking
in reaction imitation.

3 PROBLEM FORMULATION
In this work, we aim to develop a universal reactor policy that
enables reasonable social interactions, derived from the observation
of an actor’s state and its state. We achieve this by learning from a
broad spectrum of multi-human interaction scenarios. The actor-
reactor interaction, denoted as x, is represented as a collection
of motion trajectories xℎ∈ (𝑎𝑐𝑡,𝑟𝑒𝑎𝑐𝑡 ) , such that x = {x𝑎𝑐𝑡 , x𝑟𝑒𝑎𝑐𝑡 },
with xℎ∈ (𝑎𝑐𝑡,𝑟𝑒𝑎𝑐𝑡 ) = {𝒔ℎ

𝑖
, 𝒂ℎ

𝑖
}𝐿
𝑖=1 comprising a sequence of state-

action pairs.
State. The simulation state, denoted by 𝒔𝑠𝑖𝑚𝑡 ≜ (𝒔𝑎𝑐𝑡𝑡 , 𝒔𝑟𝑒𝑎𝑐𝑡𝑡 , 𝒔𝑎𝑐𝑡

𝑡+1),
captures the actor’s state at times 𝑡 and 𝑡 + 1, along with the re-
actor’s state at time 𝑡 . Human states are defined through joint
positions 𝑝𝑡 ∈ R𝐽 ×3 and velocities ¤𝑝𝑡 ∈ R𝐽 ×3, with all coordinates
recalibrated to the reactor’s reference frame based on their current
orientation and root position.
Action. We employ a proportional derivative (PD) controller for
each degree of freedom (DoF) of the reactor, with the action 𝒂𝑟𝑒𝑎𝑐𝑡𝑡

setting the PD target. The torque applied at each joint is calculated

as 𝝉𝑖 = 𝒌𝑝 ◦
(
𝒂𝑟𝑒𝑎𝑐𝑡𝑡 − 𝒔𝑟𝑒𝑎𝑐𝑡𝑡

)
− 𝒌𝑑 ◦ ¤𝒔𝑟𝑒𝑎𝑐𝑡𝑡 . Building upon the PHC

framework, the SMPL body model comprises 24 rigid bodies, 23 of
which are actuated, thus defining an action space 𝒂𝑟𝑒𝑎𝑐𝑡𝑡 ∈ R23×3.

To set up the environment, we initialize the actor and reactor at
the starting state of their trajectory. Our objective, using the sim-
ulation state 𝒔𝑠𝑖𝑚𝑡 ≜ (𝒔𝑎𝑐𝑡𝑡 , 𝒔𝑟𝑒𝑎𝑐𝑡𝑡 , 𝒔𝑎𝑐𝑡

𝑡+1) at time 𝑡 , is to produce an
appropriate action 𝒂𝑟𝑒𝑎𝑐𝑡𝑡 that facilitates reaching the subsequent
actor state 𝒔𝑟𝑒𝑎𝑐𝑡

𝑡+1 . This scenario presents a multi-task policy learn-
ing challenge without specific reward mechanisms, necessitating
that our learned policy demonstrates robust generalization across
various multi-human interaction tasks.

4 METHOD
This section provides a detailed description of our proposedmethod-
ology. section 4.1 introduces the framework and training pipeline.
The process for generating demonstrations from motion capture
data is described in section 4.2, along with the training procedure
for the forward dynamics model in section 4.3. Additionally, we
leverage a ForwardDynamicsModel in section 4.4 to guide 4D Imita-
tion Learning and adopt an Iterative Generalist-Specialist Learning
strategy in section 4.5.

4.1 Overview
Our methodology encompasses four key components: Demonstra-
tion Generation Process, Forward Dynamics Model Training, Itera-
tive Generalist-Specialist Learning Strategy, and Forward Dynamics
Guided 4D Imitation Learning, as depicted in fig. 2.

To model state-action relationships, it’s crucial to associate ac-
tions 𝒂𝑡 with each state 𝒔𝑡 . Thus, during the demonstration genera-
tion phase, we employ a universal motion tracker [28] to seamlessly
convert motion capture data for use in the simulation environment.
This imported data undergoes meticulous manual review to guar-
antee the demonstration’s quality.

A proficient policy should anticipate the outcomes of its actions,
to be specific, the future states. Traditional imitation learning strug-
gles with dynamic perception, mainly capturing the current state
without forecasting future states. We propose the Forward Dynamic
Model to predict the future states. After obtaining state-action pairs
{𝒔ℎ

𝑖
, 𝒂ℎ

𝑖
}𝐿
𝑖=1, we initially train two Variational Autoencoders (VAE)

as feature extractors for both states and actions, termed the state
VAE and the action VAE. Following this, a forward dynamics model
is trained to estimate the upcoming state 𝒔𝑡+1, based on the current
state 𝒔𝑡 and action 𝒂𝑡 . We train the model in the feature space using
the contrastive loss, as a result, the forward dynamics model is
stochastic rather than deterministic leading to more diverse and
accurate simulation.

With the forward dynamics model, we advance to the training
phase of 4D imitation learning. The term "4D imitation learning" re-
flects the incorporation of temporal data in our input states and the
dynamics network’s ability to forecast future states. This approach
transcends basic one-to-one mapping, evolving from singular state-
action relationships to encompass temporal progression. Utilizing
the previous states of both the actor and reactor {𝒔𝑎𝑐𝑡𝑡 , 𝒔𝑟𝑒𝑎𝑐𝑡𝑡 } along
with the actor’s current state 𝒔𝑎𝑐𝑡

𝑡+1, our model is tasked with fore-
casting the action 𝒂𝑟𝑒𝑎𝑐𝑡𝑡 for the reactor to execute. This model
anticipates the reactor’s next state 𝒔𝑟𝑒𝑎𝑐𝑡

𝑡+1 , leveraging the reactor’s
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Figure 2: Our method can be divided into four parts: Demonstration Generation Process, Forward Dynamics Model Training,
Iterative Generalist-Specialist Learning Strategy, and Forward Dynamics Guided 4D Imitation Learning.

preceding state 𝒔𝑟𝑒𝑎𝑐𝑡𝑡 and the proposed action 𝒂𝑟𝑒𝑎𝑐𝑡𝑡 . After encod-
ing the forecasted action and state through the VAE’s encoder, we
apply a contrastive loss to facilitate gradient back-propagation.

Given the complexity of imitating a diverse array of tasks with a
single network, inspired by [51], we utilize an Iterative Generalist-
Specialist Learning Strategy during the imitation learning phase.
We begin by clustering dataset motions into ten subsets based on
state features from the state encoder. A Generalist model is first
trained on the entire dataset, after which this model is duplicated
ten times to specialize in each subset, creating ten Specialists. Sub-
sequently, we apply a data distillation technique to transfer the
knowledge from these Specialists back to the Generalist. This it-
erative process enhances our policy’s ability to handle a broad
spectrum of interactive tasks, enabling the generation of different
reactions.

4.2 Demonstration Generation from Motion
Capture Datasets

To enhance imitation learning, transforming motion capture data
into state-action pairs is crucial. However, deriving precise actions
from motion data is typically difficult, necessitating high-precision
force sensors or advanced motion-tracking techniques. Our goal is

to generate accurate state-action pairs {𝒔𝑖 , 𝒂𝑖 }𝐿𝑖=1 from sequences
of joint positions {𝑝𝑡 }𝐿𝑖=1.

In contrast to approaches like DeepMimic[35] or DiffMimic[43],
which train a distinct policy for each motion sequence, PHC[28] de-
velops a unified policy adept at tracking various motion sequences.
This methodology offers significant efficiency, allowing for direct
prediction and greatly enhancing the process of transforming mo-
tion capture data into simulations.

Within the PHC framework, a goal-conditioned policy 𝜋PHC
aims to mimic reference motion capture data {𝑝𝑡 }𝐿𝑖=1, modeling
the task as a Markov Decision Process (MDP) defined by the tu-
ple M = ⟨𝑺,𝑨, 𝑻 , R, 𝛾⟩, encompassing states, actions, transition
dynamics, reward function, and discount factor. The objective is
to optimize the cumulative discounted reward E

[∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡
]

through proximal policy gradient (PPO) learning. The control policy
𝜋PHC (𝒂𝑡 |𝒔𝑡 ) = N(𝜇 (𝒔𝑡 ), 𝜎) is described by a Gaussian distribution
with a fixed diagonal covariance. This tracking policy is trained on
AMASS, a comprehensive motion dataset.

Utilizing PHC as a motion tracker facilitates the import of mo-
tion capture data into the simulation environment, yet the tracker’s
inherent randomness and capability constraints may lead to inac-
curacies in tracking complex or intense movements. To counter-
act this, we track the same dataset 10 times, selectively curating
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high-quality results for demonstrations. This approach achieves an
overall tracking success rate of approximately 50%, underscoring
the tracker’s role in not only importing but also physically and reli-
ably augmenting the dataset, thereby enlarging the training set’s
scale. The imported dataset undergoes meticulous manual review
to guarantee the demonstration’s quality.

4.3 Forward Dynamics Model Training
A proficient policy should anticipate the outcomes of its actions,
necessitating a forward dynamics model to enable complex control
tasks through learning from experience. Training agents to learn
dynamics from intricate, high-dimensional data such as pose ob-
servations brings a significant challenge. Rather than predicting
directly in the pose space, we opt to translate pose observations
into a feature space. The forward dynamics model is trained to
maximize the similarity between the predicted and the observed
next-state representation. Consequently, our preliminary phase
entails the training of both a state encoder and an action encoder
to convert raw signals into a comprehensible feature space.
Representation model for state and action. We employ a state
Variational Autoencoder (VAE), comprising a state encoder E𝑠 and
a state decoder D𝑠 , to transform a state 𝒔𝑡 into a state feature 𝑧𝑠𝑡 ,
and then reconstruct 𝒔𝑡 = D(𝑧𝑠𝑡 ) = D(E(𝒔𝑡 )) from 𝑧𝑠𝑡 . Similarly,
an action VAE, with an action encoder E𝑎 and action decoder D𝑎 ,
is trained to produce the action feature 𝑧𝑎𝑡 .
Forward Dynamics Model Training. The forward dynamics
model forecasts the feature of the subsequent state 𝑧𝑠

𝑡+1 using the
current state 𝑧𝑠𝑡 and action 𝑧𝑎𝑡 . Representing state-action-state se-
quences as (𝑧𝑠𝑡 , 𝑧𝑎𝑡 , 𝑧𝑠𝑡+1), the model function is 𝑧𝑠

𝑡+1 = 𝐹 (𝑧𝑠𝑡 , 𝑧𝑎𝑡 ),
encapsulating our forward dynamics model as:

𝑧𝑠𝑡+1 = 𝐹 (𝑧𝑠𝑡 , 𝑧𝑎𝑡 ), (1)

where 𝑧𝑠𝑡 = E(𝒔𝑡 ), 𝑧𝑎𝑡 = E(𝒂𝑡 ).
Contrastive Loss as alignment score. Optimizing the forward
dynamics model to strictly match 𝑧𝑠

𝑡+1 with 𝑧𝑠
𝑡+1 presumes deter-

ministic transitions, an assumption not always valid in the dynamic
real-world scenarios. Rather than requiring exact matches for zero
cost in the cost function, the energy-based contrastive loss permits
low costs for all compatible prediction-observation pairs. We select
a mini-batch of 𝑁 state-action-state tuples (𝑧𝑠𝑡 , 𝑧𝑎𝑡 , 𝑧𝑠𝑡+1). Within
this framework, a prediction 𝑧𝑠

𝑡+1 and its ground-truth 𝑧𝑠
𝑡+1 from

the same tuple are considered a positive pair, whereas other tuple
combinations within the mini-batch serve as negative examples.
Cosine similarity measures the distance between two representa-
tions, with the loss for a positive example pair (𝑧𝑖

𝑡+1, 𝑧
𝑖
𝑡+1) is defined

accordingly:

𝐿𝑓 = −log
exp(sim(𝑧𝑠,𝑖

𝑡+1, 𝑧
𝑠,𝑖
𝑡+1)/𝜏)∑𝑁

𝑗=1
𝑗≠𝑖

exp(sim(𝑧𝑠,𝑖
𝑡+1, 𝑧

𝑠,𝑗
𝑡 )/𝜏) +∑𝑁

𝑗=1
𝑗≠𝑖

exp(sim(𝑧𝑠,𝑖
𝑡+1, 𝑧

𝑠,𝑗

𝑡+1)/𝜏)
,

(2)
where 𝜏 denotes a temperature parameter that is 0.07 as same as
MoCov2[7].

4.4 Forward Dynamics Guided 4D Imitation
Our goal is to learn the mapping function from state space to action
space for effective and human-like interactions. Reinforcement
Learning (RL) techniques, while powerful, often require exhaustive
training and can suffer from instability across various scenarios.
Traditional imitation learning struggles with dynamic perception,
mainly capturing the current state without forecasting future states,
leading to unrealistic movements and high-frequency jitter. We
introduce a novel forward dynamics-guided 4D imitation learning
strategy to address these challenges.

Consider a stochastic MLP policy 𝜋BC (𝒂𝑟𝑒𝑎𝑐𝑡𝑡 |𝒔𝑠𝑖𝑚𝑡 ) with param-
eters 𝜃BC, where 𝒔𝑠𝑖𝑚𝑡 ≜ (𝒔𝑎𝑐𝑡𝑡 , 𝒔𝑟𝑒𝑎𝑐𝑡𝑡 , 𝒔𝑎𝑐𝑡

𝑡+1) defines the simulation
state. This policy determines the reactor’s action 𝑎𝑟𝑒𝑎𝑐𝑡𝑡 . Subse-
quently, we apply the trained action encoder to convert actions
into feature space representations 𝒛𝑎,𝑟𝑒𝑎𝑐𝑡𝑡 . Echoing the forward
dynamics model’s training, contrastive loss is employed for policy
learning supervision, simplifying 𝒛𝑎,𝑟𝑒𝑎𝑐𝑡𝑡 to 𝒛𝑎𝑡 for ease. A predic-
tion 𝑧𝑎𝑡 and its ground-truth 𝑧𝑎𝑡 from the same tuple constitute a
positive example, leading to the following loss function definition:

𝐿𝑏𝑐 = −log
exp(sim(𝑧𝑎,𝑖𝑡 , 𝑧

𝑎,𝑖
𝑡 )/𝜏)∑𝑁

𝑗=1
𝑗≠𝑖

exp(sim(𝑧𝑎,𝑖𝑡 , 𝑧
𝑎,𝑗
𝑡 )/𝜏)

, (3)

where 𝜏 denotes a temperature parameter that is 0.07 and the mini-
batch size 𝑁 is set to 1024. And sim means the cosine similarity.

To enable our model with forecasting abilities, upon deriving
𝒛𝑎,𝑟𝑒𝑎𝑐𝑡𝑡 , we employ the pre-trained forward dynamics model to
forecast the subsequent state feature 𝒛𝑠,𝑟𝑒𝑎𝑐𝑡

𝑡+1 , considering the reac-
tor’s current state. For simplicity, 𝒛𝑠,𝑟𝑒𝑎𝑐𝑡

𝑡+1 is referred to as 𝒛𝑠
𝑡+1. Here

again, we utilize contrastive loss for state supervision, denoted as
follows:

𝐿𝑓 𝑑 = −log
exp(sim(𝑧𝑠,𝑖

𝑡+1, 𝑧
𝑠,𝑖
𝑡+1)/𝜏)∑𝑁

𝑗=1
𝑗≠𝑖

exp(sim(𝑧𝑠,𝑖
𝑡+1, 𝑧

𝑠,𝑗
𝑡 + 1)/𝜏)

, (4)

where 𝜏 denotes a temperature parameter that is 0.07 and the mini-
batch size 𝑁 is set to 1024.

So, the final loss function can be defined as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑏𝑐 + 𝐿𝑓 𝑑 + 𝐿𝑟𝑒𝑔 . (5)

where 𝐿𝑟𝑒𝑔 is expressed as |𝒂𝑟𝑒𝑎𝑐𝑡𝑡 |2 to ensure the smoothness of
the interaction.

4.5 Iterative Generalist-Specialist Learning
The performance of the model plateaus as it forgets older demon-
strations when learning new ones. Directly training a unified pol-
icy on all action data is extremely challenging, so we employ
an Iterative Generalist-Specialist Learning Strategy followed by
UniDexGrasp++[51].

Generalist-specialist learning divides the entire task space into
smaller subspaces, assigning each subspace to a specialist for fo-
cusedmastery. This segmentation simplifies learning due to reduced
task variations, enabling specialists to excel within their respective
domains. Ultimately, the knowledge from all specialists is distilled
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into a single generalist. This process, when repeated, is termed Iter-
ative Generalist-Specialist Learning. We employ the state encoder
to translate the dataset into feature space, subsequently clustering
it into 10 subsets for training our policy via the Iterative Generalist-
Specialist Learning strategy.

5 EXPERIMENT
5.1 Dataset
InterHumanDatasets.[25] Following the official guidelines, we’ve
designated 5200 sequences for training and 1177 sequences for test-
ing. We assume that the first human is the actor and the other
one is the reactor. We downsample the motion data at 30 fps for
training and testing. After the demonstration generation process,
we obtained a total of 24,440 training data for training and 5,061
for testing.
Chi3D Datasets.[13] Chi3D features a total of 373 available data
provided by officials, with 300 allocated for training and 73 for
testing.We define the human estimated from images as actors, while
the other one captured by motion capture devices is considered as
reactors. After the demonstration generation process, we obtained
a total of 1,680 training data for training and 313 for testing.

5.2 Baselines
For all baseline methods, we utilized the original authors’ code,
making necessary adjustments to adapt it to our task.
Progressively Generating Better Initial Guesses[30] employs
Spatial Dense Graph Convolutional Networks and Temporal Dense
Graph Networks for enhanced performance.
Spatio-temporal Transformer[2] leverages a transformer-based
architecture, utilizing attention mechanisms to identify temporal
and spatial correlations in human motion prediction.
InterFormer[9] features a Transformer network that integrates
both temporal and spatial attention to capture the dependencies of
interactions across time and space effectively.
InterGen-revised[25] is an advanced diffusion-based framework
capable of generating multi-human interactions from textual de-
scriptions. We revised the framework by swapping the CLIP branch
for a spatio-temporal transformer to encode the actor’s motion,
focusing on generating multi-human motions. Despite having out-
put and supervision signals for both the actor and reactor, we only
utilize the output of the reactor’s motions.
InsActor-revised[44] is a language-conditioned, physics-based
method for generating motion that initiates with a kinematic-based
diffusion model for motion creation, subsequently transitioning
state to action space. Leveraging the kinematic-based outcomes
from InterGen-revised, InsActor calculates the action, standing out
as themost relevant baseline by combining cutting-edge kinematics-
based diffusion modeling with physics-based tracking.

5.3 Metrics
We adopt metrics from previous works on kinematic-based human
motion and physically plausible motion generation.
Fréchet Inception Distance (FVD). FVD computes the distance
between the ground truth and the generated data distribution. We
use a pre-trained keypoints-based motion encoder fromMotionGPT
to extract features from both the generated animations and ground

truth motion sequences. And we generate 1000 samples 10 times
with different random seeds.
Diversity Score (Div). Diversity Score is the average deep feature
distance between all the samples. We also generated 1000 samples
10 times here.
Ground Distance (GD). We compute the distance between the
average floating height (above ground) and the average vertical
ground penetration depth when the joint velocity is lower than a
threshold in 0.3s (for 10 frames). This is determined by the lowest
SMPL-X vertex.
Interpenetration. We report the interpenetration volume (IV) of
vertices that penetrate the actor mesh and the maximum inter-
penetration depth (ID). This metric is computed only when the
minimum distance between the actor and the reactor is smaller
than 0.2cm. Note that as a consequence of the approximated colli-
sion geometry as rigid bodies in the physics simulation, our method
can still exhibit small amounts of interpenetration after converting
the simulation results to the SMPL-X parameter space.

5.4 Evaluation and Discussion
Compared with existing methods. We provide qualitative re-
sults in 3. Please see our supplementary video for more examples.
We also provide quantitative results on InterHuman and Chi3D.
The InsActor-revised is a physics-based method, but it relies on the
generation quality of kinematic-based methods. All other methods
are pure kinematic-based, among which InterGen-revised is the
state-of-the-art method. It can be seen that our results are signifi-
cantly better than existing methods on both FVD and Div metrics.
Since both our method and InsActor-revised are physics-based
methods, the GD, IV, and ID metrics are all zero in the simulation
environment, which also demonstrates the natural advantages of
physics-based methods over kinematic-based methods. Because
kinematic-based methods lack physical priors, they perform poorly
on the GD, IV, and ID metrics. Although InsActor has natural ad-
vantages in GD, IV, and ID, it is constrained by the capabilities
of kinematic-based methods and needs to resist the noise of kine-
matic trajectories in subsequent execution phases, such as sliding,
floating feet, and penetration, which is not conducive to the learn-
ing of policies. Additionally, we found that the noise introduced by
kinematic methods significantly affects InsActor’s decision-making,
making it easy for the reactor to fall during the interaction process.
Our method does not rely on the generation quality of kinematic
methods but directly learns the stable mapping between states and
actions, which can significantly improve performance and generate
high-quality reactions.
Ablations.We performed ablation studies to assess the impact of
the Forward Dynamics Model (FDM), Iterative Generalist-Specialist
Learning Strategy (IGSL), and Contrastive Loss (CL). The results
show a marked decline in model performance when either the FDM
guidance or the IGSL is omitted. Similarly, replacing the CL with
L2 loss leads to a substantial performance drop, highlighting the
constraints of deterministic loss functions in capturing interactions.
Robustness with noisy motion capture data. To demonstrate
how InsActor is significantly impacted by noise from kinematic-
basedmethods, we introduced Gaussian noise with variances of 0.01
and 0.05 to the poses in the dataset and observed the performance
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Figure 3: Qualitative results on InterHuman. It can be observed that our method significantly outperforms the InsActor in
terms of stability and realism. While it tends to fall over, our approach can generate stable interactions.

degradation. Our method remains stable with noise-0.01 and noise-
0.05. However, the FVD of InsActor escalates by 4.7 under noise-0.01
and by 18.7 under noise-0.05, underscoring our method’s enhanced
robustness against motion capture data noise.
PerformanceGapwith Small Training Set.Contrary to kinematic-
based approaches that directly predict human poses, our method

establishes a stable mapping between interaction states and reactor
actions, diminishing the reliance on extensive training data by not
needing to learn the intricate interplay of human joint positions and
their complex dynamics. Our method showcases a notable superi-
ority by utilizing just 20% training dataset, maintaining exceptional
performance against existing methods.
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Method FVD(↓) Div(→) GD[mm](↓) IV [𝑐𝑚3](↓) ID[𝑚𝑚](↓)

InterHuman

Real 0.17 15.7 3.8 0.9 3.6

PGBIG 90.2 9.7 12.3 2.1 7.2
SS-Transformer 80.7 11.2 10.2 2.0 7.2
InterFormer 59.4 11.8 8.6 1.7 5.4
InterGen-revised 28.2 17.1 5.4 1.3 4.9
InsActor-revised 30.2 13.5 0.0/1.1 0.0/0.23 0.0/1.4

Ours 14.1 15.0 0.0/1.1 0.0/0.23 0.0/1.4

Chi3D

Real 0.09 12.3 5.2 1.3 4.7

PGBIG 66.8 7.2 14.2 2.9 8.2
SS-Transformer 77.2 9.1 11.7 2.9 6.9
InterFormer 32.1 9.7 10.2 2.1 5.2
InterGen-revised 22.8 14.8 6.1 1.6 5.0
InsActor-revised 27.1 11.1 0.0/1.1 0.0/0.23 0.0/1.4

Ours 11.4 11.6 0.0/1.1 0.0/0.23 0.0/1.4

Table 1: Evaluation on InterHuman and Chi3D datasets. Our
method significantly outperforms existing methods. For Ins-
Actor and our method, the GD, IV, and ID in simulation is 0,
while it is 1.1, 0.23, and 1.4 in the SMPL-X space as a conse-
quence of the rigid body approximation of the humanoid in
the physics simulation.

Method FVD(↓) Div(→)

Real 0.17 15.7

w/o FDM 28.1 17.5
w/o IGSL 23.4 13.2
w/o CL 19.8 14.2

Ours 14.1 15.0
Table 2: Ablation. We conducted comprehensive ablation
experiments to verify the effectiveness of each component.

Method FVD(↓) Div(→)

Real 0.17 15.7

InsActor-0.01 34.2→38.9 13.5→12.5
InsActor-0.05 34.2→52.9 13.5→10.6

Ours-0.01 14.1→14.0 15.0→15.2
Ours-0.05 14.1→17.2 15.0→16.8

Table 3: Robustness with noisy motion capture data. We add
Gaussian noise to the dataset and then report the perfor-
mance drops.

Long-Range Forecasting for Forward Dynamics Models. To
capitalize on the benefits of Forward Dynamics Models, we exam-
ined their impact through Long-Range vs. Single-Step Forecasting
experiments. Extending the forecast to 50 steps led to a notable de-
crease in performance, likely due to accumulating errors in Forward
Dynamics Models. We also conducted experiments on both Long-
Range Forecasting and Single-Step Forecasting simultaneously, and
the results show that its performance is not much different from

Method FVD(↓) Div(→)

Real 0.09 13.8

InterGen-revised 32.9 14.6
InsActor-revised 54.7 9.7

Ours 22.6 12.6
Table 4: Performance Gap with Small Training Set. Our
method has a significant advantage and can still achieve
advanced performance compared with InterGen-revised and
InsActor-revised.

Method FVD(↓) Div(→)

Real 0.17 15.7

Step-50 24.3 16.2
Step-1&50 14.9 15.4

Step-1(Ours) 14.1 15.0
Table 5: Forecasting steps for Forward Dynamics Models.
We conducted experiments to investigate the performance
differences between Long-Range Forecasting and Single-Step
Forecasting

using Single-Step Forecasting alone. Therefore, considering the
computational cost, we do not introduce Long-Range Forecasting
in the 4D Imitation Learning phase.
Real-Time Inference. Our method, instead of using heavy diffu-
sion models, attains real-time inference at 30 fps on a single 3090
GPU. In contrast, InterGen-revised is limited to 0.3 fps, and InsActor
reaches only 0.9 fps.
The Importance of Latent Dynamics Model. We also experi-
mentally verified the advantages of the Latent Dynamics Model.
Our method employs a State/Action VAE to transform the raw data
into a feature space, followed by predictions using a forward dynam-
ics model. Directly predicting dynamics on raw human key points
and supervising with MSE loss, we found that this significantly
increases optimization difficulty and reduces training robustness.
Results indicate that on the InterHuman dataset, the FVD can only
reach 42.8, demonstrating that the State/Action VAE and Latent
Dynamics Model are crucial in our design.
Limitation.While our method successfully generates realistic reac-
tions, it comes with limitations. We haven’t tested its applicability
to scenarios with three or more participants, like basketball games.
Currently, it doesn’t account for intricate hand movements, such
as those in rock-paper-scissors.

6 CONCLUSION
This paper presents a Forward Dynamics Guided 4D Imitation
method that leverages a forward dynamics model to guide 4D imita-
tion learning. Our approach produces reactions that are physically
accurate and human-like reactions. We validated our approach
with experiments on the InterHuman and Chi3D datasets, further
underscored by extensive ablation studies.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PhysReaction: Physically Plausible Real-Time Humanoid Reaction Synthesis via Forward Dynamics Guided 4D Imitation ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first international conference
on Machine learning. 1.

[2] Emre Aksan, Manuel Kaufmann, Peng Cao, and Otmar Hilliges. 2021. A spatio-
temporal transformer for 3d human motion prediction. In 2021 International
Conference on 3D Vision (3DV). IEEE, 565–574.

[3] Nikos Athanasiou, Mathis Petrovich, Michael J Black, and Gül Varol. 2022. Teach:
Temporal action composition for 3d humans. In 2022 International Conference on
3D Vision (3DV). IEEE, 414–423.

[4] Murchana Baruah, Bonny Banerjee, and Atulya K Nagar. 2023. Intent Prediction
in Human–Human Interactions. IEEE Transactions on Human-Machine Systems
53, 2 (2023), 458–463.

[5] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.
DReCon: data-driven responsive control of physics-based characters. ACM
Transactions On Graphics (TOG) 38, 6 (2019), 1–11.

[6] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.
DReCon: Data-driven responsive control of physics-based characters. ACM Trans.
Graph. 38, 6 (2019), 11.

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Improved baselines
with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020).

[8] Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk,
and Stefan Jeschke. 2018. Physics-based motion capture imitation with deep
reinforcement learning. Proceedings - MIG 2018: ACM SIGGRAPH Conference on
Motion, Interaction, and Games (2018).

[9] Baptiste Chopin, Hao Tang, Naima Otberdout, Mohamed Daoudi, and Nicu Sebe.
2023. Interaction transformer for human reaction generation. IEEE Transactions
on Multimedia (2023).

[10] Sammy Christen, Muhammed Kocabas, Emre Aksan, Jemin Hwangbo, Jie Song,
and Otmar Hilliges. 2022. D-grasp: Physically plausible dynamic grasp synthe-
sis for hand-object interactions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 20577–20586.

[11] Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian
Theobalt. 2023. Mofusion: A framework for denoising-diffusion-based motion
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9760–9770.

[12] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016.
Benchmarking deep reinforcement learning for continuous control. In Interna-
tional conference on machine learning. PMLR, 1329–1338.

[13] Mihai Fieraru, Mihai Zanfir, Elisabeta Oneata, Alin-Ionut Popa, Vlad Olaru, and
Cristian Sminchisescu. 2020. Three-dimensional reconstruction of human in-
teractions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 7214–7223.

[14] Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning robust rewards with ad-
versarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248 (2017).

[15] Levi Fussell, Kevin Bergamin, and Daniel Holden. 2021. SuperTrack: motion
tracking for physically simulated characters using supervised learning. ACM
Trans. Graph. 40, 6 (Dec. 2021), 1–13.

[16] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine.
2017. Divide-and-conquer reinforcement learning. arXiv preprint arXiv:1711.09874
(2017).

[17] Kehong Gong, Bingbing Li, Jianfeng Zhang, TaoWang, Jing Huang, Michael Bi Mi,
Jiashi Feng, and Xinchao Wang. 2022. PoseTriplet: Co-evolving 3D human pose
estimation, imitation, and hallucination under self-supervision. CVPR (March
2022).

[18] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng,
Minglun Gong, and Li Cheng. 2020. Action2motion: Conditioned generation of
3d human motions. In Proceedings of the 28th ACM International Conference on
Multimedia. 2021–2029.

[19] Leonard Hasenclever, Fabio Pardo, Raia Hadsell, Nicolas Heess, and Josh Merel.
[n. d.]. CoMic: Complementary task learning & mimicry for reusable skills.
http://proceedings.mlr.press/v119/hasenclever20a/hasenclever20a.pdf. Accessed:
2023-2-13.

[20] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
Advances in neural information processing systems 29 (2016).

[21] Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, and Hao Su. 2022.
Improving policy optimization with generalist-specialist learning. In International
Conference on Machine Learning. PMLR, 10104–10119.

[22] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. 2023. Mo-
tionGPT: Human Motion as a Foreign Language. arXiv preprint arXiv:2306.14795
(2023).

[23] Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2022. PADL:
Language-Directed Physics-Based Character Control. In SIGGRAPH Asia 2022
Conference Papers. 1–9.

[24] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochen-
derfer. 2019. Hg-dagger: Interactive imitation learning with human experts. In

2019 International Conference on Robotics and Automation (ICRA). IEEE, 8077–
8083.

[25] Han Liang, Wenqian Zhang, Wenxuan Li, Jingyi Yu, and Lan Xu. 2023. InterGen:
Diffusion-based Multi-human Motion Generation under Complex Interactions.
arXiv preprint arXiv:2304.05684 (2023).

[26] Fangchen Liu, Zhan Ling, TongzhouMu, and Hao Su. 2019. State alignment-based
imitation learning. arXiv preprint arXiv:1911.10947 (2019).

[27] Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, S M Ali Eslami, Daniel Hennes,
Wojciech M Czarnecki, Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki,
Noah Y Siegel, Leonard Hasenclever, Luke Marris, Saran Tunyasuvunakool, H
Francis Song, Markus Wulfmeier, Paul Muller, Tuomas Haarnoja, Brendan D
Tracey, Karl Tuyls, Thore Graepel, and Nicolas Heess. 2021. From motor control
to team play in simulated humanoid football. (May 2021).

[28] Zhengyi Luo, Jinkun Cao, Kris Kitani, Weipeng Xu, et al. 2023. Perpetual hu-
manoid control for real-time simulated avatars. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 10895–10904.

[29] Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani. 2021. Dynamics-regulated
kinematic policy for egocentric pose estimation. NeurIPS 34 (2021), 25019–25032.

[30] Tiezheng Ma, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. 2022.
Progressively generating better initial guesses towards next stages for high-
quality human motion prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 6437–6446.

[31] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasen-
clever, Vu Pham, Tom Erez, Greg Wayne, and Nicolas Heess. 2020. Catch and
Carry: Reusable Neural Controllers for Vision-Guided Whole-Body Tasks. ACM
Trans. Graph. 39, 4 (2020).

[32] Tongzhou Mu, Jiayuan Gu, Zhiwei Jia, Hao Tang, and Hao Su. 2020. Refactoring
policy for compositional generalizability using self-supervised object proposals.
Advances in Neural Information Processing Systems 33 (2020), 8883–8894.

[33] Andrew Y Ng, Stuart Russell, et al. 2000. Algorithms for inverse reinforcement
learning.. In Icml, Vol. 1. 2.

[34] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018.
DeepMimic. ACM Trans. Graph. 37, 4 (2018), 1–14.

[35] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. 2018.
Deepmimic: Example-guided deep reinforcement learning of physics-based char-
acter skills. ACM Transactions On Graphics (TOG) 37, 4 (2018), 1–14.

[36] Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017.
DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement
learning. ACM Trans. Graph. 36, 4 (July 2017), 1–13.

[37] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine.
2019. MCP: Learning Composable Hierarchical Control with Multiplicative
Compositional Policies. (May 2019).

[38] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022.
ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated
Characters. (May 2022).

[39] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021.
AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control.
ACM Trans. Graph. 4 (April 2021), 1–20.

[40] Mathis Petrovich, Michael J Black, and Gül Varol. 2022. TEMOS: Generating
diverse human motions from textual descriptions. In European Conference on
Computer Vision. Springer, 480–497.

[41] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. 2021. State-
only imitation learning for dexterous manipulation. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 7865–7871.

[42] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-
man, Emanuel Todorov, and Sergey Levine. 2017. Learning complex dexterous
manipulation with deep reinforcement learning and demonstrations. arXiv
preprint arXiv:1709.10087 (2017).

[43] Jiawei Ren, Cunjun Yu, Siwei Chen, Xiao Ma, Liang Pan, and Ziwei Liu. 2023.
DiffMimic: EfficientMotionMimicking with Differentiable Physics. arXiv preprint
arXiv:2304.03274 (2023).

[44] Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Xiao Ma, Liang Pan, and Ziwei Liu.
2024. InsActor: Instruction-driven Physics-based Characters. Advances in Neural
Information Processing Systems 36 (2024).

[45] Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. 2023. Human
motion diffusion as a generative prior. arXiv preprint arXiv:2303.01418 (2023).

[46] Hao Shen, Weikang Wan, and He Wang. 2022. Learning category-level generaliz-
able object manipulation policy via generative adversarial self-imitation learning
from demonstrations. arXiv preprint arXiv:2203.02107 (2022).

[47] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion
phases for learning multi-contact character movements. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 54–1.

[48] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick,
Raia Hadsell, Nicolas Heess, and Razvan Pascanu. 2017. Distral: Robust multitask
reinforcement learning. Advances in neural information processing systems 30
(2017).

[49] Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Behavioral cloning from
observation. arXiv preprint arXiv:1805.01954 (2018).

http://proceedings.mlr.press/v119/hasenclever20a/hasenclever20a.pdf


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[50] Nolan Wagener, Andrey Kolobov, Felipe Vieira Frujeri, Ricky Loynd, Ching-An
Cheng, and Matthew Hausknecht. 2022. MoCapAct: A Multi-Task Dataset for
Simulated Humanoid Control. (Aug. 2022).

[51] Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan, Yaodong Yang, Li Yi, and He
Wang. 2023. UniDexGrasp++: Improving Dexterous Grasping Policy Learning
via Geometry-aware Curriculum and Iterative Generalist-Specialist Learning.
arXiv preprint arXiv:2304.00464 (2023).

[52] Tingwu Wang, Yunrong Guo, Maria Shugrina, and Sanja Fidler. 2020. UniCon:
Universal neural controller for physics-based character motion. arXiv (2020).

[53] Alexander Winkler, Jungdam Won, and Yuting Ye. 2022. QuestSim: Human
Motion Tracking from Sparse Sensors with Simulated Avatars. (Sept. 2022).

[54] JungdamWon, Deepak Gopinath, and Jessica Hodgins. 2020. A scalable approach
to control diverse behaviors for physically simulated characters. ACM Trans.
Graph. 39, 4 (2020).

[55] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2021. Control strategies
for physically simulated characters performing two-player competitive sports.
ACM Trans. Graph. 40, 4 (July 2021), 1–11.

[56] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. 2022. Learning Generaliz-
able Dexterous Manipulation from Human Grasp Affordance. arXiv preprint
arXiv:2204.02320 (2022).

[57] Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng Fang, Chenjing
Ding, Weihao Gan, Yichao Yan, Xin Jin, Xiaokang Yang, et al. 2023. ActFormer:
A GAN-based Transformer towards General Action-Conditioned 3D Human
Motion Generation. In Proceedings of the IEEE/CVF International Conference on

Computer Vision. 2228–2238.
[58] Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan Gui. 2023. InterDiff:

Generating 3D Human-Object Interactions with Physics-Informed Diffusion. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 14928–
14940.

[59] Ye Yuan and Kris Kitani. 2020. Residual Force Control for Agile Human Behavior
Imitation and Extended Motion Synthesis. NeurIPS (June 2020).

[60] Hui Zhang, Sammy Christen, Zicong Fan, Luocheng Zheng, Jemin Hwangbo,
Jie Song, and Otmar Hilliges. 2023. ArtiGrasp: Physically Plausible Synthesis of
Bi-Manual Dexterous Grasping and Articulation. arXiv preprint arXiv:2309.03891
(2023).

[61] He Zhang, Yuting Ye, Takaaki Shiratori, and Taku Komura. 2021. Manipnet:
neural manipulation synthesis with a hand-object spatial representation. ACM
Transactions on Graphics (ToG) 40, 4 (2021), 1–14.

[62] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei
Yang, and Ziwei Liu. 2022. Motiondiffuse: Text-driven human motion generation
with diffusion model. arXiv preprint arXiv:2208.15001 (2022).

[63] Juntian Zheng, Qingyuan Zheng, Lixing Fang, Yun Liu, and Li Yi. 2023. CAMS:
CAnonicalized Manipulation Spaces for Category-Level Functional Hand-Object
Manipulation Synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 585–594.

[64] Tianqiang Zhu, Rina Wu, Xiangbo Lin, and Yi Sun. 2021. Toward human-like
grasp: Dexterous grasping via semantic representation of object-hand. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 15741–15751.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Human Reaction Synthesis
	2.2 Imitation Learning and Policy Distillation
	2.3 Motion Tracking

	3 Problem Formulation
	4 Method
	4.1 Overview
	4.2 Demonstration Generation from Motion Capture Datasets
	4.3 Forward Dynamics Model Training
	4.4 Forward Dynamics Guided 4D Imitation
	4.5 Iterative Generalist-Specialist Learning

	5 Experiment
	5.1 Dataset
	5.2 Baselines
	5.3 Metrics
	5.4 Evaluation and Discussion

	6 Conclusion
	References

