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Figure 1: Our method, CURE, enables robust and efficient erasure of any target concept in text-to-
image models through orthogonal closed-form editing of cross-attention weights, ensuring that the
unintended concepts remain intact, even if they share common terms with the target concept (seen in
the bottom-left sample). This can safeguard celebrity portrait rights, respect copyrights on artworks,
and prevent explicit or unwanted content creation in a training-free manner with high efficacy.

Abstract

As Text-to-Image models continue to evolve, so does the risk of generating unsafe,
copyrighted, or privacy-violating content. Existing safety interventions - ranging
from training data curation and model fine-tuning to inference-time filtering and
guidance - often suffer from incomplete concept removal, susceptibility to jail-
breaking, computational inefficiency, or collateral damage to unrelated capabilities.
In this paper, we introduce CURE, a training-free concept unlearning framework
that operates directly in the weight space of pre-trained diffusion models, enabling
fast, interpretable, and highly specific suppression of undesired concepts. At the
core of our method is the Spectral Eraser, a closed-form, orthogonal projection
module that identifies discriminative subspaces using Singular Value Decompo-
sition over token embeddings associated with the concepts to forget and retain.
Intuitively, the Spectral Eraser identifies and isolates features unique to the unde-
sired concept while preserving safe attributes. This operator is then applied in a
single step update to yield an edited model in which the target concept is effectively
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unlearned - without retraining, supervision, or iterative optimization. To balance
the trade-off between filtering toxicity and preserving unrelated concepts, we
further introduce an Expansion Mechanism for spectral regularization which selec-
tively modulates singular vectors based on their relative significance to control the
strength of forgetting. All the processes above are in closed-form, guaranteeing ex-
tremely efficient erasure in only 2 seconds. Benchmarking against prior approaches,
CURE achieves a more efficient and thorough removal for targeted artistic styles,
objects, identities, or explicit content, with minor damage to original generation
ability and demonstrates enhanced robustness against red-teaming. Project Page at
https://sites.google.com/view/cure-unlearning/home.

1 Introduction

Recent Text-to-Image (T2I) diffusion models have garnered significant attention for their ability
to synthesize high-quality, diverse images across a wide range of prompts (1; 2; 3; 4; 5; 6). These
capabilities arise from training on large-scale, uncurated internet datasets (7), which inadvertently
expose models to undesirable concepts (8), such as copyrighted artistic styles (9; 10; 11; 12),
deepfakes (13; 14) or inappropriate content (15; 16). Such risks underscore the need for principled
concept unlearning solutions to eliminate harmful, copyright-enforced, or offensive knowledge,
enabling a safer and more responsible deployment of generative models.

A natural first step in improving safety in generative models is to curate training data to exclude
undesirable content (17). However, retraining large models and re-annotating datasets to meet
evolving safety standards is prohibitively expensive (18), and data filtering alone often leads to
unintended consequences: removing one type of undesired content can expose other undesired
content (19), introduce new biases (20), or result in incomplete removal (21), highlighting the
limitations of data curation alone. To tackle these challenges, recent research has incorporated
safety mechanisms into diffusion models. Safeguarding methods apply safety checkers to censor
outputs (22), or steer generation away from unsafe concepts using classifier-free guidance and
prompt filtering (16; 23). However, these approaches introduce recurring computational overheads as
guardrails must be applied for every new prompt at runtime, leading to quality degradation in cases of
prompts subjected to hard filtering due to distribution shift. Furthermore, they are easily circumvented
in open source settings where model code and parameters are publicly accessible (24; 25). In response
to the drawbacks mentioned above, an alternative is to unlearn undesirable concepts from T2I models
by fine-tuning their parameters (26; 27; 28; 29; 30; 31). Given an undesirable concept, these methods
aim to prevent the generation of undesirable content by updating the model’s internal representations.
Compared to full retraining or inference-time interventions, unlearning concepts by removing their
knowledge from the model weights offers a more efficient and tamper-resistant solution, especially in
open-source settings. However, most existing approaches require numerous fine-tuning iterations over
large parameter subsets (27; 28; 29), leading to substantial computational cost and degradation in the
model’s general generation quality. A compelling solution to address the above issues is offered by
model editing frameworks (32; 33; 34; 35) which modify model weights in closed-form to enhance
safety without the previous overheads of gradient-based fine-tuning. While more efficient, these
methods often fail to completely suppress targeted inappropriate concepts, remaining vulnerable to
adversarial prompts uncovered through red-teaming (36; 37; 38), which can trigger the regeneration
of supposedly ‘forgotten’ content in the unlearned model. Thus, there is an urgent need for an efficient
and reliable mechanism to ensure safe visual generation across a wide range of contexts.

Motivated by the geometric relationship between embedding and weight spaces in diffusion models,
this paper presents CURE, a mathematically principled and efficient framework for reliably eras-
ing undesired concepts in a single-step update. Building upon prior efficient concept unlearning
methods that apply closed-form solutions to modify diffusion model layers, CURE advances these
approaches by explicitly exploiting orthogonal geometric structures derived through Singular Value
Decomposition (SVD) (39; 40). Specifically, we propose the Spectral Eraser, a closed-form spectral
operator that constructs discriminative subspaces by decomposing token embeddings into orthogonal
subspaces associated with concepts designated for removal, ‘forget concepts,’ and those intended
to be preserved, ‘retain concepts’. By translating the derived embedding-space projections directly
into weight-space modifications, the Spectral Eraser precisely removes directions uniquely tied to
harmful or undesired concepts while preserving the semantic integrity of overlapping and unrelated
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representations. Furthermore, to flexibly control the extent of concept removal, we integrate a
singular-value expansion strategy, inspired by Tikhonov regularization from classical inverse prob-
lems (41; 42; 43). This mechanism selectively scales singular vectors based on their normalized
spectral energies, emphasizing or de-emphasizing the discriminative-ness of the derived forget and
retain subspaces. Consequently, such spectral regularization achieves a mathematically interpretable
and precise trade-off between effective concept removal and preservation of unrelated capabilities. All
updates within CURE are performed in closed-form, ensuring exceptional computational efficiency,
with robust concept removal in approximately 2 seconds. Our contributions are summarized as:

• We present CURE, a strong, scalable and training-free concept unlearning method leveraging
orthogonal projections and spectral geometry, to yield a closed-form weight update operator,
dubbed Spectral Eraser, for reliable and responsible visual content creation in T2I models.

• CURE introduces a selective singular-value Expansion Mechanism, grounded in classical
regularization theory, to balance robust concept suppression and semantic preservation.

• Extensive experiments demonstrate that CURE effectively and robustly removes unsafe
content, artist-specific styles, object and identities. It significantly outperforms existing
training-based and training-free methods in terms of generation quality, efficiency, specificity,
and resistance to adversarial red-teaming tools for both single- and multi-concept removals.

2 Related Works

Concept Unlearning Existing approaches for removing undesired concepts in T2I models primar-
ily fall into three distinct categories. The first class focuses on post-hoc, inference-time control,
leveraging safety checkers (22) or classifier-free guidance during generation (16; 44). Similarly, (23)
operates without modifying weights, filtering the embeddings away from identified unsafe subspaces
and attenuating harmful latent features during denoising. However, these soft intervention strategies
can be easily circumvented by malicious users in open-source settings where the model architectures
and parameters are publicly available (24) and require independent safeguarding operations for every
new prompt, hindering inference-time efficiency. The second category involves training-based
interventions (45; 46; 47; 48), where the model is retrained on filtered datasets, finetuned using
negative guidance (30; 27; 49; 26), or makes attempts to minimize the KL divergence between
unwanted and alternative safe concepts (29) to suppress unsafe generations. Adversarial training
frameworks such as (50) neutralize harmful text embeddings while works like (51; 52) remove
unwanted representations through preference optimization. Latent space manipulation, explored
by (53; 54) enhance safety using self-supervised learning. On the other hand, partial parameter
finetuning approaches adjust specific layers to forget or suppress undesired concepts (31; 28). Al-
though effective in removing specific knowledge from the model, these methods are computationally
expensive, require extensive data curation, cause performance degradation, and are easily bypassed
by red-teaming tools for T2I diffusion models (55). Combining the benefits of the earlier categories is
the third direction proposing training-free strategies that adjust model behavior without retraining to
erase specific concepts from model weights. Techniques like (35; 34) perform projection-based model
editing in the attention layers whereas (32) applies minimal parameter updates to diffusion models to
remove harmful content while preserving generative capacity. However, these methods often lack
robustness against adversarial prompts and fail to show persistent unlearning. Taking inspiration from
class unlearning and continual learning approaches for non-generative models that have leveraged
the benefits of orthogonal representations to remove and add tasks to a model’s learnt representation,
respectively (56; 57), we formulate our approach in a similar stride, exploring orthogonal concept
erasure in T2I models to guarantee efficient unlearning.

Red-Teaming Attacks for T2I Diffusion Models As safety mechanisms become more preva-
lent, recent works have explored adversarial attacks (58; 59) and jail-breaking (60) to evaluate the
robustness of unlearned T2I models. White-box attacks like (38; 61; 36) exploit the classification
capacity or prompt-conditioned behavior of diffusion models to revive erased concepts. In contrast,
black-box methods like (37) use evolutionary algorithms to generate adversarial prompts or exploit
text embeddings and multimodal inputs to bypass safeguards (62). These tools reveal critical vulnera-
bilities in concept removal approaches when deployed in unrestricted environments and while several
unlearning frameworks partially mitigate these attacks, very few are robust across all threat types.

Unlike previous works that fail to satisfy the tri-fold requirement of efficient unlearning, persistent
erasure against adversarial prompts and preservation of generation quality, this paper bridges the gap
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Figure 2: Overview of CURE. Given forget (F ) and retain (R) sets, CURE constructs energy-scaled
projectors (Pf , Pr) over their respective subspaces (Part 1), and derives a composite projection Pdis
to suppress erasable components while preserving shared content (Part 2). The action of Pf , Pr, and
PfPr on unit vectors yields directions aligned with the forget (red), retain (green), and shared (blue)
subspaces. This operator is applied to cross-attention (Part 3), enabling lightweight unlearning.

by introducing CURE, a single-step, training-free weight update framework that applies a closed-form
Spectral Eraser to isolate and remove undesired knowledge from diffusion models using tunable
unlearning strength to guarantee robust, interpretable and efficient removal of any target concept(s).

3 Method

We present CURE, a training-free approach to concept removal in pretrained diffusion models that
operates by constructing tunable geometry-aware projections using the proposed Spectral Eraser
to precisely erase concepts by editing the model’s weight matrices. We begin by reviewing core
components of these models and their cross-attention mechanism, which underpin our method.

3.1 Preliminaries

Diffusion models have emerged as the preferred choice of modern T2I applications due to their ability
to synthesize high-fidelity images via progressive denoising (63) using a U-Net backbone (64). To
improve scalability, many T2I systems employ latent diffusion (3), operating in the low-dimensional
latent space encoded by a pre-trained Variational Autoencoder (65). Text conditioning for the genera-
tion process is introduced through language models such as CLIP (66), whose token embeddings are
injected into the U-Net through cross-attention layers. Specifically, these modules follow a standard
Query-Key-Value (QKV) formulation (67) to modulate visual features with text guidance. For each
token embedding Ei, the attention mechanism generates keys and values via linear projections:

3.2 Concept Unlearning via Orthogonal Representation Editing

Problem Setup To formally characterize the concept erasure task, we begin by defining a set-
theoretic framework over the semantic space of prompts. Let U denote the universal set of concepts
representable by the model’s text encoder. Within U , we identify a subset F ⊆ U that contains
concepts we intend to forget cf — e.g., harmful content, undesired styles, etc. Conversely, we define
a retain set R ⊆ U containing concepts we wish to preserve cr, such as general-purpose prompts or
neutral categories. Concepts within F and R are often not disjoint. For instance, a concept like ‘nude
anime’ may lie at the intersection of ‘anime’ (retained) and ‘nudity’ (forgotten) (i.e F ∩R ̸= 0). This
formulation is key to preserving model performance on untargeted content when erasing concepts.

Constructing Discriminative Subspaces We embed the forget and retain sets, F and R, into an
Euclidean space via the model’s frozen text encoder. Specifically, for each concept in F or R, we
derive target embeddings from their prompt tokens, denoted by Ef and Er respectively. To analyze
their spectral directions of significant representation, characterized by the orthonormal basis vectors
U for each embedding, we apply singular value decomposition (SVD) on these matrices to obtain:

Ef = UfΣfV⊤
f , Er = UrΣrV⊤

r (1)
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Our forget and retain subspaces can hence be formally represented as SF = span(Uf ) and SR =
span(Ur) respectively – geometrically representing directions in a subspace along which information
about the respective concept is most strongly encoded.

To project any embedding vector Ei ∈ Rd onto these subspaces, a naive approach to simply defining
projection operators for these subspaces would look like Pf = UfUT

f and Pr = UrUT
r . Unfortunately,

as we elaborate next, Pf and Pr isotropically weigh all singular directions and do not account for
the varying significance of each basis vector for importance scaling. This implies that each spectral
direction in a subspace is treated equally, disregarding relative spectral energy (Σf and Σr) that
distinguishes critical concept directions from incidental correlations. However, in practice, certain
directions — corresponding to larger singular values — encode more salient or dominant aspects
of a concept than others. To account for this imbalance, we propose modified projection operators
to incorporate an energy scaling mechanism that re-weights basis vectors based on their relative
significance for precise and discriminative erasure. Specifically, we calculate the covariance structure
of either embedding as EET = UΣ2UT , where Σ2 is a diagonal matrix with squared singular values,
encoding the energy of each component. This suggests a natural projection operator that reflects the
importance of each mode by scaling vector directions according to their spectral magnitude as:

Pf = UfΣ
2UT

f , Pr = UrΣ
2UT

r (2)
Spectral Expansion Mechanism The described scaling function suffers from a challenge – although
the diagonal structure of covariance naturally reveals the energy distribution across components (via
σ2
i ), it rigidly couples subspace direction selection to the intrinsic energy hierarchy. This implies

that this inflexible spectral energy reweighting scheme limits controlling erasure strength in concept
unlearning interventions. To address this, we introduce the Spectral Expansion mechanism - an
operator to curate the fraction of singular components selected for suppression. Formally, the Spectral
Expansion operator, inspired by the Tikhonov regularizer (41), introduces a tunable parameter α that
modulates relative spectral energy scaling. Specifically, we define the spectral expansion function as:

f(ri;α) =
αri

(α− 1)ri + 1
, where ri =

σ2
i∑
j σ

2
j

, (3)

where ri denotes the normalized spectral energy for the i-th singular component. The parameter α
controls the tradeoff between energy-proportional weighting at α → 1 (collapsing to the previous
scaling function) and dominant-mode amplification at α → ∞ (approximating a hard selection
of all non-zero modes equally). Intuitively, as α increases, the function f(ri;α) becomes less
sensitive to the relative magnitudes of ri, gradually saturating all nonzero components toward equal
importance. This effectively flattens the spectral weighting curve, allowing more singular directions
— including weaker modes — to contribute equally and increases erasure strength by allowing the
less discriminative vectors to be to be more aggressively suppressed alongside dominant ones. As a
result, higher α values yield broader, less selective projection operators that remove a larger fraction
of the concept subspace, making the intervention more comprehensive at the cost of finer-grained
control. More details in Appendix. Consequently, we construct the spectral alignment operators as:

Pf = UfΛfU
⊤
f , Pr = UrΛrU

⊤
r , (4)

where Λf = diag(f(r(f)i ;α)) and Λr = diag(f(r(r)i ;α)).

Closed-Form Spectral Erasing Given the strength-tuned projection operators Pf and Pr, we now
construct a composite unlearning update that removes subspace contributions aligned with the forget
set, with minimal influence on surrounding concepts by restoring overlap with the retain set:

Punlearn := I− Pdis, where Pdis = Pf − PfPr (5)
which acts on embeddings E to yield their updated version Enew = Punlearn ∗ E . This closed-form
solution ensures that we remove only the discriminative directions of F while preserving components
shared with R – a necessary constraint to prevent performance degradation during concept erasure.

Absorbing the Unlearning Operator into Weight Space Rather than applying Punlearn dynamically
during inference on a per-token basis, we embed this operator into the model’s stationary parameters
by precomposing it directly onto the cross-attention weights. Given key and value projections are
calculated as k = WkE and v = WvE , we translate the unlearning update to the weight matrices as:

W new
k = WkPunlearn, W new

v = WvPunlearn, (6)
so that any input embedding E is automatically projected into the targeted unlearned space during
cross-attention k-v computation, eliminating the need for runtime embedding projection overhead
and enabling efficient, single-step concept removal during inference, as shown in Fig. 2.
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Figure 3: Comparison of unlearning methods on removing target artist styles and NSFW content.
CURE more effectively suppresses the intended concept (blue arrows). ⋆ masks any unsafe outputs.

4 Experiments

In this section, we present the results of our method for erasing artistic styles, objects, identities,
inappropriate concepts as well as resistance to red-teaming attacks, as illustrated in Fig. 1. We use
StableDiffusion-v1.4 (SD-v1.4) (3) as our primary T2I backbone, following recent work (34; 35),
and set α = 2 for all experiments expect NSFW concepts, where α is set to 5 for stronger erasure.

Artist erasure To evaluate the efficacy of style unlearning for mitigating artistic imitation and
potential copyright violations, we follow prior works (34; 35) to use 20 prompts each for five classical
artists (Van Gogh, Pablo Picasso, Rembrandt, Andy Warhol, and Caravaggio) and five modern artists
(Kelly McKernan, Thomas Kinkade, Tyler Edlin, Kilian Eng, and the series Ajin: DemiHuman), all
previously reported to be mimicked by SD (12). We apply CURE and all baselines to remove two
styles: Van Gogh and Kelly McKernan. Evaluation uses LPIPS scores (68), reporting LPIPSe (on
erased artists) and LPIPSu (on unerased artists), where a higher LPIPSe indicates stronger removal of
the target style, and a lower LPIPSu reflects better preservation of unrelated artists. Following (23),
we additionally use GPT-4o to classify artistic styles of the generated images. Acce shows how
often the unlearned style is still predicted – lower is better. Accu measures accuracy on non-erased
styles – higher is better. As seen in Tab. 1 and Fig. 4(a), CURE achieves effective target erasure
with minimal impact on unintended styles as well as impressive specificity in preserving normal
content of COCO-30k (69), outperforming baselines. Further, CURE successfully thwarts black-box
adversarial prompts crafted to trigger the ‘Van Gogh’ style, as shown in Fig.4(b), demonstrating
strong robustness against red-teaming attacks (37) when others fail to resist. Finally, we evaluate our
method’s scalability by erasing up to 1000 artist styles, while preserving all other styles. Fig. 6 shows
that after 50 erasures, outputs for the same prompt and seed start to differ, as measured by LPIPS,
but CLIP scores remain stable — highlighting that the retention component of our proposed update
maintains overall alignment despite perceptual changes. More results in the Appendix.

Remove "Van Gogh" Remove "Kelly McKernan" COCO-30k

Method LPIPSe ↑ LPIPSu ↓ Acce ↓ Accu ↑ LPIPSe ↑ LPIPSu ↓ Acce ↓ Accu ↑ FID ↓ CLIP ↑

SD-v1.4 - - 0.95 0.95 - - 0.80 0.83 - -
SLD-Medium (16) 0.31 0.55 0.95 0.91 0.39 0.47 0.50 0.79 2.60 30.95
SAFREE (23) 0.42 0.31 0.35 0.85 0.40 0.39 0.40 0.78 4.05 28.71
CA (29) 0.30 0.13 0.65 0.90 0.22 0.17 0.50 0.76 7.87 31.16
ESD (27) 0.40 0.26 1.0 0.89 0.37 0.21 0.81 0.69 3.73 30.45
RECE (35) 0.31 0.08 0.80 0.93 0.29 0.04 0.55 0.76 2.82 30.95
UCE (34) 0.25 0.05 0.95 0.98 0.25 0.03 0.80 0.81 1.81 23.08

CURE (Ours) 0.44 0.08 0.30 0.94 0.41 0.09 0.35 0.94 1.44 31.18

Table 1: (Left) Comparison on the Artist Concept Removal tasks using Famous and Modern artists.
(Right) FID AND CLIP-scores against SD-v1.4. Best results are bolded and second best underlined.
We gray out training-based methods for a fair comparison. Methods in pink apply run-time filtering
only, and are considered guard railing techniques instead of unlearning techniques.
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Figure 4: (a) CURE achieves stronger erasure with lower unwanted interference than baselines.
Images with red borders are the target erasure, while off-diagonal images show impact on untargeted
styles. (b) Evaluation against adversarial prompts discovered using the Ring-A-Bell method. Our
method effectively eliminates Van Gogh’s style, unlike baselines that remain vulnerable to leakage.

Unsafe Content erasure We assess the effectiveness of erasing unsafe concepts on the I2P
dataset (16) containing 4, 703 real-world prompts across inappropriate categories such as violence,
self-harm, sexual content, and shocking imagery. We focus on nudity removal, and retain no additional
concepts, generating one image per prompt and detecting nude regions using NudeNet (70) at a 0.6
threshold. As shown in Tab.2, CURE yields the lowest number of nude body parts, outperforming all
baselines. While methods like (27; 29) also reduce nudity, they incur overheads from fine-tuning all
U-Net weights and still exhibit poor FID scores. In contrast, CURE edits only 2.23% of the model
and maintains high visual quality, as seen in Tab. 1. Compared to (16; 23), which can be bypassed
in open-source settings, CURE offers a secure, model-integrated solution. Qualitative examples in
Fig.3 draw a similar conclusion. To demonstrate the robustness of our method in safeguarding against
various attack methods, we further employ different red-teaming tools, including white-box methods
such as (38; 36), and black-box methods like (37; 62). CURE consistently achieves significantly
lower attack-success-rate (ASR) than all training-free baselines across all attack types. Although (31)
achieves decent performance, they rely on finetuning to achieve this result, in contrast to our approach,
which is completely training/finetuning-free. This is attributed to our efficient closed-form operator
that uses controllable orthogonal updates to effectively erase the toxic subspace. We include more
results on samples generated from our method on jail-breaking adversarial prompts in the Appendix.

Object erasure To demonstrate the capability of our method to erase objects from the diffusion
model’s learned concepts, with potential applications for removing harmful symbols and content, we
investigate erasing Imagenette classes (71), a subset of Imagenet classes (72). Each target object (e.g.,
‘French Horn’) is treated as a forget concept cf , without any additional retain concepts cr. To measure

Method Breast(F) Genitalia(F) Breast(M) Genitalia(M) Buttocks Feet Belly Armpits Total ↓

SD v1.4 183 21 46 10 44 42 171 129 646
SD v2.1 121 13 40 3 14 39 109 146 485
SLD-Med (16) 72 5 34 1 6 5 19 24 166
SAFREE (23) 132 34 11 1 12 121 43 46 400
ESD-u (27) 14 1 8 1 5 4 12 14 59
SA (28) 39 9 4 0 10 32 49 15 163
CA (29) 6 1 1 0 14 4 23 21 70
UCE (34) 31 6 19 8 5 5 36 16 126
RECE (35) 8 0 6 4 0 8 23 17 66

CURE (ours) 1 2 0 0 0 5 2 1 11

Table 2: Performance comparison for inappropriate content removal on the I2P dataset. Number of
nude body parts generated is detected using NudeNet, with threshold set to 0.6. F: Female; M: Male.
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Attack Success Rate (ASR) ↓

Method Weights Modification Training-Free I2P (16) ↓ P4D (36) ↓ Ring-A-Bell (37) ↓ MMA-Diffusion (62) ↓ UnlearnDiffAtk (38) ↓

SD-v1.4 - - 0.178 0.987 0.831 0.957 0.697
SLD-Medium (16) ✗ ✓ 0.142 0.934 0.660 0.942 0.648
SLD-Strong (16) ✗ ✓ 0.131 0.814 0.620 0.920 0.570
SLD-Max (16) ✗ ✓ 0.115 0.602 0.570 0.837 0.479
SAFREE (23) ✗ ✓ 0.272 0.384 0.114 0.585 0.282
ESD (27) ✓ ✗ 0.140 0.750 0.528 0.873 0.761
SA (28) ✓ ✗ 0.062 0.623 0.239 0.205 0.268
CA (29) ✓ ✗ 0.078 0.639 0.376 0.855 0.866
MACE (31) ✓ ✗ 0.023 0.142 0.076 0.183 0.176
SDID (53) ✓ ✗ 0.270 0.931 0.646 0.907 0.637
UCE (34) ✓ ✓ 0.103 0.667 0.331 0.867 0.430
RECE (35) ✓ ✓ 0.064 0.381 0.134 0.675 0.655

CURE (Ours) ✓ ✓ 0.061 0.107 0.013 0.169 0.281

Table 3: Robustness of all methods against red-teaming tools, measured by Attack Success Rate (%).

the effect of erasure on both the targeted and untargeted classes, we generate 500 images per class
and evaluate top-1 accuracy using a pretrained ResNet-50 classifier (73). Tab. 4 displays quantitative
results comparing classification accuracy when generating the erased class and remaining nine classes,
using unlearned models from our method and previous baselines, including SD-v1.4 with negative
prompts (NP) (74). Notably, without explicit preservation, our approach exhibits superior erasure
capability while minimizing interference on non-targeted content. Additional results are shown in
the Appendix. To assess unlearning robustness across methods, we present an example of protecting
against an adversarial prompt in Fig. 7 that is targeted at generating the concept ‘car’ in models that
have forgotten this concept. Amongst all methods, only CURE avoids generating the erased object.
For assessing generality of erasure, we evaluate each unlearned model by prompting with concept
synonyms. As seen in Fig. 5, our method resists generation of images reflecting the removed concept
and its synonymous forms, while effectively maintaining any unrelated concepts.

Identity erasure In this section, we evaluate unlearning methods with respect to their ability to
erase celebrity identities. The efficacy of each erasure method is tested by generating images of
the celebrities intended for erasure, and successful erasure can be measured by a low top-1 GIPHY
Celebrity Detector accuracy (75) in correctly identifying the erased celebrities. An interesting
phenomenon is investigated in Fig. 5 which showcases the efficacy of our unlearning operator. In
this comparison, John Wayne is in the erasure group, with no additional concepts in the retention
group. Notably, the preservation of John Lennon’s image poses a challenge due to his shared first
name, ‘John’, with John Wayne in the erasure group. Our method demonstrates impressive unlearning
specificity by effectively overcoming this issue. Additional results in the Appendix.

Figure 5: CURE removes object and identity concepts, unlearning both direct and synonymous forms
(top), while preserving unrelated concepts that may share common words with the target (bottom).
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Class name Accuracy of Erased Class ↓ Accuracy of Other Classes ↑

SD ESD-u (27) UCE (34) RECE (35) SD-NP Ours SD ESD-u (27) UCE (34) RECE (35) SD-NP Ours

Cassette Player 15.6 0.6 0.0 0.0 4.6 0.0 85.1 64.5 90.3 90.3 64.1 90.4
Chain Saw 66.0 6.0 0.0 0.0 25.2 0.0 79.6 68.2 76.1 76.1 50.9 76.0
Church 73.8 54.2 8.4 2.0 21.2 4.2 78.7 71.6 80.2 80.5 58.4 81.0
English Springer 92.5 6.2 0.2 0.0 0.0 0.0 76.6 62.6 78.9 77.8 63.6 78.6
French Horn 99.6 0.4 0.0 0.0 0.0 0.0 75.8 49.4 77.0 77.0 58.0 79.2
Garbage Truck 85.4 10.4 14.8 6.2 26.8 7.4 77.4 51.1 78.7 65.4 50.4 75.7
Gas Pump 75.4 8.4 0.0 0.0 40.8 0.0 78.5 66.5 80.7 80.7 54.6 79.6
Golf Ball 97.4 5.8 0.8 0.0 45.6 0.6 76.1 65.6 79.0 79.0 55.0 80.3
Parachute 98.0 23.8 1.4 0.9 16.6 0.8 76.0 65.4 77.4 79.1 57.8 78.1
Tench 78.4 9.6 0.0 0.0 14.0 0.0 78.2 66.6 79.3 77.9 56.9 77.5

Average 78.2 12.6 2.6 0.3 19.4 1.3 78.2 63.2 79.8 78.5 56.9 79.6

Table 4: Comparison on accuracy of erased and unerased object classes across different methods.

Method Mod. Time (s) Inference Time (s/sample) Model Mod. (%)

ESD (27) ∼ 4500 7.08 94.65
CA (29) ∼ 484 6.31 2.23
UCE (34) ∼ 1 7.08 2.23
RECE (35) ∼ 3 7.12 2.23

SLD-Max (16) 0 10.34 0
SAFREE (23) 0 10.56 0
CURE (ours) ∼ 2 7.06 2.23

Table 5: Erasure efficiency comparison when re-
moving the ‘nudity’ concept. Evaluated on an
A40 GPU for 100 iterations.

Figure 6: Our method can erase upto 100
artists while performing similar to original
SD. Beyond that, erasing more art styles has
interference effects on untargeted artworks.

Figure 7: Generated samples from an adversarial prompt created using Ring-A-Bell for the concept
‘car’ on all unlearnt models, visualizing the defense robustness of our technique compared to baselines.

Unlearning Efficiency We compare the overheads of concept erasure methods, including training-
based approaches (27; 29) that rely on online optimization, training-free methods (34; 35) that apply
closed-form edits to attention weights and (16; 23) that are runtime filtering-based, requiring no
pre-preemptive modification to diffusion model weights. As shown in Tab. 5, CURE strikes the best
balance among all methods, combining low modification (mod.) time with fast inference.

5 Limitations

Our method incurs a one-time SVD cost for subspace construction, but this step is offline and has no
impact on inference speed. Secondly, the spectral expansion parameter α introduces an additional
degree of freedom, but we find it provides interpretable user control over forgetting strength and can
be tuned without retraining. Finally, while highly adversarial prompts may still trigger partial leakage,
CURE significantly reduces vulnerability and lays foundation for stronger defenses when combined
with any existing safeguarding technique for enhanced robustness. However, while CURE promotes
ethical generative modeling, it could be misused to erase forensic watermarks or provenance signals.
Possible mitigation includes provenance-preserving mechanisms or gated model release protocols.

6 Conclusion

We present CURE, a training-free, closed-form framework for fast, reliable concept unlearning in
T2I diffusion models. By constructing controllable spectral projection operators over discriminative
subspaces and embedding the intervention directly into attention weights, CURE enables efficient,
precise and scalable concept erasure with minimal model modification. Our approach effectively
balances targeted erasure, generation quality preservation, and runtime efficiency, outperforming
baselines across a range of benchmarks. Moreover, CURE demonstrates strong robustness against
both white-box and black-box red-teaming attacks without requiring retraining or inference-time
filtering. We believe CURE provides a principled and practical foundation for responsible deployment
of generative models, thereby fostering the development of a safer AI community.
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7 Potential Impact Statement

CURE can erase any concept that admits a sufficiently precise textual representation in the model’s
embedding space. This dependency makes arbitrary removal of unknown backdoors or watermarks
non-trivial: an adversary must already know what they intend to target and be able to specify it
textually. However, as with other editing tools, misuse risks exist. We explicitly caution against
unvetted use in high-stakes domains and recommend governance aligned with model-release policies.
To this end, we outline safeguards that practitioners can layer atop CURE: (i) Prompt filtering to
prevent unlearning of protected tokens or safety-critical concepts; (ii) Gated execution in deployment,
where CURE is sandboxed and permitted only for a whitelisted set of concepts; (iii) Auditability
via logging of edits and publishing of the exact projection operator thereof for reproducibility and
oversight. These controls complement CURE’s inherent transparency and support accountable editing
workflows.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of CURE,
including training-free concept unlearning via orthogonal spectral projection, closed-form
model editing, and the introduction of a spectral expansion mechanism for controllable
forgetting strength. These claims match the method and experimental results presented
in the paper, which demonstrate efficient, robust concept removal with minimal collateral
damage across artist styles, objects, identities, and unsafe content.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper provides a dedicated "Limitations" section that acknowledges the
offline SVD cost, the introduction of the spectral expansion hyperparameter α, and the risk
of partial leakage under adversarial prompts. It also notes the potential misuse of CURE
for forensic watermark removal and proposes mitigation strategies. While experiments
show strong robustness, the paper transparently states that complete immunity to adversarial
attacks is not guaranteed, and suggests future work on forensic monitoring and safeguard
mechanisms. Overall, limitations and assumptions are clearly and honestly discussed.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theorems or proofs. While it provides
mathematical formulations for projection operators and spectral regularization, these are
algorithmic constructions rather than formal theoretical results requiring proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully describes the experimental setups, including datasets, evalua-
tion metrics, model backbone (Stable Diffusion v1.4), unlearning targets (artists, objects,
identities, and unsafe concepts), and hyperparameters such as the spectral expansion pa-
rameter α. Ablation studies, baseline comparisons, and evaluation protocols (e.g., LPIPS,
CLIP scores, red-teaming attacks) are clearly reported. Sufficient methodological and
experimental detail is provided to reproduce the main results independently.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is already attached to the supplementary material for access to
reviewers at present, and the paper also provides detailed descriptions of the datasets
used and evaluation protocols, allowing others to replicate the setup. The experimental
methodology, unlearning targets, and hyperparameters are fully disclosed. Full open access
to code and pretrained models, with reproduction instructions, is planned upon acceptance
to ensure faithful reproduction by the community.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all key experimental details, including datasets, unlearning
targets, evaluation protocols, and hyperparameters such as the spectral expansion parameter
α. The Stable Diffusion v1.4 backbone is clearly stated. While training is not required in
CURE, the paper provides sufficient setup descriptions for full understanding and reproduc-
tion of the results.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following all prior work in this domain and for diffusion model experiments
in general, the paper reports mean performance metrics across different settings but does not
include error bars or confidence intervals. Therefore, while mean results are disclosed and
reproducible, we conservatively select [No] to align with checklist guidelines.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies that experiments were conducted using NVIDIA A40
GPUs (having 48GB memory). As CURE is a training-free method, only inference and
subspace construction require compute, with the one-time SVD step performed offline. The
inference cost is comparable to standard diffusion model sampling, and the paper notes that
no additional training runs or fine-tuning were performed, limiting overall compute usage to
the experiments reported.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. CURE is designed to
enhance the safety and controllability of generative models by enabling the removal of
harmful or undesired concepts. The paper acknowledges potential misuse risks, such as
forensic watermark removal, and proposes mitigation strategies. No human subjects were
involved, and all datasets used are publicly available and appropriately licensed. Privacy,
consent, and data usage considerations are addressed in accordance with ethical standards.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both positive and negative societal impacts. On the
positive side, CURE promotes ethical and controllable generative modeling by enabling
efficient, targeted forgetting of harmful or undesired concepts without retraining, supporting
safer deployment of diffusion models. On the negative side, the paper acknowledges
that CURE could potentially be misused to remove forensic watermarks or provenance
signals. Mitigation strategies such as forensic detection mechanisms and gated model
release protocols are suggested to address these risks. Thus, the broader impacts are
thoughtfully considered and mitigation pathways are outlined.

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Although CURE improves model safety by enabling concept unlearning, it
modifies existing diffusion models and does not itself release a new high-risk dataset or
standalone generative model. Therefore, specific deployment safeguards such as access
controls, safety filters, or usage guidelines were not implemented. Future work could explore
integrating safeguard mechanisms if a complete pretrained model with CURE applied is
publicly released.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits and cites all external assets used. The Stable
Diffusion v1.4 model, datasets such as COCO-30k, I2P etc., and baseline methods are
clearly referenced, with appropriate citations to their original sources. All datasets and
models used are publicly available under permissive licenses or fair use terms, and no
proprietary or restricted-access assets were employed.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper does not introduce new datasets, pretrained models, or standalone
codebases at submission time. It modifies existing publicly available models for unlearning
purposes. Documentation and structured release of our code for inference-time unlearning
are planned upon acceptance, following ethical guidelines and licensing requirements.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
All experiments are conducted using publicly available datasets and pre-existing models
without any direct interaction with human participants.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects or crowdsourcing. All
experiments are conducted using publicly available datasets and models, and no participant
data was collected. Therefore, IRB approval or equivalent review is not applicable.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

17



Justification: The core methodology and experimental design of the paper do not involve the
use of large language models (LLMs) as an important, original, or non-standard component.
LLMs were not used for concept erasure design, model modification, or evaluation, and any
minor writing assistance does not affect the scientific rigor or originality of the research.
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Appendix

This appendix provides additional technical and experimental details to support the main paper. Sec-
tion A elaborates on the spectral expansion mechanism and its connection to classical regularization
methods, along with visualizations illustrating the role of the expansion parameter α in controlling
subspace selectivity, and hence erasure strength. Section B presents extended experimental results,
including generalization to broader inappropriate content categories, evaluations on effective unlearn-
ing and interference on unrelated concepts, red-teaming comparisons, and assessment on general
image generation quality after unlearning. Next, Sec. C provides additional discussions for CURE
and experimental choices. Finally, Sec. D lists the licenses associated with all datasets and models
used in this work.

A Details on the Spectral Expansion Mechanism

A.1 Spectral Expansion function as an extension of Tikhonov regularizer

Our spectral expansion operator f(ri;α) can be interpreted through the lens of classical regularization
strategies in statistics and inverse problems.

Tikhonov (Ridge) Regularization: In inverse problems (43), Tikhonov regularization seeks to
stabilize ill-posed systems Ax = b by solving the minimization problem:

x∗ = argmin
x

∥Ax− b∥2 + λ∥x∥2,

where the regularization term λ∥x∥2 penalizes large-norm solutions. The closed-form solution is:

x∗ = (ATA+ λI)−1AT b.

In the spectral domain, if A = UΣV T is the SVD of A, then the solution decomposes as:

x∗ = V · diag
(

σi

σ2
i + λ

)
· UT b,

which implies that each singular mode σi is scaled by the spectral filter:

g(σ2
i ) =

σ2
i

σ2
i + λ

.

The spectral filter attenuates components associated with small singular values while preserving those
corresponding to large, informative directions. This ensures a balance between fitting the data and
maintaining model stability.

Relation to Spectral Erasure Expansion. We now draw a direct connection between this classical
filter and our adaptive spectral expansion function used in concept erasure:

f(ri;α) =
αri

(α− 1)ri + 1
,

where ri = σ2
i /

∑
j σ

2
j is the normalized spectral energy for mode i.

To align with Tikhonov, we re-express its filter in terms of ri:

gi =
σ2
i

σ2
i + λ

=
ri ·

∑
j σ

2
j

ri ·
∑

j σ
2
j + λ

.

Now set the regularization parameter λ in Tikhonov as:

λ =
1

α

∑
j

σ2
j ,

giving:
gi =

ri

ri +
1
α

=
αri

αri + 1
,
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α LPIPSe ↑ LPIPSu ↓ Acce ↓ Accu ↑
1 0.41 0.17 0.47 0.96
2 0.46 0.19 0.08 0.94
5 0.47 0.26 0.06 0.86
10 0.49 0.27 0.05 0.85

100 0.51 0.30 0.00 0.86
1000 0.58 0.31 0.00 0.85
∞ 0.65 0.34 0.00 0.52

Table 6: Ablation of spectral suppression α. Larger α drives stronger forgetting (low Acce) but
hurts unrelated concepts (higher LPIPSu, lower Accu). A moderate value balances both.

which closely resembles our f(ri;α), and can be expressed as a geometry-aware spectral weight-
ing mechanism that emphasizes high-energy (important) components while suppressing noisy or
ambiguous subspaces.

While not identical, the key difference is the reparameterized denominator. The term (α− 1)ri +1 in
our expansion function introduces a sharper weighting effect, which increases the separation between
important and unimportant components compared to Tikhonov.

A.2 Visualizing Impact of α in Spectral Expansion

To understand how the spectral expansion parameter α controls the strength and selectivity of concept
suppression, we visualize both the expansion function and its effect on projection operators derived
from the forget embeddings for the prompt ‘cassette player’.

Figure 8 (a) shows the spectral expansion function f(ri;α) = αri
(α−1)ri+1 , where ri denotes the

normalized spectral energy of each mode. As α increases, the function transitions from energy-
proportional weighting (at α = 1) to nearly uniform weighting across all nonzero modes, flattening
the spectral emphasis and promoting broader subspace coverage and hence stronger erasure.

In Figure 8 (b), we visualize the heat map of the projection operator Pf = UfΛfU
⊤
f , where Uf and

the spectral energies are obtained via SVD of the forget prompt embeddings, and Λf = diag(f(ri;α)).
At low α, weaker directions (low energy spectral components) are heavily suppressed, leading to
low-rank projections focused on the highest-energy modes. As α increases, weaker directions are
progressively included, and Pf approaches an orthogonal projector over the full concept span. This
tunable shift enables smooth control between selective erasure and comprehensive forgetting.

A.3 Effect of the Spectral Suppression Strength α

We study how the scalar suppression strength α in our Spectral Eraser controls the erase-retain
trade-off. We run “cat” removal over a 100-image set spanning {tiger, lion, cheetah, leopard, dog,
rabbit, mouse, bird, cat, feline}. Here, Erased concepts e = {cat, feline} probe forgetting, while
Unerased concepts u = all others probe specificity. We report LPIPS (↑ better for e, ↓ better for u)
and a GPT-4o classifier accuracy (↓ better for e, ↑ better for u) as a semantic erasure proxy.

As shown in Table 6, very large α enforces strong forgetting (Acce ≈ 0) but degrades unrelated
content (higher LPIPSu, lower Accu). Conversely, very small α preserves quality (low LPIPSu, high
Accu) but yields poor forgetting (high Acce). A moderate setting, e.g., α=2, provides a good balance
(low Acce, high Accu) with limited collateral damage, supporting our choice to use α as a single,
interpretable control for forgetting strength. We adopt α⋆=2 as the default unless noted otherwise.

B Detailed Experimental Details and Additional Results

B.1 Extended Inappropriate Content Removal

We also compare the models across broader categories of inappropriate content. In the main text,
we specifically address erasing nudity to align our experiments with those in the original ESD
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Figure 8: (a) The spectral expansion function f(ri;α) transitions from singular-value energy-
proportional weighting at α = 1 to near-uniform weighting as α → ∞, flattening sensitivity
across modes and enabling broader subspace suppression. (b) Visualization of projection operators
Pf = UfΛfU

⊤
f , computed from the SVD of the forget prompt ‘cassette player’. For small α, only

only selective subspaces are erased, leading to weaker erasure. As α increases, additional modes are
progressively included in the suppression, and Pf converges toward an orthogonal projector over the
full forget subspace, indicating comprehensive erasure.

paper (27), as nudity is a classical example of an inappropriate concept. In Tab. 7, we further
illustrate our method’s effectiveness in removing various sensitive concepts from the I2P dataset (16),
including ‘hate, harassment, violence, suffering, humiliation, harm, suicide, sexual, nudity, bodily
fluids, blood’. For this evaluation, we set α to 5 and retain no additional concepts. To measure the
proportion of inappropriate content across these different categories in I2P, we employ the fine-tuned
Q16 classifier (76), which more accurately identifies general inappropriate classes. The results
confirm that our approach successfully eliminates these sensitive concepts, outperforming all existing
baselines.

Category SDv1.4 ESD-u (27) CA (29) UCE (34) SLD-Med (16) CURE (Ours)
Hate 21.2 3.5 15.6 10.8 41.1 7.4
Harassment 19.7 6.4 15.9 12.1 20.1 8.5
Violence 40.1 16.7 31.3 23.3 19.7 13.1
Self-harm 35.5 11.1 21.7 12.9 19.2 9.7
Sexual 54.5 16.4 32.7 16.2 22.9 7.6
Shocking 42.1 16.1 30.7 19.2 16.0 15.3
Illegal Activity 19.4 6.3 13.2 9.8 20.5 9.6
Overall 35.6 12.2 24.3 15.6 20.8 10.2

Table 7: Comparison of inappropriate proportions (%) for different removal methods. Bold: best.
Underline: second-best.

B.2 Additional Qualitative Results

In this section, we present additional qualitative results. Images in the same row are generated with
same prompts and seeds.

Fig. 9 shows images conditioned by adversarial prompts related to nudity from the P4D dataset (36)
and Ring-A-Bell dataset (37). Our method effectively removes nudity information, where all other
method fail to safeguard against NSFW outputs. This highlights the robustness of our approach
against red-teaming attacks.

Fig. 10 provides visual samples for further assessing the removal of an artistic style, and evaluating the
interference of different unlearning approaches on untargeted artistic styles. The images enclosed in
red dotted borders are the intended erasure, and the off-diagonal images show effect on different styles.
While SLD (16) fails to preserve the original composition in SDv1.4 (first column), marking obvious
impact on general image generation capabilities of the unlearnt model, it also fails to show acceptable
unlearning difference between the images marked for intended erasure and the untargeted images.
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Figure 9: Qualitative comparisons of different approaches on examples from the P4D dataset (36)
and the Ring-A-Bell dataset (37). We manually masked unsafe generated results for display purposes.

Figure 10: CURE achieves stronger erasure with lower unwanted interference than baselines. Images
with red borders are the target erasure, while off-diagonal images show impact on untargeted styles.

Figure 11: Qualitative results on the COCO-30K dataset visualizing impact on general image
generation capabilities post-unlearning of the ‘nudity’ concept.

UCE (34) preserves image quality on the off-diagonal generations, but shows strong similarity to the
erased target images, which is undesirable. In comparison, our method exhibits high dissimilarity
to the erasure target image, as well as high similarity to the unrelated images. Hence, our approach
excels in both aspects of effective unlearning and minimal impact on unintended concepts.
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Figure 12: The images on the same row are generated using the same random seed. (Top) Qualitative
results for unlearning ‘cat’ show that our method effectively removes the concept and its synonym
"feline," demonstrating strong generality of erasure in contrast to baselines that succumb to synony-
mous forms. Additionally, this shows no impact on unrelated concepts that have not been targeted.
(Bottom) Erasing a celebrity demonstrates high specificity, preserving untargeted identities without
requiring additional retention sets.

Fig. 11 shows images conditioned on COCO-30k’s captions. A good unlearning method should
produce well-aligned images for unerased concepts. Methods like SLD (16) struggles to generate the
a young woman carrying an umbrella, as seen in the third row.

Fig. 12 presents additional results for object and identity removal. In the top three rows, our method
robustly erases the concept ‘cat’, including synonymous forms like ‘feline’, confirming strong
generalization of unlearning. Crucially, unrelated content remains unaffected. In the bottom two
rows, unlearning the identity ‘Amber Heard’ demonstrates high specificity – targeted removal leaves
other identities untouched, even without dedicated retain sets. These results underscore our method’s
capability to selectively remove targeted concepts while faithfully preserving unrelated content.

C Additional Discussions

Optional Retain Set. Let Pf and Pr denote the orthogonal projectors for the forget and retain
subspaces, respectively, and let α > 0 be the spectral suppression strength. CURE supports an
optional retain set: when no retain supervision is provided, we set Pr = 0 and the operator reduces
to a forget-only form that still performs targeted erasure via spectral shrinkage along discriminative
directions of the target concept.

While Pr offers a fine-grained control knob when available, CURE remains effective without it: in
our main evaluations (Tables 1, 2, 3, 4) we set Pr = 0 and still observe strong erasure with minimal
degradation to unrelated content (Figs. 1, 3, 4, 5, 7). This design choice reflects realistic black-box
deployments where “safe” concepts are under-specified and suppression is driven instead by the
spectral parameter α, which concentrates attenuation along the most discriminative directions of the
target subspace, implicitly preserving neighboring semantics. When desired, users may supply Pr for
added specificity (e.g., artist erasure in Fig. 6).

Scope of Guarantees. CURE is grounded in spectral geometry and admits a Tikhonov-style interpre-
tation (Sec A), which clarifies how forgetting pressure is distributed across subspaces. However, we
do not claim formal guarantees on global optimality or worst-case trade-offs between the forget and
retain subspaces. Establishing such guarantees – e.g., bounds on leakage of erased concepts under
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prompt perturbations while preserving retain fidelity – remains an important direction for future
work.

Data/Model Dependence. Our projections depend on the quality of text embeddings provided to the
diffusion model. While our experiments show strong robustness across objects, styles, identities, and
NSFW concepts (Main Manuscript Tables 1, 2, 3, 4; Appendix Table 7), the framework inherits any
systematic biases or brittleness from the underlying text encoder.

Setting the NudeNet Threshold. We evaluate NSFW detection using NudeNet with a decision
threshold of 0.6. This choice follows recent practice in safety filtering (35), where this value has
been adopted to better capture borderline NSFW content. This threshold ensures compatibility
with safety-sensitive applications by being sufficiently conservative. Importantly, for fairness and
consistency, all methods in our evaluation, including baselines, have been assessed using this same
threshold.

Subspace construction and Prompt Templates. For each target concept, we construct an embedding
basis using concise prompt templates that substitute the concept into common forms: “picture of/by
[placeholder]” “photo of/by [placeholder]” “image of/by [placeholder]” “portrait of/by [placeholder]”.
This is consistent with prior works (34; 35). Empirically, we observe using 3-5 diverse prompts
suffices to construct a stable and expressive embedding basis. For unsafe content erasure, we adopt
the prompt “violence, nudity, harm", following established protocol in (34) for fair comparison.

Computational Overhead for CURE. In practice, SVD is performed only once offline over the
token embeddings of concept prompts, which are short in length (typically tokens) and embedded into
a 768-dimensional space. Thus, the actual SVD computation is extremely lightweight – on the order
of milliseconds on a CPU – and not a bottleneck. Once the forget/retain subspaces are computed, the
weight projection is a one-time linear algebra operation, requiring under 2 seconds on GPU for all
layers. We further provide supporting details for this:

• Token Embedding Extraction: For each concept to be forgotten (e.g., "cat"), we extract
token embeddings using Stable Diffusion’s text encoder. This typically results in a small
matrix of size ntokens × 768. For example, the prompt "cat” yields 2 tokens, which can be
expanded using related phrases like "a picture of [placeholder concept]" to around 6 tokens.
This step is equivalent to a single text encoder forward pass and takes less than 0.1 seconds.

• SVD Computation: We perform reduced SVD on the token matrix (e.g., 6× 768), retaining
top-k components (typically k ≤ 5). This computation is lightweight and completes in
under 0.5 seconds on a single GPU using standard libraries like torch.linalg.svd.

• Projection Operator Construction: We construct the projection matrix Pdis using spectral
expansion with strength parameter α (e.g., α = 2). This matrix operation is inexpensive and
completes in less than 0.1 seconds.

• Cross-Attention Weight Update: We apply the resulting operator to the key and value weights
in the cross-attention layers of Stable Diffusion’s U-Net. Since the edit is closed-form and
affects a fixed number of layers, the update takes roughly 1.2 seconds end-to-end.

As shown in Table 5, the entire CURE operation, including all steps above, completes in under 2
seconds on a single GPU. In contrast, methods like (27; 29) report ∼ 4500s and 500s respectively.
CURE is thus orders of magnitude faster, requires no gradient computation, and avoids costly training
pipelines. We further note that the runtime is independent of image resolution or prompt complexity,
making CURE practical for scalable deployment.

D License Information

We will make our code publicly accessible. We use standard licenses from the community and
provide the following links to the licenses for the datasets and models that we used in this paper. For
further information, please refer to the specific link.

• Stable Diffusion 1.4: https://huggingface.co/spaces/CompVis/stable-diffusion-license
• I2P: https://github.com/ml-research/safe-latent-diffusion?tab=MIT-1-ov-file
• P4D: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/cc-by-

4.0.md
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• Ring-A-Bell: https://github.com/chiayi-hsu/Ring-A-Bell?tab=MIT-1-ov-file
• MMA-Diffusion: https://github.com/cure-lab/MMA-Diffusion/blob/main/LICENSE
• UnlearnDiffAtk: https://github.com/OPTML-Group/Diffusion-MU-Attack?tab=MIT-1-ov-

file
• COCO: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/cc-

by4.0.md
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