
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REWARDCODE: TRAINING GENERALIST CODE RE-
WARD MODEL VIA PAIRWISE REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time scaling improves code generation capacity of LLMs by leveraging a
reward model to identify the best solution from multiple candidates. However,
coding tasks span diverse domains, making unified evaluation challenging. In this
paper, we present RewardCode, a generalist reward model for coding tasks. Re-
wardCode performs principle-guided scoring, generates executable unit tests, and
conducts pointwise evaluation of solutions, enabling scalable and fine-grained as-
sessments. To train a cross-task code reward model, we construct CodePair-19K, a
dataset of verifiable code preference pairs with task summaries and executable unit
tests. Furthermore, we carefully design a two-stage training pipeline for Reward-
Code. The first stage combines Structural Summarize Fine-Tuning and Group Re-
jective Fine-Tuning, where diverse task descriptions are distilled into structured
summaries to improve cross-domain code understanding and high-quality trajec-
tories are bootstrapped through group rejection sampling from LLMs. The second
stage introduces Pairwise-GRPO, a reinforcement learning method that leverages
preference pairs to enhance the model’s ability to distinguish between solutions
while ensuring the generation of consistent and verifiable unit tests. Experiments
on multiple benchmarks show that RewardCode outperforms strong baselines in
accuracy and task success, proving its effectiveness in advancing general-purpose
Code LLMs.

1 INTRODUCTION

Large Language Models (LLMs) Liu et al. (2024a); Achiam et al. (2023); Yang et al. (2025) have
demonstrated remarkable performance across a wide range of coding tasks, including software engi-
neering Jimenez et al. (2023), machine learning development Chan et al. (2024), and programming
competitions Jain et al. (2024). Open-source code LLMs pretrained on large-scale code corpora,
such as Qwen2.5-Coder Hui et al. (2024) and DeepSeek-Coder Guo et al. (2024), have become
widely adopted in these domains. Recently, Test-Time Scaling (TTS) has emerged as a powerful ap-
proach to further enhance the performance of code LLMs by generating multiple candidate solutions
and selecting the best one for execution.

To avoid the time-consuming process of executing candidate code, an accurate reward model is
essential for efficiently identifying the best solution in TTS process. Generative Reward Models
(GRMs) often rely on pairwise comparisons between candidate answers, repeatedly judging pairs
to determine a final winner. However, this approach is computationally expensive and difficult to
scale under large-scale TTS. In addition, coding tasks span heterogeneous domains, each requiring
distinct domain expertise. This diversity makes unified evaluation highly challenging. Specialized
code reward models, such as AceCodeRM Zeng et al., are capable of evaluating individual solutions.
However, they are largely limited to relatively simple programming tasks and struggle to deliver
accurate assessments in more complex domains, such as machine learning engineering. Motivated
by these challenges, we raise the following question: Can we design a unified code reward model
that works across diverse tasks?

In this work, we propose RewardCode, a generalist code reward model that integrates principle-
guided scoring with executable unit test generation. Complementary consensus filtering between

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the two is used to derive the final evaluation results. Unlike pairwise reward models that rely on
repeated comparisons, RewardCode evaluates candidate solutions in a pointwise manner, enabling
scalable and fine-grained assessment across large collections of code. To support the training of
a generalist code reward model, we construct CodePair-18K, a cross-domain dataset of verifiable
preference pairs with structured task summaries and executable unit tests, collected from diverse
domains including mathematical code translation, programming competitions, data science engi-
neering, and software engineering. We design a two-stage training pipeline to train RewardCode. In
the first stage, we propose Structural Summarize Fine-Tuning to transform diverse task descriptions
into structured summaries for better cross-domain understanding, together with Group Rejective
Fine-Tuning to bootstrap high-quality trajectories from large reasoning LLMs through group rejec-
tion sampling. In the second stage, a reinforcement learning method, Pairwise-GRPO, is designed,
which leverages preference pairs with rule-based rewards to enhance the model’s ability to discrim-
inate between solutions and to generate consistent and verifiable unit tests.

We conduct extensive experiments to assess RewardCode across a variety of benchmarks. On large-
scale code generation settings such as LiveCodeBench , RewardCode consistently improves Best-
of-N accuracy and task completion rates over competitive baselines. We further evaluate on the code
subset of RewardBench and RM-Bench, where RewardCode demonstrates stable performance as a
unified code evaluator across benchmark. Overall, the results indicate that RewardCode can serve as
a dependable component for test-time scaling in code generation and represents a step toward more
general-purpose Code LLMs. Our main contributions are as follows:

• We introduce RewardCode, the first generalist code reward model that provides accurate
and scalable evaluation from simple programming tasks to complex real-world scenarios
such as Machine Learning and.

• We design Pairwise-GRPO to optimize scoring accuracy through relative score compar-
isons within preference pairs. It also prevents reward hacking by jointly validating unit
tests, thereby enhancing the model’s ability to discriminate between solutions and to gen-
erate consistent, verifiable tests.

• We conduct extensive experiments on mainstream and realistic benchmarks, including
LiveCodeBench and and Reward Benchmarks, where RewardCode achieves superior Best-
of-N accuracy and task success rates. We further demonstrate its effectiveness as a unified
code evaluator on RewardBench and RM-Bench.

2 RELATED WORK

2.1 CODE LLM AND AGENT

Recent advances in large language models (LLMs) have led to significant progress in code gener-
ation, enabling the automation of a wide range of programming tasks. Foundation Code LLMs,
pretrained on vast code corpora, have demonstrated strong performance across various domains
such as software engineering, data science, and algorithmic programming Li et al. (2023); Guo
et al. (2024); Hui et al. (2024). These models have fueled the development of benchmarks such
as LiveCodeBench Jain et al. (2024) and BigCodeBench Zhuo et al. (2024), which are designed
to systematically assess the capabilities of code generation models. Simultaneously, LLM-driven
agents have been developed to tackle more complex real-world coding tasks in fields like software
engineering and data science Yang et al. (2024); Zhang et al. (2025); Zeng et al. (2025); Wei et al.
(2025); Liu et al. (2025a); Ou et al. (2025); Liu et al. (2025b). For instance, SWE-Agent Yang et al.
(2024) introduces an agent-computer interface that significantly enhances capabilities for creating
and editing files, navigating repositories, and executing tests. AIDE Jiang et al. (2025) enables rich
exploration in the space of code by facilitating systematic search and adaptive refinement to improve
task synthesis. ML-Master Liu et al. (2025b) integrates reasoning and exploration through a scoped
memory mechanism, enabling effective automation of complex data science tasks. These agents
require highly flexible and robust reward models to guide them in solving open-ended coding tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 REWARD MODEL

Reward models (RMs) have become essential for replacing human evaluators in assessing the qual-
ity of LLM outputs. Early reward models often produced scalar scores based on the output’s quality,
typically trained with the Bradley-Terry (BT) loss. However, these pointwise scores fail to capture
the multi-dimensional aspects of code evaluation, such as correctness, efficiency, and test cover-
age. More recent developments in Generative Reward Models (GRMs) Mahan et al. (2024); Liu
et al. (2025c); Chen et al. (2025c); Guo et al. (2025b); Chen et al. (2025a); Zhao et al. (2025b);
Whitehouse et al. (2025) have explored integrating natural language critiques alongside evaluation
signals. DeepSeek-GRM Liu et al. (2025c) introduces Self-Principled Critique Tuning (SPCT) to
guide models in applying their own evaluation principles. Similarly, RM-R1 Chen et al. (2025c)
frames reward modeling as a reasoning task, leveraging high-quality reasoning chains and verifiable
rewards to improve evaluation quality. However, in code generation tasks, correctness is often mea-
sured by deterministic signals, such as unit tests, and incorporating natural language critiques may
introduce inconsistencies or biases. To address this, CodeRM Ma et al. (2025) has explored the gen-
eration of unit tests via LLMs, but it remains limited to relatively simple code tasks. AceCodeRM
Zeng et al. constructs code preference pairs to train scalar reward models, yet it is constrained to
simpler programming challenges. In contrast, our work is the first to integrate GRMs into a unified
evaluation framework for code. We propose a model that jointly supports scalar scoring, unit test
generation, and critique generation, enabling accurate and generalizable reward modeling across
diverse coding tasks.

2.3 REINFORCE LEARNING

Reinforcement learning (RL) has emerged as a key paradigm for improving LLMs by aligning them
with specific goals or human preferences Schulman et al. (2017); Rafailov et al. (2023); Hu (2025);
Yu et al. (2025). Early successes like RLHF demonstrated that human preference signals can ef-
fectively guide LLM behavior Ouyang et al. (2022). The latest progress, led by DeepSeek-R1 Guo
et al. (2025a), introduced Reinforcement Learning from Verifiable Rewards (RLVR), which opti-
mizes models using outcome-based signals, such as code execution results or unit test outcomes
Zhao et al. (2025a); Wen et al. (2025). In code generation, RLVR typically relies on the results of
interpreter execution or unit tests as verifiable rewards. In agent-based environments, Agent-RLVR
Da et al. (2025) combines unit-test validation with pedagogical guidance and environment feedback
to refine agent trajectories. DeepSWE Luo et al. (2025) relies purely on code execution outcomes
and unit test results to train fully open-source coding agents. Beyond software engineering, ML-
Agent Liu et al. (2025a) applies execution feedback and task success signals from machine learning
workflows to reinforce autonomous ML engineering. These advancements demonstrate the potential
of RL-based approaches to further align LLMs with real-world code generation tasks. However, the
challenge remains to create reward models that can effectively evaluate complex and diverse coding
tasks, especially when leveraging RL for test-time scaling and large-scale multi-task performance.

3 REWARDCODE

In this work, we develop RewardCode, a general code reward model designed to provide judgment
across diverse programming tasks. Figure 1 presents the overall pipeline of RewardCode. We first
construct CodePair-18K, a dataset of 18K validated code preference pairs with corresponding unit
tests. RewardCode is trained in two stages. We begin by extracting task descriptions from CodePair-
18K and employing a powerful LLM to generate structured summaries for each task. In addition,
we collect high-quality trajectories from large reasoning models through group rule-based rejection
sampling. These two sources are used to supervised fine-tune the base model, rapidly enhanc-
ing its ability to generate structured summaries and to perform general evaluation across different
code tasks. Finally, we design Pairwise-GRPO to strengthen the model’s capacity to autonomously
discriminate between better and worse solutions when no mutual information is available, and to
improve its ability to generate correct and consistent unit tests.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Large Reasoning Model

Pass Solution & Answer

Fail Solution & Answer

Powerful LLM

Step1: Summary Data Collect

SummaryTask

Keep

Drop

Rollout N & Reject Sampling

Summary SFT

Step2: Distill Data Collect & Reject Sampling

Score Pass > Score Fail
Solution Pair Validate on Unit Test

Score Fail < Score Pass
Solution Pair Validate on Unit Test

Step3: Summary SFT & RFT

Machine Learning Contest Math2Code

Algorithms Task Software
 Engineering

and more…

Task

Pass Solution

Fail Solution

Unit Test

Powerful LLM

Task + Solution Pair + Unit Test

Code Data Source

=
Data
Collect

Fail Solution Gen & Consistency Filter

Should Pass on

Should Fail on

CodePair 18K

Pairwise Reward Calculation

Relative Score Reward

Consistency Test Reward

Correct Solution Score : 9.8

<score>9.8</score>
<unit test> import pytest…</unit test>

<<score>3.6</score>
<unit test> import pytest…</unit test>

Pairwise Rollout (Pair 1)

Pairwise Rollout (Pair N)

Advantage 1

Advantage 2

…

Incorrect Solution Score: 3.6

Pass on

Fail on

Generated Unit Test

9.8 > 3.6

…

Advantage 2N

Solution PairSummary

Summary Solution Pair

(a) CodePair-18K Collect

(b) Summary SFT & RFT & Pairwise-GRPO

Step4: Pairwise-GRPO Training

Base Model Summary Model

RFT

RFT Model

RFT Model

Figure 1: The overall pipeline of REWARDCODE.The two-stage training process begins with super-
vised fine-tuning a base model on the new CodePair-18K dataset and collected reasoning trajectories.
In the second stage, the model is refined with Pairwise-GRPO to improve its ability to discriminate
between code solutions and generate correct unit tests.

Table 1: Summary of existing code preference pair dataset.

Datasets Code
Preference

Verification
Code

Complex
Task

Executable
Unit Test

Correctness
Verification

Function
Design Math2Code Programming

Contest MLE SWE # Size

Code-Preference-Pairs ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 54K
Target-DPO-59K ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 59K
CodeDPO-114K ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ 114K
AceCodePair-300K ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ 300K
CodePair-18K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 18K

3.1 CODEPAIR-18K DATA COLLECTION

To construct a cross-task general code reward model, we collect more than 18K code preference
pairs with corresponding task descriptions. Specifically, we gather around 10K programming tasks
covering a wide range of domains with increasing difficulty, including mathematical translation,
algorithmic programming, programming contests, data science, and software engineering. Each
task is paired with unit tests whenever available. For domains such as machine learning engineering
, where executable unit tests are often missing, we employ Claude-4-Sonnet to generate quickly
verifiable unit tests as ground-truth references. For tasks with verified correct solutions, we use
GPT-4o to introduce subtle errors into correct code, thereby constructing the corresponding incorrect
code and forming preference pairs. For tasks without gold-standard solutions, we generate multiple
candidate implementations using LLMs and evaluate them with the ground-truth unit tests to assign
correctness labels. Correct and incorrect solutions are then randomly paired to form preference
pairs. Finally, we apply a Consistency Filter to ensure the reliability of each pair, retaining only

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

those where the correct code passes the unit tests and the incorrect code fails. Through this process,
we obtain CodePair-18K, a cross-task and verifiable dataset of code preference pairs.

3.2 PRINCIPLE GUIDED SCORING AND TEST GENERATION

We formulate the general paradigm of code evaluation as follows: given a programming task and
its candidate solution, a generalist code reward model should be able to generate both a reliable
score and executable unit tests for verification. Based on this principle, we design RewardCode as a
pointwise reward model, avoiding the limited applicability of pairwise RMs and the computational
bottleneck in large-scale evaluation.

{r, u} = πθ(s, y), (1)

where s and y represent the coding task and the corresponding solution, respectively, r and u repre-
sent the scoring result and the generated unit test. Unlike chat or math reasoning tasks, programming
tasks allow verification through carefully designed unit tests, where the execution results directly de-
termine correctness. Therefore, RewardCode adopts Principle Guided Scoring and Test Generation
to produce both scores and tests. We design three intuitive principles for code evaluation: Task Com-
pletion, Code Correctness, and Efficiency. Task Completion checks whether the solution fulfills the
required functionality, Code Correctness assesses the logical soundness of the code, and Efficiency
evaluates the quality and resource efficiency of the implementation. RewardCode assigns individ-
ual scores for each principle and determines their weights according to the task category. The final
score is the weighted sum of the three principle scores. Principle Guided Scoring actively encour-
ages RewardCode to conduct detailed inspections of the code and strengthens their understanding
of candidate solutions. After a thorough understanding, RewardCode generates directly executable
unit tests according to the task objectives and code content, thereby validating correctness in prac-
tice. All unit tests are formalized in Pytest style, ensuring easy and executable verification. In this
way, RewardCode can achieve efficient large-scale code evaluation through score comparison, while
executable unit tests provide a reliable ground truth of correctness. During evaluation, we perform
consensus filtering on the scores and unit tests. When making decisions on multiple targets, the
candidate with the highest score among the tested candidates will be selected as the best answer.

3.3 STRUCTURAL SUMMARIZE AND REJECTIVE FINE-TUNING

To train RewardCode in Principle-Guided Scoring and Test Generation, we first collect a small
cold-start dataset for supervised fine-tuning (SFT). This process consists of Structural Summarize
Fine-Tuning and Rejective Fine-Tuning, which are designed to enhance the model’s understanding
of diverse coding tasks and its ability to generate reliable evaluations and tests.

Structural Summarize Fine-Tuning. Compared with other tasks, programming tasks contain ex-
plicit structural information such as inputs and outputs. However, task descriptions across differ-
ent code domains vary significantly and are often task-specific. To enable the model to quickly
understand heterogeneous programming tasks, we use GPT-4o to transform diverse task descrip-
tions from CodePair-18K into structured summaries. Each summary includes the task objective,
input–output specification, and other necessary details for solving the task. Compared with verbose
natural-language descriptions, structured summaries provide RewardCode with concise and infor-
mative inputs, enabling it to quickly identify task goals and make more accurate judgments.

Rejective Fine-Tuning. The purpose of Rejective Fine-Tuning is to bootstrap RewardCode’s abil-
ity to generate Principle-Guided Scoring and Unit Tests in the correct format by leveraging the
reasoning capabilities of large models. Starting with CodePair-18K, we sample a subset of task sum-
maries and their corresponding code solution pairs. For each task-solution pair, we use DeepSeek-
R1-0528 to generate N responses, but without revealing whether the responses are correct or not.
This allows us to simulate the model’s reasoning capability without requiring explicit correctness
labels. To filter out low-quality responses, we employ Group Rejective Sampling. For correct so-
lutions, all generated responses must achieve higher scores than those associated with incorrect
solutions. Conversely, for incorrect solutions, their responses must score lower than those of cor-
rect ones. This ensures that the model learns to distinguish between correct and incorrect solutions
based on the underlying reasoning and output quality. In addition to scoring, we also generate unit

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tests for each solution. The unit tests are validated by comparing their results with the expected out-
comes, ensuring that the generated tests are both accurate and executable. Only unit tests that pass
the validation step are retained, ensuring the quality of the test generation process. This step is cru-
cial for teaching RewardCode to generate reliable unit tests that align with its scoring mechanism,
reinforcing the model’s ability to evaluate code accurately and comprehensively.

3.4 PAIRWISE-GRPO

We propose Pairwise-GRPO to leverage large-scale code preference pairs and further enhance Re-
wardCode’s ability in Principle Guided Scoring and Test Generation. Specifically, for the input code
pair dataset D = (Ii, ya, yb)

N
i=1, RewardCode generates scores and unit tests for each solution in a

pointwise manner:
({ra, ua}, {rb, ub}) = (πθ(si, ya), πθ(si, yb)), (2)

where si, ya, yb denote task summary, correct solution and incorrect solution. πθ represents Reward-
Code model. {ra, ua}, {rb, ub} correspond to the score and unit test generated for the correct and
incorrect solutions, respectively. We then compute rewards in a pairwise fashion. First, we define
the Relative Score Reward Rscore, which evaluates whether the relative ranking of ra and rb aligns
with ground-truth correctness:

Rscore =

{
1 if ra > rb,

0 otherwise.
(3)

The Relative Score Reward accurately reflects whether RewardCode can provide correct preference
judgments in the absence of explicit relative information, thereby encouraging the model to produce
more precise scores. To validate the quality of unit tests, we design the Unit Test Reward, which
encourages the model to generate tests that pass on the correct solution and fail on the incorrect one.
The Unit Test Reward of ua is represented as:

Ra
ut =

{
0.5, if P (ra, ua) = 1 and P (rb, ua) = 0,

0, otherwise,
(4)

where P denotes the execution result of a unit test. The Group Unit Test Reward is given by Rut =
Ra

ut +Rb
ut. The final pairwise reward R is calculated as:

R = Rscore +Ra
ut +Rb

ut +Rformat, (5)

where Rformat is structural format reward. After collecting rollout samples for each code pair and
their corresponding rewards, we optimize the policy iteratively with the following objective:

J(θ, {oi}Gi=1) = E q∼P (Q)
{oi}∼πθold

(·|q)

[1
G

G∑
i=1

min
[πθ(oi | q)
πθold(oi | q)

Aoi , clip
(πθ(oi | q)
πθold(oi | q)

, ε
)
Aoi

]]
− E q∼P (Q)

{oi}∼πθold
(·|q)

[
βDKL

[
πθ∥πref

]]
,

(6)

where clip(x, ε) := min(max(x, 1 − ε), 1 + ε), πθ is the policy to be optimized, πold is the old
policy, {oi}Gi=1 are the pairwise rollout, and Aoi is the normalized pairwise reward related to Roi .

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

4.1.1 EVALUATION METRIC AND BENCHMARK

We evaluate RewardCode across diverse programming scenarios. Experiments are conducted on
mainstream code programming benchmarks, including LiveCodeBench Jain et al. (2024). For LLM-
based benchmarks, we adopt Qwen2.5-Coder-7B-Instruct as the code LLM to generate 16 candidate
solutions, from which the reward model selects the best solution. Our primary metric is The success-
ful rate of answers after Best-of-N selection, which measures a reward model’s ability to identify cor-
rect solutions under test-time scaling. We further evaluate RewardCode on reward benchmarks with
code-specific subsets, including RewardBench Lambert et al. (2024), RM-BenchLiu et al. (2024b),
and RMBZhou et al. (2024). These reward model benchmarks contain pre-collected preference
responses, which can be used to quickly assess the ability of different reward models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1.2 MODEL IMPLEMENTATION AND OPTIMIZATION

We use Qwen2.5-Coder-7B-Instruct Hui et al. (2024) as the base model for RewardCode. For
Pairwise-GRPO optimization, we set the learning rate to 1 × 10−6 and and the KL coefficient to
0.001. RL Training is performed for 2 epochs over the full CodePair-18K dataset.

4.1.3 BASELINES

For BoN accuracy evaluation on code generation benchmarks, we compare RewardCode with four
categories of reward models reflecting different design paradigms: For BoN accuracy evaluation on
code benchmarks, we compare RewardCode with four categories of reward models reflecting dif-
ferent design paradigms, including (1)Scalar Reward Model: Internlm2-7b-reward, Eurus-RM-7b,
RM-Mistral-7B (2) Generative Reward Model: JudgeLRM Chen et al. (2025b), RRM-7B Guo et al.
(2025b), RM-R1-Qwen2.5-Instruct-7B Chen et al. (2025c). (3) Code Reward Model: AceCodeRM-
7B Zeng et al..

4.2 RESULTS AND ANALYSIS

4.2.1 BEST-OF-N EVALUATION

Model RewardBench-Code RM-Bench-Code LiveCodeBench

Scalar Reward Models
Eurus-RM-7b 0.600 0.496 0.369
RM-Mistral-7B 0.940 0.530 0.304
Internlm2-7b-reward 0.941 0.502 0.3436

Generative Reward Models
JudgeLRM-7B 0.820 0.352 0.363
RM-R1-Qwen2.5-Inst-7B 0.888 0.568 0.362
RRM-7B 0.849 0.528 0.407

Code Reward Models
AceCoderRM-7B 0.520 0.613 0.404

Our Method
RewardCode-7B 0.949 0.621 0.418

Table 2: Judge Evaluation Results on LLM-based code Benchmarks and the code subset of Reward
Model Benchmarks.

Judge Evaluation on LLM-based code Benchmarks. We begin by comparing the ability of dif-
ferent reward models to select the best solution in Best-of-N (BoN) evaluations on code benchmarks,
focusing on LiveCodeBench. The greedy result represents the accuracy of the policy model when
the temperature is set to 0, generating a single sample to reflect the model’s performance on the cor-
responding coding task. We find that RewardCode outperforms all baseline methods overall. Scalar
RMs struggle with real code evaluation, often performing worse than greedy results, which suggests
that scalar models are not suitable for real-world code evaluation. While GRMs perform better than
scalar RMs, their improvement is limited, and their reliance on pairwise input comparisons becomes
computationally expensive as the number of TTS candidates increases. In contrast, specialized code
RMs trained on code preferences perform better, though their improvement in TTS performance
remains limited on more diverse code distributions, suggesting that existing code reward models
still have room for improvement in multi-scenario tasks. Compared to these baselines, RewardCode
consistently delivers the best performance across multiple benchmarks, demonstrating its ability to
benefit from diverse code RL training. We also evaluate each RM on a code subset of RewardBench
and RM-Bench to reflect RM’s judgment capabilities on code. While scalar RMs perform better on
these RM Benchmarks than in real code BoN evaluations, generative RMs lag behind, likely due to
scalar RMs being trained on a larger scale of relevant preference data. Notably, the code subsets in
RewardBench and RM-Bench come from various programming languages, while RewardCode and
other code RMs are mainly trained on Python data. Therefore, these evaluations test Code RM’s

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

out-of-domain capabilities. As shown in Table 2, RewardCode-7B consistently outperforms other
Code Reward Models across different RM Benchmarks, demonstrating its excellent generalization
ability and the potential to transfer evaluation capabilities trained on Python to multiple languages.

Best-of-N on Agent-based code Benchmarks.

4.2.2 ABLATION STUDY

Model RM-Bench-Code LiveCodeBench
RewardCode-Variant

RewardCode-Zero 0.589 0.366
RewardCode-SFT 0.582 0.387
RewardCode-Score 0.603 0.405
RewardCode-UT 0.591 0.347

Our Method
RewardCode-7B 0.621 0.418

Table 3: Ablation study of different RewardCode variants.

We conduct ablation experiments on BigCodeBench and LiveCodeBench to investigate the effec-
tiveness of each design principle of RewardCode. The experimental setup follows that of Sec-
tion 4.1. The ablation study includes four variants of RewardCode: (1) RewardCode-Zero, (2)
RewardCode-SFT, (3) RewardCode-Score, and (4) RewardCode-UT. RewardCode-Zero represents
the model optimized using only Pairwise-GRPO without Structural Summarize Fine-Tuning and
Rejective Fine-Tuning. RewardCode-SFT is the version after applying Structural Summarize Fine-
Tuning and Rejective Fine-Tuning. RewardCode-Score and RewardCode-UT represent models us-
ing only score-based and unit test-based judgments, respectively. From Table 3, we can see that
RewardCode outperforms all variants. RewardCode-Zero performs the worst on Livecodebench be-
cause it has not undergone a cold start stage and the model itself lacks the ability to solve complex
tasks. However, the SFT phase allows RewardCode to distill additional capabilities from powerful
reasoning models, such as more accurate scoring and better unit test generation. Thus, the absence
of the SFT phase limits the performance potential of RewardCode-Zero. RewardCode-SFT performs
worse, indicating that without Pairwise-GRPO training, RewardCode-SFT cannot fully activate the
distillation capabilities. This further emphasizes the significance of Pairwise-GRPO in guiding the
model to generate higher-quality evaluations. Lastly, both RewardCode-Score and RewardCode-UT
show some performance decline, suggesting that combining both score and unit test as a unified code
evaluation paradigm is reasonable. This consensus filtering helps RewardCode avoid missing details
with score-only evaluations and false positives with unit test-only evaluations, thus maximizing the
performance of policy models in TTS.

5 CONCLUSION

In this paper, we introduce RewardCode, a generalist code reward model designed to provide pre-
cise and scalable code evaluations across diverse programming tasks. RewardCode adopts principle-
guided scoring and test generation, with complementary consensus filtering used to derive the final
evaluation results. We design Pairwise-GRPO to jointly optimize score and unit test generation,
which obtains a pairwise shared reward to ensure the correctness of the scoring process and pre-
vent false positives in unit tests generation. We also present CodePair-18K, a cross-domain dataset
of verifiable code preference pairs with task summaries and executable unit tests, which forms the
foundation for training RewardCode. Through extensive experiments on multiple benchmarks, Re-
wardCode consistently outperforms strong baselines, achieving superior Best-of-N accuracy and
task success rates. These results highlight the effectiveness of RewardCode as a generalist evaluator
for code tasks and demonstrate its potential for future applications in more complex code domains.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Bin Chen, Xinzge Gao, Chuanrui Hu, Penghang Yu, Hua Zhang, and Bing-Kun Bao. Rea-
songrm: Enhancing generative reward models through large reasoning models. arXiv preprint
arXiv:2506.16712, 2025a.

Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
Judgelrm: Large reasoning models as a judge. arXiv preprint arXiv:2504.00050, 2025b.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. arXiv preprint
arXiv:2505.02387, 2025c.

Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil Barhate, and Sean Hendryx. Agent-rlvr:
Training software engineering agents via guidance and environment rewards. arXiv preprint
arXiv:2506.11425, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, and Furu Wei. Reward
reasoning model. arXiv preprint arXiv:2505.14674, 2025b.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. 2025. URL https://arxiv.
org/abs/2502.13138.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

9

https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking
reward models of language models with subtlety and style. arXiv preprint arXiv:2410.16184,
2024b.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Siheng
Chen, et al. Ml-master: Towards ai-for-ai via integration of exploration and reasoning. arXiv
preprint arXiv:2506.16499, 2025a.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Siheng
Chen, et al. Ml-master: Towards ai-for-ai via integration of exploration and reasoning. arXiv
preprint arXiv:2506.16499, 2025b.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025c.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art
coding agent from scratch by scaling rl. https://pretty-radio-b75.notion.site/
DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33,
2025. Notion Blog.

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, and Jie Tang. Dynamic scaling of unit
tests for code reward modeling. arXiv preprint arXiv:2501.01054, 2025.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

Yixin Ou, Yujie Luo, Jingsheng Zheng, Lanning Wei, Shuofei Qiao, Jintian Zhang, Da Zheng,
Huajun Chen, and Ningyu Zhang. Automind: Adaptive knowledgeable agent for automated data
science. arXiv preprint arXiv:2506.10974, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. arXiv preprint
arXiv:2505.10320, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

10

https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Guangtao Zeng, Maohao Shen, Delin Chen, Zhenting Qi, Subhro Das, Dan Gutfreund, David Cox,
Gregory Wornell, Wei Lu, Zhang-Wei Hong, et al. Satori-swe: Evolutionary test-time scaling for
sample-efficient software engineering. arXiv preprint arXiv:2505.23604, 2025.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis, 2025a. URL https://arxiv. org/abs/2502.01718.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jinliang You, Jia Li, Yunfei Zhao, and Zhi Jin. Sealign:
Alignment training for software engineering agent. arXiv preprint arXiv:2503.18455, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025a.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models via
generative reasoning. arXiv preprint arXiv:2504.00891, 2025b.

Enyu Zhou, Guodong Zheng, Binghai Wang, Zhiheng Xi, Shihan Dou, Rong Bao, Wei Shen, Limao
Xiong, Jessica Fan, Yurong Mou, et al. Rmb: Comprehensively benchmarking reward models in
llm alignment. arXiv preprint arXiv:2410.09893, 2024.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMS

The LLMs were used as an assistive tool in the preparation of this manuscript. Its primary functions
were writing polishing, including refining grammar and improving sentence structure for a consistent
academic tone, and LaTeX code modifications, which involved generating and debugging code for
the presented algorithms and tables. All content and code generated or modified by the LLM were
thoroughly reviewed and verified by the authors to ensure scientific accuracy and correctness.

12

	Introduction
	Related Work
	Code LLM and Agent
	Reward Model
	Reinforce Learning

	RewardCode
	CodePair-18K Data Collection
	Principle Guided Scoring and Test Generation
	Structural summarize and Rejective Fine-Tuning
	Pairwise-GRPO

	Experiment
	Experimental Settings
	Evaluation Metric and Benchmark
	Model Implementation and Optimization
	Baselines

	Results and Analysis
	Best-of-N Evaluation
	Ablation Study

	Conclusion
	Appendix
	Use of LLMs

