
Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Sifan Yang * 1 2 Yuanyu Wan * 3 Peijia Li 1 2 Yibo Wang 1 2 Xiao Zhang 4 Zhewei Wei 4 Lijun Zhang 1 5 2

Abstract

In this paper, we investigate the acceleration of
adaptive subgradient methods through frequent
directions (FD), a widely-used matrix sketching
technique. The state-of-the-art regret bound ex-
hibits a linear dependence on the dimensional-
ity d, leading to unsatisfactory guarantees for
high-dimensional problems. Additionally, it suf-
fers from an O(τ2d) time complexity per round,
which scales quadratically with the sketching size
τ . To overcome these issues, we first propose
an algorithm named FTSL, achieving a tighter
regret bound that is independent of the dimension-
ality. The key idea is to integrate FD with adaptive
subgradient methods under the primal-dual frame-
work and add the cumulative discarded informa-
tion of FD back. To reduce its time complexity,
we further utilize fast FD to expedite FTSL, yield-
ing a better complexity of O(τd) while maintain-
ing the same regret bound. Moreover, to mitigate
the computational cost for optimization problems
involving matrix variables (e.g., training neural
networks), we adapt FD to Shampoo, a popular
optimization algorithm that accounts for the struc-
ture of decision, and give a novel analysis under
the primal-dual framework. Our proposed method
obtains an improved dimension-free regret bound.
Experimental results have verified the efficiency
and effectiveness of our approaches.

*Equal contribution 1National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, Nanjing 210023, China
2School of Artificial Intelligence, Nanjing University, Nanjing
210023, China 3School of Software Technology, Zhejiang Uni-
versity, Ningbo 315100, China 4Gaoling School of Artificial In-
telligence, Renmin University of China, Beijing 100872, China
5Pazhou Laboratory (Huangpu), Guangzhou 510555, China. Cor-
respondence to: Lijun Zhang <zhanglj@lamda.nju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Adaptive subgradient methods have attracted considerable
research interest in past decades, which simplify the learn-
ing rate selection while ensuring that their regret bounds are
comparable to those obtained through manual tuning (Duchi
et al., 2010a; Hazan & Koren, 2012; Agarwal et al., 2019).
The pioneering work of Duchi et al. (2011) introduces
adaptive subgradient methods with full matrices (ADA-
FULL) within both the primal-dual subgradient framework
(Xiao, 2009) and the mirror descent framework (Duchi
et al., 2010b). ADA-FULL achieves a regret bound of
O(tr(G

1/2
T)), where GT is the sum of gradient outer prod-

ucts over T rounds, and this regret bound is better than that
of non-adaptive methods when data is sparse. However,
ADA-FULL requires maintaining a preconditioning matrix
to store the past gradient outer products and computing the
inverse of this preconditioning matrix, resulting in an O(d2)
space complexity and an O(d3) time complexity, respec-
tively, where d is the dimensionality. Thus, ADA-FULL is
impractical for large-scale machine learning tasks involving
high-dimensional data.

To address these limitations, several studies propose adopt-
ing frequent directions (FD) (Ghashami et al., 2016) to
reduce the computational complexity of ADA-FULL (Wan
et al., 2018; Wan & Zhang, 2022; Feinberg et al., 2023).
In particular, Wan et al. (2018) first develop an efficient
variant of ADA-FULL, namely ADA-FD, by employing FD
to approximate the sum of gradient outer products over
the past rounds. Let τ ≪ d denote the sketching size
and ρt denote the discarded eigenvalue of FD in round t.
ADA-FD reduces the space and time complexities to O(τd)

and O(τ2d), while enjoying O(tr(G
1/2
T) +

∑T
t=1

√
ρt)

and O(tr(G
1/2
T) +

∑T
t=1 τ

√
ρt) regret bounds under the

primal-dual subgradient framework and the mirror descent
framework, respectively. Moreover, by exploiting an ac-
celerated trick for FD, Wan & Zhang (2022) further pro-
pose ADA-FFD with O(τd) space and time complexities,
while keeping the same regret bounds. Recently, Fein-
berg et al. (2023) design Sketchy-ADAGRAD (S-ADA)
under the mirror descent framework, which achieves a bet-
ter O(tr(G

1/2
T) +

√
d(d− τ)ρ1:T) regret bound, where

ρ1:T =
∑T

t=1 ρt. The key idea is to utilize a variant of
FD (Chen et al., 2020), which adds back the cumulative

1

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Table 1. Comparison of ADA-FULL and its FD-based variants, where ADA-FD (P) and ADA-FD (M) represent ADA-FD under the
primal-dual subgradient framework the mirror descent framework, respectively. We denote λi be the i-th eigenvalue of GT .

Algorithms Regret Bounds Space Time

ADA-FULL (Duchi et al., 2011) O(tr(G
1/2
T)) O(d2) O(d3)

ADA-FD (P) (Wan et al., 2018) O(tr(G
1/2
T) +

∑T
t=1

√
ρt) O(τd) O(τ2d)

ADA-FD (M) (Wan et al., 2018) O(tr(G
1/2
T) +

∑T
t=1 τ

√
ρt) O(τd) O(τ2d)

S-ADA (Feinberg et al., 2023) O(tr(G
1/2
T) +

√
d(d− τ)ρ1:T) O(τd) O(τ2d)

FTSL (this work) O(tr(G
1/2
T) +

√
ρ1:T) O(τd) O(τ2d)

Table 2. Comparison of FFD-based variants of ADA-FULL, where ADA-FFD (P) and ADA-FFD (M) represent ADA-FFD under the
primal-dual subgradient framework and the mirror descent framework, respectively.

Algorithms Regret Bounds Space Time

ADA-FFD (P) (Wan & Zhang, 2022) O(tr(G
1/2
T) +

∑T
t=1

√
ρt) O(τd) O(τd)

ADA-FFD (M) (Wan & Zhang, 2022) O(tr(G
1/2
T) +

∑T
t=1 τ

√
ρt) O(τd) O(τd)

Fast S-ADA (this work) O(tr(G
1/2
T) +

√
d(d− τ)ρ1:T) O(τd) O(τd)

FTFSL (this work) O(tr(G
1/2
T) +

√
ρ1:T) O(τd) O(τd)

dropped eigenvalues (referred to as the escaped mass) to
keep the positive definite monotonicity of the precondition-
ing matrix. However, its regret bound depends on d, leading
to unsatisfactory guarantees for high-dimensional problems,
and its time complexity is O(τ2d), which is worse than that
of ADA-FFD. Thus, it is natural to ask whether the regret
bound and the time complexity of Feinberg et al. (2023) can
be further improved.

In this paper, we provide an affirmative answer to this ques-
tion. Specifically, we first develop an algorithm, namely
Follow-the-Sketchy-Leader (FTSL), to enhance the existing
regret bound. We integrate FD with ADA-FULL under the
primal-dual framework and add the cumulative discarded
eigenvalues of FD back. FTSL enjoys a tighter dimension-
free O(tr(G

1/2
T)+

√
ρ1:T) regret bound, while obtaining the

space and time complexities of O(τd) and O(τ2d). Addi-
tionally, we propose an accelerated variant of FTSL, named
FTFSL, by doubling the sketching size to reduce the num-
ber of time-consuming computations. FTFSL preserves
the regret bound and space complexity of FTSL, while si-
multaneously lowering the time complexity to O(τd) when
τ ≤

√
d. Remarkably, we can also improve the time com-

plexity of S-ADA by using this technique, but its regret
bound still remains inferior to that of FTFSL. We summa-
rize our results and comparisons with the previous work in
Table 1 and Table 2.

Moreover, we investigate optimization problems with ma-
trix variables Xt ∈ Rm×n, a scenario commonly encoun-
tered in deep learning tasks. In this case, one can ap-
ply the aforementioned methods by flattening the gradient
GX

t ∈ Rm×n into a vector gt ∈ Rmn, which, however, in-
curs a memory usage of O(τmn). To improve the memory
efficiency, Feinberg et al. (2023) have adapted FD to Sham-
poo (Gupta et al., 2018), a popular adaptive preconditioning
method that accounts for the structure of the parameters. Al-
though Feinberg et al. (2023) reduce the space complexity to
O(τ(m+ n)), their regret bound again relies on the dimen-
sionality m,n. To address this issue, we integrate FD with a
primal-dual variant of Shampoo and obtain a dimension-free
regret bound via a novel analysis. Our approach, termed
FTSL-Shampoo, attains an enhanced theoretical guarantee
that is independent of the dimensionality m,n. We contrast
FTSL-Shampoo with previous methods in Table 3. Finally,
we conduct experiments on online classification and neural
network training to validate the superiority of our methods.

2. Related Work
In this section, we briefly review the related work on adap-
tive subgradient methods, their fast variants based on sketch-
ing, and Shampoo.

2

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Table 3. Comparison of adaptive subgradient methods for the case where the decision has a matrix structure Xt ∈ Rm×n. We denote
the gradient GX

t ∈ Rm×n, r is the largest rank of GX
t , LT = ϵIm×m +

∑T
t=1 G

X
t (GX

t)⊤, RT = ϵIn×n +
∑T

t=1(G
X
t)⊤GX

t , ϵ is a
hyper-parameter, ρL1:T and ρR1:T represent the sum of the removed eigenvalues in FD during the approximation of

∑T
t=1 G

X
t (GX

t)⊤ and∑T
t=1(G

X
t)⊤GX

t , respectively. For ADA-FULL and FTFSL, we define GT =
∑T

t=1 gtg
⊤
t ∈ Rmn×mn, where gt = vec(GX

t) ∈ Rmn

and vec(·) denotes the row-major vectorization of a matrix.

Algorithms Regret Bounds Space Time

ADA-FULL (Duchi et al., 2011) O(tr(G
1/2
T)) O(m2n2) O(m3n3)

FTFSL (this work) O(tr(G
1/2
T) +

√
ρ1:T) O(τmn) O(τmn)

Shampoo (Gupta et al., 2018) O(
√
r tr(L

1/4
T) tr(R

1/4
T)) O(m2 + n2) O(m3 + n3)

S-Shampoo
(Feinberg et al., 2023) O(

√
r(tr(L

1/4
T) +m(ρL1:T)

1/4)(tr(R
1/4
T) + n(ρR1:T)

1/4)) O(τ(m+ n)) O(τ2mn)

FTSL-Shampoo (this work) O(
√
r(tr(L

1/4
T) + (ρL1:T)

1/4)(tr(R
1/4
T) + (ρR1:T)

1/4)) O(τ(m+ n)) O(τ2mn)

2.1. OCO and Adaptive Subgradient Methods

Online convex optimization (OCO) is a powerful paradigm
for solving sequential decision-making problems (Hazan,
2016; Orabona, 2019; Zhang et al., 2018; 2022). Specifi-
cally, it is typically formulated as an iterative game between
a player and an adversary. In each round t ∈ [T], the player
begins by selecting a decision xt ∈ Rd. After that, the ad-
versary chooses a convex loss function ft(·) : Rd 7→ R, and
the player incurs a loss ft(xt). The goal of the player is to
minimize the cumulative loss

∑T
t=1 ft(xt) over T rounds,

which is equivalent to minimizing the regret (Zinkevich,
2003)

R(T) ≜
T∑

t=1

ft(xt)−
T∑

t=1

ft(x
∗), (1)

defined as the excess loss suffered by the player com-
pared to the loss of the fixed optimal choice x∗ ∈
argminx∈Rd

∑T
t=1 ft(x). Although Zinkevich (2003) es-

tablishes the optimal regret bound of O(
√
T), it is data-

independent. In the following, we will introduce ADA-
GRAD (Duchi et al., 2010a; 2011), a widely-used adaptive
subgradient method, in both the primal-dual subgradient
framework (Xiao, 2009) and the mirror descent framework
(Duchi et al., 2010b), which achieves a data-dependent re-
gret bound.

ADAGRAD can be categorized into two forms based on
how the preconditioner G̃t is computed: ADAGRAD with
full matrices (ADA-FULL) and ADAGRAD with diago-
nal matrices (ADA-DIAG). We denote gt be a particular
vector in the subdifferential set ∂ft(xt). Since we do not
require the loss function to be smooth, we will not explicitly
distinguish subgradients and gradients in the subsequent
discussion. ADA-FULL first calculates the outer product
matrix of the past gradients Gt =

∑t
i=1 gig

⊤
i , and further

defines a symmetric matrix G̃t = ϵId×d + G
1/2
t , where

ϵ > 0 is a hyper-parameter introduced to ensure the in-
vertibility of G̃t. According to the primal-dual subgradient
framework, the update rule is given by

xt+1 = argmin
x∈Rd

{
η

〈
1

t
gt,x

〉
+

1

t
Ψt(x)

}
= −ηG̃−1

t gt,

where η is the learning rate, gt =
∑t

i=1 gi is the sum of the
received gradients and Ψt(x) =

1
2 ⟨x, G̃tx⟩ is the proximal

term. The mirror descent version updates the decision as
follows

xt+1 = argmin
x∈Rd

{η ⟨gt,x⟩+BΨt
(x,xt)}

= xt − ηG̃−1
t gt,

where BΨt(x,y) = Ψt(x) − Ψt(y) − ⟨∇Ψt(y),x− y⟩
is the Bregman divergence associated with Ψt(·). ADA-
FULL achieves an O(tr(G

1/2
T)) regret bound within the

both frameworks. However, ADA-FULL store the past
gradient outer products, i.e., Gt, and compute G

−1/2
t , re-

sulting in O(d2) and O(d3) space and time complexities,
respectively. The high computational cost of ADA-FULL
prohibits its out-of-the-box use in typical machine learning
problems, such as training neural networks (Sagun et al.,
2017; Ghorbani et al., 2019; Sankar et al., 2021).

Different from ADA-FULL, ADA-DIAG only utilizes the
diagonal elements of the gradient outer product matrix, i.e.,
redefining G̃t = ϵId×d + diag(Gt)

1/2, which thus is com-
putationally more efficient. However, since the precondi-
tioning matrix of ADA-DIAG only contains limited infor-
mation, the regret bound of ADA-DIAG is worse than that
of ADA-FULL when high-dimensional data is dense and
has a low-rank structure.

3

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

2.2. Adaptive Subgradient Methods with Sketching

To alleviate the computational burden of ADA-FULL, sev-
eral works have employed the sketching techniques to re-
duce its space and time complexities (Krummenacher et al.,
2016; Wan & Zhang, 2018; Wan et al., 2018; Wan & Zhang,
2020; 2022; Feinberg et al., 2023). Krummenacher et al.
(2016) propose ADA-LR to enhance the computational com-
plexity of ADA-FULL by using random projection (Indyk
& Motwani, 1998; Achlioptas, 2003). While ADA-LR re-
duces the time complexity to O(τd2), its space complexity
remains at O(d2), where τ ≪ d is the sketching size. To fur-
ther improve the efficiency, they develop RADAGRA, which
incorporates a more randomized approximation, achieving
space and time complexities of O(τd) and O(τ2d), respec-
tively. However, RADAGRA is not supported by rigorous
theoretical analysis. Later, Wan & Zhang (2018) develop
ADA-DP based on random projection, which achieves space
and time complexities of O(τd) and O(τ2d), while provid-
ing theoretical guarantees.

Another class of sketching-based adaptive subgradient meth-
ods adopts frequent directions (FD) (Ghashami et al., 2016),
a stable matrix sketching technique. Wan et al. (2018) first
apply FD with ADA-FULL under both the primal-dual sub-
gradient framework and the mirror descent framework by
maintaining a matrix Bt ∈ Rd×τ , such that BtB

⊤
t ≈ Gt ∈

Rd×d, where Gt represents the gradient covariance ma-
trix. Their approach, ADA-FD, obtains space and time
complexities of O(τd) and O(τ2d), respectively. ADA-FD
achieves regret bounds of O(tr(G

1/2
T) +

∑T
t=1

√
ρt) and

O(tr(G
1/2
T) +

∑T
t=1 τ

√
ρt) under the primal-dual subgra-

dient framework and the mirror descent framework, where
ρt is the removed eigenvalue of FD in round t. Furthermore,
Wan & Zhang (2022) introduce a fast variant of ADA-FD,
named ADA-FFD, by doubling the sketching size. ADA-
FFD improves the time complexity to O(τd) while keeping
the same regret bounds. Although ADA-FD and ADA-FFD
enjoy better space and time complexities, as mentioned by
Feinberg et al. (2023), their regret bounds are Ω(T 3/4) in
some cases. For this reason, Feinberg et al. (2023) pro-
pose S-ADA by adding back the discarded information
of FD to the FD-based preconditioner instead of utilizing
a fixed diagonal regularization. While S-ADA enjoys an
O(tr(G

1/2
T)+

√
d(d− τ)ρ1:T) regret bound, it suffers from

a linear dependence on the dimensionality d. Moreover, it
only achieves an unsatisfactory time complexity of O(τ2d).

Additionally, we also notice that FD has been utilized to ac-
celerate online Newton step (ONS) algorithm (Hazan et al.,
2007) for exponentially concave functions, and LinUCB
(Chu et al., 2011) algorithm in linear contextual bandit set-
ting, which also need to maintain a covariance matrix. Luo
et al. (2016) first apply FD in ONS to construct a low-rank
approximation of the matrix. To reduce the approximation

error of FD, Luo et al. (2019) propose a new sketching strat-
egy called robust frequent directions (RFD), which is the
first method that compensates the discarded singular val-
ues back into the second-order matrix. They utilize RFD
to propose a hyperparameter-free variant of ONS, which
is more robust than FD-SON. In linear contextual bandit
setting, Chen et al. (2020) propose spectral compensation
frequent directions (SCFD) to approximate the covariance
matrices, which adds up the total mass of subtracted values
during FD procedure. SCFD can approximate a sequence of
incremental covariance matrices while keeping the positive
definite monotonicity. In fact, S-ADA can be viewed as a
combination of ADA-FULL with SCFD.

2.3. Shampoo

Shampoo (Gupta et al., 2018) is an adaptive optimization
method that takes the structure of the parameter space into
consideration and thus is more efficient than ADA-FULL
in scenarios where the decision is a matrix. Specifically,
Shampoo maintains a set of preconditioning matrices, each
of which operates on one dimension, while aggregating
information across the remaining dimensions. For exam-
ple, for a parameter matrix Xt ∈ Rm×n and its gradient
GX

t ∈ Rm×n, ADA-FULL treats the matrix-shaped gradi-
ent as a vector of size mn and its preconditioner G̃t has the
size of mn×mn, which leads to O(m2n2) and O(m3n3)
space and time complexities, respectively. In contrast, Sham-
poo constructs two smaller matrices, Lt ∈ Rm×m and
Rt ∈ Rn×n, to precondition the rows and columns of GX

t ,
respectively, which only requires an O(m2 + n2) memory
cost and an O(m3 + n3) computation complexity. Since
the parameters in the deep learning tasks often have matrix
structures, Shampoo has strong empirical performance and
receives lots of attentions (Anil et al., 2020; Liu et al., 2023;
Eschenhagen et al., 2024).

However, the memory demands of Shampoo may still be
prohibitive for large-scale neural networks. Anil et al. (2020)
address the memory cost of Shampoo by introducing two
variants. The first variant, Blocked Shampoo, partitions the
decision variable Xt ∈ Rm×n into mn/b2 blocks, where
b is the block size and b ≤ min(m,n). However, Blocked
Shampoo depends on the specific ordering of neurons in the
hidden layers. The second variant relies on one-sided covari-
ance upper bounds, which cannot effectively handle vector
parameters. Feinberg et al. (2023) first incorporate FD into
Shampoo and reduce its memory to O(τ(m + n)). Their
method, named Sketchy-Shampoo (S-Shampoo), uses two
low-rank matrices L̂t ∈ Rm×τ and R̂t ∈ Rn×τ to approxi-
mate the preconditioning matrices Lt and Rt, respectively.
While S-Shampoo improves the space complexity of Sham-
poo, its regret bound relies on the dimensions m,n, leading
to the unsatisfactory performance when the dimensions are
high.

4

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

3. Preliminaries
3.1. Assumptions

We adopt two common assumptions of OCO (Hazan, 2016).

Assumption 3.1. All loss functions ft(·) are convex.

Assumption 3.2. The optimal decision x∗ ∈ Rd is bounded
by D, i.e., ∥x∗∥ ≤ D.

Besides, we introduce two assumptions for the scenario
where the decision has a matrix structure. These assump-
tions have also been used in prior works (Gupta et al., 2018;
Feinberg et al., 2023).

Assumption 3.3. The rank of gradient matrix GX
t is

bounded by r, i.e., maxt∈[T] rank(G
X
t) ≤ r.

Assumption 3.4. The optimal parameter X∗ ∈ Rm×n is
bounded by DM, i.e., ∥X∗∥F ≤ DM.

3.2. Frequent Directions

Frequent directions (FD) (Ghashami et al., 2016) is a de-
terministic matrix sketching technique by extending the
well-known algorithm for approximating item frequencies
in online data streams (Misra & Gries, 1982). For a given
matrix A ∈ Rd×t, FD aims to generate a matrix B ∈ Rd×τ

such that BB⊤ ≈ AA⊤, where τ ≪ min{t, d} is the
sketching size. The procedure is summarized in Algorithm
1. In each round t, we denote the low-rank matrix Bt−1 =
[b1,b2, ...,bτ−1, 0d] ∈ Rd×τ , where the last column is 0d.
Upon receiving the new gradient gt ∈ Rd, it is inserted into
the last column of Bt−1. Next, we perform singular value de-

composition (SVD) on Bt−1 = Ut

√
diag(λ

(t)
[1:τ])V

⊤
t , and

the matrix Bt is computed as Bt = Ut

√
diag(λ(t)

[1:τ] − λ
(t)
τ)

with its last column set to 0d. The time complexity of FD is
O(τ2d) for each iteration, which is dominated by comput-
ing the SVD of Bt−1, causing a quadratic dependence on
sketching size τ .

To further reduce the time complexity of FD, Ghashami et al.
(2016) propose fast frequent directions (FFD) by expanding
the space of Bt. Specifically, FFD maintains a matrix B0 =
0d×2τ ∈ Rd×2τ . In each round t, we insert the received
gradient gt into the first all-zero column of Bt−1. Once Bt

no longer contains any all-zero columns, we perform SVD

to obtain Bt = Ut

√
diag(λ

(t)
[1:2τ])V

⊤
t . The matrix Bt is

then updated as Bt = Ut

√
diag(max{λ(t)

[1:2τ] − λ
(t)
τ , 0}),

ensuring that the last τ + 1 columns are set to 0d. As we
only need to update the matrix Bt every τ + 1 rounds, the
time complexity of FFD is O(τd).

Since FD removes a singular value per round, the matrix
BtB

⊤
t does not preserve monotonicity. To resolve this lim-

itation, Chen et al. (2020) propose spectral compensation

Algorithm 1 Frequent Directions (FD)
1: Input: Sketching matrix Bt−1 ∈ Rd×τ (with its last

column as 0d), new gradient vector gt ∈ Rd

2: Insert the gradient gt into the last column of Bt−1

3: Perform SVD to Bt−1 = Ut

√
diag(λ(t)

[1:τ])V
⊤
t , where

Ut ∈ Rd×τ

4: Compute Bt = Ut

√
diag(λ(t)

[1:τ] − λ
(t)
τ)

5: Return: Bt and λ
(t)
τ

frequent directions (SCFD), which adds up the total mass of
subtracted values

∑t
i=1 λ

(t)
τ during FD procedure. SCFD

is able to approximate a sequence of high-dimensional ma-
trices while preserving positive definite monotonicity, i.e.,∑t

i=1 λ
(i)
τ Id×d +BtB

⊤
t ⪰

∑t−1
i=1 λ

(i)
τ Id×d +Bt−1B

⊤
t−1.

4. The Proposed Methods
In this section, we first present FTSL, which incorporates
FD with ADA-FULL under the primal-dual framework to
obtain a better regret bound. Furthermore, we accelerate
FTSL by employing an accelerated trick for FD, achiev-
ing enhanced computational efficiency. We demonstrate
that this technique can be applied to expediting S-ADA
(Feinberg et al., 2023). Additionally, we consider optimiza-
tion problems involving matrix variables and propose an
improved FD-based variant of Shampoo.

4.1. Our Improved Result

Before introducing our algorithms, we first briefly discuss
why the regret bound of S-ADA (Feinberg et al., 2023) relies
on the dimensionality d, offering motivation for the methods
we design. Since S-ADA is under the mirror descent frame-
work, its regret bound contains the Bregman divergence
term, that is,

O

(
T−1∑
t=0

[
BΨt+1

(x∗,xt+1)−BΨt
(x∗,xt+1)

])

=O

(
T−1∑
t=0

∥xt+1 − x∗∥2G̃1/2
t+1−G̃

1/2
t

)
,

where Ψt(x) = 1
2 ⟨x, G̃

1/2
t x⟩ is the proximal term, G̃t

is the preconditioning matrix and BΨt(x,y) = Ψt(x) −
Ψt(y) − ⟨∇Ψt(y),x− y⟩. To facilitate summation, they
upper bound this term by O(

∑T−1
t=0 tr(G̃1/2

t+1 − G̃
1/2
t)) and

then exploit the additivity of the trace, which yields a
bound of O(tr(G̃1/2

T)). Feinberg et al. (2023) add the cu-
mulative removed eigenvalues of FD ρ1:t into G̃t. Conse-
quently, the Bregman divergence term is O(tr((BTB

⊤
T +

ρ1:T Id×d)
1/2)), which is further bounded by O(tr(G

1/2
T) +

5

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Algorithm 2 Follow the Sketchy Leader (FTSL)
1: Input: Learning rate η, sketching size τ
2: Initialize x0 = 0d,g0 = 0d, G̃0 = 0d×d, B0 = 0d×τ

3: for t = 1 to T do
4: Play the decision xt and suffer the loss ft(xt)
5: Query the gradient gt = ∇ft(xt) and calculate gt =

gt−1 + gt

6: Send Bt−1 and gt to Algorithm 1
7: Receive Bt and set ρt = λt

τ

8: Calculate G̃t = BtB
⊤
t + ρ1:tId×d and derive G̃−1/2

t

9: Update xt according to (2)
10: end for

√
d(d− τ)ρ1:T), where BT ∈ Rd×τ is the sketching ma-

trix and GT =
∑T

t=1 gtg
⊤
t . As a result, the regret bound of

S-ADA exhibits a linear dependence on d, resulting in an
unsatisfactory performance in high-dimensional problems.

To overcome this issue, we propose integrating FD with
ADA-FULL under the primal-dual subgradient framework.
Our method, which we call FTSL, is outlined in Algorithm
2. Specifically, we employ the FD to construct a low-rank
approximation of the outer product matrix of gradients Gt,
aiming to reduce the computational complexity. To ensure
the monotonicity of the preconditioning matrix G̃t, we also
add back the cumulative escaped masses ρ1:t into G̃t. Un-
der the primal-dual subgradient framework, we update the
decision as follows

xt = argmin
x∈Rd

{η ⟨gt,x⟩+Ψt(x)}

= −ηG̃
−1/2
t gt,

(2)

where gt =
∑t

i=1 gi is the sum of the past gradients. Ac-
cording to the analysis under the primal-dual framework, the
regret of FTSL is upper bounded by the term O(∥G̃1/2

T ∥) =
O(∥(BTB

⊤
T + ρ1:T Id×d)

1/2∥) ≤ O(∥G1/2
T ∥ +

√
ρ1:T),

thereby avoiding the dependence on d.

Formally, we present the theoretical guarantee of FTSL.

Theorem 4.1. Under Assumption 3.1 and Assumption 3.2,
by setting the learning rate η = D√

2
, FTSL ensures

R(T) ≤ O
(
tr(G

1/2
T) +

√
ρ1:T

)
,

where GT =
∑T

t=1 gtg
⊤
t .

Remark. In contrast to the previous regret bound of
O(tr(G

1/2
T) +

√
d(d− τ)ρ1:T) (Feinberg et al., 2023), the

regret bound of FTSL is dimension-free, a benefit realized
from the primal-dual subgradient framework.

Remark. Since we only maintain a sketching matrix Bt ∈
Rd×τ , the space complexity of FTSL is O(τd). Its time

Algorithm 3 Follow the Fast Sketchy Leader (FTFSL)
1: Input: Learning rate η, sketching size τ
2: Initialize x0 = 0d, G̃0 = 0d×d, r0 = 0,M0 =

02τ×2τ , V0 = 0d×2τ ,g0 = 0d, ρ1 = 0
3: for t = 1 to T do
4: Play the decision xt and suffer the loss ft(xt)
5: Query the gradient gt = ∇ft(xt) and compute g′

t =
Vt−1(V

⊤
t−1gt),gt = gt−1 + gt

6: if g′
t ̸= gt then

7: Set rt−1 = rt−1 + 1, calculate vt−1
rt−1

=
gt−g′

t

∥gt−g′
t∥

and set the rt−1-th column of Vt−1 as vt−1
rt−1

8: end if
9: Set rt = rt−1, Vt = Vt−1

10: Compute Mt = Mt−1 + (V ⊤
t−1gt)(V

⊤
t−1gt)

⊤

11: Perform SVD decomposition on Mt, which is
UtΣtU

⊤
t = Utdiag(λ(t)

[1:2τ])U
⊤
t = Mt

12: Calculate G̃t = ρ1:tId×d + VtUtΣtUtV
⊤
t

13: Update xt according to (2) and set ρt+1 = 0
14: if rt = 2τ then
15: Set ρt+1 = λ

(t)
τ , Mt = diag(max{λ(t)

[1:2τ] −
λ
(t)
τ , 0}) and Vt = VtUt

16: Set rt = τ − 1 and the τ -th to 2τ -th columns of
Vt be 0d

17: end if
18: end for

complexity is O(τ2d) per round, which arises from the SVD
of Bt and the calculation of G̃−1/2

t (the detailed discussions
can be found in Appendix A). While the time complexity of
FTSL is linear with respect to the dimensionality d, it still
suffers from the quadratic dependence on the sketching size
τ . To further alleviate its computational burden, we develop
a fast variant of FTSL in the next section.

4.2. Our Accelerated Variant

The time complexity of FTSL suffers from a quadratic de-
pendence on the sketching size τ , which is introduced by
the SVD decomposition on Bt ∈ Rd×τ in FD. Drawing in-
spiration from the previous work (Chen et al., 2020; Wan &
Zhang, 2022), we adopt a more efficient strategy for comput-
ing the SVD of sketching matrix Bt. Our method, termed
FTFSL, is presented in Algorithm 3.

Different from FD, the sketching matrix Bt is expanded to
Rd×2τ in FFD. Rather than explicitly maintaining Bt, we
use two matrices Vt and Mt to form Bt. Specifically, Vt =
[vt

1, · · · ,vt
2τ] ∈ Rd×2τ consists of rt orthonormal vectors

(rt ≤ 2τ) and the rest columns are zero vectors, and Mt ∈
R2τ×2τ is a symmetric matrix. We require that Vt and Mt

satisfy the condition VtM
1/2
t = Bt ∈ Rd×2τ . In each round

t, after receiving the gradient gt, we first check whether this

6

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

vector lies within the subspace spanned by Vt−1. If the
vector is not contained within the subspace, we normalize it
and subsequently add it to Vt−1, thereby enlarging the span
of the subspace and ensuring Vt−1V

⊤
t−1gt = gt (Step 6-8).

Then we have the following equation

Vt−1Mt−1V
⊤
t−1 + gtg

⊤
t

=Vt−1

(
Mt−1 + V ⊤

t−1gtg
⊤
t Vt−1

)
V ⊤
t−1.

This implies that we only need to perform an SVD de-
composition on Mt−1 + (V ⊤

t−1gt)(V
⊤
t−1gt)

⊤ ∈ R2τ×2τ ,
which only takes a time complexity of O(τ3). Next, we
incorporate the escaped masses to keep the monotonicity
of the preconditioning matrix G̃t. When rt = 2τ , we need
to set rt = τ − 1 and set the last τ + 1 columns of the
sketching matrix Bt to be zero (Step 14-16). Given the de-
composition Mt = Ut diag(λ

(t)
[1:2τ])U

⊤
t and the relationship

VtM
1/2
t = Bt, this can be efficiently achieved by updating

Mt as diag(max{λ(t)
[1:2τ]−λ

(t)
τ , 0}), calculating Vt = VtUt,

and setting the last τ + 1 columns of Vt to zero.

In the following, we provide the theoretical guarantee of
FTFSL.

Theorem 4.2. Under Assumption 3.1 and Assumption 3.2,
by setting the learning rate η = D√

2
, FTFSL ensures

R(T) ≤ O
(
tr(G

1/2
T) +

√
ρ1:T

)
.

Remark. In each round, FTFSL computes g′
t, v

t−1
rt−1, Mt,

SVD of Mt and update xt, with respective time complexities
of O(τd), O(d), O(τd), O(τ3) and O(τd). Additionally,
we only compute Vt = VtUt every τ + 1 rounds, incurring
a time complexity of O(τ2d). When τ ≤ O(

√
d), the time

complexity of FTSL is O(τd) per round.

Notably, we can also reduce the time complexity of S-ADA
(Feinberg et al., 2023) by adopting this technique. We re-
place the update rule for the decision variable xt of FTFSL
(Step 13) with the following

xt+1 = xt − ηG̃
−1/2
t gt,

and analyze under the mirror descent framework.

Then we provide the theoretical guarantee of Fast S-ADA.

Theorem 4.3. Under Assumption 3.1 and assuming D1 =
maxt∈[T] ∥xt − x∗∥, by setting the learning rate η = D1√

2
,

Fast S-ADA ensures

R(T) ≤ O
(
tr(G

1/2
T) +

√
d(d− τ)ρ1:T

)
.

Remark. Compared to S-ADA (Feinberg et al., 2023),
Fast S-ADA obtains a better O(τd) time complexity when
τ ≤ O(

√
d), while preserving the same regret bound.

Algorithm 4 Frequent Directions in General Form
1: Input: Sketching matrix Bt−1 ∈ Rd×τ , a new symmet-

ric PSD matrix Mt ∈ Rd×d

2: Eigendecompose U tdiag(λ(t))U
⊤
t = Bt−1B

⊤
t−1 +Mt,

define Ut ∈ Rd×τ be the first τ columns of U t and
λ
(t)
[1:τ] be its eigenvalues

3: Compute Bt = Ut

√
diag(λ(t)

[1:τ] − λ
(t)
τ)

4: Return: Bt and λ
(t)
τ

Algorithm 5 FTSL-Shampoo
Require: Learning rate η, sketching size τ , ϵ > 0

1: Initialize X0 = 0m×n, L̂0 = 0m×τ , R̂0 = 0n×τ , L̃0 =

0m×m, R̃0 = 0n×n, G
X

0 = 0m×n

2: for t = 1 to T do
3: Play the decision Xt and suffer the loss ft(Xt)
4: Query the gradient GX

t = ∇ft(Xt) ∈ Rm×n and
calculate G

X

t = G
X

t−1 +GX
t

5: Send L̂t−1 and GX
t (GX

t)⊤ to Algorithm 4 and re-
ceive L̂t, ρ

L
t

6: Send R̂t−1 and (GX
t)⊤GX

t to Algorithm 4 and re-
ceive R̂t, ρ

R
t

7: Update L̃t = L̂tL̂
⊤
t + (ϵ+ ρL1:t)Im×m

8: Update R̃t = R̂tR̂
⊤
t + (ϵ+ ρR1:t)In×n

9: Update Xt according to (3)
10: end for

4.3. Optimization Problems with Matrix Variables

In this section, we consider a practical scenario where the
decision variable is a matrix Xt ∈ Rm×n, which is common
for parameters in deep learning tasks. In such settings, the
loss f(X) is typically a smooth non-convex function, and
the objective is to find a point XT such that ∥∇f(XT)∥ ≤ ϵ.
As pointed out by Agarwal et al. (2019), a smooth non-
convex problem can be transformed into solving a series of
offline convex problems by using the online to batch conver-
sion. Therefore, we can derive the non-convex optimization
guarantees from online regret bounds, with further details
provided in Appendix B.

To utilize the structure information, Gupta et al. (2018)
propose Shampoo, which retains the matrix structure of the
gradient and maintains two matrices as preconditioners of
the rows and columns of GX

t , yielding a space complexity
of O(m2 + n2). While S-Shampoo (Feinberg et al., 2023)
improves the space complexity of Shampoo to O(τ(m+n)),
its regret bound again relies on the dimensionality m,n. To
further reduce its regret bound, we propose FTSL-Shampoo
by integrating FD with Shampoo under the primal-dual
framework. Our method achieves a superior dimension-free
guarantee with obtaining an O(τ(m+n)) space complexity,

7

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

0 500 1000 1500 2000
of iterations

90

92

94

96

98
A

cc
ur

ac
y

0 500 1000 1500 2000
of iterations

0

50

100

150

200

Lo
ss

0 500 1000 1500 2000
of iterations

0

50

100

Ti
m

e

ADA-DIAG RADAGRAD FD-SON ADA-FFD (M) ADA-FFD (P) S-ADA Fast S-ADA FTFSL

Figure 1. Results for Gisette dataset.

0 2000 4000
of iterations

80

82

84

86

88

90

A
cc

ur
ac

y

0 2000 4000
of iterations

0

500

1000

1500

Lo
ss

0 2000 4000
of iterations

0

20

40

60

Ti
m

e
ADA-DIAG RADAGRAD FD-SON ADA-FFD (M) ADA-FFD (P) S-ADA Fast S-ADA FTFSL

Figure 2. Results for Epsilon dataset.

which is presented in Algorithm 5.

Specifically, we utilize FD to approximate the left and
right preconditioning matrices for Shampoo. We main-
tain two matrices L̂t ∈ Rm×τ , R̂t ∈ Rn×τ to ensure that
L̂tL̂

⊤
t ≈

∑t
i=1 G

X
i (GX

i)⊤, R̂tR̂
⊤
t ≈

∑t
i=1(G

X
i)⊤GX

i .
We track the cumulative escaped masses ρL1:t and ρR1:t of
the left and right preconditioning matrices separately, and
then add them back into L̃t and R̃t to uphold the monotonic-
ity. To achieve a dimension-free regret bound with FD, we
update the parameters as follows:

Xt = −ηL̃
−1/4
t G

X

t R̃
−1/4
t , (3)

where G
X

t =
∑t

i=1 G
X
i is the sum of the past gradients,

and conduct the analysis under the primal-dual framework.
Then we present the regret bound of FTSL-Shampoo.

Theorem 4.4. Under Assumption 3.1, Assumption 3.3 and
Assumption 3.4, by setting the learning rate η = DM√

r
and

further denoting LT = ϵIm×m +
∑T

t=1 G
X
t (GX

t)⊤, RT =

ϵIn×n +
∑T

t=1(G
X
t)⊤GX

t , FTSL-Shampoo ensures

R(T) ≤ O(
√
r(tr(L

1/4
T) + (ρL1:T)

1/4)

· (tr(R1/4
T) + (ρR1:T)

1/4)),

where ρL1:T and ρR1:T represent the sum of the removed eigen-
values of FD during the approximation of

∑T
t=1 G

X
t (GX

t)⊤

and
∑T

t=1(G
X
t)⊤GX

t , respectively.

Remark. In comparison to the previous O(
√
r(tr(L

1/4
T) +

m(ρL1:T)
1/4)(tr(R

1/4
T) + n(ρR1:T)

1/4)) regret bound of S-
Shampoo (Feinberg et al., 2023), we achieve a dimension-
free regret bound while enjoying the same O(τ(m + n))
space complexity.

5. Experiments
In this section, we assess the performance of the proposed
methods via numerical experiments on online classification
and image classification tasks. Due to the limited space, we
only present a subset of the experimental outcomes, with
the comprehensive set of results accessible in Appendix C.

8

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Online Classification. First, we perform online classifi-
cation to evaluate the performance of our methods with
two real-world datasets from LIBSVM (Chang & Lin,
2011) repository: Gisette and Epsilon, which are high-
dimensional and dense. Particularly, Gisette dataset con-
tains 6000 training samples and 1000 testing samples, each
with 5000 features. Epsilon dataset consists of 400, 000
training samples and 100, 000 testing samples, each with
2000 features. In each round t ∈ [T], a batch of train-
ing examples {(wt,1, yt,1) , . . . , (wt,n, yt,n)} arrive, where
(wt,i, yt,i) ∈ [−1, 1]d × {−1, 1}, i = 1, . . . , n. The online
learner aims to predict a linear model xt and suffers the
hinge loss ft(xt) =

1
n

∑n
i=1 max{0, 1 − ytx

⊤
t wt,i}. For

Gisette dataset, we set the batch size n = 32, the sketch-
ing size τ = 50 to be 1% of the original dimensionality,
and T = 2000. For Epsilon dataset, we set the batch size
n = 128, τ = 20 and T = 5000.

Results. Following Duchi et al. (2011), we adopt the perfor-
mance of accuracy on the testing data to compare different
methods. To better demonstrate the improvements of our
methods, we additionally plot the training loss and runtime
of various methods. From Figure 1 and Figure 2, we ob-
serve that FTFSL outperforms all other methods in both
loss and testing accuracy, aligning with its superior regret
bound. Moreover, FTFSL and Fast S-ADA exhibit signifi-
cantly lower runtimes compared to S-ADA, owing to their
superior time complexities.

6. Conclusion
In this paper, we investigate adaptive subgradient methods
with Frequent Directions (FD). First, we introduce a novel
method, named FTSL, to achieve a tighter dimension-free
regret bound of O(tr(G

1/2
T) +

√
ρ1:T). Next, we propose a

fast version of FTSL by accelerating FD used in it, which
improves the time complexity to O(τd) while preserving
the same regret bound. This technique can also be applied
to expedite S-ADA (Feinberg et al., 2023). Additionally,
we consider a more complex scenario where the decision
is a matrix, and adapt FD to Shampoo under the primal-
dual framework to obtain a better dimension-free bound.
Finally, we substantiate the effectiveness and efficiency of
our methods through experimental validation.

Acknowledge
This work was partially supported by National Science
and Technology Major Project (2022ZD0114801), NSFC
(U23A20382), and Yongjiang Talent Introduction Pro-
gramme (2023A-193-G). The authors would like to thank
the anonymous reviewers for their constructive suggestions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achlioptas, D. Database-friendly random projections:

Johnson-lindenstrauss with binary coins. Journal of com-
puter and System Sciences, 66(4):671–687, 2003.

Agarwal, N., Bullins, B., Chen, X., Hazan, E., Singh, K.,
Zhang, C., and Zhang, Y. Efficient full-matrix adaptive
regularization. In Proceedings of the 36th International
Conference on Machine Learning, pp. 102–110, 2019.

Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.
Scalable second order optimization for deep learning.
arXiv preprint arXiv:2002.09018, 2020.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for support
vector machines. ACM transactions on intelligent systems
and technology, 2(3):1–27, 2011.

Chen, C., Luo, L., Zhang, W., Yu, Y., and Lian, Y. Efficient
and robust high-dimensional linear contextual bandits. In
Proceedings of the 29th International Joint Conference
on Artificial Intelligence, pp. 4259–4265, 2020.

Chu, W., Li, L., Reyzin, L., and Schapire, R. E. Contextual
bandits with linear payoff functions. In Proceedings of the
14th International Conference on Artificial Intelligence
and Statistics, pp. 208–214, 2011.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
In Proceedings of the 23rd Annual Conference on Learn-
ing Theory, 2010a.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Duchi, J. C., Shalev-Shwartz, S., Singer, Y., and Tewari,
A. Composite objective mirror descent. In Proceedings
of the 23rd Annual Conference on Learning Theory, pp.
14–26, 2010b.

Eschenhagen, R., Immer, A., Turner, R., Schneider, F., and
Hennig, P. Kronecker-factored approximate curvature
for modern neural network architectures. In Advances in
Neural Information Processing Systems 37, 2024.

Feinberg, V., Chen, X., Sun, Y. J., Anil, R., and Hazan, E.
Sketchy: Memory-efficient adaptive regularization with
frequent directions. In Advances in Neural Information
Processing Systems 37, 2023.

9

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Ghashami, M., Liberty, E., Phillips, J. M., and Woodruff,
D. P. Frequent directions: Simple and deterministic ma-
trix sketching. SIAM Journal on Computing, 45(5):1762–
1792, 2016.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation
into neural net optimization via hessian eigenvalue den-
sity. In Proceedings of the 36th International Conference
on Machine Learning, pp. 2232–2241, 2019.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Precondi-
tioned stochastic tensor optimization. In Proceedings of
the 35th International Conference on Machine Learning,
pp. 1842–1850, 2018.

Hager, W. W. Updating the inverse of a matrix. SIAM
review, 31(2):221–239, 1989.

Hazan, E. Introduction to online convex optimization.
Foundations and Trends in Optimization, 2(3-4):157–325,
2016.

Hazan, E. and Koren, T. Online gradient descent with adap-
tive step size for convex optimization. In Proceedings
of the 25th Annual Conference on Learning Theory, pp.
77–90, 2012.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret al-
gorithms for online convex optimization. Machine Learn-
ing, 69(2-3):169–192, 2007.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604–613, 1998.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Masters Thesis, Deptartment of Computer
Science, University of Toronto, 2009.

Krummenacher, G., McWilliams, B., Kilcher, Y., Buhmann,
J. M., and Meinshausen, N. Scalable adaptive stochastic
optimization using random projections. In Advances in
Neural Information Processing Systems 29, 2016.

Lancaster, P. and Farahat, H. K. Norms on direct sums and
tensor products. Mathematics of Computation, 26(118):
403–410, 1972.

Liu, H., Li, Z., Hall, D., Liang, P., and Ma, T. Sophia: A
scalable stochastic second-order optimizer for language
model pre-training. arXiv preprint arXiv:2305.14342,
2023.

Luo, H., Agarwal, A., Cesa-Bianchi, N., and Langford, J.
Efficient second order online learning by sketching. In
Advances in Neural Information Processing Systems 29,
2016.

Luo, L., Zhang, W., Zhang, Z., Zhu, W., Zhang, T., and
Pei, J. Sketched follow-the-regularized-leader for on-
line factorization machine. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1900–1909, 2018.

Luo, L., Chen, C., Zhang, Z., Li, W.-J., and Zhang, T. Ro-
bust frequent directions with application in online learn-
ing. Journal of Machine Learning Research, 20(45):1–41,
2019.

Merity, S. The wikitext long term dependency language
modeling dataset. Salesforce Metamind, 9, 2016.

Misra, J. and Gries, D. Finding repeated elements. Science
of computer programming, 2(2):143–152, 1982.

Orabona, F. A modern introduction to online learning. arXiv
preprint arXiv:1912.13213, 2019.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou,
L. Empirical analysis of the hessian of over-parametrized
neural networks. arXiv preprint arXiv:1706.04454, 2017.

Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Bala-
subramanian, V. N. A deeper look at the hessian eigen-
spectrum of deep neural networks and its applications to
regularization. In Proceedings of the 35th AAAI Confer-
ence on Artificial Intelligence, pp. 9481–9488, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008, 2017.

Wan, Y. and Zhang, L. Accelerating adaptive online learning
by matrix approximation. In Advances in Knowledge
Discovery and Data Mining, pp. 405–417, 2018.

Wan, Y. and Zhang, L. Accelerating adaptive online learning
by matrix approximation. International Journal of Data
Science and Analytics, 9(4):389–400, 2020.

Wan, Y. and Zhang, L. Efficient adaptive online learning
via frequent directions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(10):6910–6923,
2022.

Wan, Y., Wei, N., and Zhang, L. Efficient adaptive online
learning via frequent directions. In Proceedings of the
27th International Joint Conference on Artificial Intelli-
gence, pp. 2748–2754, 2018.

10

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Xiao, L. Dual averaging method for regularized stochastic
learning and online optimization. In Advances in Neural
Information Processing Systems 22, 2009.

Zhang, L., Lu, S., and Zhou, Z.-H. Adaptive online learning
in dynamic environments. In Advances in Neural Infor-
mation Processing Systems 31 (NeurIPS), pp. 1323–1333,
2018.

Zhang, L., Wang, G., Yi, J., and Yang, T. A simple yet
universal strategy for online convex optimization. In
Proceedings of the 39th International Conference on Ma-
chine Learning (ICML), pp. 26605–26623, 2022.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
International Conference on Machine Learning, pp. 928–
936, 2003.

11

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

A. Proof of Theorems
Notations. We denote x to represent a vector and X to represent a matrix. For any vector x ∈ Rd and a positive semi-definite
matrix A ∈ Rd×d, ∥x∥2A = ⟨x, Ax⟩. For a matrix A, A−1 is the inverse of A if A is full rank; otherwise, A−1 is taken to be
the Moore-Penrose pseudoinverse. For two matrices A,B, A ⪯ B if and only if B −A is a positive semi-definite matrix.
we define the space complexity and time complexity as the memory and time usage in each round, respectively. For example,
the time complexity of performing SVD to a matrix A ∈ Rm×n is O(min{m2n, n2m}). For simplicity, we use ∥·∥ for ∥·∥2
by default. λ[1:τ] is a sequence containing τ elements, and max{λ[1:τ], a} represents a new sequence, where each element
is the maximum of λi and a, and diag(λ[1:τ]) is a diagonal matrix where the i-th diagonal element is λi, 1 ≤ i ≤ 2τ . In the
proof, we do not require smoothness of loss functions and we do not explicitly distinguish subgradients and gradients.

A.1. Calculation of G̃−1/2
t

In FTSL, we need to calculate G̃
−1/2
t , which can not be directly derived by Woodbury formula (Hager, 1989). We provide

the following process.

Assume U⊥
t is the complementary subspace of Ut ∈ Rd×τ , we have Id×d = UtU

⊤
t + U⊥

t (U⊥
t)⊤. We denote diag(λ(t)

[1:τ] −
λ
(t)
τ) = Σt ∈ Rτ×τ and have

ρ1:tId×d + UtΣtU
⊤
t = Ut(Σt + ρ1:tId×d)U

⊤
t + ρ1:tId×dU

⊥
t (U⊥

t)⊤

Ut(Σt + ρ1:t)U
⊤
t = ρ1:tId×d + UtΣtU

⊤
t − ρ1:tU

⊥
t (U⊥

t)⊤.

Then we can get

ρ1:tId×d + UtΣtU
⊤
t = Ut(Σt + ρ1:t)U

⊤
t + ρ1:tU

⊥
t (U⊥

t)⊤ = [Ut;U
⊥
t]Σ′

t[Ut;U
⊥
t]⊤,

where Σ′
t =

[
Σt + ρ1:tIτ×τ 0

0 ρ1:tId−τ,d−τ

]
.

Therefore, we have √
ρ1:tId×d + UtΣtU⊤

t = Ut

√
(Σt + ρ1:tIτ×τ)U

⊤
t +

√
ρ1:tU

⊥
t (U⊥

t)⊤

=
√
ρ1:tId×d + Ut(

√
Σt + ρ1:tIτ×τ −

√
ρ1:tIτ×τ)U

⊤
t .

We can apply Woodbury formula (Hager, 1989) on it.

We can derive

(ρ1:tId×d + UtΣtU
⊤
t)−1/2 =

1
√
ρ1:t

(
Id×d − Ut

(√
Σt + ρ1:tIτ×τ

)−1 (√
Σt + ρ1:tIτ×τ −

√
ρ1:tIτ×τ

)
U⊤
t

)
.

A.2. Proof of Theorem 4.1

Before giving the proof of Theorem 4.1, we first introduce some supporting lemmas.

Lemma A.1. (Proposition 2 in Duchi et al. (2011)) Let {xt} be the decisions of Algorithm 2 and x∗ ∈
argminx∈Rd

∑T
t=1 ft(x), we have

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗) ≤ 1

η
ΨT (x

∗) +
η

2

T∑
t=1

∥gt∥2G̃−1/2
t−1

,

where ΨT (x
∗) = 1

2

〈
x∗, G̃

1/2
T x∗

〉
.

12

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Lemma A.2. (Lemma 10 in Duchi et al. (2011)) Define Gt =
∑t

i=1 gig
⊤
i , we have

T∑
t=1

〈
gt,
(
G

1/2
t

)−1

gt

〉
≤ 2

T∑
t=1

〈
gt,
(
G

1/2
T

)−1

gt

〉
= 2 tr

(
G

1/2
T

)
.

Then, we illustrate how FD approximates the original matrix.
Lemma A.3. (Remark 11 in Feinberg et al. (2023)) By defining Gt =

∑t
i=1 gig

⊤
i , for FD results in FTSL, we have

BtB
⊤
t ⪯ Gt ⪯ G̃t = ρ1:tId×d +BtB

⊤
t .

Using Lemma A.1, we can bound the regret of Algorithm 2 by
T∑

t=1

ft(xt)−
T∑

t=1

ft(x
∗) ≤ 1

η
ΨT (x

∗)︸ ︷︷ ︸
RD

+
η

2

T∑
t=1

∥gt∥2G̃−1/2
t−1︸ ︷︷ ︸

RG

. (4)

Then we bound the term RD and RG, respectively.

As for RD, we have

ΨT (x
∗) =

1

2

〈
x∗, G̃

1/2
T x∗

〉
=

1

2

〈
x∗,
(
BTB

⊤
T + ρ1:T I

)1/2
x∗
〉

≤ 1

2

〈
x∗,
(
BTB

⊤
T

)1/2
x∗
〉
+

1

2

〈
x∗, (ρ1:T I)

1/2
x∗
〉

≤ 1

2

√
ρ1:T ∥x∗∥2 + 1

2

〈
x∗, (GT)

1/2
x∗
〉

≤ 1

2
D2√ρ1:T +

1

2
D2λmax((GT)

1/2
)

≤ 1

2
D2√ρ1:T +

1

2
D2 tr(G

1/2
T),

where the first inequality is due to
√
a+ b ≤

√
a+

√
b and we assume ∥x∗∥ ≤ D.

Therefore, we have

RD =
1

η
ΨT (x

∗) ≤ 1

2η

(
D2√ρ1:T +D2 tr(G

1/2
T)

)
. (5)

To give the bound for RG, we first give the lower bound of G̃t−1, which connects G̃t−1 with Gt. We denote at =
max{ ρ1:t−1

∥gt∥2+ρ1:t−1
, 1} ≤ 1, and we have

G̃t−1 = Bt−1B
⊤
t−1 + ρ1:t−1Id×d

⪰ at(∥gt∥2 Id×d + ρ1:t−1Id×d +Bt−1B
⊤
t−1)

⪰ at(∥gt∥2 Id×d +Gt−1)

⪰ atGt,

which means G̃−1
t−1 ⪯ 1

at
Gt.

Then, letting C1 = maxt∈[T]
1√
at

, we have

T∑
t=1

∥gt∥2G̃−1/2
t−1

=

T∑
t=1

〈
gt, (G̃

1/2
t−1)

−1gt

〉
≤

T∑
t=1

1
√
at

〈
gt, (G

1/2
t)−1gt

〉
≤ C1

T∑
t=1

〈
gt, (G

1/2
t)−1gt

〉
≤ 2C1 tr(G

1/2
T),

13

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

where the last inequality is due to Lemma A.2.

Therefore, we have

RG =
η

2

T∑
t=1

∥gt∥2G̃−1/2
t−1

≤ ηC1 tr(G
1/2
T). (6)

By combining equations (5) and (6), and setting η = D√
2

, we obtain

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗) ≤ ηC1 tr(G

1/2
T) +

1

2η

(
D2√ρ1:T +D2 tr(G

1/2
T)

)
≤ D

√
2ρ1:T + (

C1 + 1√
2

)D tr(G
1/2
T)

= O(tr(G
1/2
T) +

√
ρ1:T).

Notably, the regret bound of Theorem 4.1 can be reformulated, as also presented in Feinberg et al. (2023).

Corollary A.4. We define λτ :d(GT) =
∑d

i=τ λi(GT), where λi is the i-th eigenvalue of GT , we can rewrite the regret
bound of FTSL as

R(T) ≤ O
(
tr(G

1/2
T) +

√
λτ :d(GT)

)
.

A.3. Proof of Corollary A.4

We first give a lemma to give the upper bound of the cumulative ρ1:T .

Lemma A.5. (Lemma 1 in Feinberg et al. (2023)) The cumulative escaped masses ρ1:T in FD can be upper bounded as

ρ1:T ≤ min
k=0,...,τ−1

∑d
i=k+1 λi(GT)

τ − k
≤

d∑
i=τ

λi(GT)
def
= λτ :d(GT),

where the last inequality is to set k = τ − 1.

Combining Theorem 4.1 with Lemma A.5, we can get Corollary A.4.

A.4. Proof of Theorem 4.2

We first introduce some guarantees of the fast frequent directions technique.

In Algorithm 3, we do not perform SVD on the sketching matrix Bt every round. Instead, we maintain two matrices Mt and
Vt, which approximate the sketching matrix Bt in Algorithm 2, that is

VtM
1/2
t = Bt ∈ Rd×2τ .

In each round t, after receiving a new gradient gt, we first check whether this vector lies within the subspace spanned by
Vt−1. If the vector is not contained within the subspace, we normalize it and subsequently add it to Vt−1, thereby enlarging
the span of the subspace and ensuring Vt−1V

⊤
t−1gt = gt. In our algorithm design, we want the matrix Vt only contains

orthonormal vectors, therefore we add gt−g′

∥gt−g′∥2
to the first all zero column. In round t, we have

Vt−1Mt−1V
⊤
t−1 + gtg

⊤
t = Vt−1Mt−1V

⊤
t−1 + Vt−1V

⊤
t−1gtg

⊤
t Vt−1V

⊤
t−1

= Vt−1

(
Mt−1 + V ⊤

t−1gtg
⊤
t Vt−1

)
V ⊤
t−1

= Vt

(
Mt−1 + V ⊤

t gtg
⊤
t Vt

)
V ⊤
t .

14

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

According to Lemma A.3, we have
VtMtV

⊤
t = BtB

⊤
t ⪯ Gt.

In the following, we will prove Gt ⪯ G̃t.

Assume we delete the eigenvalues of Mk in round k, we calculate G̃k before we delete the eigenvalues of Mk in our method.
In round k, before we update Vk, we have Vk = Vk−1 and we let Vk to represent the matrix before we delete its columns.

As we perform SVD to VkM
1/2
k ∈ Rd×2τ , we delete the eigenvalues of Mk, update Vk = VkUk and set the last τ+1 columns

to zero. In round k+1, we have G̃k+1 = Vk+1(diag(max{λ(k)
[1:2τ]−λ

(k)
τ , 0})+V ⊤

k+1gk+1(V
⊤
k+1gk+1)

⊤)V ⊤
k+1+ρ1:k+1Id×d,

and we can derive

Vk+1(diag(max{λ(k)
[1:2τ] − λ(k)

τ , 0}) + V ⊤
k+1gk+1(V

⊤
k+1gk+1)

⊤)V ⊤
k+1 + ρk+1Id×d

=Vk+1diag(max{λ(k)
[1:2τ] − λ(k)

τ , 0})V ⊤
k+1 + λ(k)

τ Id×d + gk+1g
⊤
k+1

⪰VkUkdiag(max{λ(k)
[1:2τ] − λ(k)

τ , 0})U⊤
k V ⊤

k + λ(k)
τ (VkUk)(VkUk)

⊤ + gk+1g
⊤
k+1

=VkUkdiag(max{λ(k)
[1:2τ] − λ(k)

τ , 0}+ λ(k)
τ)U⊤

k V ⊤
k + gk+1g

⊤
k+1

⪰VkUkdiag(λ(k)
[1:2τ])UkV

⊤
k + gk+1g

⊤
k+1

=VkMkV
⊤
k + gk+1g

⊤
k+1,

where the second inequality is due to only first τ − 1 columns of diag(max{λ(k)
[1:2τ] − λ

(k)
τ , 0}) are non-zero and the first

τ − 1 columns of Vk+1 and VkUk are same, and Uk and Vk are orthogonal matrices.

If we do not delete the eigenvalues of Mk in round k, we have ρk+1 = 0 and

Vk+1Mk+1Vk+1 + ρk+1Id×d = Vk+1(Mk + V ⊤
k+1gk+1(V

⊤
k+1gk+1)

⊤)V ⊤
k+1

= Vk+1MkV
⊤
k+1 + gk+1g

⊤
k+1.

Assume there are most ℓ eigenvalues in Mk, ℓ ≤ 2τ − 1, and most ℓ + 1 non-zero columns in Vk+1, most ℓ non-zero
columns in Vk and the first ℓ columns of Vk+1 and Vk are same. We have the following

Vk+1Mk+1Vk+1 + ρk+1Id×d = Vk+1Ukdiag(λ(k)
[1:2τ])U

⊤
k V ⊤

k+1 + gk+1g
⊤
k+1 + 0Id×d

= VkUkdiag(λ(k)
[1:2τ])U

⊤
k V ⊤

k + gk+1g
⊤
k+1

= VkMkV
⊤
k + gk+1g

⊤
k+1,

(7)

where the second equality is due to only first ℓ elements in λ
(k)
[1:2τ] are non-zero and first ℓ columns of Vk and Vk+1 are same.

Therefore, we have

G̃t = VtMtVt + ρ1:tId×d ⪰ Vt−1Mt−1Vt−1 + ρ1:t−1Id×d + gtg
⊤
t = G̃t−1 + gtg

⊤
t .

By summing up, we have

G̃t ⪰
t∑

i=1

gig
⊤
i = Gt.

Next, we need to ensure that after FFD, the preconditioning matrix G̃t is monotone. It is natural to verify that if we do not
remove the eigenvalues of Mt, G̃t remains monotone (We do not delete any eigenvalue of Mt).

Then, we prove that G̃t remains monotone even if we delete the eigenvalues of Mt. Assume in round k, we delete the
eigenvalues of Mk. In round k, the matrix G̃k = ρ1:kId×d + VkUkdiag(λ(k)

[1:2τ])U
⊤
k V ⊤

k . And G̃k+1 = ρ1:k+1Id×d +

Vk+1Mk+1V
⊤
k+1. In round k + 1, since we do not delete the eigenvalues of Mk+1, the first τ − 1 columns of Vk+1

15

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

of round k + 1 and VkUk of round k are same (Notably, Vk is different in round k and k + 1). We have Mk+1 =

diag(max{λ(k)
[1:2τ] − λ

(k)
τ , 0}) + (V ⊤

k+1gk+1)(V
⊤
k+1gk+1)

⊤. As we set ρk+1 = λ
(k)
τ , we can ensure

G̃k+1 = ρ1:k+1Id×d + Vk+1Mk+1V
⊤
k+1

= ρ1:k+1Id×d + Vk+1(diag(max{λ(k)
[1:2τ] − λ(k)

τ , 0}) + (V ⊤
k+1gk+1)(V

⊤
k+1gk+1)

⊤)V ⊤
k+1

⪰ ρ1:kId×d + λ(k)
τ Id×d + Vk+1diag(max{λ(k)

[1:2τ] − λ(k)
τ , 0})V ⊤

k+1

⪰ ρ1:kId×d + VkUkλ
(k)
τ Id×dU

⊤
k V ⊤

k + VkUkdiag(max{λ(k)
[1:2τ] − λ(k)

τ , 0})U⊤
k V ⊤

k

⪰ ρ1:kId×d + VkUkdiag(λ(k)
[1:2τ])U

⊤
k V ⊤

k

= G̃k,

where the second inequality is due to the τ to 2τ columns of diag(max{λ(k)
[1:2τ]−λ

(k)
τ , 0}) is zero and the first τ −1 columns

of VkUk of round k and Vk+1 of round k + 1 are same, so we can replace Vk+1 with VkUk, and Vk, Uk are orthogonal
matrices.

Therefore, we can ensure G̃t is monotone in FTFSL.

Using the Eq (4), we have the following

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗) ≤ 1

η
ΨT (x

∗)︸ ︷︷ ︸
RD

+
η

2

T∑
t=1

∥gt∥2G̃−1/2
t−1︸ ︷︷ ︸

RG

.

As for the term RD, we can derive

RD =
1

η
ΨT (x

∗) =
1

2η

〈
x∗, G̃

1/2
T x∗

〉
=

1

2η

〈
x∗,
(
VTMTV

⊤
T + ρ1:T Id×d

)1/2
x∗
〉

≤ 1

2η

〈
x∗,
(
VTMTV

⊤
T

)1/2
x∗
〉
+

1

2η

〈
x∗, (ρ1:T Id×d)

1/2
x∗
〉

≤ 1

2η

∥∥∥(ρ1:T Id×d)
1/2
∥∥∥ ∥x∗∥2 + 1

2η

〈
x∗, (GT)

1/2
x∗
〉

≤ 1

2η
D2√ρ1:T +

1

2η
D2λmax(G

1/2
T)

≤ 1

2η
D2√ρ1:T +

1

2η
D2 tr(G

1/2
T),

(8)

where the second inequality is due to VTMTV
⊤
T = BTB

⊤
T ⪯ GT and we assume ∥x∗∥ ≤ D.

For the term RG, we denote bt = max{ ρ1:t−1

∥gt∥2+ρ1:t−1
, 1} ≤ 1, we have

G̃t−1 = Vt−1Mt−1V
⊤
t−1 + ρ1:t−1Id×d

⪰ bt(∥gt∥2 Id×d + ρ1:t−1Id +Bt−1B
⊤
t−1)

⪰ bt(∥gt∥2 Id×d +Gt−1)

⪰ btGt.

16

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Then, letting C2 = maxt∈[T]
1√
bt

we have

T∑
t=1

∥gt∥2G̃−1/2
t−1

=

T∑
t=1

〈
gt, (G̃

1/2
t−1)

−1gt

〉
≤

T∑
t=1

1√
bt

〈
gt, (G

1/2
t)−1gt

〉
≤ C2

T∑
t=1

〈
gt, (G

1/2
t)−1gt

〉
≤ C2 tr(G

1/2
T),

where the last inequality is due to Lemma A.2.

Therefore, we have

RG =
η

2

T∑
t=1

∥gt∥2G̃−1/2
t−1

≤ ηC2 tr(G
1/2
T). (9)

By combining (8) and (9), and setting η = D√
2

, we can derive Theorem 4.2.

R(T) ≤ RD +RG

≤ 1

2η
D2√ρ1:T +

1

2η
D2 tr(G

1/2
T) + ηC2 tr(G

1/2
T)

≤ O(tr(G
1/2
T) +

√
ρ1:T).

A.5. Proof of Theorem 4.3

According to the proof of Theorem 4.2, we have the following properties in FFD:

VtM
1/2
t = Bt,

VtUtΣtU
⊤
t V ⊤

t ⪯ Gt ⪯ G̃t.

Similar to the proof in Theorem 3 of Feinberg et al. (2023), we have the following lemma:

Lemma A.6. Let {xt} be the decision of Fast S-ADA and x∗ ∈ argminx∈Rd

∑T
t=1 ft(x), the regret bound of Fast S-ADA

is

R(T) ≤ 1

2η

T∑
t=1

∥xt − x∗∥2
G̃

1/2
t −G̃

1/2
t−1

+
η

2

T∑
t=1

∥gt∥2G̃−1/2
t

.

According to Lemma A.6, we have

R(T) ≤ 1

2η

T∑
t=1

∥xt − x∗∥2
G̃

1/2
t −G̃

1/2
t−1

+
η

2

T∑
t=1

∥gt∥2G̃−1/2
t

.

We first bound the term η
2

∑T
t=1 ∥gt∥2G̃−1/2

t
, which is easier to bound than that in FTFSL, as we can directly apply a lemma

on it.
T∑

t=1

∥gt∥2G̃−1/2
t

=

T∑
t=1

〈
gt, (G̃

1/2
t)−1gt

〉
≤

T∑
t=1

〈
gt, (G

1/2
t)−1gt

〉
≤ 2 tr(G

1/2
T),

17

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

where the fist inequality is due to G̃−1
t ⪯ G−1

t and the last inequality is due to Lemma A.2.

Next, we bound the term 1
2η

∑T
t=1 ∥xt − x∗∥2

G̃
1/2
t −G̃

1/2
t−1

, which introduces the dependence on dimensionality d. We have

1

2η

T∑
t=1

∥xt − x∗∥2
G̃

1/2
t −G̃

1/2
t−1

≤ D2
1

2η
tr
(
G̃

1/2
T

)
,

where this inequality is due to monotonicity of G̃t and D1 = maxt∈[T] ∥xt − x∗∥.

Then we need to bound the term tr
(
G̃

1/2
T

)
.

Assume we delete the eigenvalues of Mk at round k. In round k, before we update Vk, Vk = Vk−1 and we use Vk to
represent the matrix before we delete its columns.

As we perform SVD to VkM
1/2
k ∈ Rd×2τ , we denote V 1:τ

k ∈ Rd×τ to be the first τ columns of VkUk before we set the last
τ + 1 columns to 0d, Nk ∈ Rd×(d−τ) be the complementary subspace of V 1:τ

k , and the first τ − 1 columns of Vk+1 and
V 1:τ
k are same, ρk+1 = λ

(k)
τ and [V 1:τ

k ;Nk][V
1:τ
k ;Nk]

⊤ = Id×d.

In round k + 1, we have G̃k+1 = Vk+1(diag(max{λ(k)
[1:2τ] − λ

(k)
τ , 0}) + V ⊤

k+1gk+1(V
⊤
k+1gk+1)

⊤)V ⊤
k+1 + ρ1:k+1Id×d, and

we can derive

Vk+1(diag(max{λ(k)
[1:2τ] − λ(k)

τ , 0}) + V ⊤
k+1gk+1(V

⊤
k+1gk+1)

⊤)V ⊤
k+1 + ρk+1Id×d

=Vk+1diag(max{λ(k)
[1:2τ] − λ(k)

τ , 0})V ⊤
k+1 + λ(k)

τ Id×d + gk+1g
⊤
k+1

=VkUkdiag(max{λ(k)
[1:2τ] − λ(k)

τ , 0})U⊤
k V ⊤

k + λ(k)
τ (V 1:τ

k (V 1:τ
k)⊤ +NkN

⊤
k) + gk+1g

⊤
k+1

⪯VkUkdiag(max{λ(k)
[1:2τ] − λ(k)

τ , 0})U⊤
k V ⊤

k + λ(k)
τ (VkUk(VkUk)

⊤ +NkN
⊤
k) + gk+1g

⊤
k+1

⪯VkUkdiag(λ(k)
[1:2τ])UkV

⊤
k + λ(k)

τ NkN
⊤
k + gk+1g

⊤
k+1

=λ(k)
τ NkN

⊤
k + VkMkV

⊤
k + gk+1g

⊤
k+1

=ρk+1NkN
⊤
k + VkMkV

⊤
k + gk+1g

⊤
k+1,

where the second equality is due to only first τ − 1 columns of diag(max{λ(k)
[1:2τ] − λ

(k)
τ , 0}) are non-zero and the first τ − 1

columns of Vk+1 and VkUk are same, the first inequality is due to V 1:τ
k only contains τ orthogonal vectors at most.

If we do not delete the eigenvalues of Mk in round k, we have ρk+1 = 0 can derive

Vk+1Mk+1Vk+1 + ρk+1Id×d = Vk+1(Mk + V ⊤
k+1gk+1(V

⊤
k+1gk+1)

⊤)V ⊤
k+1

= Vk+1MkV
⊤
k+1 + gk+1g

⊤
k+1

= Vk+1MkV
⊤
k+1 + gk+1g

⊤
k+1

= 0NkN
⊤
k + Vk+1MkV

⊤
k+1 + gk+1g

⊤
k+1

= ρk+1NkN
⊤
k + Vk+1Ukdiag(λ(k)

[1:2τ])U
⊤
k V ⊤

k+1 + gk+1g
⊤
k+1.

Assume there are most ℓ eigenvalues in Mk, ℓ ≤ 2τ − 1, therefore, there are most ℓ+ 1 non-zero columns in Vk+1, most ℓ
non-zero columns in Vk and the first ℓ columns of Vk+1 and Vk are same. We have the following

Vk+1Mk+1Vk+1 + ρk+1Id×d = 0NkN
⊤
k + Vk+1Ukdiag(λ(k)

[1:2τ])U
⊤
k V ⊤

k+1 + gk+1g
⊤
k+1

= 0NkN
⊤
k + VkUkdiag(λ(k)

[1:2τ])U
⊤
k V ⊤

k + gk+1g
⊤
k+1

= ρk+1NkN
⊤
k + VkUkdiag(λ(k)

[1:2τ])U
⊤
k V ⊤

k + gk+1g
⊤
k+1

= ρk+1NkN
⊤
k + VkMkV

⊤
k + gk+1g

⊤
k+1,

(10)

where the second equality is due to there are most ℓ non-zero elements in λ
(k)
[1:2τ] and first ℓ columns of Vk and Vk+1 are

same, and the third equality is due to ρk+1 = 0.

18

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Therefore, we have
Vk+1Mk+1Vk+1 + ρk+1Id×d ⪯ ρk+1NkN

⊤
k + VkMkV

⊤
k + gk+1g

⊤
k+1.

By reduction, we have

G̃T = VTMTVT + ρ1:T Id×d

⪯ ρ1:T−1Id×d + VT−1MT−1V
⊤
T−1 + ρTNTN

⊤
T + gTg

⊤
T

...

⪯
T∑

t=1

ρtNtN
⊤
t +

T∑
t=1

gtg
⊤
t

=

T∑
t=1

ρtNtN
⊤
t +GT .

Then we can rewrite the bound of tr(G̃1/2
T) as tr(G1/2

T) + tr((
∑T

t=1 ρtNtN
⊤
t)1/2).

We just need to give bound of tr((
∑T

t=1 ρtNtN
⊤
t)1/2). According to Corollary 4 in Feinberg et al. (2023), the upper bound

of this term is

tr((

T∑
t=1

ρtNtN
⊤
t)1/2) ≤

√
d(d− τ)ρ1:T .

Then we can derive the bound of tr(G̃1/2
T).

tr(G̃
1/2
T) ≤ tr(G

1/2
T) + tr((

T∑
t=1

ρtNtN
⊤
t)1/2)

≤ tr(G
1/2
T) +

√
d(d− τ)ρ1:T .

By setting η = D1√
2

, we have

R(T) ≤ RD +RG

≤ D2
1

2η
(tr(G

1/2
T) +

√
d(d− τ)ρ1:T) + η tr(G

1/2
T)

≤ O
(
tr(G

1/2
T) +

√
d(d− τ)ρ1:T

)
.

A.6. Proof of Theorem 4.4

In the following, we give the proof of Theorem 4.4.

Due to the update in Algorithm 5 is performed on the matrix space, it poses challenges for the analysis. Therefore, we first
introduce an equivalent update in vector form.

Recall the update in Algorithm 5, Xt = −ηL̃
−1/4
t G

X

t R̃
−1/4
t . We define H̃t = L̃

1/4
t ⊗ R̃

1/4
t ∈ Rmn×mn, Lt = L̂tL̂

⊤
t ∈

Rm×m, Rt = R̂tR̂
⊤
t ∈ Rn×n, gt = vec(GX

t) and xt = vec(Xt), where vec denotes the row-major vectorization of a given
matrix. Kronecker product ⊗ obeys the following properties as shown in Gupta et al. (2018).

Lemma A.7. (Lemma 3,4 in Gupta et al. (2018)) For matrices A,A′, B,B′ of appropriate dimensions and vectors x,y,
L ∈ Rm×m, R ∈ Rn×n, G ∈ Rm×n, the following properties hold:

1. (A⊗B)(A′ ⊗B′) = (AA′)⊗ (BB′).

2. (A⊗B)⊤ = A⊤ ⊗B⊤.

19

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

3. A,B ⪰ 0, (A⊗B)−1 = A−1 ⊗B−1.

4. A ⪰ A′, B ⪰ B′, thenA⊗B ⪰ A′ ⊗B′.

5. tr(A⊗B) = tr(A) + tr(B).

6. vec(xy⊤) = x⊗ y.

7. (L⊗R⊤)vec(G) = vec(LGR).

Then we can rewrite the update in algorithm 5 as

xt = −ηH̃−1
t gt,

which is equal to

xt = argmin
x

η ⟨gt,x⟩+
1

2
∥x∥2H̃t

,

and gt =
∑t

i=1 gi.

As L̃t and R̃t is monotone increasing with t, it is not hard to find that H̃t is also monotone increasing with t. Thus, by
Lemma A.1, we have the similar inequality:

R(T) ≤ 1

η
ΨT (x

∗)︸ ︷︷ ︸
RD

+
η

2

T∑
t=1

∥gt∥2H̃−1
t−1︸ ︷︷ ︸

RG

, (11)

where ΨT (x
∗) = 1

2

〈
x∗, H̃Tx

∗
〉

.

We first give the bound of RD.

ΨT (x
∗) =

1

2

〈
x∗, H̃Tx

∗
〉
≤ 1

2

∥∥∥H̃T

∥∥∥ ∥x∗∥2 .

Then we introduce a lemma to give an equality about the norm of Kronecker product.

Lemma A.8. (Theorem 8 in Lancaster & Farahat (1972)) For two matrices A and B, the following equality holds

∥A⊗B∥ = ∥A∥ ∥B∥ .

We have ∥x∗∥ = ∥X∗∥F ≤ DM. According to Lemma A.8,
∥∥∥H̃T

∥∥∥ =
∥∥∥L̃1/4

T ⊗ R̃
1/4
T

∥∥∥ =
∥∥∥L̃1/4

T

∥∥∥ ∥∥∥R̃1/4
T

∥∥∥, then we

need to give the bound of
∥∥∥L̃1/4

T

∥∥∥ and
∥∥∥R̃1/4

T

∥∥∥, respectively. We first define LT =
∑T

t=1(G
X
t)⊤GX

t + ϵIm×m and

RT =
∑T

t=1(G
X
t)⊤GX

t + ϵIn×n. Using Lemma A.3, it is not hard to verify that Lt + ϵIm×m ⪯ Lt, Rt + ϵIn×n ⪯ Rt.

Therefore, we have ∥∥∥L̃1/4
T

∥∥∥ =
∥∥∥(LT + ϵIm×m + ρL1:T Im×m)1/4

∥∥∥
≤
∥∥∥(LT + ϵIm×m)1/4 + (ρL1:T Im×m)1/4

∥∥∥
≤
∥∥∥(LT + ϵIm×m)1/4

∥∥∥+ ∥∥∥(ρL1:T Im×m)1/4
∥∥∥

≤
∥∥∥(LT + ϵIm×m)1/4

∥∥∥+ (ρL1:T)
1/4

≤ tr((LT + ϵIm×m)1/4) + (ρL1:T)
1/4

≤ tr(L
1/4
T) + (ρL1:T)

1/4,

20

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

where the fourth inequality is due to have for positive semidefinite matrices tr(·) ≥ ∥·∥ and last inequality is due to the
monotonicity of tr(·).

We also have ∥∥∥R̃1/4
T

∥∥∥ =
∥∥∥(RT + ϵIn×n + ρR1:T In×n)

1/4
∥∥∥

≤
∥∥∥(RT + ϵIn×n)

1/4 + (ρR1:T In×n)
1/4
∥∥∥

≤
∥∥∥(RT + ϵIn×n)

1/4
∥∥∥+ ∥∥∥(ρR1:T)1/4In×n

∥∥∥
≤
∥∥∥(RT + ϵIn×n)

1/4
∥∥∥+ (ρR1:T)

1/4

≤ tr((RT + ϵIn×n)
1/4) + (ρR1:T)

1/4

≤ tr(R
1/4
T) + (ρR1:T)

1/4.

Therefore, we can get

RD =
1

η
ΨT (x

∗) ≤ D2
M
2η

(tr(L
1/4
T) + (ρL1:T)

1/4)(tr(R
1/4
T) + (ρR1:T)

1/4). (12)

To give the bound of RG, we first introduce a lemma.

Lemma A.9. (Lemma 8 in Gupta et al. (2018)) If GX
t ∈ Rm×n with rank at most r, and gt = vec(GX

t), then ∀ϵ ≥ 0,∀t,

ϵImn×mn +
1

r

t∑
i=1

gig
⊤
i ⪯

(
ϵIm×m +

t∑
i=1

GX
i (GX

i)⊤

)1/2

⊗

(
ϵIn×n +

t∑
i=1

(GX
i)⊤(GX

i)

)1/2

.

Then we utilize a lemma in Feinberg et al. (2023).

Lemma A.10. (Lemma 14 in Feinberg et al. (2023)) Let VtΣ
L
t V

⊤
t = Lt−1 + GX

t (GX
t)⊤ be the eigendecomposition of

the un-deflated sketch. We assume rank(ΣL
t) = k, k ∈ [τ − 1, τ − 1 + r]. Write Vt = [V ∗

t , V
⊥
t], where V ∗

t contains the
first k columns of Vt. And for the right conditioner WtΣ

R
t W

⊤
t = Rt−1 + (GX

t)⊤GX
t . Write Wt = [W ∗

t ,W
⊥
t], where W ∗

t

contains the first k columns of Wt. Define NL
t = V ⊥

t (V ⊥
t)⊤ and NR

t = W⊥
t (W⊥

t)⊤, then we have

L̃t ⪰
t∑

i=1

GX
i (GX

i)⊤ +

t∑
i=1

ρLi N
L
i + ϵIm×m = ML

t ,

R̃t ⪰
t∑

i=1

(GX
i)⊤GX

i +

t∑
i=1

ρRi N
R
i + ϵIn×n = MR

t .

According to Lemma A.3 and Lemma A.10, we have ML
t ⪰ ϵIm×m +

∑t
i=1 G

X
i (GX

i)⊤ and MR
t ⪰ ϵIn×n +∑t

i=1(G
X
i)⊤GX

i . Using Lemma A.7, we can derive

Im×m ⊗

(
ϵIn×n +

t∑
i=1

(GX
i)⊤GX

i

)
⪯ Im×m ⊗MR

t ,

(
ϵIm×m +

t∑
i=1

GX
i (GX

i)⊤

)
⊗ In×n ⪯ ML

t ⊗ In×n.

Therefore, we have

(ϵImn×mn +
1

r

t∑
i=1

gig
⊤
i)

1/2 ⪯
(
ML

t

)1/4 ⊗ (MR
t

)1/4 ⪯ L̃
1/4
t ⊗ R̃

1/4
t = H̃t.

Then we define Ĥt =
(
rϵImn×mn +

∑t
i=1 gig

⊤
i

)1/2
, and can have

Ĥt ⪯
√
rH̃t.

21

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

We want to give the lower bound of Ĥt−1. By defining ct =
rϵ

∥gt∥2
2+rϵ

, we have

Ĥ2
t−1 = rϵImn×mn +

t−1∑
i=1

gig
⊤
i

⪰ ct(∥g∥2t Imn×mn +

t−1∑
i=1

gig
⊤
i + rϵImn×mn)

⪰ ct(rϵImn×mn +

t∑
i=1

gig
⊤
i)

= ctĤ
2
t .

Define A1 = mint∈[T](
√
ct). We have A1Ĥt ⪯ Ĥt−1 ⪯

√
rH̃t−1, which means 1√

r
H̃−1

t−1 ⪯ Ĥ−1
t−1 ⪯ 1

A1
Ĥ−1

t .

Therefore, we have

T∑
t=1

∥gt∥2H̃−1
t−1

=

T∑
t=1

〈
gt, H̃

−1
t−1gt

〉
≤

√
r

T∑
t=1

〈
gt, Ĥ

−1
t−1gt

〉
≤

√
r

A1

T∑
t=1

〈
gt, Ĥ

−1
t gt

〉
≤ 2

A1

√
r tr(ĤT).

Then we need to bound the term ĤT .

Ĥ2
t = (rϵImn×mn +

T∑
i=1

gig
⊤
i) ⪯ r

(
ϵIm×m +

T∑
i=1

GX
i (GX

i)⊤

)1/2

⊗

(
ϵIn×n +

T∑
i=1

(GX
i)⊤GX

i

)1/2

= rL
1/2
T ⊗R

1/2
T ,

which means Ĥt ⪯
√
rL

1/4
T ⊗R

1/4
T .

By defining C3 = 1
A1

, we can derive the bound of RG.

RG =
η

2

T∑
t=1

∥gt∥2H̃−1
t−1

≤ ηC3

√
r tr(ĤT)

≤ ηC3r tr(L
1/4
T) tr(R

1/4
T).

By setting η = DM√
r

, the final regret bound is

T∑
t=1

ft(xt)− ft(x
∗) ≤ ηC3r tr(L

1/4
T) trR

1/4
T) +

D2
M
2η

(tr(L
1/4
T) + (ρL1:T)

1/4)(tr(R
1/4
T) + (ρR1:T)

1/4)

≤
√
rDMC3 tr(L

1/4
T) tr(R

1/4
T) +

√
rDM

2
(tr(L

1/4
T) + (ρL1:T)

1/4)(tr(R
1/4
T) + (ρR1:T)

1/4)

= O
(√

r(tr(L
1/4
T) + (ρL1:T)

1/4)(tr(R
1/4
T) + (ρR1:T)

1/4)
)
.

(13)

B. Online to Batch Reduction
In this section, we give some details for the reduction of non-convex stochastic optimization to online convex optimization
for completeness. We use the framework of Agarwal et al. (2019), which Feinberg et al. (2023) also adopt before.

22

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

Algorithm 6 Online to Batch Conversion
1: Input: Time horizon T , rounds N , smoothness parameter L, OCO method A
2: Initialize x1 to be any point in the domain
3: for t = 1 to T do
4: Construct ft(x) = f(x) + L ∥x− xt∥2
5: Set x1

t = xt and pass x1
t to A

6: for i = 1 to N do
7: Play xi

t, derive the gradient ∇ft(xt; ξt), and construct git(x) = ∇ft(xt; ξt)
⊤x

8: Send git(x) to A and receive xi+1
t

9: end for
10: Update xt+1 = 1

N

∑N
i=1 x

i
t

11: end for
12: Return xk = argmink∈[T+1] ∥∇f(xt)∥

Under this framework, we optimize a non-convex loss function f(x) through construcing a new loss function ft(x) =

f(x) + L ∥x− xt∥2, which is strongly convex. In each round, we pass the loss function ft(x) to any OCO method, A,
(it can be any algorithm in this paper), and use A to optimize it for N rounds. When deriving the stochastic gradient, we
use a batch ξt to derive ∇ft(xt; ξt), which satisfy E[∇ft(xt; ξt)] = ∇ft(xt) and E[∥∇ft(xt; ξt)−∇ft(xt)∥2] ≤ σ2. The
algorithm is stated in Algorithm 6, and we provide the convergence guarantees in the following. We first define the adaptive
ratio.

Definition B.1. We denote xA be the output of an OCO method A and x∗ ∈ argminx∈Rd f(x), we define the adaptive
ratio of A as

µA(f) =
f(xA)− f(x∗)

∥x1 − x∗∥ σ
T

Then we provide the convergence of this reduction.

Theorem B.2. (Theorem A.2 in Agarwal et al. (2019)) We assume f(x) is L-smooth,
∥∥∇2f(x)

∥∥ ≤ L, maxx,y f(x) −
f(y) ≤ F , E[∥∇ft(xt; ξt)−∇ft(xt)∥2] ≤ σ2, and µ = maxt µA(ft). By setting T = 12ML

ϵ2 and N = 48µ2σ2

ϵ2 , the
output of Algorithm 6 satisfies

E [∥∇f(x∗
t)∥] ≤ ϵ.

It is evident that the total number of queries to the stochastic gradient oracle is O(µ2σ2/ϵ4).

By using this framework, we can translate the regret bound of an OCO algorithm into convergence guarantees for stochastic
optimization.

C. Full experiments
In this section, we conduct empirical studies to evaluate our proposed algorithms. In online classification task, we compare
our methods with ADA-DIAG (Duchi et al., 2011), RADAGRAD (Krummenacher et al., 2016), FD-SON (Luo et al.,
2018), ADA-FFD under two frameworks (Wan & Zhang, 2022) and S-ADA (Feinberg et al., 2023). In image classification
task and language modeling task, we compare our methods with ADA-DIAG, ADA-FFD under two frameworks, S-
ADA, Shampoo (Gupta et al., 2018), S-Shampoo (Feinberg et al., 2023). When it comes to hyper-parameter tuning, we
either set the hyper-parameters as recommended in the original papers or tune them by grid search. For example, for
learning rate η and regularizer parameter ϵ, we search them from the set {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1, 1, 5} and
{1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1, 1, 5}, respectively, and select the best one. All experiments are conducted on 8
NVIDIA 3090 GPUs.

C.1. Online Classification

First, we perform online classification to evaluate the performance of our methods with two real world datasets from
LIBSVM (Chang & Lin, 2011) repository: Gisette and Epsilon, which are high-dimensional and dense. Particularly, Gisette
contains 6000 training samples and 1000 testing samples, with 5000 features. Epsilon dataset consists of 400, 000 training

23

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

0 500 1000 1500 2000
of iterations

90

92

94

96

98

A
cc

ur
ac

y

0 500 1000 1500 2000
of iterations

0

50

100

150

200

Lo
ss

0 500 1000 1500 2000
of iterations

0

50

100

Ti
m

e

ADA-DIAG RADAGRAD FD-SON ADA-FFD (M) ADA-FFD (P) S-ADA Fast S-ADA FTFSL

Figure 3. Results for Gisette dataset.

0 2000 4000
of iterations

80

82

84

86

88

90

A
cc

ur
ac

y

0 2000 4000
of iterations

0

500

1000

1500

Lo
ss

0 2000 4000
of iterations

0

20

40

60

Ti
m

e
ADA-DIAG RADAGRAD FD-SON ADA-FFD (M) ADA-FFD (P) S-ADA Fast S-ADA FTFSL

Figure 4. Results for Epsilon dataset.

0 50 100 150 200
of iterations

75

80

85

90

95

Te
st

in
g

ac
cu

ra
cy

0 50 100 150 200
of iterations

0.4

0.6

0.8

1.0

Te
st

in
g

lo
ss

0 50 100 150 200
of iterations

7.5

5.0

2.5

0.0

Tr
ai

ni
ng

 lo
ss

 (l
og

 sc
al

e)

0 50 100 150 200
of iterations

0

1

2

3

4

5

Ti
m

e

1e4

ADA-DIAG ADA-FFD (M) ADA-FFD (P) S-ADA Shampoo S-Shampoo FTFSL FTSL-Shampoo

Figure 5. Results for CIFAR-10 dataset.

samples and 100, 000 testing samples, with 2000 features. Let T denote the number of total rounds. In each round t ∈ [T],
a batch of training examples {(wt,1, yt,1) , . . . , (wt,n, yt,n)} arrive, where (wt,i, yt,i) ∈ [−1, 1]d × {−1, 1}, i = 1, . . . , n.
The online learner aims to predict a linear model xt and suffers the hinge loss ft(xt) =

1
n

∑n
i=1 max{0, 1− ytx

⊤
t wt,i}.

Setup. For Gisette, we set the batch size n = 32, the τ = 50 to be 1% of the original dimensionality, and T = 2000. For
Epsilon, we set the batch size n = 128, the τ = 20 and T = 5000 to pass through all the training data.

Results. Following Duchi et al. (2011), we adopt the performance of accuracy on the testing data to compare different
methods. To better demonstrate the improvements of our methods, we additionally plot the loss and runtime (measured in
seconds) of various methods. From Figure 3 and Figure 4, we observe that FTFSL outperforms all other methods in both

24

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

0 50 100 150 200
of iterations

50

55

60

65

70

75
Te

st
in

g
ac

cu
ra

cy

0 50 100 150 200
of iterations

1.5

2.0

2.5

3.0

Te
st

in
g

lo
ss

0 50 100 150 200
of iterations

7.5

5.0

2.5

0.0

Tr
ai

ni
ng

 lo
ss

 (l
og

 sc
al

e)

0 50 100 150 200
of iterations

0

2

4

6

8

10

Ti
m

e

1e4

ADA-DIAG ADA-FFD (M) ADA-FFD (P) S-ADA Shampoo S-Shampoo FTFSL FTSL-Shampoo

Figure 6. Results for CIFAR-100 dataset.

loss and testing accuracy, aligning with its superior regret bound. Moreover, FTFSL and Fast S-ADA exhibit significantly
lower runtimes compared to S-ADA, owing to their superior time complexities.

C.2. Image Classification

In this section, we conduct numerical experiments on multi-class image classification tasks to evaluate the performance of
the proposed methods, we compare FTFSL and FTSL-Shampoo with several baseline methods. The experiments involve
training ResNet18 and ResNet34 models (He et al., 2016) on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009),
respectively, for 200 iterations with batch size of 128.

Setup. For ADA-FFD, S-ADA, FTFSL, the sketching size τ is determined based on the dimensionality of the flattened
gradient, which is defined as:

τ = min{⌈d× 0.1⌉, 100},

where d represents the total elements of parameters in each layer. We dynamically set the upper bound of the sketching
size based on the dimensionality of each layer. For S-Shampoo and FTSL-Shampoo, due to its memory efficiency, we set
τ = ⌈0.1 × di⌉, where di is the dimensionality of the i-th dimension of a gradient. For the sake of fairness, we do not
employ momentum trick.

Results. We plot the loss value and the accuracy against the iterations on the CIFAR-10 and CIFAR-100 in Figure 5 and
Figure 6, respectively. It is observed that, for training loss and testing accuracy, our FTSL-Shampoo achieves comparable
performance with respect to Shampoo, while significantly improving memory efficiency and reducing running time, which
aligns with the theoretical guarantees. Additionally, our FTFSL converges more quickly than other sketching based
algorithms, indicating the effectiveness of the proposed method. Moreover, we also present the running time of each method.
FTFSL demonstrates a significant reduction in running time compared to S-ADA, owing to its improved time complexity.

C.3. Language Modeling Task

0 10 20 30 40
of iterations

200

300

400

Te
st

in
g

pe
rp

le
xi

ty

0 10 20 30 40
of iterations

5.00

5.25

5.50

5.75

6.00

Te
st

in
g

lo
ss

0 10 20 30 40
of iterations

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 lo
ss

0 10 20 30 40
of iterations

0.0

0.5

1.0

1.5

Ti
m

e

1e4

ADA-DIAG ADA-FFD (M) ADA-FFD (P) S-ADA Shampoo S-Shampoo FTFSL FTSL-Shampoo

Figure 7. Results for WikiText-2 dataset.

In this section, we perform experiments on language modeling task. Concretely, we train a 2-layer Transformer (Vaswani
et al., 2017) over the WiKi-Text2 dataset (Merity, 2016). We use 256 dimensional word embeddings, 256 hidden unites

25

Dimension-Free Adaptive Subgradient Methods with Frequent Directions

and 2 heads. We also clip the gradients by norm 0.5 in case of the exploding gradient. The batch size is set as 64 and all
methods are trained for 40 epochs with dropout rate 0.1.

Setup. The experimental setup follows that of image classification. For computational efficiency, we do not employ a
preconditioning matrix in the embedding layer.

Results. We report the loss, perplexity and the run time in Figure 7. As can be seen, FTFSL and FTSL-Shampoo suffer
lower loss and obtain better perplexity compared to other sketching based algorithms, indicating the effectiveness of the
proposed methods. Moreover, FTFSL exhibits markedly improved efficiency over S-ADA.

26

