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Abstract001

Video temporal understanding is crucial for002
multimodal large language models (MLLMs)003
to reason over events in videos. Despite re-004
cent advances in general video understanding,005
current MLLMs still struggle with fine-grained006
temporal reasoning. While reinforcement learn-007
ing (RL) has been explored to address this is-008
sue recently, existing RL approaches remain009
limited in effectiveness. In this work, we pro-010
pose MUSEG, a novel RL-based method that011
enhances temporal understanding by introduc-012
ing timestamp-aware multi-segment ground-013
ing. MUSEG enables MLLMs to align queries014
with multiple relevant video segments, pro-015
moting more comprehensive temporal reason-016
ing. To facilitate effective learning, we design017
a customized RL training recipe with phased018
rewards that progressively guides the model019
toward temporally grounded reasoning. Ex-020
tensive experiments on temporal grounding021
and time-sensitive video QA tasks demonstrate022
that MUSEG significantly outperforms exist-023
ing methods and generalizes well across diverse024
temporal understanding scenarios.025

1 Introduction026

Video temporal understanding (Liu et al., 2024a;027

Chen et al., 2024; Cheng et al., 2025b) refers to the028

tasks of comprehending events based on temporal029

dynamics such as temporal grounding (Gao et al.,030

2017), dense video captioning (Wang et al., 2024),031

and grounded video question answering (Xiao et al.,032

2024). This capability is essential for multimodal033

large language models (MLLMs) (Hurst et al.,034

2024; Team et al., 2023; Bai et al., 2025) in un-035

derstanding complex temporal structures in videos036

and making accurate, context-aware predictions or037

decisions based on when and how events unfold.038

Despite rapid progress and impressive results in039

general video understanding, current MLLMs still040

show significant limitations in temporal understand-041

ing (Liu et al., 2024b; Li et al., 2025c). Early ef-042
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Figure 1: Performance of MUSEG-7B on various
temporal grounding (Charades-STA, THUMOS14 and
THUMOS15) and broader time-sensitive video under-
standing (E.T. Bench Subset) tasks.

forts to address this are mainly based on supervised 043

fine-tuning (SFT) to improve temporal comprehen- 044

sion (Bai et al., 2025; Liu et al., 2024a; Li et al., 045

2025a). As reinforcement learning (RL) has been 046

shown to significantly improve complex reason- 047

ing and comprehension in large language models 048

(LLMs) (Guo et al., 2025), recent studies have ex- 049

tended RL techniques to the video domain (Feng 050

et al., 2025; Li et al., 2025b; Wang et al., 2025; 051

Zhang et al., 2025), encouraging models to “reason 052

before answering”. This typically involves design- 053

ing a format reward to ensure a structured reasoning 054

process and an answer reward such as Intersection 055

over Union (IoU) to measure the correctness of the 056

predictions. 057

However, directly applying RL to video tempo- 058

ral understanding tasks has not achieved the same 059

level of performance improvement as in textual 060

domains (Feng et al., 2025; Li et al., 2025b). We 061
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Query: How many bowls did I collect?

 (A) Three. (B) Two.  (C) One.  (D) Four.

VideoChat-R1-thinking:

<think> The video shows a person collecting bowls from the 

kitchen counter. </think>

<answer> (A) Three. </answer>

MUSEG-7B (Ours):

<think> … The relevant moments are at 138.8 - 142.6 seconds 

and 142.6 - 146.4 seconds. You pick up a bowl from the 

table and then another one, indicating that you collected two 

bowls. </think>

<answer> (B) Two. </answer>

…

Explanation (not part of model inputs): There are three bowls in total. I pick up a bowl 

in 139 s - 140 s and another bowl in 144 s - 145 s. Models are required to recognize the 

two video segments corresponding to picking up a bowl to answer the question.

139 s   140 s    145 s                     146 s

Figure 2: An example comparing our MUSEG-7B with
previous models. MUSEG-7B performs more precise,
timestamp-aware reasoning by leveraging multiple key
temporal cues to derive the correct answer.

attribute this limitation to two key challenges. First,062

most existing methods (Li et al., 2025b; Wang063

et al., 2025) rely solely on single-segment temporal064

grounding, where each input query corresponds to065

only one video segment. This limits the ability to066

capture fine-grained, multi-segment temporal in-067

formation, which is essential for complex video068

understanding tasks. Second, although temporal069

understanding depends fundamentally on reasoning070

over temporal cues, current RL approaches often071

fail to model them effectively. As illustrated in072

Figure 2, their reasoning typically consists of brief073

descriptions of video content, lacking detailed tem-074

poral analysis of key events. Therefore, we argue075

that advancing MLLMs in video temporal under-076

standing requires rethinking both the training task077

design and the RL training recipe.078

In this paper, we propose timestamp-aware079

MUlti-SEgment Grounding (MUSEG), an RL-080

based method designed to enhance the temporal un-081

derstanding and reasoning capabilities of MLLMs.082

On the task side, we incorporate multi-segment083

grounding into the training process, enabling mod-084

els to learn from queries that align with multiple085

relevant video segments. This promotes stronger086

temporal understanding and better generalization087

to a wide range of time-sensitive tasks. On the088

training side, we introduce a customized RL train-089

ing recipe with phased rewards, which progres-090

sively encourage the model to establish tempo-091

rally grounded reasoning processes. Our recipe092

features a dedicated segment matching reward and 093

a timestamp reward, encouraging models to per- 094

form fine-grained temporal reasoning over multi- 095

ple segments as shown in Figure 2. Additionally, 096

we employ a multi-phase training strategy that bal- 097

ances guided learning and exploration, ultimately 098

achieving optimal performance. As illustrated in 099

Figure 1, MUSEG achieves significant improve- 100

ments on temporal grounding benchmarks and gen- 101

eralizes effectively to other time-sensitive video 102

understanding tasks. Our contributions can be sum- 103

marized as follows: 104

• We propose MUSEG, a novel RL-based 105

method for video temporal understanding that 106

enables MLLMs to reason over multiple tem- 107

porally distributed events by incorporating 108

multi-segment grounding into training. 109

• We design a tailored RL training recipe featur- 110

ing novel reward functions and a multi-phase 111

training strategy, effectively promoting fine- 112

grained and temporally grounded reasoning. 113

• We conduct extensive experiments and anal- 114

yses, showing that MUSEG consistently out- 115

performs existing methods on video temporal 116

understanding benchmarks, and validating the 117

effectiveness of our task and training designs. 118

2 Related Work 119

2.1 Video Temporal Understanding 120

Previous research on video temporal understand- 121

ing focuses on cross-references and alignments be- 122

tween videos and texts (Arnab et al., 2021; Luo 123

et al., 2021; Liu et al., 2021; Xu et al., 2021; Wang 124

et al., 2021). Recent advances in video temporal 125

understanding have moved from these cross-modal 126

attention-based local feature matching approaches 127

to broader time-sensitive tasks, such as temporal 128

grounding (Gao et al., 2017), dense video caption- 129

ing (Wang et al., 2024), and grounded video ques- 130

tion answering (Xiao et al., 2024). These meth- 131

ods attempt to fuse video temporal features and 132

text features with LLMs to enhance model perfor- 133

mance (Liu et al., 2024a; Li et al., 2025c; Yan et al., 134

2025). 135

However, these models remain suboptimal per- 136

formance on temporal understanding tasks, and 137

struggle to generalize to complex scenarios. Re- 138

cent benchmarks (Liu et al., 2024a; Chen et al., 139

2024; Cai et al., 2024; Huang et al., 2024) high- 140

light the gap between MLLMs and humans and 141
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the critical need for improving model abilities of142

temporal understanding.143

2.2 RL for Video Understanding144

RL has been widely adopted in various textual145

tasks (Shao et al., 2024; Ouyang et al., 2022; Schul-146

man et al., 2017). Recent works apply RL to gen-147

eral video question answering tasks (Feng et al.,148

2025; Chen et al., 2025) and temporal ground-149

ing tasks (Li et al., 2025b; Cheng et al., 2025a).150

However, they still struggle on complex temporal151

grounding tasks, and there is still room for im-152

provement in generalizing to broader temporal un-153

derstanding scenarios.154

3 Preliminaries: Reward Design in GRPO155

Group Relative Policy Optimization (GRPO) (Shao156

et al., 2024) is a RL-based training method that has157

been widely adopted to improve reasoning abilities158

of LLMs. For a query, a group of responses are159

generated. Then, rewards {ri} are assigned to re-160

sponses. Rewards guide optimization of the policy161

model, and affect model performance.162

Many recent works leverage rule-based rewards163

in training. Deepseek-R1 (Guo et al., 2025) reaches164

superior results on textual tasks by training on math165

and code tasks with two rule-based rewards:166

• Accuracy Rewards: Measuring whether mod-167

els provide right answers to math problems or168

codes that can pass coding problems by veri-169

fiers or compilers.170

• Format Rewards: Examining whether171

model responses are in “<think> ...172

</think><answer> ... <answer>” format.173

4 Method174

In this section, we elaborately introduce our pro-175

posed GRPO-based method MUSEG. It lever-176

ages multi-segment grounding as the training task,177

which will be detailed in Section 4.1. Followed by178

our designed rewards, segment matching reward179

and timestamp reward, in Section 4.2. Finally, we180

will describe our new training recipe with phased181

rewards in Section 4.3.182

4.1 Multi-Segment Grounding Task183

Temporal grounding is the task that requires mod-184

els to match text queries with corresponding video185

segments, which helps improve temporal under-186

standing abilities of MLLMs (Liu et al., 2024a).187

It includes two types of queries. The first type188

Query Type w/ Shortcut Total

Single-Segment 15 50
Multi-Segment 4 50

Table 1: Results of preliminary empirical study. We
sample single-segment grounding and multi-segment
grounding queries from E.T. Bench (Liu et al., 2024a),
and examine whether they can be answered by shortcut
of recognizing key objects.

requires model to output a single segment corre- 189

sponding to the text. We call it single-segment 190

grounding. The other type do not specify number 191

of segments models should output in the query, and 192

groundtruths may be one or more segments. We 193

call it multi-segment grounding. 194

Single-segment grounding is widely taken as 195

training task by previous RL-based works (Li et al., 196

2025b; Wang et al., 2025). However, our prelimi- 197

nary empirical study shows that a notable portion 198

of single-segment grounding questions can be an- 199

swered by shortcuts, for example, detecting key 200

objects instead of understanding temporal infor- 201

mation about events. We sample 50 questions of 202

single-segment grounding from E.T. Bench (Liu 203

et al., 2024a), and find that 30% of them can be 204

answered correctly through detecting objects re- 205

lated to queries, as shown in Table 1. Therefore, 206

we believe that, to improve temporal understand- 207

ing abilities of MLLMs, single-segment grounding 208

tasks are not enough. 209

In contrast, multi-segment grounding queries are 210

difficult to be answered by shortcuts, as shown in 211

Table 1. Thus, we add them to our training process. 212

We ensure the number of single-segment grounding 213

and multi-segment grounding queries are balanced, 214

and our selected data are diverse in scenarios. 215

4.2 Reward Design 216

4.2.1 Segment Matching Reward 217

Segment matching reward is designed to align 218

model outputs with groundtruths. It consists of 219

two parts, global matching and local matching, to 220

enhance model abilities of understanding overall 221

video contents, and grasping detailed events, re- 222

spectively. 223

Global matching is shown in upper left area of 224

Figure 3 (a). We measure the overlap ratio among 225

all the groundtruth segments {Gi} and predicted 226

segments {Pj}: 227

rG =

∑
i,j |Gi ∩ Pj |

|(∪iGi) ∪ (∪jPj)|
(1) 228
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1.0 s 3.0 s 5.0 s 7.5 s 10.5 s 12.0 s

0.0 s 2.0 s 8.5 s 10.0 s

Reward = 
𝐑𝐆+𝐑𝐋
𝟐

= 0.24

<think> During 0.0 s – 2.0 s … after 8.5 s … at 10.0 s, he jumps into the sandpit. </think>

<answer> 0.0 s – 2.0 s , 8.5 s – 10.0 s </answer>

<think> During 0.0 s – 3.0 s, a man took a long jump. </think>

<answer> 0.0 s – 2.0 s , 8.5 s – 10.0 s </answer>

Segment 

Matching Reward

Format Reward

Timestamp 

Reward

Phase 1

Format Reward

Phase 2

Segment 

Matching Reward

Timestamps Fail to Match      Reward = 0.0

All Timestamps Match      Reward = 1.0

Query: Locate actions of 

“Long Jump”.

Groundtruth

Prediction

G1

G2 G3

P1 P2 Fail to Match

NGIoU(G1,P1) = 0.67 NGIoU(G2,P2) = 0.4 NGIoU(G3,∅) = 0.0

RL = 0.36

Local MatchingGlobal Matching

RG = 
𝐆𝟏∩𝐏𝟏

𝐆𝟏∪𝐆𝟐∪𝐆𝟑∪𝐏𝟏∪𝐏𝟐
= 0.12

Average

(a) (b)

G1

G2 G3

P1 P2

G1∩P1 = 1.0 s

Figure 3: Overview of MUSEG. (a) Our proposed segment matching reward (up) and timestamp reward (down). (b)
RL-based training process with phased rewards of MUSEG.

In the local matching process, we pair229

groundtruths and predictions one-to-one as230

{(Gn, Pn)}Nn=1, where N = max(|{Gi}|, |{Pj}|).231

As shown in upper right area of Figure 3 (a), we232

sort {Gi} and {Pj} according to their start times-233

tamps, and match Gk with Pk, where 1 ≤ k ≤234

min(|{Gi}|, |{Pj}|). For the rest of groundtruths235

or predictions, we match them with empty seg-236

ments ϕ. We also explore other matching strategies237

in Section 6.1. After matching, we assess each238

prediction Pn according to its paired groundtruth239

Gn. We leverage GIoU (Rezatofighi et al., 2019) in-240

stead of IoU for the evaluation, which better guides241

model optimization when the predicted video seg-242

ment does not overlap with the groundtruth. We243

calculate NGIoU, normalized GIoU whose value244

is between 0 to 1:245

NGIoU =
1

2

(
1 +

|Gn ∩ Pn|
|Gn ∪ Pn|

− |C\(Gn ∪ Pn)|
|C|

)
(2)246

where C is the shortest video segment covering Gn247

and Pn. To encourage model outputs to be closer248

to groundtruths, we impose a penalty when the249

number of groundtruth segments does not match250

the number of predicted segments. We define that251

for any G or P :252

NGIoU(G,ϕ) = NGIoU(ϕ, P ) = 0 (3)253

Finally, we calculate average NGIoU of all pairs:254

255

rL =

∑N
n=1 NGIoU(Gn, Pn)

N
(4)256

And the final segment matching reward is:257

rM =
rG + rL

2
(5)258

4.2.2 Timestamp Reward 259

Previous works (Feng et al., 2025; Yu et al., 2025) 260

reveal the importance of explicitly include tem- 261

poral information in reasoning process in video 262

comprehension. Unfortunately, how to stimulate 263

model ability of temporal-aware reasoning remains 264

a challenging problem. 265

To tackle this problem, we design the timestamp 266

reward rT to enforce models to include timestamps 267

which occur in the final answers in their thinking 268

processes. Suppose {T i
A} and {T i

R} are timestamps 269

occurring in the answer and reasoning process of a 270

model output, then 271

rT = I{T i
R}⊂{T i

A}
(6) 272

where I is indicator function. As shown in lower 273

part of Figure 3 (a), when all the timestamps occur- 274

ring in the answer are found in thinking process, 275

models get the reward. If some timestamps fails to 276

match, the reward is set zero. Through the times- 277

tamp reward, we encourage models to focus on 278

temporal details during reasoning instead of think- 279

ing purely based on overall video contents. 280

4.3 Training Recipe with Phased Rewards 281

Our GRPO training process involves three re- 282

wards in total. Besides two newly designed re- 283

wards introduced in Section 4.2, format reward 284

is also leveraged following DeepSeek-R1 (Guo 285

et al., 2025), enforcing models to output their 286

thinking processes and final answers in format 287

“<think>...</think><answer>...</answer>”: 288
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Model
In Domain Out of Domain

Charades-STA THUMOS14 THUMOS15 Perception Test E.T. Bench E.T. Bench (Subset)
(Single-Seg) (Multi-Seg) (Multi-Seg) (Multi-Seg) REF GND CAP COM AVG REF GND CAP COM AVG

API-based Models
GPT-4o 25.1 5.5 6.7 - - - - - - 37.4 16.5 11.6 6.8 18.1

Open-source ~7B Models
Qwen2.5-VL-7B 50.2 24.9 23.4 25.3 53.1 30.7 16.2 11.3 27.8 51.0 30.3 16.5 9.3 26.8
Qwen2.5-VL-7B+SFT 28.1 15.5 15.6 20.3 24.3 11.3 15.3 6.6 14.4 27.8 12.6 15.0 8.7 16.0
E.T. Chat 45.6 23.7 24.9 9.2 38.4* 38.0* 16.7* 13.5* 26.7 31.8* 33.8* 17.1* 11.1* 23.5
TRACE-7B 29.9* - - - 33.6* 33.8* 20.3* 25.8* 28.4 - - - - -
Video-R1 11.3 3.5 3.4 5.7 50.3 25.3 15.6 12.4 25.9 49.2 22.2 15.6 12.8 25.0
VideoChat-R1 59.4 14.3 13.4 27.1 55.8 35.6 22.1 19.5 33.3 47.0 35.9 24.1 12.5 29.9
TimeZero 59.2 14.4 12.7 26.8 55.9 35.8 21.4 17.1 32.6 46.9 35.1 22.9 15.2 30.0
MUSEG-7B (Ours) 59.7 29.7 29.3 31.7 61.9 37.5 23.7 24.0 36.8 60.8 38.8 25.1 19.0 35.9

Open-source ~3B Models
Qwen2.5-VL-3B 41.4 12.6 12.8 19.4 51.7 20.4 13.6 8.0 23.4 52.9 20.4 12.7 7.6 23.4
TEMPURA 44.5 8.7 12.1 20.7 46.3 26.1 14.4 10.2 24.3 56.4 22.8 13.3 3.5 24.0
MUSEG-3B (Ours) 53.7 21.0 20.3 29.1 53.9 30.0 18.7 8.8 27.9 54.3 28.7 18.3 11.8 28.3

Table 2: Results of MLLMs on in-domain and out-of-domain tasks. *Results are copied from original pa-
per. Detailed model versions are as followings: GPT-4o: GPT-4o-2024-11-20; Qwen2.5-VL-7B: Qwen2.5-VL-
7B-Instruct; Qwen2.5-VL-3B: Qwen2.5-VL-3B-Instruct. VideoChat-R1: VideoChat-R1-thinking; TimeZero:
TimeZero-Charades-7B.

rF =

{
1, if oi has right format
0, otherwise

(7)289

Though the combination of these rewards is ex-290

pected to assist models to establish temporally291

grounded reasoning process, we still believe that292

there is still room for models to find better reason-293

ing patterns. Thus, we adopt a training recipe with294

phased rewards, as shown in Figure 3 (b). In the295

early training steps, we guide models to refer to296

specific timestamps in their reasoning processes.297

We include segment matching reward, timestamp298

reward, and format reward:299

r1 = αrM + [βrT + (1− β)rF] (8)300

In the latter training steps, we encourage models301

to freely explore better forms of reasoning. Thus,302

we remove timestamp reward, only keeping seg-303

ment matching reward and format reward:304

r2 = αrM + rF (9)305

Through the training process with phased re-306

wards, we achieve greater performance enhance-307

ment than solely using r1 or r2 for the whole train-308

ing. More analyses can be found in Section 6.2.309

5 Experiments310

5.1 Implementations311

Our training dataset is constructed from E.T. In-312

struct 164k (Liu et al., 2024a) and Charades-313

STA (Gao et al., 2017). For E.T. Instruct 164k,314

we only sample data from temporal video ground-315

ing (TVG) and temporal action localization (TAL)316

tasks. Our final training dataset consists of 12.6k317

samples. There are 6967 samples with a single318

segment, and 5633 samples with more than one 319

segments as groundtruths. 320

We train MUSEG-7B and MUSEG-3B based 321

on 7B and 3B versions of Qwen2.5-VL (Bai et al., 322

2025). They are trained with timestamp reward 323

for 400 steps and without timestamp reward for 324

another 500 steps. We also conduct SFT experi- 325

ments on Qwen2.5-VL-7B-Instruct with our con- 326

structed dataset. Training details can be found in 327

Appendix A. 328

5.2 Baselines 329

We include SFT-based models and RL-based mod- 330

els as our baselines. For SFT-based models, we 331

include E.T. Chat (Liu et al., 2024a), TRACE (Guo 332

et al., 2024), and TEMPURA (Cheng et al., 2025a). 333

For RL-based models, we include Video-R1 (Feng 334

et al., 2025), VideoChat-R1 (Li et al., 2025b), and 335

TimeZero (Wang et al., 2025). We also report per- 336

formance of GPT-4o (Hurst et al., 2024) for refer- 337

ence. In consideration of inference costs, we do 338

not report results of GPT-4o on Perception Test and 339

the whole set of E.T. Bench. Only results on a sub- 340

set of 470 samples of E.T. Bench, specified by the 341

original paper, are reported. Detailed introductions 342

of our baselines can be found in Appendix B. 343

5.3 Benchmarks and Evaluation Metrics 344

We evaluate MUSEG-7B and MUSEG-3B on 345

grounding tasks (in domain) and broader time- 346

related tasks (out of domain). We use the test 347

set of Charades-STA (Gao et al., 2017) for single- 348

segment grounding, and mIoU as evaluation met- 349

ric. We use the validation set of THUMOS14, 350

THUMOS15 (Idrees et al., 2017) and Perception 351

5



Multi-Segment Grounding  You are given a video about human actions. Watch the video carefully and find all the visual events 

belonging to the action category: 'clean and jerk'.

5s                      9s                    11s                   12s                    16s                     20s       21s                   26s                   30s                   35s                   43s

Groundtruth

MUSEG-7B (Ours)

VideoChat-R1-thinking

Qwen2.5VL-7B-Instruct

5.4s                         11.6s       13.0s                                  19.7s         21.4s               29.3s

4.5s 12.0s 20.0s  30.0s

4.0s 14.0s

4.2s 6.8s   7.5s     10.3s 15.1s           18.6s 23.4s                        27.5s

<think> The action happens in 4.50 - 12.00, 12.00 - 20.00, and 20.00 - 30.00. The person in the video is performing the clean and jerk weightlifting exercise, 

lifting the barbell from the ground to their shoulders and then raising it overhead. </think> <answer> 4.50-12.00 12.00-20.00 20.00-30.00 </answer>

<think> The video shows a weightlifter performing the clean and jerk action. The clean and jerk is a compound weightlifting movement that involves lifting a 

barbell from the floor to the shoulders and then pressing it overhead … </think> <answer> 4.00 to 14.00 </answer>

The action happens in 4.2 - 6.8, 7.5 - 10.3, 15.1 - 18.6, and 23.4 - 27.5 seconds.

Referred Action Recognition Watch the video carefully and identify the action around 4.1 seconds by choosing from a set of options. 

(A) drinking something from something (B) Opening something 

(C) pouring something from something into something (D) pulling something.

MUSEG-7B (Ours): <think> The action at 4.1 seconds involves the person opening a bottle … The person's hand movements and 

the position of the bottle suggest that they are unscrewing the cap, aligning with the option of opening something … The relevant 

part of the video happens between 0.0 and 9.0 seconds, where the person's hand is seen moving towards the bottle cap, indicating the 

action of unscrewing it … The other options are less relevant … </think> <answer> (B) </answer>

VideoChat-R1-thinking: <think> The person is holding a bottle and a glass, and they are in the process of pouring the contents of the 

bottle into the glass … indicating that the person is pouring something. </think> <answer> (C) </answer>

Qwen2.5VL-7B-Instruct: (C)

0s                                    2s                                    4s                                  6s                                     7s                                  11s                                  13s

TimeZero-Charades-7B
5.0s 13.0s

<think> The video shows a man performing weightlifting exercises, specifically the clean and jerk. The clean and jerk is a compound movement that involves 

lifting a barbell from the floor to the shoulders and then pressing it overhead … </think> <answer> 5.00 to 13.00 </answer>

Groundtruth: (B)

TimeZero-Charades-7B: <think> The person is opening a bottle, which is a specific action that involves manipulating the cap of the 

bottle. This action is clearly visible in the video, and it is the first step in the sequence of events. </think> <answer> (B) </answer>

Figure 4: Cases of MUSEG-7B on multi-segment grounding (in domain) and referred action recognition (out of
domain) tasks.

Test (Patraucean et al., 2023) for multi-segment352

grounding, and report F1 scores averaged among353

IoU thresholds at four levels (0.1, 0.3, 0.5, and 0.7)354

following Liu et al. (2024a). We evaluate model355

generalization with various time-related tasks in356

E.T. Bench (Liu et al., 2024a), including refer-357

ring (REF), grounding (GND), dense captioning358

(CAP), and complex understanding (COM). For359

these tasks, we follow metrics of the original paper:360

accuracy for referring, F1 score for grounding, sen-361

tence similarity for dense captioning, and recall for362

complex understanding tasks.363

5.4 Main Results364

As shown in Table 2, MUSEG-7B and MUSEG-3B365

outperform other methods using SFT- or RL-based366

methods on most in-domain and out-of-domain367

tasks among all ~7B and ~3B models, and even 368

surpass GPT-4o. Our method shows a significant 369

advantage over base models. MUSEG-7B achieves 370

more than 10% performance enhancement on all 371

the tasks compared to its base model Qwen2.5-VL- 372

7B-Instruct. And it is worth noting that our model 373

gets doubled performance on complex understand- 374

ing task, showing strong ability of generalization. 375

Video-R1 (Feng et al., 2025) does not include 376

time-sensitive tasks in its training process, result- 377

ing in a suboptimal performance on temporal un- 378

derstanding tasks. Although VideoChat-R1 (Li 379

et al., 2025b) and TimeZero (Wang et al., 2025) are 380

trained with single-segment grounding tasks, yield- 381

ing comparable single-segment grounding perfor- 382

mance with ours, they lag behind MUSEG-7B on 383

multi-segment grounding and other out-of-domain 384
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Local Matching Strategy Charades-STA THUMOS14 THUMOS15
E.T. Bench (Subset)

REF GND CAP COM

w/o Local Matching 54.7 21.2 21.4 60.9 37.2 22.9 20.8
w/ Local Matching (Sequential) 57.0 27.7 26.6 59.1 37.4 23.8 19.9
w/ Local Matching (Maximum) 55.2 25.6 25.5 54.5 36.6 21.7 15.8

Table 3: Results with different matching strategies. For all the experiments, we train Qwen2.5-VL-7B with segment
matching reward, format reward and timestamp reward for 400 steps.
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Figure 5: Segment matching reward (a) w/o local matching, (b) w/ local matching (sequential), and (c) w/ local
matching (maximum). (d) Evolution of numbers of predicted segments during training process. For all the plots, we
only consider queries whose groundtruths are more than one segments.

tasks. This highlights the importance of incorporat-385

ing multi-segment grounding into training tasks to386

boost performance in time-sensitive scenarios.387

5.5 Case Study388

We show two cases to further demonstrate our389

model performance in Figure 4.390

The first case is a multi-segment grounding391

task (in domain) with query “clean and jerk”.392

VideoChat-R1-thinking and TimeZero-Charades-393

7B only recognize the video segment correspond-394

ing to the first attempt, consistent with the fact that395

they are trained only with single-segment ground-396

ing tasks. In contrast, MUSEG-7B accurately lo-397

calizes all three weight-lifting attempts. The per-398

formance gap highlights effectiveness of multi-399

segment grounding training tasks.400

The second case involves referred action recog-401

nition (out of domain) query about event happen-402

ing around 4.1 seconds. Seen from the video, the403

person first opens the bottle, then pouring water404

out from it. VideoChat-R1 incorrectly aligns the405

event of pouring water from the bottle (occurring at406

11 seconds) with a 4.1-second timestamp, demon-407

strating a temporal misalignment in its reasoning.408

TimeZero-Charades-7B provides the correct an-409

swer but lacks precise timestamp references in its410

explanation. In contrast, MUSEG-7B exhibits su-411

perior temporal reasoning capability: it not only412

identifies the bottle-opening action around 4.1 sec-413

onds but also accurately localizes the correspond-414

ing video segment.415

6 Analyses 416

6.1 Local Matching Strategies 417

We delve deeper to verify effectiveness of local 418

matching in segment matching reward. We conduct 419

experiment of removing local matching, only keep- 420

ing global matching in training. Additionally, we 421

explore another design, which involves matching 422

groundtruths and predictions to maximize average 423

overlap of each pair. We do this by calculating max- 424

imum weighted matching in bipartite graph. For 425

groundtruth segments {Gi} and predicted segments 426

{Pj}, we construct a complete bipartite graph G: 427

G = ({Gi}, {Pj}, E),where

E = {NGIoU(g, p)|g ∈ {Gi}, p ∈ {Pj}}
(10) 428

then we calculate rL as follows: 429

rL =
Matching(G)

max(|{Gi}|, |{Pj}|)
(11) 430

where Matching(·) is the maximum weighted 431

matching function. Table 3 shows that including 432

local matching boost overall model performance 433

compared to only keeping global matching. Ad- 434

ditionally, sequential matching reaches better per- 435

formance than maximum matching, so we finally 436

adopt sequential matching in MUSEG. 437

We also notice that drops of model performance 438

on multi-segment grounding are much larger than 439

single-segment grounding when local matching is 440

removed. To better understand its reason, we exam- 441

ine differences in rewards model would get when 442
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Training Paradigms Charades-STA THUMOS14 THUMOS15
E.T. Bench (Subset)

REF GND CAP COM

w/o Timestamp Reward 56.9 28.4 28.3 55.1 37.6 22.3 13.2
w/ Timestamp Reward 57.3 26.1 24.6 57.3 28.9 22.0 16.1
w/ Timestamp Reward for 400 Steps 59.7 29.7 29.3 60.8 38.8 25.1 19.0

Table 4: Results with different training recipes.
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Figure 6: (a) Model performance with different training
recipes. For the setting of phased rewards recipe, we
train models with timestamp reward for 300 steps when
total steps are 600 and 700, for 400 steps when total
steps are 800 and 900. (b) Model performance when we
vary number of steps with timestamp reward, keeping
total steps to be 900. For all the experiments, we report
average score of Charades-STA, THUMOS14 and THU-
MOS15 as in-domain score, and average score of E.T.
Bench (Subset) as out-of-domain score.

it produces a single segment or at least two seg-443

ments for a query whose groundtruth consists of444

more than one segments. As shown in Figure 5445

(a), (b), and (c), local matching strategies impose446

significant penalties on segment matching rewards447

when model output only contains a single segment,448

but the penalties imposed by global matching are449

relatively weak. We further report evolution of450

numbers of predicted segments during training pro-451

cess in Figure 5 (d). When we remove local match-452

ing, numbers of predicted segments significantly453

drop and their gaps from groundtruths become454

larger. This indicates that local matching can help455

better align numbers of predicted segments with456

groundtruths.457

6.2 Design of Phased Rewards458

In this section, we explore the effectiveness of our459

proposed training recipe with phased rewards. We460

compare it with training model with or without461

timestamp reward during the whole training pro-462

cess in Table 4. From the table we can see that our463

proposed recipe of training the model with times-464

tamp reward for 400 steps and without timestamp465

reward for another 500 steps reaches the highest466

performance. We further change the total training467
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Figure 7: Rewards with different training recipes. We
also report timestamp reward during training.

steps and report the results in Figure 6 (a). We can 468

see that our proposed recipe consistently outper- 469

forms other training strategies, showing effective- 470

ness over different data scales. 471

We also explore model performance when we 472

vary number of steps of keeping timestamp reward. 473

Figure 6 (b) demonstrates that when we train the 474

model with timestamp reward for 400 steps, its 475

performance reaches the peak. To further inves- 476

tigate the reason behind it, we examine values of 477

segment matching reward and timestamp reward 478

during training in Figure 7. Similarly, we observe 479

timestamp reward peaking around 400 steps. If 480

discarding after 400 steps, segment matching re- 481

ward continues rising, and finally surpassing other 482

training recipes. But if it is kept during the whole 483

training process, segment matching reward would 484

also drop after 400 steps. Removing restriction 485

of referring timestamps in thinking process in the 486

middle of training helps boost model performance. 487

7 Conclusion 488

In this work, we introduce MUSEG, a RL-based 489

method to improve video temporal understanding 490

abilities of MLLMs. Experiments demonstrate ef- 491

fectiveness of our method on improving model 492

performance on single-segment and multi-segment 493

grounding tasks, as well as broader time-sensitive 494

scenarios. We hope our proposed method will in- 495

spire future research on enhancing temporal under- 496

standing abilities of MLLMs. 497
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Limitations498

While our method demonstrates strong perfor-499

mance, it is trained exclusively on temporal ground-500

ing tasks. We believe that incorporating training501

data from a wider range of time-sensitive tasks502

could further improve the performance and gener-503

alization capabilities of the trained model. Addi-504

tionally, although our work primarily focuses on505

time-sensitive scenarios, we believe that stronger506

temporal reasoning abilities may also benefit gen-507

eral video understanding tasks by enabling more508

coherent and structured reasoning. We leave the ex-509

ploration of how to transfer temporal reasoning ca-510

pabilities to more general domains as future work.511
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A Training Details 695

We leverage 7B and 3B models of Qwen2.5- 696

VL (Bai et al., 2025) series as our base models. 697

They are trained on large scale image and video 698

data and demonstrate strong instruction following 699

and reasoning abilities. Additionally, there are spe- 700

cial designs in Qwen2.5-VL to enable models to 701

process absolute timestamps and dynamic resolu- 702

tions of video frames. During training and infer- 703

ence of MUSEG-7B and MUSEG-3B, we set max- 704

imum total video tokens to be 3584 and maximum 705

number of frames to be 448. 706

We train MUSEG-7B and MUSEG-3B for 900 707

steps in total, including 400 steps with timestamp 708

reward and another 500 steps without timestamp re- 709

ward. We set batch_size = 14 and learning_rate = 710

1e − 5. We set α = 2 in phase 1 and phase 2 re- 711

ward, and β = 0.4 in phase 1 reward. Considering 712
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that base models have been trained on temporal-713

related data and already have strong abilities of714

instruction-following, we do not include SFT stage715

in our experiments as DeepSeek-R1 (Guo et al.,716

2025).717

B Baselines718

We introduce our baselines in Table 2 in this sec-719

tion. We categorize our baselines into SFT-based720

methods and RL-based methods. We introduce721

SFT-based models first:722

E.T. Chat (~7B): It compresses video frames723

into single tokens using a Q-Former-based com-724

pressor with cross-attention, and generates times-725

tamps with special tokens. It is trained on E.T.726

Instruct 164k, a dataset covering 9 tasks across 14727

sources.728

TRACE (~7B): It is trained with a causal729

event modeling framework, integrating timestamp,730

salient score, and textual caption prediction tasks.731

Its training data include 1.9M samples from Val-732

ley, TextVR, ShareGPT4Video, and 0.9M samples733

form ActivityNet Captions and InternVid.734

TEMPURA (~3B): It is trained with masked735

event prediction reasoning, event segmentation and736

dense captioning tasks. Its training data consist of737

500k samples.738

Then we introduce RL-based models:739

Video-R1 (~7B): It is trained by SFT with 165k740

samples and RL with 260k samples. Its training741

data consist of various general image question an-742

swering and video question answering tasks.743

VideoChat-R1 (~7B): It is trained with temporal744

grounding, object tracking, video captioning and745

grounded video question answering tasks, with a746

total data scale of 18.0k samples.747

TimeZero (~7B): It is trained towards tempo-748

ral grounding tasks. One version of its models is749

trained with Charades-STA (Gao et al., 2017).750
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