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Abstract

Video temporal understanding is crucial for
multimodal large language models (MLLMs)
to reason over events in videos. Despite re-
cent advances in general video understanding,
current MLLMs still struggle with fine-grained
temporal reasoning. While reinforcement learn-
ing (RL) has been explored to address this is-
sue recently, existing RL approaches remain
limited in effectiveness. In this work, we pro-
pose MUSEG, a novel RL-based method that
enhances temporal understanding by introduc-
ing timestamp-aware multi-segment ground-
ing. MUSEG enables MLLMs to align queries
with multiple relevant video segments, pro-
moting more comprehensive temporal reason-
ing. To facilitate effective learning, we design
a customized RL training recipe with phased
rewards that progressively guides the model
toward temporally grounded reasoning. Ex-
tensive experiments on temporal grounding
and time-sensitive video QA tasks demonstrate
that MUSEG significantly outperforms exist-
ing methods and generalizes well across diverse
temporal understanding scenarios.

1 Introduction

Video temporal understanding (Liu et al., 2024a;
Chen et al., 2024; Cheng et al., 2025b) refers to the
tasks of comprehending events based on temporal
dynamics such as temporal grounding (Gao et al.,
2017), dense video captioning (Wang et al., 2024),
and grounded video question answering (Xiao et al.,
2024). This capability is essential for multimodal
large language models (MLLMs) (Hurst et al.,
2024; Team et al., 2023; Bai et al., 2025) in un-
derstanding complex temporal structures in videos
and making accurate, context-aware predictions or
decisions based on when and how events unfold.
Despite rapid progress and impressive results in
general video understanding, current MLLMs still
show significant limitations in temporal understand-
ing (Liu et al., 2024b; Li et al., 2025c). Early ef-
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Figure 1: Performance of MUSEG-7B on various
temporal grounding (Charades-STA, THUMOS14 and
THUMOSI15) and broader

(E.T. Bench Subset) tasks.

forts to address this are mainly based on supervised
fine-tuning (SFT) to improve temporal comprehen-
sion (Bai et al., 2025; Liu et al., 2024a; Li et al.,
2025a). As reinforcement learning (RL) has been
shown to significantly improve complex reason-
ing and comprehension in large language models
(LLMs) (Guo et al., 2025), recent studies have ex-
tended RL techniques to the video domain (Feng
et al., 2025; Li et al., 2025b; Wang et al., 2025;
Zhang et al., 2025), encouraging models to “reason
before answering”. This typically involves design-
ing a format reward to ensure a structured reasoning
process and an answer reward such as Intersection
over Union (IoU) to measure the correctness of the
predictions.

However, directly applying RL to video tempo-
ral understanding tasks has not achieved the same
level of performance improvement as in textual
domains (Feng et al., 2025; Li et al., 2025b). We
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[ VideoChat-R1-thinking: )
<think> The video shows a person collecting bowls from the
kitchen counter. </think>

| <answer> (A) Three. </answer>
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[ MUSEG-7B (Ours): A
<think> ... The relevant moments are at 138.8 - 142.6 seconds
and 142.6 - 146.4 seconds. You pick up a bowl from the
table and then another one, indicating that you collected two
bowls. </think>

| <answer> (B) Two. </answer>
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Figure 2: An example comparing our MUSEG-7B with
previous models. MUSEG-7B performs more precise,
timestamp-aware reasoning by leveraging multiple key
temporal cues to derive the correct answer.

attribute this limitation to two key challenges. First,
most existing methods (Li et al., 2025b; Wang
et al., 2025) rely solely on single-segment temporal
grounding, where each input query corresponds to
only one video segment. This limits the ability to
capture fine-grained, multi-segment temporal in-
formation, which is essential for complex video
understanding tasks. Second, although temporal
understanding depends fundamentally on reasoning
over temporal cues, current RL approaches often
fail to model them effectively. As illustrated in
Figure 2, their reasoning typically consists of brief
descriptions of video content, lacking detailed tem-
poral analysis of key events. Therefore, we argue
that advancing MLLMs in video temporal under-
standing requires rethinking both the training task
design and the RL training recipe.

In this paper, we propose timestamp-aware
MUIti-SEgment Grounding (MUSEG), an RL-
based method designed to enhance the temporal un-
derstanding and reasoning capabilities of MLLMs.
On the task side, we incorporate multi-segment
grounding into the training process, enabling mod-
els to learn from queries that align with multiple
relevant video segments. This promotes stronger
temporal understanding and better generalization
to a wide range of time-sensitive tasks. On the
training side, we introduce a customized RL train-
ing recipe with phased rewards, which progres-
sively encourage the model to establish tempo-
rally grounded reasoning processes. Our recipe

features a dedicated segment matching reward and
a timestamp reward, encouraging models to per-
form fine-grained temporal reasoning over multi-
ple segments as shown in Figure 2. Additionally,
we employ a multi-phase training strategy that bal-
ances guided learning and exploration, ultimately
achieving optimal performance. As illustrated in
Figure 1, MUSEG achieves significant improve-
ments on temporal grounding benchmarks and gen-
eralizes effectively to other time-sensitive video
understanding tasks. Our contributions can be sum-
marized as follows:

* We propose MUSEG, a novel RL-based
method for video temporal understanding that
enables MLLMs to reason over multiple tem-
porally distributed events by incorporating
multi-segment grounding into training.

* We design a tailored RL training recipe featur-
ing novel reward functions and a multi-phase
training strategy, effectively promoting fine-
grained and temporally grounded reasoning.

* We conduct extensive experiments and anal-
yses, showing that MUSEG consistently out-
performs existing methods on video temporal
understanding benchmarks, and validating the
effectiveness of our task and training designs.

2 Related Work

2.1 Video Temporal Understanding

Previous research on video temporal understand-
ing focuses on cross-references and alignments be-
tween videos and texts (Arnab et al., 2021; Luo
et al., 2021; Liu et al., 2021; Xu et al., 2021; Wang
et al., 2021). Recent advances in video temporal
understanding have moved from these cross-modal
attention-based local feature matching approaches
to broader time-sensitive tasks, such as temporal
grounding (Gao et al., 2017), dense video caption-
ing (Wang et al., 2024), and grounded video ques-
tion answering (Xiao et al., 2024). These meth-
ods attempt to fuse video temporal features and
text features with LLMs to enhance model perfor-
mance (Liu et al., 2024a; Li et al., 2025¢; Yan et al.,
2025).

However, these models remain suboptimal per-
formance on temporal understanding tasks, and
struggle to generalize to complex scenarios. Re-
cent benchmarks (Liu et al., 2024a; Chen et al.,
2024; Cai et al., 2024; Huang et al., 2024) high-
light the gap between MLLMs and humans and



the critical need for improving model abilities of
temporal understanding.

2.2 RL for Video Understanding

RL has been widely adopted in various textual
tasks (Shao et al., 2024; Ouyang et al., 2022; Schul-
man et al., 2017). Recent works apply RL to gen-
eral video question answering tasks (Feng et al.,
2025; Chen et al., 2025) and temporal ground-
ing tasks (Li et al., 2025b; Cheng et al., 2025a).
However, they still struggle on complex temporal
grounding tasks, and there is still room for im-
provement in generalizing to broader temporal un-
derstanding scenarios.

3 Preliminaries: Reward Design in GRPO

Group Relative Policy Optimization (GRPO) (Shao
etal., 2024) is a RL-based training method that has
been widely adopted to improve reasoning abilities
of LLMs. For a query, a group of responses are
generated. Then, rewards {r;} are assigned to re-
sponses. Rewards guide optimization of the policy
model, and affect model performance.

Many recent works leverage rule-based rewards
in training. Deepseek-R1 (Guo et al., 2025) reaches
superior results on textual tasks by training on math
and code tasks with two rule-based rewards:

* Accuracy Rewards: Measuring whether mod-
els provide right answers to math problems or
codes that can pass coding problems by veri-
fiers or compilers.

* Format Rewards: Examining whether
model responses are in ‘“<think>
</think><answer> ... <answer>" format.

4 Method

In this section, we elaborately introduce our pro-
posed GRPO-based method MUSEG. It lever-
ages multi-segment grounding as the training task,
which will be detailed in Section 4.1. Followed by
our designed rewards, segment matching reward
and timestamp reward, in Section 4.2. Finally, we
will describe our new training recipe with phased
rewards in Section 4.3.

4.1 Multi-Segment Grounding Task

Temporal grounding is the task that requires mod-
els to match text queries with corresponding video
segments, which helps improve temporal under-
standing abilities of MLLMs (Liu et al., 2024a).
It includes two types of queries. The first type

Query Type | w/ Shortcut  Total
Single-Segment 15 50
Multi-Segment 4 50

Table 1: Results of preliminary empirical study. We
sample single-segment grounding and multi-segment
grounding queries from E.T. Bench (Liu et al., 2024a),
and examine whether they can be answered by shortcut
of recognizing key objects.

requires model to output a single segment corre-
sponding to the text. We call it single-segment
grounding. The other type do not specify number
of segments models should output in the query, and
groundtruths may be one or more segments. We
call it multi-segment grounding.

Single-segment grounding is widely taken as
training task by previous RL-based works (Li et al.,
2025b; Wang et al., 2025). However, our prelimi-
nary empirical study shows that a notable portion
of single-segment grounding questions can be an-
swered by shortcuts, for example, detecting key
objects instead of understanding temporal infor-
mation about events. We sample 50 questions of
single-segment grounding from E.T. Bench (Liu
et al., 2024a), and find that 30% of them can be
answered correctly through detecting objects re-
lated to queries, as shown in Table 1. Therefore,
we believe that, to improve temporal understand-
ing abilities of MLLMs, single-segment grounding
tasks are not enough.

In contrast, multi-segment grounding queries are
difficult to be answered by shortcuts, as shown in
Table 1. Thus, we add them to our training process.
We ensure the number of single-segment grounding
and multi-segment grounding queries are balanced,
and our selected data are diverse in scenarios.

4.2 Reward Design
4.2.1 Segment Matching Reward

Segment matching reward is designed to align
model outputs with groundtruths. It consists of
two parts, global matching and local matching, to
enhance model abilities of understanding overall
video contents, and grasping detailed events, re-
spectively.

Global matching is shown in upper left area of
Figure 3 (a). We measure the overlap ratio among
all the groundtruth segments {G;} and predicted
segments { P; }:
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Figure 3: Overview of MUSEG. (a) Our proposed segment matching reward (up) and timestamp reward (down). (b)
RL-based training process with phased rewards of MUSEG.

In the local matching process, we pair
groundtruths and predictions one-to-one as
(G, P} where N = max(|{Gi} |, | {P;})-
As shown in upper right area of Figure 3 (a), we
sort {G;} and { P;} according to their start times-
tamps, and match Gy with Py, where 1 < k <
min(|{G;}|, |{P;}|). For the rest of groundtruths
or predictions, we match them with empty seg-
ments ¢. We also explore other matching strategies
in Section 6.1. After matching, we assess each
prediction P, according to its paired groundtruth
G, We leverage GloU (Rezatofighi et al., 2019) in-
stead of IoU for the evaluation, which better guides
model optimization when the predicted video seg-
ment does not overlap with the groundtruth. We
calculate NGIoU, normalized GIoU whose value

s between 0 to 1: ]G P ’ ]C\(G Up )‘
NGIoU = — - n T n
° < TG ORI )

2)
where C is the shortest video segment covering G,
and P,. To encourage model outputs to be closer
to groundtruths, we impose a penalty when the
number of groundtruth segments does not match
the number of predicted segments. We define that
for any G or P:

NGIoU(G, ¢) = NGIoU(¢, P) =0 (3)

Finally, we calculate average NGIoU of all pairs:

SN NGIoU(Gy, P,)

r = S=l )
And the final segment matching reward is:
TG+ L
™= &)
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4.2.2 Timestamp Reward

Previous works (Feng et al., 2025; Yu et al., 2025)
reveal the importance of explicitly include tem-
poral information in reasoning process in video
comprehension. Unfortunately, how to stimulate
model ability of temporal-aware reasoning remains
a challenging problem.

To tackle this problem, we design the timestamp
reward rt to enforce models to include timestamps
which occur in the final answers in their thinking
processes. Suppose {7'% } and {7}, } are timestamps
occurring in the answer and reasoning process of a
model output, then

r = gy cqrgy ©)

where [ is indicator function. As shown in lower
part of Figure 3 (a), when all the timestamps occur-
ring in the answer are found in thinking process,
models get the reward. If some timestamps fails to
match, the reward is set zero. Through the times-
tamp reward, we encourage models to focus on
temporal details during reasoning instead of think-
ing purely based on overall video contents.

4.3 Training Recipe with Phased Rewards

Our GRPO training process involves three re-
wards in total. Besides two newly designed re-
wards introduced in Section 4.2, format reward
is also leveraged following DeepSeek-R1 (Guo
et al., 2025), enforcing models to output their
thinking processes and final answers in format
“<think>...</think><answer>...</answer>":



\ In Domain

\ Out of Domain

Model Charades-STA | THUMOS14 THUMOSIS5 Perception Test E.T. Bench E.T. Bench (Subset)
(Single-Seg) (Multi-Seg)  (Multi-Seg) (Multi-Seg) REF GND CAP COM AVG | REF GND CAP COM AVG
API-based Models
GPT-40 ‘ 25.1 ‘ 5.5 6.7 - ‘ - ‘ 374 165 11.6 6.8 18.1
Open-source ~7B Models
Qwen2.5-VL-7B 50.2 249 23.4 253 53.1 307 162 113 27.8 | 51.0 303 165 9.3 268
Qwen2.5-VL-7B+SFT 28.1 15.5 15.6 20.3 243 113 153 6.6 144 | 27.8 12,6 150 8.7 16.0
E.T. Chat 45.6 23.7 249 9.2 38.4* 38.0% 16.7* 13.5% 26.7 | 31.8*% 33.8* 17.1* 11.1* 235
TRACE-7B 29.9% - - - 33.6* 33.8* 20.3* 25.8* 28.4 - - - - -
Video-R1 11.3 3.5 34 5.7 503 253 156 124 259 | 492 222 156 128 250
VideoChat-R1 594 14.3 13.4 27.1 55.8 356 22.1 195 333 | 47.0 359 24.1 125 299
TimeZero 59.2 14.4 12.7 26.8 559 358 214 17.1 32,6 | 469 351 229 152 300
MUSEG-7B (Ours) 59.7 29.7 29.3 31.7 619 375 237 240 368 | 60.8 388 251 19.0 359
Open-source ~3B Models
Qwen2.5-VL-3B 41.4 126 12.8 19.4 51.7 204 13.6 80 234 | 529 204 127 76 234
TEMPURA 4.5 8.7 12.1 20.7 463 261 144 102 243 | 564 228 133 35 240
MUSEG-3B (Ours) 53.7 21.0 20.3 29.1 539 30.0 18.7 88 279 | 543 28.7 183 11.8 283

Table 2: Results of MLLMs on in-domain and out-of-domain tasks.

*Results are copied from original pa-

per. Detailed model versions are as followings: GPT-40: GPT-40-2024-11-20; Qwen2.5-VL-7B: Qwen2.5-VL-
7B-Instruct; Qwen2.5-VL-3B: Qwen2.5-VL-3B-Instruct. VideoChat-R1: VideoChat-R1-thinking; TimeZero:

TimeZero-Charades-7B.

{

Though the combination of these rewards is ex-
pected to assist models to establish temporally
grounded reasoning process, we still believe that
there is still room for models to find better reason-
ing patterns. Thus, we adopt a training recipe with
phased rewards, as shown in Figure 3 (b). In the
early training steps, we guide models to refer to
specific timestamps in their reasoning processes.
We include segment matching reward, timestamp
reward, and format reward:

r1 = ary + [Brr + (1 — B)rg]

1, if o; has right format

TF (7

0, otherwise

®)

In the latter training steps, we encourage models
to freely explore better forms of reasoning. Thus,
we remove timestamp reward, only keeping seg-
ment matching reward and format reward:

€))

Ty = Qrm + TR

Through the training process with phased re-
wards, we achieve greater performance enhance-
ment than solely using r; or 3 for the whole train-
ing. More analyses can be found in Section 6.2.

5 Experiments

5.1 Implementations

Our training dataset is constructed from E.T. In-
struct 164k (Liu et al., 2024a) and Charades-
STA (Gao et al., 2017). For E.T. Instruct 164Kk,
we only sample data from temporal video ground-
ing (TVG) and temporal action localization (TAL)
tasks. Our final training dataset consists of 12.6k
samples. There are 6967 samples with a single

segment, and 5633 samples with more than one
segments as groundtruths.

We train MUSEG-7B and MUSEG-3B based
on 7B and 3B versions of Qwen2.5-VL (Bai et al.,
2025). They are trained with timestamp reward
for 400 steps and without timestamp reward for
another 500 steps. We also conduct SFT experi-
ments on Qwen2.5-VL-7B-Instruct with our con-
structed dataset. Training details can be found in
Appendix A.

5.2 Baselines

We include SFT-based models and RL-based mod-
els as our baselines. For SFT-based models, we
include E.T. Chat (Liu et al., 2024a), TRACE (Guo
et al., 2024), and TEMPURA (Cheng et al., 2025a).
For RL-based models, we include Video-R1 (Feng
et al., 2025), VideoChat-R1 (Li et al., 2025b), and
TimeZero (Wang et al., 2025). We also report per-
formance of GPT-40 (Hurst et al., 2024) for refer-
ence. In consideration of inference costs, we do
not report results of GPT-40 on Perception Test and
the whole set of E.T. Bench. Only results on a sub-
set of 470 samples of E.T. Bench, specified by the
original paper, are reported. Detailed introductions
of our baselines can be found in Appendix B.

5.3 Benchmarks and Evaluation Metrics

We evaluate MUSEG-7B and MUSEG-3B on
grounding tasks (in domain) and broader time-
related tasks (out of domain). We use the test
set of Charades-STA (Gao et al., 2017) for single-
segment grounding, and mloU as evaluation met-
ric. We use the validation set of THUMOS14,
THUMOS15 (Idrees et al., 2017) and Perception



Multi-Segment Grounding You are given a video about human actions. Watch the video carefully and find all the visual events
belonging to the action category: ‘clean and jerk’.
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Groundtruth 5.4s 11.6s  13.0s 19.7s 21.4s 29.3s
4.2s 6.8s 7.55 10.3s 15.1s 18.6s 23.4s 27.5s

Qwen2.5VL-7B-Instruct
The action happensin 4.2 - 6.8, 7.5 - 10.3, 15.1 - 18.6, and 23.4 - 27.5 seconds.

4.0s 14.0s

VideoChat-R1-thinking
<think> The video shows a weightlifter performing the clean and jerk action. The clean and jerk is a compound weightlifting movement that involves lifting a
barbell from the floor to the shoulders and then pressing it overhead ... </think> <answer> 4.00 to 14.00 </answer>

5.0s 13.0s

TimeZero-Charades-7B
<think> The video shows a man performing weightlifting exercises, specifically the clean and jerk. The clean and jerk is a compound movement that involves
lifting a barbell from the floor to the shoulders and then pressing it overhead ... </think> <answer> 5.00 to 13.00 </answer>

4.5 12.0s 20.0s 30.0s

MUSEG-7B (Ours)
<think> The action happens in 4.50 - 12.00, 12.00 - 20.00, and 20.00 - 30.00. The person in the video is performing the clean and jerk weightlifting exercise,
lifting the barbell from the ground to their shoulders and then raising it overhead. </think> <answer> 4.50-12.00 12.00-20.00 20.00-30.00 </answer>

( . .
Referred Action Recognition Watch the video carefully and identify the action around 4.1 seconds by choosing from a set of options.
(A) drinking something from something (B) Opening something
(C) pouring something from something into something (D) pulling something.

Groundtruth: (B)

/QwenZ.SVL-7B-Instruct: (©)

VideoChat-R1-thinking: <think> The person is holding a bottle and a glass, and they are in the process of pouring the contents of the
bottle into the glass ... indicating that the person is pouring something. </think> <answer> (C) </answer>

TimeZero-Charades-7B: <think> The person is opening a bottle, which is a specific action that involves manipulating the cap of the
bottle. This action is clearly visible in the video, and it is the first step in the sequence of events. </think> <answer> (B) </answer>
MUSEG-7B (Ours): <think> The action at 4.1 seconds involves the person opening a bottle ... The person's hand movements and
the position of the bottle suggest that they are unscrewing the cap, aligning with the option of opening something ... The relevant
part of the video happens between 0.0 and 9.0 seconds, where the person's hand is seen moving towards the bottle cap, indicating the
action of unscrewing it ... The other options are less relevant ... </think> <answer> (B) </answer>

Figure 4: Cases of MUSEG-7B on multi-segment grounding (in domain) and referred action recognition (out of

domain) tasks.

Test (Patraucean et al., 2023) for multi-segment
grounding, and report F1 scores averaged among
IoU thresholds at four levels (0.1, 0.3, 0.5, and 0.7)
following Liu et al. (2024a). We evaluate model
generalization with various time-related tasks in
E.T. Bench (Liu et al., 2024a), including refer-
ring (REF), grounding (GND), dense captioning
(CAP), and complex understanding (COM). For
these tasks, we follow metrics of the original paper:
accuracy for referring, F1 score for grounding, sen-
tence similarity for dense captioning, and recall for
complex understanding tasks.

5.4 Main Results

As shown in Table 2, MUSEG-7B and MUSEG-3B
outperform other methods using SFT- or RL-based
methods on most in-domain and out-of-domain

tasks among all ~7B and ~3B models, and even
surpass GPT-40. Our method shows a significant
advantage over base models. MUSEG-7B achieves
more than 10% performance enhancement on all
the tasks compared to its base model Qwen2.5-VL-
7B-Instruct. And it is worth noting that our model
gets doubled performance on complex understand-
ing task, showing strong ability of generalization.

Video-R1 (Feng et al., 2025) does not include
time-sensitive tasks in its training process, result-
ing in a suboptimal performance on temporal un-
derstanding tasks. Although VideoChat-R1 (Li
et al., 2025b) and TimeZero (Wang et al., 2025) are
trained with single-segment grounding tasks, yield-
ing comparable single-segment grounding perfor-
mance with ours, they lag behind MUSEG-7B on
multi-segment grounding and other out-of-domain



E.T. Bench (Subset)

Charades-STA THUMOS14 THUMOSI15

Local Matching Strategy

\ \ REF GND CAP COM
w/o Local Matching 54.7 21.2 214 609 372 229 20.8
w/ Local Matching (Sequential) 57.0 27.7 26.6 59.1 374 238 19.9
w/ Local Matching (Maximum) 55.2 25.6 25.5 54.5 36.6 21.7 15.8

Table 3: Results with different matching strategies. For all the experiments, we train Qwen2.5-VL-7B with segment
matching reward, format reward and timestamp reward for 400 steps.
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Figure 5: Segment matching reward (a) w/o local matching, (b) w/ local matching (sequential), and (c) w/ local
matching (maximum). (d) Evolution of numbers of predicted segments during training process. For all the plots, we

only consider queries whose groundtruths are more than one segments.

tasks. This highlights the importance of incorporat-
ing multi-segment grounding into training tasks to
boost performance in time-sensitive scenarios.

5.5 Case Study

We show two cases to further demonstrate our
model performance in Figure 4.

The first case is a multi-segment grounding
task (in domain) with query “clean and jerk”.
VideoChat-R1-thinking and TimeZero-Charades-
7B only recognize the video segment correspond-
ing to the first attempt, consistent with the fact that
they are trained only with single-segment ground-
ing tasks. In contrast, MUSEG-7B accurately lo-
calizes all three weight-lifting attempts. The per-
formance gap highlights effectiveness of multi-
segment grounding training tasks.

The second case involves referred action recog-
nition (out of domain) query about event happen-
ing around 4.1 seconds. Seen from the video, the
person first opens the bottle, then pouring water
out from it. VideoChat-R1 incorrectly aligns the
event of pouring water from the bottle (occurring at
11 seconds) with a 4.1-second timestamp, demon-
strating a temporal misalignment in its reasoning.
TimeZero-Charades-7B provides the correct an-
swer but lacks precise timestamp references in its
explanation. In contrast, MUSEG-7B exhibits su-
perior temporal reasoning capability: it not only
identifies the bottle-opening action around 4.1 sec-
onds but also accurately localizes the correspond-
ing video segment.

6 Analyses
6.1 Local Matching Strategies

We delve deeper to verify effectiveness of local
matching in segment matching reward. We conduct
experiment of removing local matching, only keep-
ing global matching in training. Additionally, we
explore another design, which involves matching
groundtruths and predictions to maximize average
overlap of each pair. We do this by calculating max-
imum weighted matching in bipartite graph. For
groundtruth segments {G; } and predicted segments
{P;}, we construct a complete bipartite graph G:

G = ({Gi},{P;}, E), where

(10)
E = {NGIoU(g,p)|g € {Gi},p € {F;}}
then we calculate 7, as follows:
Matchi
= atching(G) (1)

max(|{Gi}[, {F;}])

where Matching(-) is the maximum weighted
matching function. Table 3 shows that including
local matching boost overall model performance
compared to only keeping global matching. Ad-
ditionally, sequential matching reaches better per-
formance than maximum matching, so we finally
adopt sequential matching in MUSEG.

We also notice that drops of model performance
on multi-segment grounding are much larger than
single-segment grounding when local matching is
removed. To better understand its reason, we exam-
ine differences in rewards model would get when



Training Paradigms

‘ Charades-STA THUMOS14 THUMOSI15

| E.T. Bench (Subset)

| REF GND CAP COM
w/o Timestamp Reward 56.9 28.4 28.3 55.1 37.6 223 13.2
w/ Timestamp Reward 57.3 26.1 24.6 573 289 220 16.1
w/ Timestamp Reward for 400 Steps 59.7 29.7 29.3 60.8 388 25.1 19.0
Table 4: Results with different training recipes.
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Figure 6: (a) Model performance with different training
recipes. For the setting of phased rewards recipe, we
train models with timestamp reward for 300 steps when
total steps are 600 and 700, for 400 steps when total
steps are 800 and 900. (b) Model performance when we
vary number of steps with timestamp reward, keeping
total steps to be 900. For all the experiments, we report
average score of Charades-STA, THUMOS 14 and THU-
MOSI15 as in-domain score, and average score of E.T.
Bench (Subset) as out-of-domain score.

it produces a single segment or at least two seg-
ments for a query whose groundtruth consists of
more than one segments. As shown in Figure 5
(a), (b), and (c), local matching strategies impose
significant penalties on segment matching rewards
when model output only contains a single segment,
but the penalties imposed by global matching are
relatively weak. We further report evolution of
numbers of predicted segments during training pro-
cess in Figure 5 (d). When we remove local match-
ing, numbers of predicted segments significantly
drop and their gaps from groundtruths become
larger. This indicates that local matching can help
better align numbers of predicted segments with
groundtruths.

6.2 Design of Phased Rewards

In this section, we explore the effectiveness of our
proposed training recipe with phased rewards. We
compare it with training model with or without
timestamp reward during the whole training pro-
cess in Table 4. From the table we can see that our
proposed recipe of training the model with times-
tamp reward for 400 steps and without timestamp
reward for another 500 steps reaches the highest
performance. We further change the total training

w/ Timestamp Reward w/ Timestamp Reward for 400 Steps

w/o Timestamp Reward A Timestamp Reward
Figure 7: Rewards with different training recipes. We
also report timestamp reward during training.

steps and report the results in Figure 6 (a). We can
see that our proposed recipe consistently outper-
forms other training strategies, showing effective-
ness over different data scales.

We also explore model performance when we
vary number of steps of keeping timestamp reward.
Figure 6 (b) demonstrates that when we train the
model with timestamp reward for 400 steps, its
performance reaches the peak. To further inves-
tigate the reason behind it, we examine values of
segment matching reward and timestamp reward
during training in Figure 7. Similarly, we observe
timestamp reward peaking around 400 steps. If
discarding after 400 steps, segment matching re-
ward continues rising, and finally surpassing other
training recipes. But if it is kept during the whole
training process, segment matching reward would
also drop after 400 steps. Removing restriction
of referring timestamps in thinking process in the
middle of training helps boost model performance.

7 Conclusion

In this work, we introduce MUSEG, a RL-based
method to improve video temporal understanding
abilities of MLLMs. Experiments demonstrate ef-
fectiveness of our method on improving model
performance on single-segment and multi-segment
grounding tasks, as well as broader time-sensitive
scenarios. We hope our proposed method will in-
spire future research on enhancing temporal under-
standing abilities of MLLMs.



Limitations

While our method demonstrates strong perfor-
mance, it is trained exclusively on temporal ground-
ing tasks. We believe that incorporating training
data from a wider range of time-sensitive tasks
could further improve the performance and gener-
alization capabilities of the trained model. Addi-
tionally, although our work primarily focuses on
time-sensitive scenarios, we believe that stronger
temporal reasoning abilities may also benefit gen-
eral video understanding tasks by enabling more
coherent and structured reasoning. We leave the ex-
ploration of how to transfer temporal reasoning ca-
pabilities to more general domains as future work.
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A Training Details

We leverage 7B and 3B models of Qwen2.5-
VL (Bai et al., 2025) series as our base models.
They are trained on large scale image and video
data and demonstrate strong instruction following
and reasoning abilities. Additionally, there are spe-
cial designs in Qwen2.5-VL to enable models to
process absolute timestamps and dynamic resolu-
tions of video frames. During training and infer-
ence of MUSEG-7B and MUSEG-3B, we set max-
imum total video tokens to be 3584 and maximum
number of frames to be 448.

We train MUSEG-7B and MUSEG-3B for 900
steps in total, including 400 steps with timestamp
reward and another 500 steps without timestamp re-
ward. We set batch_size = 14 and learning_rate =
le — 5. We set a = 2 in phase 1 and phase 2 re-
ward, and $ = 0.4 in phase 1 reward. Considering



that base models have been trained on temporal-
related data and already have strong abilities of
instruction-following, we do not include SFT stage
in our experiments as DeepSeek-R1 (Guo et al.,
2025).

B Baselines

We introduce our baselines in Table 2 in this sec-
tion. We categorize our baselines into SFT-based
methods and RL-based methods. We introduce
SFT-based models first:

E.T. Chat (~7B): It compresses video frames
into single tokens using a Q-Former-based com-
pressor with cross-attention, and generates times-
tamps with special tokens. It is trained on E.T.
Instruct 164k, a dataset covering 9 tasks across 14
sources.

TRACE (~7B): It is trained with a causal
event modeling framework, integrating timestamp,
salient score, and textual caption prediction tasks.
Its training data include 1.9M samples from Val-
ley, TextVR, ShareGPT4Video, and 0.9M samples
form ActivityNet Captions and InternVid.

TEMPURA (~3B): It is trained with masked
event prediction reasoning, event segmentation and
dense captioning tasks. Its training data consist of
500k samples.

Then we introduce RL-based models:

Video-R1 (~7B): It is trained by SFT with 165k
samples and RL with 260k samples. Its training
data consist of various general image question an-
swering and video question answering tasks.

VideoChat-R1 (~7B): It is trained with temporal
grounding, object tracking, video captioning and
grounded video question answering tasks, with a
total data scale of 18.0k samples.

TimeZero (~7B): It is trained towards tempo-
ral grounding tasks. One version of its models is
trained with Charades-STA (Gao et al., 2017).
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