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Abstract—Most traversability estimation techniques divide off-
road terrain into traversable (e.g., pavement, gravel, and grass)
and non-traversable (e.g., boulders, vegetation, and ditches)
regions and then inform subsequent planners to produce trajec-
tories on the traversable part. However, recent research demon-
strated that wheeled robots can traverse vertically challenging
terrain (e.g., extremely rugged boulders comparable in size to
the vehicles themselves), which unfortunately would be deemed
as non-traversable by existing techniques. Motivated by such
limitations, this work aims at identifying the traversable from the
seemingly non-traversable, vertically challenging terrain based
on past kinodynamic vehicle-terrain interactions in a data-
driven manner. Our new Traverse the Non-Traversable (TNT)
1 traversability estimator can efficiently guide a downstream
sampling-based planner containing a high-precision 6-DoF kino-
dynamic model, which becomes deployable onboard a small-scale
vehicle. Additionally, the estimated traversability can also be used
as a costmap to plan global and local paths without sampling.
Our experiment results show that TNT can improve planning
performance, efficiency, and stability by 50%, 26.7%, and 9.2%
respectively compared with a state-of-the-art off-road navigation
method on a physical robot platform.

I. INTRODUCTION

Autonomous navigation in off-road environments is an
exciting frontier in robotics research. Its ever-growing appli-
cations in search and rescue, planetary exploration, mining,
and agriculture warrant extensive research and development in
off-road robot mobility. The unpredictable nature of off-road
terrain combined with the high risk of catastrophic failures
presents significant challenges for mobile robots. Navigating
through vertically challenging terrain with wheeled robots [1]
in particular can cause robots to flip over, become airborne, or
get stuck on the underlying terrain, especially if the obstacles
are comparable in size to the robots themselves.

Most existing navigation systems classify off-road terrain
into traversable and non-traversable spaces [2]. Robots then
employ path and motion planners to traverse on the traversable
terrain, usually composed of free spaces on top of stable
ground with minimal slope, to safely reach the goal. How-
ever, in extremely challenging or time-critical missions, solely
planning within traversable regions may not be possible or
effective. Traversable terrain may not exist and limiting plans
to only traversable regions can lead to overly conservative
paths and delays in mission completion. In such scenarios,
more aggressive and risky maneuvers through so-called non-
traversable terrain may be necessary to achieve timely results.

Recent work on wheeled mobility has shown that even con-
ventional wheeled vehicles have untapped potential to achieve
impressive mobility on vertically challenging terrain [1, 3, 4],
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Fig. 1: Guided by our TNT traversability estimator, a sampling-
based motion planner with a high-precision kinodynamic
model quickly converges to safe trajectories on vertically chal-
lenging terrain (bottom, colored traversability map), whereas
without the TNT traversability map the planner gets stuck at
exploring completely non-traversable area (top, white boulder
on the black-white elevation map).

with only minimal hardware requirements such as all-wheel
drive, independent suspensions, and differential locking. This
extended capability highlights that with the right combination
of hardware and navigation strategies, even simple wheeled
robots can overcome obstacles that were previously deemed
non-traversable by state-of-the-art autonomous navigation sys-
tems. Apart from end-to-end learning [1], another way to
explore the possibility of traversing previously non-traversable
terrain is through 6-DoF kinodynamic modeling to predict
vehicle-terrain interaction and sampling-based planning to roll-
out potential future trajectories for evaluation [3, 4]. However,
to deploy such methods robots must perform continuous and
high-volume sampling across all terrain on any potential future
paths. This process involves numerous queries to a complex
kinodynamic model to estimate traversability through a set
of high-precision, multi-step 6-DoF trajectory rollouts. Such
a combination is computationally demanding for resource-
limited mobile robots.

In this work, we introduce Traverse the Non-Traversable
(TNT), a terrain traversability estimator for previously non-
traversable, vertically challenging terrain. Based on a terrain
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elevation map, TNT generates a traversability map using previ-
ous vehicle-terrain interactions, including roll and pitch angles,
discrepancy in vehicle command execution and kinodynamic
model prediction. Instead of sampling the entire terrain eleva-
tion map and potentially getting stuck on a local optima, TNT
filters out obviously non-traversable terrain in advance and
allows a motion planner to only explore potentially traversable
(while seemingly non-traversable) regions so as to quickly
converge to a globally optimal plan. While TNT can guide
sampling-based planners like MPPI [5] to improve sample
efficiency, it can also be used as a costmap to plan both
global and local paths through vertically challenging terrain
without sampling. Our physical experiments show that our
TNT traversability estimation method can enable both a state-
of-the-art sampling-based planner with a high-accuracy 6-
DoF kinodynamic model and a search-based planner using
a traversability cost function to traverse previously non-
traversable, vertically challenging terrain. TNT achieves up to
50%, 26.7%, and 9.2% improvement in success rate, traversal
time, and vehicle stability compared with a state-of-the-art
method [3].

II. RELATED WORK

Much of the work on off-road navigation originated from
the DARPA Grand Challenge [6] and the LAGR [7] program.
Research and development in this field have inspired roboti-
cists to push the boundaries of hardware [4, 8], perception [9,
10, 11, 12], planning [13, 14, 15, 16, 17], modeling [3, 18,
19, 20, 21], control [5, 22], and learning [22, 23, 24, 25, 26]
in robotics. In this section, we briefly discuss related work to
TNT in terms of traversability estimation and sampling-based
planning.

A. Terrain Traversability Estimation

Beyond simple obstacle avoidance, accurate terrain
traversability estimation is essential for safe and efficient
navigation on off-road terrain. Numerous studies have ex-
plored various approaches to this problem, e.g., learning from
vehicle-terrain interactions [27, 28] and using a kinodynamic
model [29] to identify traversable paths and avoid obstacles.
Recent works have leveraged both geometric [30] and se-
mantic [31, 32, 33] modalities for scene understanding and
predicting environment elements [34] beyond the perception
range. Castro et al., [35] estimated terrain traversability using
Bird’s Eye View (BEV) images and height maps, supervised
by pseudo-ground truth cost derived from IMU data. The
resulting costmap guides the robot towards traversable paths.
While simpler approaches, such as classifying terrain as
traversable or non-traversable [36, 37], have proven effective
on flat off-road terrain, estimating traversability on vertically
challenging terrain requires a more nuanced approach that
extends beyond the simple binary classification. Furthermore,
real-time decision-making is also crucial during deployment
to ensure safe and efficient navigation. Sampling-based plan-
ners require continuous planning to facilitate convergence to
optimal paths hence requiring quick traversability estimation.

Roadrunner [38] achieves this by fusing sensor information
with pre-trained image segmentation into a unified BEV rep-
resentation.

Recent research has demonstrated the importance of ac-
counting for both aleatoric uncertainty, which arises from
partial observability [39, 40], and epistemic uncertainty, which
stems from model distribution shift [41, 42]. While Endo
et al. [43] focused solely on slip predictions for epistemic
uncertainty, this limited scope proves insufficient for more
complex, vertically challenging environments. EVORA [44]
presented a more comprehensive approach to traversability
estimation by introducing a terrain traction model based on
the ratio of commanded to realized velocities while also
incorporating both aleatoric and epistemic uncertainties. This
makes EVORA closely aligned with TNT, particularly in using
commanded and realized velocity measurements and consider-
ation of epistemic uncertainty to address terrain traversability
challenges.

B. Sampling-based Planners

Sampling-based planners have proven to be effective tools
for finding optimal paths through complex terrain. While many
of these planners operate successfully in 2D spaces, navigating
challenging off-road environments often necessitates planners
that can operate in SE(3) [45] to generate agile trajectories in
cluttered environments.

Search-based motion planners [4, 46] use a determinis-
tic approach to explore the configuration space. When the
heuristic is well-defined, planners like A* [47] and Dijkstra’s
are optimal. However, in an off-road environment, the high-
dimensional configuration space makes achieving optimal per-
formance with these planners very computationally expensive.
This is where sampling-based planners [48, 49] have an
advantage, as they explore the space flexibly by randomly
sampling configurations. With the recent development of using
a GPU [5, 50] to parallelize sampling, researchers have grav-
itated towards sampling in high volumes in the configuration
space.

While sampling-based planners excel at efficiently finding
solutions in complex off-road scenarios, they often suffer
from a short planning horizon and lead to sub-optimal paths
due to computation constraints. Guided planners [49] have
emerged as a promising solution to this challenge. By lever-
aging information gained from the environment [51], these
planners predict what is beyond the planning horizon to
prevent exploration of non-traversable regions and enable risk-
aware [52, 53, 54, 55] planning in uncertain environments.
Similarly, TNT can assist these planners by guiding their
sampling region to only (potentially) traversable spaces.

III. APPROACH

Our hypothesis for the TNT estimator is that traversability
is a simplified form of complex kinodynamic modeling. Prior
works have shown that 6-DoF kinodynamic models in SE(3)
are necessary for vertically challenging terrain [1, 3, 4], which
take into account current robot state, action, and underlying



Fig. 2: TNT Overview. Based on terrain patches p on the
elevation map Ei, three predictors produce roll and pitch
angles , velocity discrepancy (µ∆v, σ∆v), and pose predic-
tion discrepancy (µ∆q, σ∆q), which are combined by w1,
w2, and w3 to generate patch-wise traversability values; All
traversability values form a traversability map Tmi, which
a map-wise traversability map estimator (eη(·)) learns to
reconstruct based on terrain patch Ei.

terrain patch beneath the robot to determine the next robot
state. A full-scale 6-DoF model, while being precise, cannot
be efficiently queried many times in a sampling-based mo-
tion planner to reveal the optimal solution through vertically
challenging terrain. The key insight of TNT is that certain
terrain patches, regardless of robot state and action, will
induce undesired robot next state, i.e., being non-traversable.
Identifying such terrain patches can limit the sampling space
of sampling-based motion planners to only focus on potentially
traversable areas in order to find the optimal motion plan to
navigate through, or can serve as a costmap for search-based
planners without sampling.

Therefore, TNT aims to identify how (non-)traversable a
terrain patch is regardless of robot state and action. We
separate TNT into two stages: patch-wise traversability value
generation and map-wise traversability map reconstruction.
The former generates traversability value labels for the latter,
which can be queried in real time onboard mobile robots
(Fig. 2).

A. Patch-Wise Traversability Value Generation

With the aforementioned simplification, TNT first estimates
the traversability value of a terrain patch underneath the robot
footprint regardless of robot state and action. The traversability
value thus becomes a distribution over different robot states
and actions. For vertically challenging terrain, we devise
three intermediate metrics to comprise the final traversability
value of a terrain patch p: (1) amplitude of roll and pitch
angles, (2) velocity discrepancy in terms of the difference
between commanded and actual vehicle velocities, and (3)

pose prediction discrepancy in terms of the difference between
predicted (based on a full 6-DoF model) and actual vehicle
poses (from internal or external state estimation).

Fig. 3: Roll and Pitch Model.

1) Roll and Pitch Angles:
Two most frequent failure
reasons on non-traversable
vertically challenging ter-
rain are vehicle rollover and
getting-stuck due to exces-
sive roll and pitch angles
respectively. Therefore, the
first component of the patch-wise traversability value is the
amplitude of roll and pitch angles on a terrain patch based on
a quasi-static physics-based model. The roll and pitch angles
are estimated based on the elevation value hi of the terrain
patch pixel under each vehicle wheel i using trigonometry:

roll, pitch =
1

2
∥

∑
(i,j)∈Iroll,pitch

(
arctan

(
hi − hj
di,j

))
∥, (1)

where di,j is the distance between the wheels i, j, and the
subscript sets for roll and pitch are Iroll = {(1, 4), (2, 3)}
(Fig. 3 left) and Ipitch = {(1, 2), (4, 3)} (Fig. 3 right),
respectively. Notice that Eqn. (1) only considers the terrain
patch, not vehicle state and action, and the physics model is
deterministic.

2) Velocity Discrepancy: The intuition for the second com-
ponent of the patch-wise traversability value is that less
traversable terrain usually causes more significant discrepancy
in terms of vehicle velocities. Particularly, we use the differ-
ence between commanded and actual vehicle velocities:

∆v = vcommanded − vactual,

where v = (v, ω) includes the linear and angular velocities of
the vehicle. However, such a difference is dependent on the
robot state and action. For example, if the vehicle is already
traveling at a high speed, a steep slope won’t cause too much
difference between a high velocity command and the actual
vehicle speed; However, a stationary vehicle starting on a
steep slope with a high velocity command will cause a large
difference. Therefore, an elevation map cannot uniquely de-
termine the value of such differences, but rather a distribution
over them. For example, extremely rugged terrain will cause
a high probability of a large difference, while on a flat ground
such a difference is mostly small. So the velocity discrepancy
estimator is devised as:

(µ∆v, σ∆v) = ∆velθ(p), (2)

where µ∆v, σ∆v are the mean and standard deviation of
the difference in linear (∆v) and angular (∆ω) velocity,
whereas the estimator ∆velθ(·) is parameterized by learnable
parameters θ.

Given a dataset of ground truth D∆v = {∆vi, pi}Ni=1 =
{(∆vi,∆ωi), pi}Ni=1 computed by the difference between the
outputs of a vehicle state estimator (e.g., internal Visual-
Inertial Odometry or external GPS-RTK or motion capture



system) and velocity commands, we represent ∆velθ(·) as a
learnable neural network and learn the parameters θ using a
negative log likelihood loss:

LD∆v =
∑

{∆vi,pi}
∈D∆v

1

2

(
log(σ∆v

i

2
(pi)) +

(µ∆v
i (pi)−∆vi)

2

σ∆v
i

2
(pi)

)
.

(3)
3) Pose Prediction discrepancy: The last component of the

patch-wise traversability value is based on the intuition that
it is more difficult to predict vehicle pose on less traversable
terrain due to the more complex vehicle-terrain interactions.
Therefore, we employ an existing kinodynamic model to
predict the pose on a terrain patch qpredicted and compare it
against the actual pose on that patch qactual:

∆q = qpredicted − qactual.

Pose q can include a 6-DoF vehicle state, i.e., x, y, z,
roll, pitch, and yaw, and/or their higher-order derivatives.
Since pose prediction using a forward kinodynamic model
is iterative, the predicted x and y components are highly
dependent on yaw, so including yaw is redundant in terms
of discrepancy. Furthermore, the discrepancy in height z does
not provide significantly more insight compared to other pose
components. Hence, in our implementation, we use the most
informative components x, y, roll, and pitch (Fig. 2). Similar to
Eqn. (2), for pose prediction discrepancy, we employ another
data-driven estimator:

(µ∆q, σ∆q) = ∆poseϕ(p), (4)

parameterized by learnable parameters ϕ. Another negative
log likelihood loss, similar to Eqn. (3) but with the ∆v
components replaced by ∆q, is used to learn ϕ in Eqn. (4):

LD∆q =
∑

{∆qi,pi}
∈D∆q

1

2

(
log(σ∆q

i

2
(pi)) +

(µ∆q
i (pi)−∆qi)

2

σ∆q
i

2
(pi)

)
.

In our implementation, we use the Terrain-Attentive Learning
(TAL) model [3] with 25-step prediction to produce qpredicted.

4) Final Traversability Value: To determine the final
traversability value for the terrain patch p, we combine the
roll and pitch prediction in Eqn. (1), the velocity discrepancy
in Eqn. (2), and pose prediction discrepancy in Eqn. (4):

Traversability(p) =

w1 · [roll, pitch]T +w2 · [µ∆v, σ∆v]T +w3 · [µ∆q, σ∆q]T ,
(5)

where w1, w2, and w3 are weight vectors of different
dimensions to prioritize roll and pitch prediction, velocity
discrepancy, and pose prediction discrepancy, along with their
internal components, e.g., roll and pitch, linear and angular
velocities, and 6-DoF pose dimensions.

B. Map-Wise Traversability Map Reconstruction

In principle, the patch-wise traversability value generation
can be directly used during deployment, i.e., estimating the
traversability of each terrain patch of interest, e.g., along the
sampled vehicle trajectories to compute trajectory traversal
costs. However, deploying all three models (Eqns. (1), (2),
and (4)) on each terrain patch located at and aligned with
every vehicle state along hundreds or thousands of sampled
trajectories is extremely computational intensive and therefore
would defeat the purpose of traversability estimation (consider
one could rather query the high-precision 6-DoF kinodynamic
model for trajectory cost estimation [3]). Therefore, we use
patch-wise traversability value generation to generate training
data to learn a more efficient map-wise traversability map
estimator. When moving through vertically challenging terrain,
upcoming elevation maps in front of the robot are updated
using onboard sensors (e.g., RGB-D camera or 3D LiDAR)
and vehicle odometry at a low frequency (e.g., 2Hz). Our
traversability map estimator takes as input updated elevation
maps, and produces traversability values for each elevation
pixel in the form of a traversability map.

During training, we collect a variety of elevation maps
{Ei}Mi=1. On each elevation map Ei, we sample many terrain
patches pj by varying the position indices, m ∼ {1, 2, ...,H}
and n ∼ {1, 2, ...,W}, and orientation angle, ψ ∼ Ψ, where
H and W are the height and width of Ei and Ψ is the
set of candidate angles (e.g., Ψ = {−π

2 ,−
π
4 , 0,

π
4 ,

π
2 }). We

then acquire pm,n,ψi = g(Ei,m, n, ψ) with function g(·, ·, ·, ·)
producing the patch centered at (m,n) aligned with ψ on
Ei. For each pm,n,ψi , we query the three estimators for roll
and pitch (Eqn. (1)), velocity discrepancy (Eqn. (2)), and
pose prediction discrepancy (Eqn. (4)) in order to compute
the traversability value Trm,n,ψi for pm,n,ψi (Eqn. (5). For
each pixel (m,n) in Ei, we define the pixel value on the
traversability map as:

Tmm,n
i =

1

|Ψ|
∑

∀ψ∈Ψ

Trm,n,ψi , (6)

i.e., the traversability map pixel value Tmm,n
i at position

(m,n) is averaged over all traversability values Trm,n,ψi at
all possible vehicle orientations ∀ψ ∈ Ψ. All individual
Tmm,n

i ,∀m,n compose the full traversability map Tmi. For
each elevation map Ei and traversability map Tmi, we train a
traversability map encoder eη(·) with learnable parameters η,
in order to minimize a traversability map reconstruction loss:

η∗ = argmin
η

M∑
i=1

∥eη(Ei)− Tmi∥. (7)

eη(·) will be used online to produce Tmi when a new elevation
map Ei is available to guide a sampling-based planner or serve
as a costmap for a search-based planner.

IV. EXPERIMENTS

In this section, we present our experiment results of the TNT
traversability estimator. We visualize the TNT traversability



map and show that search-based planners like A* can be
used to find the most traversable path. We also use TNT in
a sampling-based motion planner with a high-precision 6-
DoF kinodynamic model and demonstrate improved sample
efficiency and navigation performance.

A. Implementations

1) Robot, Testbed, and Data: We implement TNT on the
Verti-4-Wheeler (V4W), an open-source, 1/10th-scale robotic
platform [1]. V4W is equipped with advanced mobility fea-
tures, including a low-high gear switch and lockable front
and rear differentials, which enhance its performance on ver-
tically challenging terrain. The perception system comprises a
Microsoft Azure Kinect RGB-D camera, while an OptiTrack
motion capture system provides odometry data during train-
ing data collection only, but not for experiments. Real-time
elevation mapping is facilitated by an open-source tool [56],
which processes depth input from the Azure Kinect camera.
Computational tasks are managed by an onboard NVIDIA
Jetson Orin NX computer.

To facilitate experimentation, we construct a scaled testing
environment. The testbed consists of hundreds of rocks and
boulders, measuring 3.1 m×1.3 m with a maximum height of
0.6 m. This environment is highly reconfigurable, allowing for
a wide range of experimental scenarios.

The dataset collected on a V4W robot [1] for traversability
estimation encompasses human-teleoperated vehicle controls
(throttle and steering commands), elevation maps derived from
depth images [56], and odometry data from the motion capture
system for vehicle state estimation. To ensure comprehensive
coverage, the dataset includes a diverse range of 6-DoF robot
states, with particular emphasis on capturing maximum roll
and pitch conditions. Additionally, the robot is operated at
varying speeds within the same rock configuration to gather
data for velocity discrepancy estimation. The resulting dataset
consists of 70,816 individual elevation maps and 139 minutes
of vehicle teleoperation on the rock testbed.

2) Architectures: The prediction models for velocity dis-
crepancy and pose prediction discrepancy consist of a com-
bination of a 7-layer Convolutional Neural Network (CNN)
followed by three fully connected layers with the output
dimensions of four (mean and standard deviation of linear
and angular velocity, v and ω) and eight (mean and standard
deviation of x, y, roll, and pitch) respectively (Fig. 2).

The map-wise traversability map estimator consists of a 4-
layer CNN with residual connections to encode the elevation
map. The encoding is passed through a 3-layer convolution
transpose followed by upsampling to construct a 14-channel
map of size 320×260, including two channels for roll and
pitch, four for velocity discrepancy, and eight for pose predic-
tion discrepancy. This traversability map estimator is the final
model used during deployment to generate the traversability
map in real-time onboard the robot. The final traversability
map is generated by calculating a weighted sum of all 14
channels, whose weights are manually tuned.

Fig. 4: Traversability Map Generated by TNT. The color
gradient represents traversability, with blue areas indicating
easily traversable terrain and red areas signifying challenging
or non-traversable regions. The overlaid path represents the
optimal route calculated by the A* algorithm.

B. Traversability Map Visualization and A* Planning

We showcase an example of the traversability map produced
by our TNT traversability estimator in Fig. 4. Despite the
vertical challenges caused by the rocks and boulders, TNT is
able to effectively discern the obviously non-traversable terrain
patches from the potentially traversable ones, providing crucial
terrain information to downstream mobility tasks, like path
planning and motion control. Using the traversability map, we
demonstrate that simple search-based planners, such as A*,
are able to plan the most traversable path through vertically
challenging terrain, without considering vehicle dynamics.

To be specific, we first down-sample the final traversability
map to a 31×25 grid using a convolution filter to average the
pixel values. Then, the A* algorithm can efficiently compute
the optimal path from the robot position to the goal location,
minimizing both the traversability cost and Euclidean distance.
The A* path can be converted to desired robot positions to be
tracked by downstream local planners or controllers, such as
the DWA planner [46] or a PID controller.

C. Physical Experiments

We integrate TNT with a sampling-based motion planner,
MPPI [50], and deploy it on a physical V4W robot. To address
vertically challenging terrain, the MPPI planner employs a
state-of-the-art, high precision 6-DoF kinodynamic model,
TAL [3], to minimize a cost function considering vehicle
trajectories in SE(3). Previous work [3] demonstrated the
computational difficulty in rolling out a large amount of 6-
DoF trajectories with high variance using TAL to cover a
large portion of the state space, which potentially includes
the globally optimal trajectory, thereby compromising real-
time planning and navigation performance. In fact, it has been
shown that despite its higher kinodynamics accuracy, such
a difficulty limits TAL’s performance to that of a simplified
6-DoF model decomposed into a planar Ackerman, roll and
pitch prediction, and elevation value model, i.e., the WMVCT
model and planner [4]. Considering that such a limitation
partially motivates TNT (Fig. 1), we showcase the importance



of efficiently biasing the sampling distribution of MPPI using
TNT to more efficiently utilize the high-precision, but also
high-computation TAL model.

Specifically, we denote the MPPI planner with the TAL
model as TAL, whereas TNT indicates that they are augmented
by TNT. We also compare with the WMVCT model and planner,
denoted as WMVCT. Table I shows the experiment results on
a randomly created test course on the vertically challenging
testbed (Fig. 5 left).

As shown in Table I , TNT achieves better success rate
and traversal time compared to TAL and WMVCT. This is
because MPPI without TNT is only guided by the accurate
6-DoF vehicle trajectories produced by the slow TAL model,
which must rely on a long horizon in order to rollout until
reaching certain terrain patch to determine its cost based on
SE(3) vehicle state. Thus, the requirement on long horizon
limits the sample number and variance to a low value due to
onboard computation limitation. The robot then lacks efficient
anticipation of all possibilities of future paths to explore
traversable terrain while preventing completely non-traversable
areas. On the other hand, due to the rich traversability in-
formation provided by TNT, MPPI can plan with a shorter
horizon but still anticipate what is coming up ahead, since all
such information has already been efficiently distilled into our
traversability map during training. Therefore, TNT helps MPPI
to converge faster to regions that are more traversable. Guided
by the TNT traversability map, MPPI can rollout a smaller
amount of shorter trajectories with a faster convergence time,
but still quickly discover the most promising future vehicle
trajectory to traverse through the vertically challenging terrain.
Similar to the results reported by prior work [3], WMVCT
performs similarly or better compared to TAL with a less
accurate decomposed 6-DoF kinodynamic model, thanks to
the efficient model query time.

We also report the changes in roll and pitch angles, as
well as in throttle and steering commands resulted by the
three methods. TNT achieves the lowest average and variance
across all four metrics, demonstrating a very stable navigation
behavior. In most cases, TAL is less stable than WMVCT,
except change in roll. The smaller change values in all
these four metrics achieved by TNT indicate that the MPPI
planner guided by TNT is able to efficiently find traversable
paths, without wasting computation and movement effort on
exploring undesired, less traversable areas.

D. Outdoor Demonstration

In addition to the indoor physical experiments on the
vertically challenging testbed, we also demonstrate that TNT
can be deployed in an outdoor off-road environment. The
natural outdoor off-road environment is filled with pebbles,
rocks, and boulders of a wide range of sizes. Grass, mulch,
and gravel are also present next to the rocks. TNT is still able
to produce accurate traversability maps to guide subsequent
MPPI planner to traverse through previously non-traversable,
vertically challenging terrain (Fig. 5 right).

TABLE I: Experiment Results of TNT, TAL and WMVCT:
success rate, mean traversal time (of successful trials), mean
absolute roll and pitch angles, and mean changes in roll, pitch,
throttle, and steering.

TNT TAL WMVCT

Success Rate ↑ 9/10 6/10 8/10
Traversal Time ↓ 17.6s±2.64s 24.0s±9.88s 21.1s±24.90s
Absolute Roll ↓ 6.6°±7.0° 9.4°±24.6° 8.3°±11.9°
Absolute Pitch ↓ 8.2°±7.4° 6.9°±10.9° 8.8°±10.7°

∆ Roll ↓ 0.51°±1.03° 0.63°±6.07° 0.97°±1.6°
∆ Pitch ↓ 0.53°±0.68° 0.080°±1.3° 0.57°±1.08°

∆ Throttle ↓ 0.042±0.15 0.065±0.34 0.053±0.31
∆ Steering ↓ 0.071±0.24 0.153±0.38 0.087±0.23

Fig. 5: TNT Indoor Experiments and Outdoor Demonstration.

V. CONCLUSIONS

We present Traverse the Non-Traversable (TNT), a
traversability estimation framework that addresses the limi-
tations of traditional traversability estimation techniques that
struggle to identify traversable areas on vertically challenging
terrain. The TNT traversability estimator, leveraging data-
driven insights from past kinodynamic vehicle-terrain inter-
actions and a physics-based model, enables robots to nav-
igate areas that are deemed non-traversable by traditional
traversability estimators. By integrating TNT with a high-
precision kinodynamic model and a sampling-based motion
planner, or by utilizing it as a costmap for path planning,
significant improvements in planning performance, efficiency,
and stability have been demonstrated on a physical robot
platform. This work paves the way for robots to traverse previ-
ously inaccessible environments, expanding their operational
capabilities across various domains.

Despite TNT’s efficacy in estimating terrain traversability
from a purely geometric perspective, i.e., from 2.5D eleva-
tion maps, one interesting future direction is to incorporate
semantics into the traversability estimator. Grass, mulch, mud,
and gravel will exhibit different traversability, although they
may look similarly to rocks and boulders in a geometric
sense. Terrain granularity and deformability also need to be
considered to comprehensively evaluate traversability.
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