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ABSTRACT

Recently, large-scale Contrastive Language-Image Pre-training (CLIP) (Radford
et al., 2021) has attracted unprecedented attention for its impressive zero-shot
recognition ability and excellent transferability to downstream tasks. However,
CLIP is quite data-hungry and requires 400M image-text pairs for pre-training,
thereby restricting its adoption. This work proposes a novel training paradigm,
Data efficient CLIP (DeCLIP), to alleviate this limitation. We demonstrate that by
carefully utilizing the widespread supervision among the image-text pairs, our De-
CLIP can learn generic visual features more efficiently. Instead of using the single
image-text contrastive supervision, we fully exploit data potential through the use
of (1) self-supervision within each modality; (2) multi-view supervision across
modalities; (3) nearest-neighbor supervision from other similar pairs. Benefiting
from these intrinsic supervision, our DeCLIP-ResNet50 can achieve 60.4% zero-
shot top1 accuracy on ImageNet, which is 0.8% above the CLIP-ResNet50 while
using 7.1× fewer data. Our DeCLIP-ResNet50 outperforms its counterpart in 8
out of 11 visual datasets when transferred to downstream tasks. Moreover, Scaling
up the model and computing also works well in our framework. Our code, dataset
and models are released at: https://github.com/Sense-GVT/DeCLIP

1 INTRODUCTION

Over the last few years, pre-trained models have greatly revolutionized computer vision (CV) and
natural language processing (NLP). The first wave of exploring pre-trained models took place in the
field of CV. Deep convolutional neural nets (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
He et al., 2016) are pre-trained on well-labeled ImageNet (Deng et al., 2009) and then transferred
to downstream CV tasks (Girshick et al., 2014; Long et al., 2015; Vinyals et al., 2015). Standardly,
CV models are pre-trained to predict a fixed set of pre-defined object categories, e.g., 1000 classes
in ImageNet. However, this supervised pre-training is hard to scale since we need arduous human
labeling to specify new visual concepts.

When pre-training meets NLP, the intrinsic supervision within the natural language makes the pre-
training more scalable (Devlin et al., 2018; Radford et al., 2019; Brown et al., 2020). Witnessing
the progress in NLP, researchers use natural language supervision to learn visual features. The
language-image pre-training can scale up to a very large size, benefiting from abundant image-text
pairs on the Internet. For instance, CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) adopt
the contrastive loss to push the embedding of matched image-text pairs together while pushing those
of non-matched pairs apart. They achieve prestigious performance by learning from an enormous
dataset that contains 400M/1B image-text pairs. However, these methods also require huge storage
and computing resources, which is not affordable for most laboratories and companies. We argue
∗The first three authors contribute equally. The order is determined by dice rolling.
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Figure 1: Zero-shot performance of CLIP-
ResNet50 and our DeCLIP-ResNet50 when us-
ing different amounts of data. (88M, 62.5%) de-
notes the use of 88M data with top-1 accuracy
62.5% on the ImageNet-1K validation dataset.
Our model has much better data efficiency.

C DeC
71

72

73

74

75

73.3
73.8

ImageNet1k

C DeC
68

69

70

71

72

70.3

71.2

CIFAR100

C DeC
94

96

98

100

96.1

99.2
FLOWERS

C DeC
86

87

88

89

90

88.2
88.7

PETS

C DeC
87

88

89

90

91

88.7

89.8

CIFAR10

C DeC
70

71

72

73

74
73.3

72.8

SUN

C DeC

82

84

86
86.4

82.7

FOOD101
C DeC

78

80

82

78.3

81.7

CARS

C DeC

90

92

94

89.6

93.9

CALTECH

C DeC
46

47

48

49

50
49.1

48.4

AIRCRAFT
C DeC

74

75

76

77

78

76.4
76.8

DTD

C DeC
77

78

79

80

81

79.1

79.9

Average

Figure 2: Transfer the DeCLIP-ResNet50 (abbr.
as DeC) and CLIP-ResNet50 (abbr. as C) to 11
downstream visual datasets using linear probe
verification. Our DeCLIP achieves better results
in 8 out of 11 datasets.

that these prior arts only use the single image-text contrastive supervision while overlooking the
widespread supervision within the pairs, thus is inefficient.

Firstly, there underlies rich structural information within each modality itself (LeCun & Misra,
2021). We can tweak some words/pixels in a sentence/image while retaining a similar semantic
meaning. This sort of self-supervision can be exploited to learn a more common-sense representa-
tion for each modality (Devlin et al., 2018; He et al., 2020; Chen et al., 2020a). Moreover, inspired
by contrasting multi-crops in an image (Caron et al., 2020), we further extend the multi-view 1 su-
pervision into our multi-modality setting. Specifically, each image is paired with multiple textual
descriptions obtained via stochastic augmentations, vice versa. The benefit is intuitive: this auxiliary
multi-view supervision brings more invariant and robust information.
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Figure 3: Examples of Nearest
Neighbor from Conceptual Cap-
tions dataset.

Besides these overlooked supervision, we propose a novel
nearest-neighbor (NN) supervision from other similar pairs.
This NN supervision is mainly based on the intuition
that one image is likely to have other similar text de-
scriptions among the dataset. As shown in right fig-
ure, the image with the text ’going to see a lot of
vintage tractors this week’ can also be described
by ’vintage at tractors a gathering’. For this
reason, we sample the NN in the embedding space and uti-
lize them as additional supervisory signals. Aggregating these
supervision leads to our novel training paradigm DeCLIP,
which stands for Data efficient Contrastive Language-Image
Pretraining.

Extensive experiments show the effectiveness and efficiency of
our DeCLIP. As shown in Fig. 1, with a ResNet50 image encoder and a Transformer text encoder,
our model can achieve 60.4% zero-shot top1 accuracy on ImageNet, which is 0.8% above the CLIP-
ResNet50 while using 7.1× fewer data. Using only 88M image-text pairs, our best ResNet50/ViT-
B32 models boost the zero-shot performance to 62.5% and 66.2%, nearly 3.0% higher than the best
number reported for these two architectures. We further verify the transferability of our models on
downstream tasks. As indicated in Fig. 2, our DeCLIP-ResNet50 outperforms its counterpart in 8
out of 11 visual datasets. Moreover, Scaling up the model and computing also works well in our
framework. Using 4.5× fewer data, our DeCLIP-RegNetY-64GF achieves 73.7% zero-shot Ima-
geNet top1 accuracy, which is on-pair with CLIP-R50×64. Pre-trained models, code, and datasets
shall be released to the community. The contributions are summarized as follows:

1View is originally a visual concept. For simplicity, we use the same term for language.
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• To the best of our knowledge, this is the first work to study self-supervision and cross-modal
multi-view supervision in the million-scale image-text pre-training task. Our work opens a new
direction to fully exploit the intrinsic supervision within the multi-modal data instead of scaling
up data naively.

• We propose novel cross-modal Nearest-Neighbor Supervision (NNS) to harness information from
other similar pairs. The NNS can also be regarded as a semantic-level augmentation.

2 RELATED WORK

2.1 PRE-TRAINED MODELS

The critical idea of pre-training is to first extract general knowledge implicitly from the massive
amount of data and then transfer the knowledge to versatile downstream tasks (Han et al., 2021). Big
NLP models (Devlin et al., 2018; Brown et al., 2020) yield unprecedented performance via learning
from tremendous language data over the Internet and labor-free supervision within the language
itself. In the field of CV, supervised pre-training on ImageNet is still the standard practice. While
achieving great success on downstream CV tasks (Girshick et al., 2014; Long et al., 2015; Vinyals
et al., 2015) , this supervised manner is hard to scale. To address this challenge, our DeCLIP learns
directly from image-text pairs that are abundant across the Internet. More importantly, by exploiting
the widespread supervision within the pairs, our DeCLIP is more data-efficient than the prior art.

2.2 SUPERVISION WITHIN DATA

Language supervision Joulin et al. (2016); Gomez et al. (2017); Zhang et al. (2020); Sariyildiz
et al. (2020); Desai & Johnson (2021) demonstrate the effectiveness of learning transferable visual
features from language supervision. Pioneering work CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021) achieve prestigious performance via learning from 400M/1B image-text pairs. We are
following these two works to improve their data efficiency.

Relevant concurrent work including: SLIP Mu et al. (2021) introduces self-supervision to CLIP.
FILIP Yao et al. (2021) leverages the finer-grained alignment between image patches and textual
words. OTTER Wu et al. (2021); Cheng et al. (2021) uses online entropic optimal transport to find
a soft image-text match as labels to mitigate the noise within the dataset.

Visual self-supervision Our work is also highly related to self-supervised learning (SSL) (LeCun &
Misra, 2021). Contrastive learning, as a pretext task of SSL, has achieved remarkable success in vi-
sual representation learning (He et al., 2020; Chen et al., 2020a; Caron et al., 2020; Grill et al., 2020;
Chen et al., 2020a). Researchers also extend contrastive learning into multi-modal settings (Yuan
et al., 2021). However, it is only limited to a small COCO dataset (Yuan et al., 2021).

Nearest-neighbor supervision Recently, researchers have exploited nearest-neighbor supervision
to learn visual features (Dwibedi et al., 2021; Van Gansbeke et al., 2021). They find that using
nearest-neighbor as positive samples in the contrastive loss improves the performances on multi-
ple downstream tasks. However, they mainly focus on the single visual modality pretraining on
relatively small datasets, such as ImageNet. We propose novel nearest-neighbor supervision for
multi-modal learning to harness information from other similar pairs.

2.3 MULTI-MODAL LEARNING

Most vision-language models Chen et al. (2020b); Lu et al. (2019); Li et al. (2020) use a bunch of
cross-modal transformers to fuse and align the information between text and image. These methods
either need an off-the-shelf object detector to extract region features or dedicated cross-modal trans-
former layers, significantly hindering their scalability. Our DeCLIP, by contrast, uses a simple yet
effective two-tower framework with multi-modal interaction only at the top. Moreover, this series of
models (Radford et al., 2021; Jia et al., 2021; Huo et al., 2021) can perform zero-shot recognition,
adapting to new categories with no seen labeled data. Shen et al. (2021) also shows that the pre-
trained CLIP model can significantly benefit the downstream VQA and image caption tasks. Our
DeCLIP is supposed to be compatible with more modalities, e.g., acoustic signals (Akbari et al.,
2021). More modalities included, more correlated supervision are expected to be exploited.
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(a) CLIP & ALIGN (b) DeCLIP
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Figure 4: (a) CLIP and ALIGN jointly train an image encoder and a text encoder to predict the
correct pairings of a batch of (image, text) training examples. (b) Our DeCLIP overview. 1 means
Self-Supervision(SS). For image SS, we maximize the similarity between two augmented views
of the same instance. For text SS, we leverage Masked Language Modeling(MLM) within a text
sentence. 2 represents cross-modal Multi-View Supervision(MVS). We first have two augmented
views of both image and text, then contrast the 2 × 2 image-text pairs. 3 indicates Nearest-
Neighbor Supervision(NNS). We sample text NN in the embedding space to serve as additional
supervision. The combination of the three supervision leads to efficient multi-modal learning.

3 APPROACH

In this section, we first revisit CLIP and denote some basic concepts, such as image-text contrastive
supervision (i.e., the InfoNCE loss). Next, we present the overview of our DeCLIP framework. Then
we introduce every auxiliary supervision: Self-Supervision(SS), Multi-View Supervision(MVS),
and Nearest-Neighbor Supervision(NNS).

3.1 REVISITING CLIP

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) aims to learn directly from
the raw text about images. They use a dual-encoder architecture as in Fig. 4(a). The model con-
sists of an image encoder (e.g., CNN (He et al., 2016) or ViT (Dosovitskiy et al., 2020)) and a
text encoder(e.g., Transformer (Vaswani et al., 2017) or its variants (Radford et al., 2019)), with a
multimodal interaction at the top. The image and text features are projected to the same dimension
and followed by L2 normalization before interaction. At the training phase, a contrastive objective
pushes the embeddings of matched image-text pairs together while pushing those of non-matched
pairs apart. In a batch of N image-text pairs {(xI

i ,x
T
i )}, we denote xI

i and xT
i as image and text of

the ith pair. Let zI
i and zT

j be the normalized embedding of the ith image and jth text, respectively.
CLIP uses InfoNCE loss (Oord et al., 2018). The loss for the image encoder can be denoted as Eq. 1.

LI = − 1

N

N∑
i=1

log
exp(sim(zI

i , z
T
i )/τ)∑N

j=1 exp(sim(zI
i , z

T
j )/τ)

(1)

Here, the similarity function sim(, ) is measured by dot product, and τ is a learnable temperature
variable to scale the logits. We have a symmetrical loss for image and text encoder, thus the overall
loss function LCLIP is the average of LI and LT .

At the test phase, the learned text encoder synthesizes a zero-shot linear classifier by embedding the
arbitrary categories of the test dataset. Because it is rare in the dataset that image caption is just
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a single word, CLIP uses prompts to make up the context of the category {label}, such as "a
photo of a {label}". Unless otherwise specified, we use the same prompt engineering and
ensembling techniques as CLIP. Details can be found in Appendix E.

3.2 OVERVIEW OF DECLIP

As shown in Fig. 4(b), our DeCLIP has three additional supervisory signals.

1 We first use existing methods to exploit image and text Self-Supervision (SS) within its modality.
For image SS, we adopt the simple yet effective SimSiam (Chen & He, 2021). The objective is to
maximize the similarity between two augmented image features. For text SS, we adopt the most
widely used Masked Language Modeling (MLM) (Devlin et al., 2018) as the pre-text task. We be-
lieve other kinds of self-supervised learning algorithms (e.g. MoCo (He et al., 2020), SimCSE (Gao
et al., 2021) are orthogonal with our framework.

2 While SS only focuses on a single modality, we further propose cross-modal Multi-View Su-
pervision (MVS). We apply stochastic data augmentations for both images and texts, resulting in
two correlated views1 of each example. Then, the image-text contrastive loss is calculated for all
the 2 × 2 pairs. Worth mentioning, the original CLIP does not use text augmentations and only
uses random square crop image augmentations, thereby is data-hungry. The extension is instinctive
and straightforward. Specifically, we contrast the 2 × 2 pairs and resulting in 3× more additional
supervision.

3 We also propose novel Nearest-Neighbor Supervision (NNS) mined in embedding space to make
better use of similar text descriptions among the dataset. In detail, we maintain a first-in-first-out
feature queue that is representative of the whole data distribution. We use the nearest-neighbor
search in embedding space to get the semantically similar text descriptions. Then we use the image-
text contrastive loss to get additional supervision.

3.3 SUPERVISION EXISTS EVERYWHERE
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Figure 5: Self-Supervision with each
modality. We adopt SimSiam and
MLM for image and text SS.

Self-Supervision within each modality Following Sim-
Siam (Chen & He, 2021) (depicted in Fig 5(a)), we first have
two augmented views (xI , x̃I ) for each image. These two
views are sent to the image encoder (weights are shared be-
tween views). We also use the popularized nonlinear predic-
tor module, which is typically a 2-layer MLP, to improve the
representation quality in the encoder (Chen et al., 2020a).
The objective is to maximize the similarity between z̃I and
pI , which is a negative cosine similarity in this paper. To
avoid the trivial “collapsing” solution, we follow (Chen &
He, 2021) to adopt a stop-grad technique.

As shown in Fig. 5(b), we follow the method in BERT (De-
vlin et al., 2018) for our text self-supervision. In detail, we
first randomly choose 15% of all tokens in each sequence.
Then the token is replaced with (1) the [mask] token 80%
of the time (2) a random token 10% of the time (3) the un-
changed token 10% of the time. Then, the output of the lan-
guage module for the corresponding token is used to predict
the original token with cross-entropy loss.

Multi-View Supervision The authors only contrast the original text (w/o augmentation) with a
single ‘global view’ of the image in the original CLIP. However, the text annotation of the im-
age might not describe the whole picture, instead depicts a small local view of this image. For
instance, as shown in the image with the text "a cute white cat" in Fig. 4, the central con-
cept (cat) only occupies a small part of the picture. To mitigate this discrepancy, we get a closer
look at the local region and utilize it as our auxiliary supervision, as shown in the augmented view
in Fig. 4(b). This intuitive idea is akin to the successful Multi-crop transformation (Caron
et al., 2020; Van Gansbeke et al., 2021) in image SSL. We further extend it into the multi-modal
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setting. More specifically, we reuse the two image views introduced in SS, which contains the
RandomResizedCrop policy to obtain a small local view. For text, as our goal is to understand
the overall semantic meaning of a sentence, we adopt text classification augmentation EDA (Wei
& Zou, 2019) to generate two text views. Besides the original contrastive loss between (zI , zT ),
we can contrast (zI , z̃T ), (z̃I , zT ) and (z̃I , z̃T ), leading to 3× diverse and high-quality additional
supervision. More conveniently, they are naturally compatible with the image-text contrastive loss
as denoted in Eq. 1.

Feature Queue
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Figure 6: Nearest-Neighbor Supervision.
zT

′
is the NN of feature zT in the embed-

ding space. zT
′

will serve as an additional
objective for zI . We use the feature-level
nearest neighbor for the text descriptions
as the supervision.

Nearest-Neighbor Supervision As shown in Fig 3,
one image is likely to have other similar text descrip-
tions among the dataset. To harness the information
from other pairs and go beyond single pairs, we propose
using nearest-neighbor (NN) to obtain more diverse su-
pervision. More formally, we aim to find the NN fea-
ture zT

′
of text feature zT in the embedding space. The

distance between two features could be measured by a
simple cosine similarity. It is infeasible to search NN
in the whole million-scale dataset. Thus, we maintain
a FIFO queue Q to simulate the whole data distribu-
tion. The size of Q is 64K in our implementation. As
shown in Fig. 6, we further get the contrastive loss be-
tween (zI , zT

′
). Since there are two augmented image

features, we also calculate the contrastive loss between
(z̃I , zT

′
). Fortunately, NNS is also compatible with

Eq. 1.

In summary, we denote LISS and LTSS as the loss
function of image SS and text SS, respectively. LMV S

is multi-view loss, and LNNS is nearest-neighbor loss. We have the overall loss function of our
DeCLIP as in Eq. 2.

LDeCLIP = (1− α− β − γ)LCLIP + α(LISS + LTSS) + βLMV S + γLNNS (2)

4 EXPERIMENTS

4.1 DATASETS

Table 1: Details of DeCLIP pre-training datasets.

DATASET TRAINING SIZE

CLIP (RADFORD ET AL., 2021) 400M
ALIGN (JIA ET AL., 2021) 1.8B

CC (SHARMA ET AL., 2018) 3M
CC-12M (CHANGPINYO ET AL., 2021) 11M
YFCC (THOMEE ET AL., 2016) 15M
DECLIP OPEN-SOURCE DATA 29M

DECLIP WEB-CRAWLED DATA 59M
DECLIP FULL DATA 88M

Pre-training datasets We summarize our
pre-training dataset as in Tab. 1. Our DeCLIP
full data consists of two parts: open-source data
and web-crawled data. The open-source data
comes from three different datasets: Concep-
tual Captions (CC3M) (Sharma et al., 2018),
Conceptual 12M (CC12M) (Changpinyo et al.,
2021), and YFCC (Thomee et al., 2016). Worth
mentioning, due to the download failure or non-
English caption, we do not obtain the com-
plete data for these datasets. We further use the
YFCC15M query to crawl about 59M filtered
web data on the Internet, together with open-source data to form the 88M DeCLIP full pre-training
dataset. More details can be seen in Appendix C.

Downstream datasets We assess our model performances in a wider variety of distributions and
tasks. Following the CLIP (Radford et al., 2021), we evaluate the image encoder transferability on 11
widely used downstream datasets, such as Food-101, CIFAR-10, etc. To conduct a fair comparison,
the metric and division for each dataset that can be collected are consistent with those of CLIP. More
details of downstream datasets can be found in Tabel 6 of Appendix D.

6



Published as a conference paper at ICLR 2022

Table 2: Zero-shot top1 accuracy on ImageNet. Our DeCLIP shows great data-efficency.

METHOD IMAGE ENCODER # PARAMS TRAINING SIZE ZERO-SHOT TOP1 ACC.

CLIP† RESNET50 24M 88M 56.9
CLIP RESNET50 24M 400M 59.6

DECLIP RESNET50 24M 88M(↓ 4.5×) 62.5(↑ +2.9)
CLIP RESNET101 42M 400M 62.2

CLIP† VIT-B/32 88M 88M 57.4
CLIP VIT-B/32 88M 400M 63.2

DECLIP VIT-B/32 88M 88M(↓ 4.5×) 66.2(↑ +3.0)

CLIP RESNET50×64 291M 400M 73.6
DECLIP REGNETY-64GF 276M 88M(↓ 4.5×) 73.7(↑ +0.1)
† OUR REIMPLEMENTATION.

4.2 EXPERIMENTS SETUP

Network architectures Following CLIP, we first consider two different architectures for the im-
age encoder: a modified version of ResNet50 (Radford et al., 2021) and ViT-B/32 (Dosovitskiy et al.,
2020). The text encoder is a Transformer (Vaswani et al., 2017) with the architecture modifications
described in Radford et al. (2019). The image and text features are projected to the same 1024
dimension, followed by L2 normalization before interaction. Benefiting from the rapid progress
of large CV models, we further scale up our model. Our largest model is a RegNetY-64GF (Ra-
dosavovic et al., 2020; Goyal et al., 2021) image encoder with a BERT (Devlin et al., 2018) text
encoder, which is on-pair with the largest CLIP-R50×64 model.

Pre-training setup For a fair comparison with CLIP, we train our DeCLIP-ResNet50 and
DeCLIP-ViT-B/32 from scratch for 32 epochs. Unless otherwise specified, we use full data, i.e.,
88M image-text pairs, to obtain the best performance. The input resolution of the image encoder is
224 × 224, and the maximum context length of the text encoder is 76. The learnable temperature
parameter τ is initialized to 0.07. The loss weights of additional supervision α, β and γ are all set
to 0.2. More details can be found in Appendix C.

Downstream evaluation setup We evaluate our model transferability by performing linear clas-
sification on frozen features, i.e., the pre-trained image encoder is fixed and serves as a feature
extractor. After feature extraction, we train the linear classifier with the L-BFGS optimizer as the
same in Radford et al. (2021).

4.3 MAIN RESULTS

Zero-shot recognition on ImageNet After pre-training, we use natural language to refer to visual
concepts enabling the zero-shot ability of our model. As shown in Fig. 1, our DeCLIP-ResNet50
consistently outperforms the CLIP-ResNet50 across all dataset sizes. When the data amount reaches
56M (29M open-source + 27M web-crawled), our model can achieve 60.4% accuracy, 0.8% above
the CLIP-ResNet50, while using 7.1× fewer data. As described in Tab. 2, with our full data, our
best ResNet50/ViT-B32 models boost the zero-shot performance to 62.5% and 66.2%, nearly 3.0%
higher than the best number reported for these two architectures. Moreover, our DeCLIP-ResNet50
is even 0.3% better than CLIP-ResNet101, revealing the effectiveness and efficiency of our frame-
work. Scaling up model capacity works in our framework as well. Our biggest DeCLIP-RegNetY-
64GF achieves 73.7% accuracy, which is 0.1% above CLIP ResNet50×64 with fewer parameters.

Downstream evaluation results We report our linear probe performance on 11 downstream
datasets in Tab. 3. Our DeCLIP-ResNet50 outperforms its CLIP counterpart in 8 out of 11 datasets,
with a 0.8% average improvement. There are some datasets that our models perform worse than
CLIP models, such as SUN and Food101. We conjecture that this is caused by the different dis-
tribution of the pre-trained dataset. Interestingly, our ResNet50 and ViT-B/32 models might have
distinct performance on several datasets, such as Pets and Aircraft. We infer that these two types
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Table 3: Linear probe performance on 11 downstream datasets. There are some abbreviations.
C10/100 is CIFAR10/100. F101 is Food101. Flow is Flowers. Cal is Caltech. Air is Aircraft. IN
is ImageNet. Our DeCLIP models achieve higher average accuracy over 11 datasets.
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Table 4: Ablation on additional supervision.
SS/MVS/NNS denotes Self-Supervision,
Multi-View Supervision and Nearest-
Neighbor Supervision, respectively.

CLIP MVS SS NNS ZERO-SHOT

X × × × 20.6
X X × × 24.8(↑ +4.2)
X X X × 25.4(↑ +4.8)
X X X X 27.2(↑ +6.6)
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Figure 7: Ablation on pre-training cost on
CC3M dataset. The proposed method performs
better with less training time.

of neural networks might have different data preferences, i.e., different feature extraction capacities
when they meet the same data.

4.4 ABLATION STUDY

Ablation on additional supervision In order to understand the effectiveness of each additional
supervision, we conduct an ablation study as indicated in Tab. 4. We follow the DeCLIP-ResNet50
protocol in the pre-training setup except for a smaller 1024 batch size on a smaller CC3M dataset.
The single image-text contrastive supervision (CLIP) results in 20.6% zero-shot top1 accuracy on
ImageNet. We can observe that MVS boost amazing 4.2% improvement over the original CLIP.
As discussed in Sec. 3.3, the benefits might come from two sides: 1). the MVS can look at a
small local view of an image which might be a better fit with the text description. 2). 2 × 2
augmented views can provide 3× diverse and high-quality additional supervision, thus leading to
more robust representations. SS can further contribute an additional 0.6% improvement on the basis
of MVS. We believe SS could bring more improvements with proper dedicated SSL methods. NNS
further brings 1.8% improvement on the high basis of SS. We will discuss more about NNS at
Sec. 4.5. On the YFCC15M dataset, our DeCLIP using full additional supervision gets significant
effect improvement, Appendix F shows the details.

Ablation on training cost Since we need to encode twice for each image-text pair, we admit
our DeCLIP needs a higher training cost than CLIP. Regarding the training time, one DeCLIP it-
eration equals 1.5× CLIP iteration. In this ablation, we train the original CLIP-ResNet50 longer
than our DeCLIP-ResNet50. As shown in Fig. 7, longer 64 epochs training can bring about 1.1%
improvement. However, our model has 27.2% top1 accuracy, which is still 5.3% higher than the
time-equivalent CLIP. It reveals that our framework can extract richer and more representative fea-
tures through our proposed supervision. We also include memory usage ablation in Appendix F.

4.5 ANALYSIS

Class activation maps We try to understand what renders our DeCLIP effective. As shown in
Fig. 8, we visualize the class activation maps (CAM) (Zhou et al., 2016) of different models trained
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Figure 8: Class activation maps (CAM) for the CLIP vs. our DeCLIP model trained on the YFCC
dataset. The CAMs of our model segment the complete object, while the CLIP model only looks
at a few components.
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Figure 9: Nearest neighbor samples from different datasets. As we can see, the NN pair is very
similar to the original pair, thus it can provide high-quality supervision.

on the YFCC dataset. The results validate that the proposed method learns more representative
features with the aid of multiple supervision.

Nearest neighbor samples In Fig 9, we show some nearest neighbor (NN) samples from different
datasets. The first row is the original image-text pair, while the second row is the NN pair. In general,
we can see that the texts have similar intellectual meanings. Therefore, the NN pair can provide
high-quality supervision. When taking datasets into consideration, the matching performs very well
in well-filtered datasets, such as CC3M and CC12M. This matching might be a little worse in more
noisy datasets, such as YFCC and web-crawled, but it can still provide some beneficial guidance.

5 CONCLUSION

This paper introduces DeCLIP, a Data efficient Contrastive Language-Image Pre-training paradigm.
Our goal is to learn visual representations through the use of broader and scalable supervision.
Specifically, instead of using the single image-text contrastive supervision, we fully exploit data
potential through the use of (1) self-supervision within each modality; (2) multi-view supervision
across modalities; (3) nearest-neighbor supervision from other similar pairs. Experimentally, De-
CLIP shows superior effectiveness and efficiency with different types of neural nets(CNN and ViT)
and different amounts of data. We hope our work could bring insights about exploiting the multi-
modal data.
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A PSEUDO CODE OF DECLIP

The training pseudo code of DeCLIP is as follows:

Algorithm 1 DeCLIP

Input: I , Ĩ , T , T̃ , image encoder, text encoder, Feature Queue
1: function BATCH-UPDATING(I , Ĩ , T , T̃ )
2: # Get The Features of The Current Batch.
3: If , Ĩf ← image encoder(I), image encoder(Ĩ)

4: Tf , T̃f ← text encoder(T ), text encoder(T̃ )
5: TNN ← NEAREST-NEIGHBOR(Feature Queue, Tf )
6:
7: # Calculate The losses.
8: LCLIP ← INFONCE-LOSS(If , Tf )
9: LSS ← IMAGE-SS-LOSS(If , Ĩf ) + TEXT-SS-LOSS(Tf )

10: LMV S ← INFONCE-LOSS(If , T̃f ) + INFONCE-LOSS(Ĩf , Tf ) + INFONCE-LOSS(Ĩf , T̃f )
11: LNNS ← INFONCE-LOSS(Ĩf , T̃NN )
12: LDeCLIP ← (1− α− β − γ)LCLIP + αLSS + βLMV S + γLNNS

13:
14: # Update The Network.
15: image encoder ← BACKWARD-UPDATE(image encoder, LDeCLIP )
16: text encoder ← BACKWARD-UPDATE(text encoder, LDeCLIP )
17: Feature Queue← FIFO-UPDATE(Feature Queue, Tf )
18: end function
19:
20: function IMAGE-SS-LOSS(If , Ĩf )
21: z, z̃ ← image encoder.proj(If ), image encoder.proj(Ĩf )
22: p, p̃← image encoder.pred(z), image encoder.pred(z̃)
23: z, z̃ ← z.detach(), z̃.detach()
24: # Calculate the Negative Cosine Similarity loss.
25: LImage−SS ← NCS(p, z̃)/2 +NCS(p̃, z)/2
26: return LImage−SS

27: end function
28:
29: function TEXT-SS-LOSS(Tf )
30: # Get The Masking GT when performing the text-encoder.
31: Wf ,Wgt ← Tf .word feat, Tf .mask id
32: Wpred ← text encoder.pred(Wf )
33: # Calculate the Cross-Entropy loss.
34: LText−SS ← CE(Wgt,Wpred)
35: return LText−SS

36: end function

B DATA AUGMENTATION

Details of SS The image SS uses SimSiam (Chen & He, 2021) method as the image self-
supervision. The prediction module is a 2-layer MLP, in which the hidden dimensions are 512
and output dimensions are 1024, the projection module is a 3-layer MLP, in which the hidden and
output dimensions are both 1024. The text SS uses the Masked Language Model (Devlin et al.,
2018) as the pretext task. In detail, we first randomly choose 15% of all tokens in each sequence.
Then the token is replaced with (1) the [mask] token 80% of the time (2) a random token 10% of
the time (3) the unchanged token 10% of the time.

Image augmentations The augmentation policy includes: RandomResizedCrop with scale
in [0.2,1.0] (Wu et al., 2018), ColorJitter containing {brightness, contrast, saturation, hue}
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strength of {0.4, 0.4, 0.4, 0.1} with an applying probability of 0.8, RandomGrayscale with an
applying probability of 0.2. Blurring augmentation (Chen et al., 2020a) has a Gaussian kernel with
std in [0.1, 2.0], and RandomHorizontalFlip.

Text augmentations We use the EDA (Wei & Zou, 2019) method as our text augmentation strat-
egy, which contains three types of text augmentation strategies: synonym replacement, random
swap, and random deletion. Each text will randomly select one of these three types for text augmen-
tation.

C PRE-TRAINING DATASETS & IMPLEMENTATION DETAILS

Open-source data. Conceptual Captions (Sharma et al., 2018) is a 3.3 M image caption open-
source data. Due to the failure of the download link, we only download about 3M data(CC3M).
Conceptual 12M (Sharma et al., 2018) contains approximately 12M of image-text pairs(CC12M),
which is larger than the CC3M and covers a more diverse set of visual concepts. Also, due to the
failure of the download link, we only download about 11M data. YFCC (Thomee et al., 2016), the
Yahoo Flickr Creative Commons 100M data, is a dataset for vision language tasks. We download
about 86.5M data from the YFCC website and use four filtering rules to filter the DeCLIP YFCC15M
dataset to benchmark against CLIP YFCC15M. The four rules are: filtering data with damaged
images, filtering data without the caption, filtering data with a caption English word ratio less than
0.8, filtering data with a caption only including one part of speech.

Web-crawled data. We use the user tags and machine tags of YFCC15M to form a tag list, and
use WordNet (Miller, 1995) to find synonyms for each tag in the tag list to form a synonym tag list.
The tag list and synonym tag list form a query list. Then we use the query list to crawl images from
the Internet, after filtering data with smaller images, filtering data with damaged images, filtering
data without the caption, and filtering data with Chinese in the caption, we collect 59M web crawled
data. Tabel 5 shows the source link of pre-training datasets, and Figure 10 shows some cases random
sampled from each dataset.

Table 5: The source link of DeCLIP pre-training datasets.

DATASET DATASET API

CONCEPTUALCAPTIONS HTTPS://AI.GOOGLE.COM/RESEARCH/CONCEPTUALCAPTIONS
CONCEPTUAL12M HTTPS://GITHUB.COM/GOOGLE-RESEARCH-DATASETS/CONCEPTUAL-12M
YFCC HTTP://PROJECTS.DFKI.UNI-KL.DE/YFCC100M
GOOGLE HTTPS://WWW.GOOGLE.COM.HK

Implementation details We train DeCLIP-ResNet50 (abbr. as R50) and DeCLIP-ViT-B/32 (abbr.
as V-B32) from scratch for 32 epochs. For R50, we use the FP16-SGD optimizer with the batch size
of 10,240 (128×80). Starting with an 0.01 learning rate (lr), we first linearly increasing the lr to 0.2
(a.k.a warm-up) in one epoch. Then we use cosine anneal lr decay to decrease the lr. The weight
decay is set to 0.0001. For V-B32, we use a hybrid FP16-AdamW-SGD optimizer with bacth size
10,240(128×80). For the ViT image encoder, we use AdamW optimizer with the lr warming up
from 1e-4 to 1e-3 in one epoch. The weight decay is set to 0.05. For the text encoder, we use the
SGD optimizer with the lr warming up from 1e-3 to 0.02 in one epoch. The weight decay is set to
1e-4.

Pre-training cost Our R50 and V-B32 took 8/10 days to train on 80 V100 GPUs, respectively. Our
largest DeCLIP-RegNetY-64GF took 21 days on 160 V100 GPUs, while the largest CLIP-R50×64
from (Radford et al., 2021) spent 18 days on 592 V100 GPUs.
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Dictionary 10th 

Edition”

“Daube de Boef 
Provencale a 

most tender and 
aromatic Beef”

“Sticky honey 
miso-glazed 

salmon recipe”

“Utterly Mystifying 
Information About 
Manx Cats - Cat 

Appy”

“Grey Eames 
Chair 3D model | 

CGTrader”

“Cash Box 
Money Drawer 
Market Sales | 

Etsy”

“Streets of downtown 
Munich- The tram Munich, 

S Bahn, Bus Coach, 
Tramway, Light Rail, 

Bavaria Germany, Emu, 
Public Transport, Trains”

(a)

(b)

(c)

(d)

Figure 10: Example image-text pairs randomly sampled from the training dataset. (a) Conceptual
Captions, (b) YFCC, (c) Conceptual 12M, (d) Web-crawled.

D DOWNSTREAM DATASETS & IMPLEMENTATION DETAILS

Downstream data. We begin with the 12 datasets from the well-studied evaluation suite intro-
duced by Kornblith et al. (2019). Within these 12 datasets, Birdsnap can not be downloaded, and
PASCAL VOC 2007 classification is replaced by more challenging ImageNet-1K, resulting in our
11 datasets. They are: Food-101, CIFAR-10, CIFAR-100, SUN397, Stanford Cars, FGVC Aircraft,
Describable Textures, Oxford-IIIT Pets, Caltech-101, Oxford Flowers 102. Tab. 6 is the detailed
information of these datasets.

Table 6: Details of DeCLIP downstream datasets.

DATASET CLASSES TRAIN SIZE TEST SIZE EVALUATION METRIC

CIFAR10 10 50,000 10,000 ACCURACY
CIFAR100 100 50,000 10,000 ACCURACY
FOOD-101 101 75,750 25,250 ACCURACY
OXFORDIIIT-PETS 37 3,680 3,669 MEAN PER CLASS
OXFORD 102 FLOWERS 102 2,040 6,149 MEAN PER CLASS
SUN 397 19,850 19,850 ACCURACY
STANFORD CARS 196 8,144 8,041 ACCURACY
DTD 47 3,760 1,880 ACCURACY
CALTECH-101 102 3,060 6,085 MEAN PER
FGVC AIRCRAFT 100 6,667 3,333 MEAN PER CLASS
IMAGENET1K 1000 1,281,167 50,000 ACCURACY
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Implementation details We follow CLIP (Radford et al., 2021) to train a logistic regression clas-
sifier using L-BFGS, with maximum 1,000 iterations, and report the corresponding metric for each
dataset. We determine the L2 regularization strength λ using a hyperparameter sweep on the val-
idation sets over the range between 10−6 and 106, with 96 logarithmically spaced steps. To save
compute required for the sweeps, we perform a parametric binary search that starts with λ = [10−6,
10−4, 10−2, 1, 102, 104, 106] and iteratively halves the interval around the peak until it reaches a
resolution of 8 steps per decade. The hyperparameter sweeps are performed on a validation split of
each dataset. For the datasets that contains a validation split in addition to from the test split, we use
the provided validation set to perform the hyperparameter search, and for the datasets that do not
provide a validation split or have not published labels for the test data, we split the training dataset
to perform the hyperparameter search and report the performance on the validation data.

E PROMPT ENGINEERING

Due to the reason that it’s relatively rare in the dataset for the text to be a single word, we use
prompts such as "a photo of a {label}" for zero-shot classification. For a fair comparison,
we use the same prompts as proposed in Radford et al. (2021) for the ImageNet dataset. As shown
in Fig 11, the prompts reduce the domain gap between the training dataset and testset, and fully
consider the different situations for the picture.

a bad photo of a {label}.
a photo of many {label}.
a sculpture of a {label}.
a photo of the hard to see {label}.
a low resolution photo of the {label}.
a rendering of a {label}.
graffiti of a {label}.
a bad photo of the {label}.
a cropped photo of the {label}.
a tattoo of a {label}.
the embroidered {label}.
a photo of a hard to see {label}.
a bright photo of a {label}.
a photo of a clean {label}.
a photo of a dirty {label}.
a dark photo of the {label}.
a drawing of a {label}.
a photo of my {label}.
the plastic {label}.
a photo of the cool {label}.

a close-up photo of a {label}.
a black and white photo of the {label}.
a painting of the {label}.
a painting of a {label}.
a pixelated photo of the {label}.
a sculpture of the {label}.
a bright photo of the {label}.
a cropped photo of a {label}.
a plastic {label}.
a photo of the dirty {label}.
a jpeg corrupted photo of a {label}.
a blurry photo of the {label}.
a photo of the {label}.
a good photo of the {label}.
a rendering of the {label}.
a {label} in a video game.
a photo of one {label}.
a doodle of a {label}.
a close-up photo of the {label}.
a photo of a {label}.

the origami {label}.
the {label} in a video game.
a sketch of a {label}.
a doodle of the {label}.
a origami {label}.
a low resolution photo of a {label}.
the toy {label}.
a rendition of the {label}.
a photo of the clean {label}.
a photo of a large {label}.
a rendition of a {label}.
a photo of a nice {label}.
a photo of a weird {label}.
a blurry photo of a {label}.
a cartoon {label}.
art of a {label}.
a sketch of the {label}.
a embroidered {label}.
a pixelated photo of a {label}.
itap of the {label}.

a jpeg corrupted photo of the {label}.
a good photo of a {label}.
a plushie {label}.
a photo of the nice {label}.
a photo of the small {label}.
a photo of the weird {label}.
the cartoon {label}.
art of the {label}.
a drawing of the {label}.
a photo of the large {label}.
a black and white photo of a {label}.
the plushie {label}.
a dark photo of a {label}.
itap of a {label}.
graffiti of the {label}.
a toy {label}.
itap of my {label}.
a photo of a cool {label}.
a photo of a small {label}.
a tattoo of the {label}.

Figure 11: The prompts for zero-shot testing.

F ADDITIONAL STUDY

Table 7: DeCLIP zero-shot performance of ImageNet top1 on different training datasets.

BACKBONE DATASET DATA SIZE BATCH SIZE ZERO-SHOT

RESNET50 CONCEPTUALCAPTIONS 3M 2,048 27.8
RESNET50 CONCEPTUAL12M 11M 4,096 41.0
RESNET50 YFCC 15M 4,096 41.9

RESNET50 DECLIP OPEN-SOURCE DATA 29M 6,144 49.3

Different Pre-training Datasets Data is critical for language-image pre-training task. As shown
in Tab. 7, we evaluate our DeCLIP on different sources of datasets. Combining Tab.7 and Fig.1, we
can see that when the amount of training data continues to scale up, the zero-shot recognition ability
continues to improve as well. In addition, we can see that the open source data has high quality. The
29M open source data can achieve 49.3% zero-shot top1 accuracy on ImageNet through the DeCLIP
training paradigm. Our open-source data is an affordable benchmark, which would be beneficial for
explorations.
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Our YFCC re-implementation Although we use the same number of image-text pairs as the
CLIP YFCC-15M, our YFCC data is different from CLIP. We also reproduce the naive CLIP on our
YFCC-15M data, which results in 35.9% zero-shot top1 accuracy on ImageNet-1K (see Fig. 8). It is
relatively higher than the number in CLIP paper (31.1%). We conjecture the improvements might be
caused by the different data cleaning strategies. However, our DeCLIP can achieve 41.9% zero-shot
accuracy which is also 6.0% higher than our CLIP re-implementation.

Table 8: DeCLIP zero-shot performance of ImageNet top1 on YFCC datasets. Although we use
the same amount of data, our YFCC is different with CLIP YFCC due to the different data cleaning
strategies.

MODEL BACKBONE DATASET DATA SIZE BATCH SIZE ZERO-SHOT

CLIP RESNET50 YFCC 15M — 31.3
CLIP (OUR REIMP.) RESNET50 YFCC* 15M 4,096 35.9

DECLIP RESNET50 YFCC* 15M 4,096 41.9(↑+6.0)

Memory usage Because of the additional views, our DeCLIP is more memory-consuming.
Thanks to the ICLR anonymous review comments: a fairer comparison might be doubling the batch
size of CLIP. Flowing the ablation study in Fig. 7, we double the batch size and train CLIP-ResNet50
for 64 epochs. The final result is 22.3% which is still 4.9% lower than our DeCLIP model. We
summarize the memory usage, training cost, and the final accuracy as below. All experiments are
conducted on CC-3M with 16 V100 GPUs.

Table 9: Ablation on Memory usage.

MODEL BATCH SIZE PER GPU MEMORY (GB) EPOCHS COST (GPU HOURS) ZERO-SHOT

CLIP-RESNET50 128 15.8 64 416 21.7
CLIP-RESNET50 256 24.0 64 399 22.3

DECLIP-RESNET50 128 22.7 32 304 27.2
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