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ABSTRACT

We present SPEAR, a continuous receiver-to-receiver acoustic neural warping field
for spatial acoustic effects prediction in an acoustic 3D space with a single sta-
tionary audio source. Unlike traditional source-to-receiver modelling methods
that require prior space acoustic properties knowledge to rigorously model audio
propagation from source to receiver, we propose to predict by warping the spatial
acoustic effects from one reference receiver position to another target receiver
position, so that the warped audio essentially accommodates all spatial acoustic
effects belonging to the target position. SPEAR can be trained in a data much more
readily accessible manner, in which we simply ask two robots to independently
record spatial audio at different positions. We further theoretically prove the uni-
versal existence of the warping field if and only if one audio source presents. Three
physical principles are incorporated to guide SPEAR network design, leading to the
learned warping field physically meaningful. We demonstrate SPEAR superiority
in receiver-to-receiver warping field prediction through detailed experiments on
both synthetic, photo-realistic and real-world dataset.

1 INTRODUCTION

In an enclosed acoustic 3D space where a stationary sound source keeps emitting spatial audio, the
primary objective is to precisely delineate the spatial acoustic effects for any given receiver position.
These spatial acoustic effects typically encompass reverberation, loudness variation and resonance.
Achieving high-fidelity and authentic spatial acoustic effect modelling is pivotal for delivering a truly
immersive 3D acoustic experience that seamlessly integrates with the 3D room scene. Consequently,
such modelling techniques have a wide range of applications in auditory AR/VR techniques (Verron
et al., 2010; Hyodo et al., 2021; Broderick et al., 2018), audio-inclusive robot tasks (Evers et al.,
2016) and reconstruction endeavors (Zhong et al., 2022; Chen et al., 2021).

To model the spatial acoustic effects, most prior methods (Bilbao & Hamilton, 2017; Savioja &
Svensson, 2015; Allen & Berkley, 1979; Krokstad et al., 1968; Pietrzyk, 1998; Kleiner et al., 1993;
Botteldoore, 1995; Hodgson & Nosal, 2006; Luo et al., 2022) follow the source-to-receiver pipeline
to explicitly model sound propagation process from source to receiver, where the overall behavioural
change along the propagation path is usually described by room impulse response (RIR). As the
spatial audio propagates in a complex way encompassing diffraction, reflection and absorption,
the resulting RIR is highly non-smooth and lengthy in data points. Classic methods, either wave-
based (Bilbao & Hamilton, 2017; Pietrzyk, 1998; Kleiner et al., 1993; Botteldoore, 1995) and
geometry-based modelling (Savioja & Svensson, 2015), require massive prior knowledge of the
3D space’s acoustic properties such as source position, space geometric layout and constructional
material to precisely simulate the propagation process for a given source-receiver pair. However,
accessing such prior knowledge poses a formidable challenge in reality and the whole computation
is inextricably inefficient. Some recent work (e.g., NAF (Luo et al., 2022)) aim to alleviate this
computational burden by learning a continuous acoustic neural field. Nonetheless, training such a
continuous field necessitates vast RIR data which is exceedingly difficult to collect in real scenarios.

In this work, we instead propose to predict spatial acoustic effects from receiver-to-receiver perspec-
tive. Our framework, termed SPEAR, relies on neither RIR data nor prior space acoustic properties
that are difficult to obtain and required by existing source-to-receiver based methods (Luo et al.,
2022; Savioja & Svensson, 2015; Bilbao & Hamilton, 2017), but instead simply require much more
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Figure 1: SPEAR Motivation: A stationary audio source is emitting audio in 3D space. Requiring
neither source position nor 3D space acoustic properties, SPEAR simply requires two microphones to
actively record the spatial audio independently at discrete positions. During training, SPEAR takes as
input a pair of receiver positions and outputs a warping field potentially warping the recorded audio
on reference position to target position. Minimizing the discrepancy between the warped audio and
recorded audio enforces SPEAR to acoustically characterise the 3D space from receiver-to-receiver
perspective. The learned SPEAR is capable of predicting spatial acoustic effects at arbitrary positions.

readily accessible data – the receiver recorded audio at discrete positions. Our observation is that
directly carrying a receiver (can ask robot or human to hold the receiver) to record audio at different
positions is much readily executable than measuring RIR data and space acoustic properties. Since
receiver recorded audio naturally encodes the spatial acoustic effects at its position, analyzing the
received audio can help to acoustically characterize the 3D space, and further predict the spatial
acoustic effects for any given novel receiver position.

As is shown in Fig. 1, to obtain the training data, we simply require receivers to record the audio in the
3D space independently. At each discrete position pair, the two receivers are temporally synchronized
to record the same audio content and their respective positions are recorded as well. SPEAR then
learns a continuous receiver-to-receiver acoustic neural warping field that takes as input two receivers’
position and outputs a neural warping field warping the spatial acoustic effects from one reference
position to the other target position. With the learned SPEAR, we can warp the audio recorded at
one arbitrary reference position to another arbitrary target position so that the warped audio fully
accommodates the spatial acoustic effects at the target position. SPEAR has huge potential in various
robotic tasks, such as audio-involved robot relocalization and manipulation.

We further theoretically prove the universal existence of the receiver-to-receiver warping field if
and only if one stationary audio source presents in the 3D space, then we introduce three main
physical principles underpinned by linear time-invariant (LTI) 3D acoustic space that guide SPEAR
neural network design: Globality, Order Awareness and Audio-Content Agnostic. We adopt the
Transformer (Vaswani et al., 2017) architecture to predict the warping field in frequency domain,
where the lengthy warping field is divided into small and non-overlapping patches. Each token
is responsible for predicting a patch. We run experiments on both synthetic, photo-realistic and
real-world datasets to show the superity of SPEAR. In summary, we make three main contributions:
1. We propose SPEAR, a novel receiver-to-receiver spatial acoustic effects prediction framework.

Unlike existing source-to-receiver modelling methods requiring extensive prior space acoustic
properties knowledge, SPEAR can be efficiently trained in a data more readily accessible manner.

2. We theoretically prove the universal existence of receiver-to-receiver neural warping field if and
only if one stationary audio source presents in the 3D space. SPEAR network design is based on
three acoustic physical principles, so that the whole neural network is physically meaningful.

3. We demonstrate SPEAR superiority on both synthetic data, photo-realistic and real-world dataset.

2 RELATED WORK

Spatial Acoustic Effects Modelling. Classic methods tend to numerically compute room impulse
response (RIR). They can be divided into two main categories: wave-based (Bilbao & Hamilton,
2017; Pietrzyk, 1998; Kleiner et al., 1993; Botteldoore, 1995) and geometry-based (aka geometrical
acoustics) (Savioja & Svensson, 2015; Krokstad et al., 1968; Allen & Berkley, 1979; Funkhouser
et al., 2003; Hodgson & Nosal, 2006; Nosal et al., 2004). They require extensive prior knowledge of
the 3D space acoustic properties such as the audio source position (He et al., 2021), room geometry
and furniture arrangement to derive RIR. Moreover, they are computationally expensive and the
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whole computation needs to be resumed once either the source or receiver position gets changed. Our
proposed SPEAR circumvents the dependency on extensive prior knowledge and learns the spatial
acoustic effects in a data more readily accessible manner. The advent of deep neural networks has
inspired recent work (Ratnarajah et al., 2022; Tang et al., 2020; Ratnarajah et al., 2021b;a; De Sena
et al., 2015; Luo et al., 2022; Richard et al., 2022; Majumder et al., 2022; Ratnarajah et al., 2023;
2024) to focus on learning RIR with deep neural networks. While showing promising performance,
they still require massive RIR data or even crossdomain visual data (Ratnarajah et al., 2024) to train
their model, which in reality are difficult to collect. While all of those methods fall into source-to-
receiver estimation, SPEAR infers spatial acoustic effects from a receiver-to-receiver perspective
which naturally brings several advantages over existing methods.

Neural Implicit Representation. Implicit representation learning has received lots of attention in
recent years, especially in computer vision community (Mildenhall et al., 2020; Hedman et al., 2021;
Xu et al., 2021; Su et al., 2021; Yu et al., 2021). They model static or dynamic visual scenes by
optimizing an implicit neural radiance field in order to render photo-realistic novel views. Some
recent work (e.g., NAF (Luo et al., 2022), FewShotRIR (Majumder et al., 2022)) propose to learn
implicit neural acoustic fields from source-receiver pairs or audio-visual cues. SPEAR also learns a
spatial continuous neural implicit representation for spatial acoustic effects prediction.

Audio Synthesis. Estimating the audio for at a novel position partially relates to audio synthesis (Oord
et al., 2016; Donahue et al., 2019; Zuiderveld et al., 2021; Richard et al., 2021; Engel et al., 2019; Tan
et al., 2012; Clarke et al., 2021; Prenger et al., 2019). WaveNet (Oord et al., 2016) learns to predict
future sound waveform based on previously heard sound waveform. WaveGAN (Donahue et al.,
2019) and GANSynth (Engel et al., 2019) adopt generative adversarial network (GAN (Goodfellow
et al., 2014)) to learn to generate audio. Our framework SPEAR differs from audio synthesis as it
focuses on spatial acoustic effects modelling.

Time-series Prediction. Predicting warping field in either time or frequency domain partially relates
to time-series prediction. Existing deep neural network based time-series prediction methods can be
divided into four main categories: Convolutional Neural Networks (CNNs) based (Zheng et al., 2014;
Yang et al., 2015; Wang et al., 2017; Foumani et al., 2021), Recurrent Neural Networks based (Dennis
et al., 2019; Tang et al., 2016; Sutskever et al., 2014), Graph Neural Networks based (GNNs) (Covert
et al., 2019; Jia et al., 2020; Ma et al., 2021; Tang et al., 2022; Zhang et al., 2022) and Transformer
based (Song et al., 2018; Jin & Chen, 2021; Liu et al., 2021) methods. However, warping field
prediction in SPEAR exhibits no causality and it is directly predicted from receiver positions.

3 RECEIVER-TO-RECEIVER ACOUSTIC NEURAL WARPING FIELD

3.1 PROBLEM FORMULATION

In a linear time-invariant (LTI) enclosed 3D space R, stationary sound sources are constantly
emitting audio waveform. We use two receivers to record the audio at various discrete positions
independently. At each time step, we temporally synchronize the two receivers before recording so
that the two receivers are recording the same audio content. In addition to audio, we also record
the two receivers’ spatial position. Specifically, we have collected N -step paired receiver dataset
tpA,Pq “ tpx1,iptq, p1,iq, px2,iptq, p2,iquNi“1u, A P RTˆN , P P R3ˆN . The recorded audio x1,iptq
and x2,iptq is the raw audio waveform in time domain (both are of the same length T sampled
at the same sampling rate). p1,i and p2,i are the two receivers’ spatial coordinate rx1

k,i, y
1
k,i, z

1
k,is

(k P t1, 2u). Our target is to learn a receiver-to-receiver acoustic neural warping field F from two
receivers position and audio pA,Pq, F Ð pA,Pq, so that it can efficiently predict the spatial audio
acoustic effects for any arbitrary target position pt by predicting a warping transform WprÑpt

that
warps audio recorded at another reference position pr to the target position pt. The warped audio

{xprÑpt
ptq at position pt essentially accommodates the spatial acoustic effects belonging to pt.

WprÑpt
“ Fθppt, prq; {XprÑpt

pfq “ WprÑpt
¨ Xpr

pfq; pt, pr R P (1)

Where θ is the trainable parameters of F . pr, pt are arbitrary positions in the 3D space R. {XprÑpt
pfq

and Xpr
pfq are discrete Fourier transform (DFT) representation of the warped audio at the target

position and recorded audio xpr
ptq at reference position represented in time domain, respectively. For

example, if xpr
ptq has T points, the T -point DFT result Xpr

pfq is a complex representation where
both the real and imaginary part have T data points. The learned WprÑpt is a complex representation
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of the same shape of Xpr
pfq. It is worth noting that, in our formulation, the warping transform is

multiplication in frequency domain (see Sec. 3.2 for the proof), and the acoustic neural warping field
is independent on audio content A (see Sec. 3.3 for more discussion).

To optimize Fθ, we minimize the discrepancy L between the warped audio at the target position and
corresponding recorded audio,

Fθ Ð argmin
θ

Lp {Xp1Ñp2
pfq, Xp2

pfqq, @p1, p2 P P (2)

3.2 MATHEMATICAL BACKEND OF RECEIVER-TO-RECEIVER NEURAL WARPING FIELD

Before introducing SPEAR, we need to answer two questions:

Q1:. Does the proposed warping field suffice to model receiver-to-receiver spatial acoustic effects?
Q2:. If so, is there any constraint on the audio source number and placement in the 3D space?

We first consider the simplest case where there is just one audio source in the 3D space.

Proposition 1: If the Linear Time-Invariant (LTI) 3D space contains a single audio source, then
receiver-to-receiver warping exists and is uniquely defined for any pair of receiver positions.

Proof: Assume the audio source isotropically emits sound waveform sptq at a fixed position, the
two receivers’ recorded spatial audio in time domain at two different positions are x1ptq and x2ptq,
respectively. According to room acoustics (Savioja & Svensson, 2015) and if we assume the room is
linear time invariant (LTI), x1ptq and x2ptq are obtained by convolving with their respective impulse
response RIR with the sound source sptq,

x1ptq “ sptq f h1ptq, x2ptq “ sptq f h2ptq (3)

where h1ptq and h2ptq are the two RIRs from the source sptq to receiver x1ptq and x2ptq respectively.
f is the 1D convolution in time domain. According the Convolution theorem that time domain
convolution equals to production in Frequency domain, we can rewrite Eqn. (3) as,

X1pfq “ Spfq ¨ H1pfq, X2pfq “ Spfq ¨ H2pfq (4)

where Xp¨q, Sp¨q and Hp¨q are the Fourier transform of receiver recorded audio, source audio and
RIR, respectively. Based on Eqn. (4), we can further get,

X2pfq “ X1pfq ¨
H2pfq

H1pfq
, X1pfq “ X2pfq ¨

H1pfq

H2pfq
(5)

Let W1Ñ2 “
H2pfq

H1pfq
(or W2Ñ1 “

H1pfq

H2pfq
), we can conclude that: 1) the receiver-to-receiver warping

universally exists and 2) is uniquely defined for any pair of receiver positions, 3) its existence just
relies on the 3D space and is independent on if the audio source is emitting sound or not.

Proposition 2: If the more than one audio sources are placed in the 3D space, the receiver-to-receiver
warping field existence is not guaranteed.

Proof: Assume K (K ą 1) audio sources are placed in the 3D space, based on the superposition
property in room acoustics (Savioja & Svensson, 2015), one receiver recorded audio (e.g., x1ptq) can
be expressed as,

x1ptq “ s1ptq f h1,1ptq ` s2ptq f h2,1ptq ` ¨ ¨ ¨ ` sKptq f hK,1ptq (6)

where hk,lptq indicates the RIR from the k-th source to the l-th receiver, By extending Eqn. (6) to M
receivers and further applying Fourier transform, we can get,

»

—

–

X1pfq

X2pfq

¨ ¨ ¨

XM pfq

fi

ffi

fl

“

»

—

–

H1,1pfq H1,2pfq ¨ ¨ ¨ H1,Kpfq

H2,1pfq H2,2pfq ¨ ¨ ¨ H2,Kpfq

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

HM,1pfq HM,2pfq ¨ ¨ ¨ HM,Kpfq

fi

ffi

fl

¨

»

—

–

S1pfq

S2pfq

¨ ¨ ¨

SKpfq

fi

ffi

fl

(7)
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A. Replica Office 4 Setting B. Data Collect Topdown View
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Figure 2: Two challenges in SPEAR learning: Position-Sensitivity and Irregularity. The position-
sensitivity is represented by much lower structural similarity index (SSIM) of two neighboring-step
warping fields than the two RGB images (sub-fig. C). The warping field irregularity is represented by
both warping field visualization in frequency domain (real part) and much higher sample entropy
score than regular sine wave (and just half of random waveform) (sub-fig. D).

For brevity, we can rewrite Eqn. (7) as X “ H ¨ S. Since we have no knowledge of audio sources S,
we can treat Eqn. (7) as multivariate polynomial linear function for audio sources S. The identifiability
of H can be potentially analyzed by independent component analysis (ICA). In certain conditions,
H is identifiable and full-rank, then the warping field exists for K sources To ensure a unique
solution for S, the determinant of the coefficient matrix H must be non-zero (det(H) ‰ 0), and the
rank of coefficient matrix H must be equal to the rank of the augmented matrix rH|Xs, rank(H)
“ rank(rH|Xs). Moreover, even if we can deterministically represent audio source by receivers,
S “ H´1 ¨ X , we can hardly predict one receiver’s spatial acoustic effects by warping from another
single receiver because one receiver’s spatial acoustic effects, in multiple audio sources case, usually
depend on multiple other receivers. We empirically show one such example in Appendix A.

3.3 LTI RECEIVER-TO-RECEIVER WARPING FIELD PHYSICAL PRINCIPLE

We present three room acoustics physical principles (Kuttruff, 1979; Rayleigh & Lindsay, 1945) that
will guide SPEAR design.

Principle 1, Globality: Unlike a normal RGB image just captures a localized area, a receiver recorded
spatial audio relates to the whole 3D space. Originating from the source position, the spatial audio
propagates in a complex way that incorporates reflection, diffraction and absorption before reaching
to the receiver position, resulting in the interaction with almost the whole 3D space before reaching
to the receiver. Consequently, the final receiver recorded audio is influenced by the whole 3D space.

Principle 2, Order Awareness: The Order Awareness principle states that SPEAR should account for
the specific order of the input two receivers. In essence, the learned warping field varies when the
order of the two receivers is swapped. This can be readily proved by Eqn. (5), since W1Ñ2 “

H2pfq

H1pfq
,

W2Ñ1 “
H1pfq

H2pfq
, W1Ñ2 ‰ W2Ñ1.

Principle 3, Audio-Content Agnostic: This principle asserts that the receiver-to-receiver warping
field is an inherent characteristic of the 3D space, affected by neither the presence or absence of audio
within the 3D space nor the specific class of audio.

3.4 POSITION-SENSITIVITY AND IRREGULARITY OF WARPING FIELD

The complex behavior of spatial audio propagation in an enclosed 3D space often results in different
spatial acoustic effects even for audio recorded at neighboring positions. This position-sensitivity
becomes even more pronounced in the receiver-to-receiver warping field, where even a small receiver
position can lead to substantial warping field variation. As is shown in Fig. 2, we compare the visual
differences and warping field variations caused by small receiver position change. Using the 3D space
Office 4 from the Replica dataset (Straub et al., 2019) and the SoundSpaces 2.0 simulator (Chen
et al., 2022), we place a stationary audio source and a reference receiver. Next, we ask the robot
carrying a pinhole camera and a receiver to walk straightforward with step size 0.3 m in the vicinity
of the reference receiver. At each target receiver position (crimson color in Fig. 2), we capture
RGB images and compute the corresponding warping fields. We then adopt structural similarity
index (SSIM) (Wang et al., 2004b) to measure the visual and warping field differences between two
neighboring positions. The results, shown in Fig. 2, clearly indicate that a 0.3-meter position change
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results in a more pronounced warping field variation (much lower SSIM score) compared to the
RGB images. To show warping field irregularity, we visualize the 5-th step warping field real part in
frequency domain in Fig. 2 D, from which we can see the warping field is highly irregular and thus
exhibits higher sample entropy score (Guzzetti et al., 2000)1 than regular sine wave.

3.5 SPEAR NEURAL NETWORK INTRODUCTION

Self-Attention

FFN

Predicted Warping Field

Real Imag

𝑿𝟏(𝒇) 𝑿𝟐(𝒇)
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Globality
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2
PE

tP
E

Learnable Grid
Feature

Figure 3: SPEAR network visualization.

The way we design SPEAR neural network is guided by
Sec. 3.3 and Sec. 3.4. Specifically, SPEAR takes as in-
put two receivers’ positions (one reference position and
the other target position) and outputs the corresponding
warping field that warps the spatial acoustic effects at the
reference position to the target position (Audio-Content
Agnostic principle applies). We build SPEAR on top of
Transformer architecture (Vaswani et al., 2017) and pre-
dict the warping field in frequency domain, in which the
warping field is jointly represented by a real and imag-
inary series. Predicting the warping field in frequency
domain results in both faster processing and better gen-
eration quality, as shown in the ablation experiment 4.7.
To accommodate the Globality principle and tackle the
position-sensitivity challenge, we construct a learnable
grid feature spanning to the whole 3D space horizontally,
each cell of the grid thus corresponds to one particular
physical position in the 3D space. The two input positions’
features are extracted from the grid feature by bilinear
interpolation. Concatenating the two interpolated features
in order (Order-Awareness principle satisfied) gets the
input position-pair’s representation. Each token then combines the input positions’ representation
and token index position encoding as the initial token representation. After 12 transformer blocks,
the final learned token representation is further fed a prediction head to predict their corresponding
real/imaginary warping field. We visualize the neural architecture in Fig. 3. The detailed layer
parameters and feature sizes are given in the appendix D.

Train and Inference. To ensure the learned a general and universal warping field that can handle
arbitrary audio in real scenarios, we adopt sine-sweep audio (He et al., 2024; Gao et al., 2020)
covering the whole frequency range [0-16] kHz during the training phase . Since just one audio
source presents in the 3D space, we can obtain the ground truth warping field by dividing the target
position received audio by source position received audio (see Eqn. (5)). We thus jointly train
SPEAR with group truth warping field and two receivers’ recorded audio. The original warping field
length we predict is 32 k. Due to the warping field symmetry (DFT conjugate symmetry), we just
predict half warping field which are 16 k points. For ground truth warping field supervision, we
combine both L1 and L2 loss. For the two receivers recorded audio supervision, we adopt spectral
convergence loss (Arık et al., 2019). During training, we calculate the sum of L1 and L2 loss for
both the real and imaginary part following (Zou & Hastie, 2005; Howard et al., 2021). Let ground
truth and predicted warping field’s real and imaginary part be W real

gt , W imag
gt , W real

pred, and W imag
pred ,

the combined L1 and L2 loss is calculated as LpW real
pred ´ W real

gt q ` LpW imag
pred ´ W imag

gt q, where
Lpa, bq “ }a ´ b}1 ` }a ´ b}22.

4 EXPERIMENT

4.1 DATASETS

We evaluate SPEAR on three datasets across different domains.

1. Synthetic Dataset. We adopt Pyroomacoustics (Scheibler et al., 2018) to simulate a large shoebox-
like 3D space of size r5m ˆ 3m ˆ 4ms. All the receivers are placed on the same height, the audio
source is placed at position r2m, 2m, 2ms. We simulate 3000 receivers positions for training and

1The higher of sample entropy score, the more irregular is the series. To highlight warping field irregularity,
we compare its sample entropy score with totally regular sine wave and random wave.
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another 300 receivers for test, by ensuring the reference-target receiver pair position in the test set is
significantly different from those in training set.

2. Photo-realistic Data. To show our model is capable of predicting the warp field in a more
complicated and photo-realistic environment, we employ Replica Office 0 and Office 4 3D
space (Straub et al., 2019) to simulate the spatial audio. In Office 0 and Office 4, we simulate
4000 receivers and 8000 receivers for training, respectively. Both scenes have 500 receiver positions
for test.

3. Real-World Dataset. We further test on the real-world MeshRIR (Koyama et al., 2021) dataset.
We select a grid of r21 ˆ 21s receivers from the MeshRIR-S32 dataset split to construct our dataset.
397 of the audio positions are used for training, and the rest 44 positions are reserved for test.

4.2 DATA PREPARATION

Ground Truth Warping Field Acquirement We generate the ground truth receiver-to-receiver
warping field by dividing the target receiver audio by the reference receiver audio in frequency domain.
However, this division operator inevitably leads to NaN value or abnormally large value (ą 100, when
the denominator is close to zero) in the obtained warping field (see the ground truth warping field
visualization in Fig. V), resulting in the difficulty of accurately warping field learning. To address
this issue, we make two adjustments. Firstly, we replace NaN values with zeros so that the whole
neural network is trainable without encountering NaN, which could significantly harm the learning.
Secondly, we clip all warping field values to lie within r´10, 10s. Our core intuition for adopting the
clip operation is that the abnormally large values (outlier) easily allure the whole neural network
to be trapped in predicting those abnormally large values, thus ignoring the learning of the warping
field with normal values (inliers). We empirically verify this in Fig. V that clip operation is able to
remove the outliers in the warped target audio.

Data Sampling Strategy For all three datasets, we construct train and test datasets by first splitting
the receiver positions into two disjoint sets. The reference and target receiver positions are sampled
from the same receiver position set. Intuitively, this ensures that the model never sees a warping
field that warps audio from a receiver position in the training set to a position in the test set for fair
evaluation. More detailed descriptions of sampling strategies for each dataset are given as follows.

For the synthetic data generation, we arrange the receivers in an 80 ˆ 40 grid, with adjacent receivers
spaced 0.05 meters apart. To create the test set, we select test samples in such a way that no two
samples are adjacent in the grid. This interleaved sampling strategy ensures that each test receiver
position is at least 0.05 meters away from any receiver position in the training set. For the photo-
realistic data generation, due to the existence of furniture and other objects as obstacles in the room
scenes, we do not employ the grid-sampling strategy used in synthetic data generation. Instead, we
randomly sample 4500 and 8500 receiver positions on the two scenes’ floors and select a subset of
500 receiver positions from each scene as the test set. The test set sampling strategy for Real-World
data is the same as the interleaved sampling strategy used in the synthetic data generation.

4.3 EVALUATION METRICS

To quantitatively evaluate the warping field, we adopt: 1. MSE, mean square error between ground
truth and SPEAR predicted warping field in frequency domain (average between real and imaginary
part). 2. SDR (signal-to-distortion ratio). Following (Richard et al., 2022), we report SDR to assess
the fidelity of predicted warping field. 3. PSNR (Peak Signal-to-Noise Ratio (Wang et al., 2004a))
and 4. SSIM (structural similarity index measure (Wang et al., 2004b)) to quantify the quality of
the predicted warping field. We also introduce human-perceptual metric to provide insight into
human perceptual quality of the predicted warping field. Specifically, we choose five speeches from
VCTK (Yamagishi et al., 2019) dataset and warp them to the target position with the learned warping
field, then compute the 5. PESQ (perceptual evaluation of speech quality (Wang et al., 2022)) score
for the warped speech and ground truth recorded speech.

4.4 COMPARING METHODS

Given the novel problem setting of SPEAR, currently there is no existing method that directly applies
to our problem. Existing RIR-based spatial acoustic effects modelling methods (Ratnarajah et al.,
2021b;a; 2023) vary significantly in the way they exploit RIR data and the amount of prior room
scene acoustic properties knowledge to train their model, we thus find it difficult to modify them to
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Table 1: Quantitative result on three datasets. MSE (Ó), SDR (Ò), PSNR (Ò), SSIM (Ò), PESQ (Ò).

Method Synthetic Data Photo-Realistic Data Real-World Data
SDR MSE PSNR SSIM PESQ SDR MSE PSNR SSIM PESQ SDR MSE PSNR SSIM PESQ

LinInterp ´0.92 1.57 14.08 0.85 1.38 ´0.94 1.44 14.71 0.63 2.16 ´0.54 1.45 14.91 0.88 1.65
NNeigh ´4.19 3.36 14.13 0.83 1.29 ´2.87 2.22 12.13 0.64 1.89 ´3.64 3.09 15.03 0.87 1.63
NAF 0.42 1.16 14.24 0.90 1.51 0.07 1.13 14.21 0.73 1.92 1.20 0.96 15.27 0.93 2.05
SPEAR 0.87 1.04 14.87 0.91 1.53 0.66 1.03 14.57 0.75 2.18 1.38 0.94 15.75 0.93 2.35

Ground Truth

Pyroomacoustics
Data

MeshRIR
Real Data

SPEAR NAF LinInterp

Figure 4: Learned warping field visualization on synthesized dataset (top) and MeshRIR real-world dataset (bot-
tom). We just visualize the warping field real part. Complete visualization is given in Fig. II in Appendix.

fit our setting. For meaningful comparison, we compare SPEAR with one source-to-receiver neural
acoustic field learning method (NAF (Luo et al., 2022)) and two other interpolation methods.

1. NAF (Luo et al., 2022). NAF learns continuous source-to-receiver RIR field by assuming access
to massive RIR data. We modify it to accept two positions as input and output the warping field in
frequency domain.

2. LinInterp: Neighboring Linear-Interpolation. For each receiver-pair in test set, we retrieve top-25
warping field data from the training set whose position are closest to the receiver pair (the position
distance is defined by the the sum of reference position shift and target position shift). Then we
average the 25 warping field to get the linear-interpolated warping field.

3. NNeigh: Nearest Neighbor method searches for the warp field, where the reference and target
receiver positions are closest to the input test position pair. This is equivalent to retrieving the top-1
closest warping field from the training set.

4.5 IMPLEMENTATION DETAIL

Method Inf. Time Param. Num.
NAF (2022) 0.13 s 1.61 M

SPEAR 0.0182 s 27.26 M

Table 2: Model parameter and inference
time comparison. The inference time is the
average of 1000 independent inferences with
batch size 32 on a single A10 GPU.

We adopt AdamW optimizer (Loshchilov & Hutter, 2019)
for training on all datasets. On the synthetic dataset, the
model requires approximately 6000 epochs to converge,
which takes around 7 hours on a single A10 Nividia GPU.
We set the learning rate of the learnable grid feature to
1e-5, and the rest learnable parameters’ learning rates to
1e-4. Using a smaller learning rate for the grid features
improves the model training stability. Since the model pre-
dictions rely solely on the grid feature extracted, changes
in grid feature can result in significant differences in model
prediction. Therefore, setting a lower learning rate for the grid features prevents the model prediction
from changing abruptly, and thus improves training stability.

Though our model has larger parameter size, the inference time is smaller than the NAF baseline.
As shown in Table 2, our model has more than ten times larger parameter size than the NAF model,
but inference speed is around ten times faster than the NAF model. This advantage stems from our
transformer’s architecture, which allows our model to generate the warping field in a single forward
pass. In contrast, the NAF model predicts the warping field value at each frequency separately. This
means 16 k forward passes are required to predict one full warping field, resulting in substantially
slower prediction.

4.6 EXPERIMENTAL RESULT

The quantitative result on the three datasets is given in Table 1, from which we can see that SPEAR
outperforms all the three comparing methods by a large margin. Among all the five metrics, SPEAR
maintains as the best-performing method (except for one PSNR metric). Moreover, SPEAR outper-
forms NAF (Luo et al., 2022) significantly on metrics like SDR and PESQ.
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A. Noise Interference Result B. Reference-Target Distance
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Figure 5: Ablation Study on noise interference (A), reference-
target receiver distance (B).

Metrics Chirp Engine Person Siren

PSNR 14.866 14.867 14.799 14.902

SDR 0.869 0.869 0.866 0.868

SSIM 0.907 0.907 0.897 0.898

MSE 1.044 1.045 1.043 1.043

Table 3: Ablation study result on SPEAR
audio-content agnostic characteristic.

Ground Truth

SPEAR predicted Warping Field

low frequency high frequency

Figure 6: SPEAR predicted failure warping field on
one Pyroomacoustics synthesized data. The area in
light blue indicates the high-frequency region.

Test Case 1 Test Case 2 Test Case 3

Test Case 4 Test Case 5 Test Case 6

1000 position

Ground Truth

3000 position

2000 position

1000 position

Ground Truth

3000 position

2000 position

Figure 7: Ablation Study result on sampled position
number. We observe that using reduced sampled
position number to train SPEAR leads to reduced
warping field prediction accuracy.

We provide qualitative comparison of the predicted warping field in Fig. 4, in which we visualize
the warping field (real-part) on Synthetic dataset (top row) and MeshRIR real-world dataset (bottom
row) obtained by all methods. In all warping field visualization plots, the warping field values are
shown in increasing frequency order from left to right. From this figure, we can clearly observe that
1) while the ground truth warping field exhibits high irregularity (see Sec. 3.4), SPEAR is capable of
learning the irregularity pattern from the input position pair; 2) The two other methods (NAF (Luo
et al., 2022) and LinInterp) failed to tackle the irregularity challenge. NAF (Luo et al., 2022) tends
to predict close warping field values. The higher of the frequency, the easier it tends to predict the
same value, the left and right part comparison of NAF). We further provide visualization of predicted
warping field imaginary parts in Fig. II in Appendix.

We further illustrate a failure case in Fig. 6, where SPEAR was applied to a Pyroomacoustics-
synthesized dataset. In this figure, it is evident that SPEAR struggles to accurately predict the warping
field in the high-frequency region (highlighted in blue). Additionally, we observe that SPEAR tends
to degenerate, predicting values within a narrow range. Unlike the incapability in high-frequency
part, SPEAR can predict more accurate warping field in the low frequency area. This phenomena
is more pronounced for NAF (Luo et al., 2022) (see Fig. 4). It further remains as a future research
direction to investigate the challenge of predicting accurate warping field in high frequency range.
More failing cases are shown in Fig. III and Fig. IV in Appendix.

4.7 ABLATIONS

We run all ablation studies on Synthetic dataset created by Pyroomacoustics (Scheibler et al., 2018).

Warping Field Sensitivity to Noise. We add two ambient Gaussian noises (measured by SNR, 20 dB
and 30 dB) to test model’s performance under noise interference. As is shown in Fig. 5 A, we can
observe that while all three comparing methods have seen performance drop (increased MSE metric)
as more noise is involved, SPEAR maintains as the best-performing method and outperforms the
other two methods (NAF and LinInterp) by a large margin under all noise interference.
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Warping Field Accuracy w.r.t. Reference-Target Receiver Distance. We further test SPEAR’s
capability in predicting spatial acoustic effects for spatially distance target receivers. To this end, we
compute models’ performance variation w.r.t. reference-target receivers’ distance change (0.5m ´

3.0 m) and show the result in Fig. 5 B. We can observe from this figure that: 1) The increased
reference-target receiver’s distance leads to performance drop (increasing MSE) for all methods,
which is expected as the spatial acoustic effects drastically change when the receiver position
gets changed dramatically. 2) SPEAR still outperforms the other comparing methods, showing its
advantage in predicting warping field for further target receivers.

Ground Truth

Pred. in Freq.

Pred. in Time

Figure 8: Ablation Study result on prediction on
frequency versus time domain.

Warping Field Prediction in Frequency V.S.
Time domain. In SPEAR, we propose to predict
warping field in frequency domain for computa-
tion efficiency concern. Out of the computation ef-
ficiency concern, we further want to figure out the
performance with predicting in time domain. As
depicted in Fig. 8, we can observe that predicting
warping field in time domain leads to significant
performance drop as the model tends to predict
all-zero warping field.

Audio-Content Agnostic Verification. Since all
models are trained with Sine Sweep audio, we
want to know if the Audio-Content Agnostic princi-
ple truly satisfies. To this end, we evaluate SPEAR
with another three audios: engine, siren and human vocalization. As is shown in Table 3, we can
verify that SPEAR is agnostic to audio content and can be applied to arbitrary audio class.

# Sample
Position SDR MSE PSNR SSIM

3000 0.87 1.04 14.87 0.91
2000 0.49 1.14 14.33 0.90
1000 0.36 1.17 14.11 0.89

Table 4: The impact of different sampling
density on model performance. MSE (Ó),
SDR (Ò), PSNR (Ò), SSIM (Ò), PESQ (Ò)

Effect of Sampled Position Size on Model Train-
ing Performance In all three datasets, reference and
target positions are densely sampled. In this sec-
tion, we verify the necessity of dense sampling in
order to learn reasonably good warping field. To this
end, we randomly sub-sample 1000, 2000 positions
from the whole 3000 sampled positions for training
that we used in the main experiment. With the sub-
sampled positions, we re-train the SPEAR model and
further evaluate the model on the same test data. The
quantitative result in Table 4 shows that the model
performance drops significantly as the sampling size reduces. We further visualize one comparison
of the warping field predicted by SPEAR model trained with smaller sampled data size in Fig. 7,
more visualizations are given in Fig. VI in Appendix. From these figures, we can clearly obverse that
reduced sampled position size inevitably leads to worse warping field prediction. This large sampled
position size requirement shows the core challenge of the receiver-to-receiver acoustic neural warping
field learning because the warping field is position sensitive (as we presented in Sec. 3.4). We leave it
as a future research direction to explore novel learning methodology with much less position size.

5 CONCLUSION AND LIMITATION DISCUSSIONS

We introduce a novel receiver-to-receiver spatial acoustic effects prediction framework that can
be trained in a data much more readily accessible way. We theoretically prove the existence and
universality of such warping field if there is only one audio source. When there are multiple sources
distributed in the room scene, the warping field may not exist and we can apply source separation
method (Petermann et al., 2023) first to separate the sources. Moreover, once the audio source
position gets changed, the whole SPEAR needs to be retrained. There are two limitations that remain
to be resolved in the future. The first is that we still require dense sampling to get reasonably good
performance. Second, we assume all receivers’ position lies on the same horizontal plane. More
in-depth investigation is needed to remove this constraint and allow receiver placement in the whole
3D space.
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A APPENDIX

A RECEIVER-TO-RECEIVER WARPING FIELD EXISTENCE DISCUSSION

Figure I: Warping field visualization in frequency domain (real part). Top: warping field with two
audio sources Engine and Footstep two audio sources. Bottom: warping field with the two
audio sources at the same positions but the Footstep sources is replaced by Telephone Ring.

In this section, we empirically show that the receiver-to-receiver neural warping field may not exist
if more than one audio sources present in the 3D space. To this end, we depend on Pyroomacous-
tics Scheibler et al. (2018) simulator to simulate a shoe-box like 3D space of shape r5ˆ 5ˆ 5s meters.
Two audio sources are placed at coordinate A r1, 1, 1s meters and B r4, 4, 4s meters, respectively. Two
receivers are accordingly placed at coordinate r1, 1, 2s meters and r4, 4, 3s meters respectively. In the
fist simulation, we place Engine audio at source position A and Footstep audio at source position
B. In the second simulation, we just replace the Footstep audio at position B with Telephone
Ring. With the two receivers recorded audio, we depend on Eqn. (5) to calculate the warping field
from the reference receiver at r1, 1, 2s to the target receiver at r4, 4, 3s. The computed two warping
fields are shown Fig. I, we clearly see that the two warping fields are significantly different. We
thus can conclude that the receiver-to-receiver neural warping field is no longer solely dependent on
receiver positions (so the Audio-Content Agnostic principle does not apply). When more than audio
sources present in the 3D space, the warping field proposed in this work may not exist.

B DISCUSSION ON ACOUSTIC NEURAL WARPING FIELD VISUALIZATION

The acoustic neural field is represented in frequency domain, each of which in our case contains a
real and imaginary one-dimensional data vector. In the main paper, we just visualize the real part due
to the space limit. Here, we provide another five real/imaginary warping fields visualization in Fig. II.
From this figure, we can clearly see that our proposed framework SPEAR is capable of handling the
warping field irregularity property.

C FAILURE CASE VISUALIZATION

During the experiment process, we find all methods inevitably give failure case warping field predic-
tions. We visualize part of some failure cases predicted by SPEAR on both synthetic data (Fig. III),
photo-realistic and real-world dataset (Fig. IV). As we discussed in the main paper, the position-
sensitivity and irregularity pose challenges in the warping field prediction. We hope these failure
cases will attract more investigation into this research problem.

D SPEAR NETWORK ARCHITECTURE

SPEAR network architecture is shown in Tab. I.
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Real component Imaginary component

Sample 1 Prediction

Sample 1 Ground Truth

Sample 2 Prediction

Sample 2 Ground Truth

Sample 3 Prediction

Sample 3 Ground Truth

Sample 4 Prediction

Sample 4 Ground Truth

Figure II: Visualization of real and imaginary component of the ground truth warp field in the
synthetic dataset.

Sample 3

Sample 5

Prediction

Prediction

Prediction

Ground Truth

Ground Truth

Ground Truth

Sample 1 Sample 2

Sample 4

Sample 6

Figure III: Examples of failure cases of SPEAR model on synthetic data.
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Ground Truth

Prediction

Replica Office 0 Sample 1

Replica Office 0 Sample 2

Ground Truth

Prediction

Replica Office 0 Sample 3

Ground Truth

Prediction

Real Data Sample 1

Real Data Sample 2

Real Data Sample 3

Replica Office 0 Sample 1

Replica Office 4 Sample 2

Replica Office 4 Sample 3

Figure IV: Failure case visualization of SPEAR model on both Photo-realistic and Real-world Dataset.

Layer Name Filter Num Output Size
Model Input: 2 position 3d coordinate: [2, 3]

Grid Feature: concatenated 2 position feature: [1, 384]
Transformer Encoder Input: Initial Token Representation: [43, 384]

Transformer Layer 1 head num = 8, hidden dim = 384 [43, 384]
... ... ...

Transformer Layer 12 head num = 8, hidden dim = 384 [43, 384]
Prediction Head

Real part FC FC, output feat = 384 [43, 384]
Imaginary part FC FC, output feat = 384 [43, 384]

Flattern Flattern real/imaginary token sequence. [16512]
Construct complex sequence.

Prune Cut the sequence to 16384 length [16384]
Mirroring Generate the full warping field by [32768]

concatenating the predicted sequence
with its mirrored conjugate sequence

Table I: SPEAR Network Architecture Detail.
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A: Ground truth Warp Field

B: Preprocessed Warp Field

C: Target position Waveform

w/o preprocessing

D: Target position Waveform

with preprocessing

E: Waveform Difference

Sample 1 Sample 2

A: Ground truth Warp Field

B: Preprocessed Warp Field

C: Target position Waveform

w/o preprocessing

D: Target position Waveform

with preprocessing

E: Waveform Difference

Sample 3 Sample 4

A: Ground truth Warp Field

B: Preprocessed Warp Field

C: Target position Waveform

w/o preprocessing

D: Target position Waveform

with preprocessing

E: Waveform Difference

Sample 5 Sample 6

Figure V: Visualization of the effect of preprocessing Warping field on the generated audio waveform.
In plot A C, we show the warping field and waveform of the target position without warping-field
preprocessing. In plot B D, we show the pre-processed warping field and the waveform at the target
position after applying the preprocessed warping field. Plot E shows the difference between the two
waveforms at the target position.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Test Case 1 Test Case 2 Test Case 3

Test Case 4 Test Case 5 Test Case 6

1000 position

Ground Truth

3000 position

2000 position

1000 position

Ground Truth

3000 position

2000 position

Figure VI: Predictions of models trained with 3000/2000/1000 sample positions in the training
dataset.
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