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ABSTRACT

Recent advances in large language models (LLMs) have sparked growing interest
in building generalist agents that can learn through online interactions. However,
applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-
task settings remains challenging due to lack of scalable infrastructure and stable
training algorithms. In this work, we present the AGENTRL framework for scalable
multi-turn, multi-task agentic RL training. On the infrastructure side, AGENTRL
features a fully-asynchronous generation-training pipeline for efficient multi-turn
RL. To support heterogeneous environment development in multi-task RL, we
design a unified function-call based API interface, containerized environment
development, and a centralized controller. On the algorithm side, we propose
cross-policy sampling to encourage model exploration in multi-turn settings and
task advantage normalization to stabilize multi-task training. Experiments show
that AGENTRL, trained on open LLMs across five agentic tasks, significantly
outperforms GPT-5, Clause-Sonnet-4, DeepSeek-R1, and other open-source LLM
agents. Multi-task training with AGENTRL matches the best results among all
task-specific models. AGENTRL is open-sourced at https://anonymous.
4open.science/r/AgentRL-ICLR-C351. and has also been adopted for
developing other open-source LLM agents.
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Figure 1: Overall performance of AGENTRL.

1 INTRODUCTION

Reinforcement learning (RL) trains an agent to act by interacting with an environment and optimizing
its policy to maximize cumulative rewards. This principle has been effectively adapted for large
language models (LLMs) through reinforcement learning from human feedback (RLHF) (Ouyang
et al., 2022; OpenAI, 2022), where the LLM itself acts as the agent and its policy is refined based on
feedback from a learned reward model. This optimization process, typically based on proximal policy
optimization (PPO) (Schulman et al., 2017), aligns the model’s outputs with desired behaviors.

More recently, reinforcement learning with verifiable rewards (RLVR) (Shao et al., 2024) has extended
RL to reasoning tasks. Instead of relying on a learned reward model, RLVR uses automatically
verifiable signals, such as correctness checks in math or unit tests in code. This shift to objective
rewards enables significant simplification of the algorithmic design. For example, the group relative
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Table 1: AGENTRL vs. other RL frameworks and methods. Interactive Envs: real-time interaction
with the environment during training; Heterogeneous Envs: training with diverse environments.

Method Agentic Setting Infrastructure

Multi-Turn Multi-Task Full-Async Interative Envs Heterogeneous Envs

VeRL (Sheng et al., 2024) ✗ ✗ ✗ ✗ ✗
OpenRLHF (Hu et al., 2024) ✗ ✗ ✗ ✗ ✗
NeMo-Aligner (Shen et al., 2024) ✗ ✗ ✗ ✗ ✗
AReaL (Fu et al., 2025) ✓ ✗ ✓ ✗ ✗

AgentTuning (Zeng et al., 2024) ✓ ✓ ✗ ✗ ✗
EasyR1 (Zheng et al., 2025a) ✗ ✗ ✗ ✗ ✗
DigiRL (Bai et al., 2024) ✓ ✗ ✗ ✓ ✗
RAGEN (Wang et al., 2025b) ✓ ✗ ✗ ✓ ✗
ToolRL (Qian et al., 2025) ✗ ✗ ✗ ✗ ✗
GiGPO (Feng et al., 2025) ✓ ✗ ✗ ✓ ✗
ARPO (Lu et al., 2025a) ✓ ✗ ✗ ✓ ✗
AGENTRL (ours) ✓ ✓ ✓ ✓ ✓

policy optimization (GRPO) (Shao et al., 2024) algorithm further simplifies PPO and improves LLMs’
RL training efficiency. Recent LLMs leveraging RLVR—e.g., DeepSeek-R1 (DeepSeek-AI et al.,
2025) and T1 (Hou et al., 2025)—have achieved strong performance in reasoning.

However, these RL for LLM achievements have been largely limited to single-turn settings for a
single task, where an agent interacts with the given environment only once for feedback (Qi et al.,
2024; Bai et al., 2024; Zheng et al., 2025b; Feng et al., 2025; Qian et al., 2025; Yue et al., 2023).
First, to solve agentic tasks with multi-turn settings (OpenAI, 2025c; Jin et al., 2025; Lu et al., 2025a;
Feng et al., 2025; Lu et al., 2025b), the agent must collect feedback through dynamic interactions
with environments (Deng et al., 2023; Wei et al., 2025). In this case, the LLM is trained as an
autonomous agent that performs multi-turn reasoning, interacts with tools or environments, and
adapts its behavior over extended trajectories, that is, the problem of agentic RL. Second, building a
generalist agent that can handle diverse tasks has long been a goal for RL. Scaling to heterogeneous
multi-task environments in multi-turn settings for agentic RL requires advances in both LLM training
infrastructure and algorithm design. Table 1 lists existing solutions.

In this work, we present a multi-turn, multi-task framework AGENTRL to scale agentic RL training.
AGENTRL includes RL infrastructure, environment, and algorithm designs to address the challenges
listed in Table 2. On the infrastructure side, we implement an asynchronous generation-training
pipeline that can reduce GPU idle bubbles and improve multi-turn training efficiency. On the
environment side, we develop a scalable environment deployment infrastructure with a unified
function-call based API interface, containerized deployment, and centralized controller to manage the
lifecycle of thousands of parallel training episodes. To further support heterogeneous environment
scaling, we introduce consistent interfaces at the controller level. On the algorithm side, we present
the cross-policy sampling strategy to encourage model exploration that is negatively impacted by the
large state space in the multi-turn setting. We also introduce task advantage normalization to mitigate
the training instability resulting from the heterogeneity in different tasks.

We apply AGENTRL on open LLMs—Qwen2.5 (Qwen et al., 2025) and GLM-4-9B (GLM et al.,
2024)—across five agentic tasks: ALFWorld, DB, KG, OS, and Webshop (Shridhar et al., 2021;
Yao et al., 2022; Liu et al., 2024c). Experiments show that AGENTRL achieves state-of-the-art
results, significantly outperforming GPT-5 (OpenAI, 2025a), Claude-Sonnet-4 (Anthropic, 2025)
and DeepSeek-R1 (DeepSeek-AI et al., 2025) (Figure 1). The single model trained with five tasks
together can match the best performance of five models trained separately for individual tasks, while
also generalizing into unseen tasks, e.g., BFCL-v3 (Patil et al., 2025). Finally, extensive ablations
demonstrate that the algorithmic design choices in AGENTRL bring consistent performance benefits.

The contributions of this work are summarized as follows:

• We develop an asynchronous, multi-task framework AGENTRL for scalable agentic RL training
and robust heterogeneous environment deployment.

• We design a cross-policy sampling strategy to encourage exploration in multi-turn settings and task
advantage normalization to stabilize multi-task RL training.

• AGENTRL achieves state-of-the-art results on various LLM agent tasks, with promising generaliza-
tion to unseen tasks, demonstrating the potential of building a generalist LLM agent.
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Table 2: Challenges in agentic RL compared to single-turn RL

Infrastructure Algorithm

Single-Turn synchronous rollouts stable and scalable training

Multi-Turn
compute inefficiency in synchronous rollouts,
requiring asynchronous training; difficulty in
scaling interactive homogeneous environments

multi-turn tasks demand greater explo-
ration due to larger state spaces, but ex-
ploration declines during training

Multi-Task difficulty in unifying heterogeneous environ-
ments

performance drop from task interference
and lack of generalization

2 THE AGENTIC RL PROBLEM AND ITS CHALLENGES

The shift from single-turn to multi-turn defines the problem of agentic RL, where the LLM acts
as an autonomous agent that performs multi-turn reasoning, interacts with tools or environments,
and adapts its behavior over extended trajectories. Formally, this can be formulated as a Markov
Decision Process(MDP) (Puterman, 2014), a tuple (S,A, P, r, ρ), where S is the state set, A the
action set, P the state-transition probability, r the reward function, and ρ the initial state distribution.
In a single-step case, P is trivial and the problem reduces to a multi-armed bandit. In contrast,
multi-step MDPs involve non-trivial state evolution over multiple transitions. The definition is listed
in Appendix B.

Moreover, most LLM agents have focused on training a separate policy for each individual task (Zheng
et al., 2025b; Feng et al., 2025; Qian et al., 2025). That means multiple LLMs have to be trained, one
for each environment or task, respectively. How to build a generalist agent that can handle diverse
tasks remains largely unexplored. Table 2 summarizes the challenges that go beyond single-turn RL.

Infrastructure Challenges in Multi-Turn RL. In the single-turn setting, RL is often run in a
synchronous way with an interleaved generation-training pipeline (Hu et al., 2024; Sheng et al., 2024).
For agentic tasks, generating long trajectories and frequent interactions with the environment is slow,
time-consuming, and highly variable compared to single-turn scenarios. As a result, GPUs that
handle short trajectories have to stay idle to wait for the generation completion of long trajectories.
The imbalance significantly reduces training efficiency and prevents RL scaling, thus requiring an
asynchronous RL training framework.

On the environment side, multi-turn training requires rollouts to run in an interactive environment,
which places high demands on the concurrent deployment and management of a large number of
homogeneous environments.

Algorithm Challenges in Multi-Turn RL. On the algorithm side, most existing sampling strategies
are designed for single-turn settings. Improving exploration and sampling efficiency in multi-turn
scenarios is therefore critical for agentic RL training.

Infrastructure Challenges in Multi-Task RL. By definition, multi-task RL requires an architecture
that can manage diverse environments. One major challenge lies in the differences in environment
interfaces, state-action representations, and computational demands. Effective and scalable integration
of these environments is essential for scaling agentic training efficiently across diverse tasks.

Algorithm Challenges in Multi-Task RL. Most existing RL approaches focus on training a single
agent task (Jin et al., 2025; Qian et al., 2025; Feng et al., 2025). Thus, developing effective methods
for jointly optimizing multiple agent tasks while ensuring training stability remains an open challenge.

3 THE AGENTRL FRAMEWORK

In this work, we develop an agentic RL framework—AGENTRL—to support multi-turn and multi-task
RL training, as shown in Figure 2. AGENTRL implements asynchronous training and environment
deployment to improve efficiency in multi-turn and multi-task settings. It also introduces cross-policy
sampling and task advantage normalization to stabilize the RL training. Together, these technical
designs and implementations address the challenges outlined in Table 2, and thus enable the generalist
agent training by scaling multiple environments.
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Figure 2: An overview of AGENTRL. Top: asynchronous training and rollout flows. Bottom: the
environment framework where a controller manages multiple workers to provide environments, and
the rollout details, including cross-policy sampling and task advantage normalization.

3.1 MULTI-TURN AGENTIC RL

Asynchronous Training Framework. To overcome the efficiency bottlenecks of synchronous
batching, we introduce an asynchronous rollout-training strategy based on coroutine scheduling.
The rollout engine runs in a dedicated resource group and executes asynchronously with training.
The training module continuously pulls available data from the rollout engine after each update,
without waiting for an entire batch of rollouts to finish. In addition, it accepts a dynamic batch size
that fluctuates within a certain range. This design enables the scheduler to fill idle GPU slots with
available coroutines, reducing pipeline bubbles and improving overall throughput.
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Figure 3: Synchronous vs. Asynchronous Training. The asynchronous design improves efficiency by
separating data rollout and model training on different resource groups.
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chronous baseline for 14B parameter (Qwen2.5)
models on Webshop (log-scale for both axes).

As illustrated in Figure 3, rollout and training
are decoupled. They run concurrently and com-
municate asynchronously. This enables effi-
cient hardware scheduling, as shown in Figure 4,
where the asynchronous pipeline in AGENTRL
brings significant throughput gains over the syn-
chronous one.

To avoid the off-policy bias in the pipeline, we
set a maximum size of the data queue and en-
force all trajectories to be moved to the training
engine at each step. This ensures that data will
not accumulate in the queue. In doing so, all tra-
jectories are kept as up-to-date as possible with
the latest policy, which later experiments sug-
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Figure 5: The AGENTRL training pipeline, decoupled into a Training Framework and an Environment
Deployment Framework, organized by a central AGENTRL Controller. The Training Framework is
responsible for policy rollouts and updates, while the Environment Deployment Framework manages
scalable, containerized task environments that provide feedback.

gest to be acceptable. This is further discussed
in Appendix B.4.

Scalable Agentic Environment Infrastructure. To enable large-scale agentic RL, we develop
a scalable environment deployment infrastructure, shown in Figure 5. It includes the following
components: 1. Function-call based environment interface. To simplify environment interactions,
we introduce a unified, function-call based API. This replaces complex custom action formats and
thus enables centralized management and monitoring. 2. Containerized deployment. Each task
environment is containerized as an isolated execution unit. This design improves resource allocation,
isolates faults between concurrent sessions, and supports seamless deployment on diverse hardware.
3. Centralized high-performance controller. A central controller, acts as the global orchestrator for
the training engine. It is optimized for high-concurrency workloads and manages the lifecycle of
thousands of parallel training episodes.

Step 1 Step 2 Step 3 Step 4

Cross

Mix

Single

Model 2Model 1

Figure 6: Different rollout strategies. In single
model generation, all steps of all traces are gen-
erated by the same model. In mix mode, half of
the samples are generated by each model. In cross-
policy mode, all samples are generated with cross-
policy sampling strategy.

Cross-Policy Sampling Strategy. During RL
training, model exploration typically declines
over time. This problem becomes more severe
in the multi-turn setting with large state spaces.
Similarly, Shumailov et al. (2024) reported that
repeated training on self-generated data leads to
degraded capability and reduced variance. We
observed similar phenomenon in our training.

To overcome this issue, we propose a cross-
policy sampling strategy (see Figure 6), where
multiple LLMs are used to generate actions
within a single trajectory. The goal of aggre-
gating data from different models is to increase
the diversity of the candidate pool while preserv-
ing overall quality. Specifically, cross-policy
sampling constructs trajectories by allowing ac-
tions at each step to be randomly drawn from
the pool of available models, rather than committing to a single model.

Its advantage lies in that the language component of each state is still constrained to remain valid,
while the expanded sampling enlarges the coverage of language states that can reach successful
outcomes in the environment. By exploring paths that would not appear under any single model,
cross-policy sampling increases the likelihood of visiting goal-relevant states without drifting into
incoherent or invalid linguistic regions. Details can be found in Appendix B.3.

During RL training, it is hard to incorporate models with different architectures in the pipeline.
Instead, we let the model do cross-policy sampling with its early version. Specifically, we mark a set
of rollout engines as stale engines; these engines update parameters every multiple steps instead of
one step. Early experiments verified the effect of the cross-policy sampling strategy (see Section 4.3).
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3.2 MULTI-TASK AGENTIC RL

Heterogeneous Environment Deployment. Multi-task RL requires the environment deployment
framework to generalize beyond a single task or environment. To host, schedule, and monitor
heterogeneous environments under the same infrastructure without incurring additional integration
cost, we propose to expose consistent interfaces at both the worker and controller levels. This supports
AGENTRL to scale the task (environment) set in size and diversity gracefully.

We have two complementary designs: On the environment side, we unify the worker API across
all tasks, such that each task can be instantiated and managed using an identical set of lifecycle
operations. On the training side (Figure 5), the controller provides a single gateway API to the
RL engine, abstracting away task heterogeneity and exposing multi-task execution as a transparent
extension of the single-task case.

Task Advantage Normalization. In multi-task RL, agentic tasks often differ substantially in
difficulty, sequence length, and sampling efficiency. Such heterogeneity can cause standard RL
algorithms to learn at very different rates across tasks. Consequently, one task may exhibit clear
reward improvements, while another shows negligible progress, leading to training instability and
performance imbalance.

We normalize the token-level advantage within each to mitigate this issue. For an LLM-based policy,
each high-level action at consists of multiple tokens {yt,k}Lt

k=1. We compute token-level advantage
estimates Âi,s,g,t,k for each token occurrence, where i denotes the task index, s the sample index
within the task, g the trajectory index within the group, t the environment step, and k the token
position within at.

Let Atok
i =

{
Âi,s,g,t,k

∣∣∣ 1 ≤ s ≤ Si, 1 ≤ g ≤ Ki,s, 1 ≤ t ≤ Ti,s,g, 1 ≤ k ≤ Li,s,g,t

}
denote the

set of token-level advantages for all tokens in the current batch of task i, where Si is the number
of samples, Ki,s the number of trajectories per sample, Ti,s,g the number of env steps in trajectory
τi,s,g , and Li,s,g,t the number of tokens in action at.

We normalize each token’s advantage within its task batch as:

Ãi,s,g,t,k =
Âi,s,g,t,k − µi

σi
, (1)

where µi = mean(Atok
i ) and σi = std(Atok

i ). This ensures that, for each task i, the distribution
of token-level advantages in a batch has zero mean and unit variance, helping to reduce inter-task
variance and stabilize multi-task optimization.

4 EXPERIMENTS

Data. We accommodate five agentic tasks (ALFWorld, DB, KG, OS, WebShop) (Liu et al., 2024c) to
the AGENTRL infrastructure. The details of the dataset construction and unifying the function-call
format are provided in Appendix C. To ensure that all tasks are sampled uniformly during training,
we replicate smaller datasets such that each task appears approximately the same number of times as
the largest task. Specifically, we sequentially cycle through multiple datasets, yielding one element
from each in turn to produce interleaved output samples.

Baselines. The closed-source API-based baselines include Claude-Sonnet (Anthropic, 2025), GPT-
5 (OpenAI, 2025a), and o-series models (OpenAI, 2025b). The general open models adopted include
the Qwen2.5-Instruct series (14B, 32B, and 72B) (Qwen et al., 2025), DeepSeek-V3 (Liu et al.,
2024a), and DeepSeek-R1 (DeepSeek-AI et al., 2025). We also compare against agent training
methods on AGENTBENCH, including Hephaestus (Zhuang et al., 2025), Agent-FLAN (Chen et al.,
2024b), and AgentLM (Zeng et al., 2024).

4.1 MAIN RESULTS

We apply AGENTRL on open models, including Qwen2.5-Instruct series and GLM-4-9B-0414. Note
that there is no warm-up supervised fine-tuning before applying AGENTRL to all Qwen models. The
main results are listed in Table 3.
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Table 3: Main results (task success rate). Average and standard deviation of four repeats on each task
are reported. The ‘*’ indicates reward results directly extracted from the original papers.

Model ALFWorld DB KG OS Webshop AVG

API LLMs (Prompting)

Claude-Sonnet-3.7 (2025-02-19) 61.1±3.0 68.5±0.8 59.8±1.0 36.5±4.1 40.1±1.5 53.2
Claude-Sonnet-3.7 Thinking (2025-02-19) 54.1±3.0 68.4±0.3 38.2±2.2 53.1±1.8 36.0±1.7 50.0
Claude-Sonnet-4 (2025-05-14) 73.6±2.6 70.1±0.7 63.4±1.7 45.3±2.8 34.6±1.6 57.4
Claude-Sonnet-4 Thinking (2025-05-14) 69.0±3.2 68.4±1.0 64.4±1.9 51.0±2.3 38.3±2.8 58.2
GPT-4o (2024-11-20) 28.3±2.8 54.3±2.2 49.3±2.7 38.5±3.2 27.8±2.2 39.6
o3-mini (2025-01-31) 28.4±1.3 56.5±0.5 51.8±0.9 35.1±1.7 32.7±1.5 40.9
o4-mini (2025-04-16) 32.6±1.8 63.4±0.3 32.4±3.0 41.8±1.0 28.5±1.8 39.7
GPT-5 (2025-08-07) 65.4±2.0 63.2±0.7 64.1±1.8 34.5±1.0 33.7±2.6 52.2

Open LLMs (Prompting)

DeepSeek-V3 (2025-03-24) 31.9±2.0 58.4±1.2 14.0±2.0 53.0±1.0 23.4±2.5 36.1
DeepSeek-R1 (2025-05-28) 51.4±4.1 60.4±0.5 50.2±2.7 53.6±1.0 31.0±1.6 49.3
Qwen2.5-14B-Instruct 8.7±3.1 48.4±2.2 35.3±3.0 26.0±3.1 17.6±1.0 27.2
Qwen2.5-32B-Instruct 32.1±3.9 55.8±0.6 33.8±1.5 37.0±1.5 27.5±2.3 37.2
Qwen2.5-72B-Instruct 47.5±3.3 45.3±0.9 26.5±3.1 49.5±3.5 35.4±2.7 40.8

Open LLMs (Agent Training)

Hephaestus-8B-Base 30.0 32.3 16.0 20.8 60.5∗ 31.9
Hephaestus-8B-IFT 46.0 29.7 21.2 20.8 63.9∗ 36.3
AgentLM-7B 84.0 30.6 18.1 17.4 63.6∗ 42.7
AgentLM-13B 76.0 33.7 26.8 18.1 70.8∗ 45.1
AgentLM-70B 86.0 37.7 47.0 21.5 64.9∗ 51.4

AGENTRL
w/ Qwen2.5-3B-Instruct 92.4±0.5 60.0±1.1 55.0±2.0 40.5±0.9 52.1±0.9 60.0
w/ Qwen2.5-7B-Instruct 91.5†±0.9 63.7±0.5 57.8±2.3 40.8±1.2 56.1±0.6 62.0
w/ Qwen2.5-14B-Instruct 91.5±0.9 72.2±0.9 72.8±1.8 43.6±1.9 58.5±1.2 67.7
w/ Qwen2.5-32B-Instruct 94.5±0.5 70.4±0.5 77.0±1.2 51.7±1.8 58.6±0.9 70.4
w/ GLM-4-9B-0414 93.3±0.5 66.9±0.4 75.7±1.8 33.2±1.7 55.9±1.9 65.0
†

We provide a one-shot demonstration for Qwen2.5-7B-Instruct in ALFWorld evaluation, as it fails to generate
valid tool call format in the environment.

Table 4: Multi-Task vs. Single-Task with Qwen2.5-14B-Instruct.

Model ALFWorld DB KG OS Webshop AVG

AGENTRL-ALFWorld 89.7±1.6 49.7±1.6 22.3±3.1 33.7±3.1 15.9±0.5 42.3
AGENTRL-DB 0.2±0.5 73.9±0.7 26.2±1.7 43.1±1.3 16.0±0.9 31.9
AGENTRL-KG 4.6±1.1 57.6±0.8 72.2±1.5 40.3±2.4 19.5±2.0 38.8
AGENTRL-OS 5.7±1.2 58.2±1.2 25.3±1.6 39.8±1.8 22.0±2.3 30.2
AGENTRL-Webshop 0.0±0.0 57.9±2.6 30.7±2.2 40.1±0.7 60.3±1.3 37.8

Best of Five Models Above 89.7±1.6 73.9±0.7 72.2±1.5 43.1±1.3 60.3±1.3 67.8

AGENTRL (One Model) 91.5±0.9 72.2±0.9 72.8±1.8 43.6±1.9 58.5±1.2 67.7

SOTA Performance. Our AGENTRL framework achieves state-of-the-art performance across
five tasks in AGENTBENCH-FC (see Appendix C), establishing a new top average success rate of
70.4%. Compared to the original Qwen2.5-Instruct models under prompting, AGENTRL yields
substantial improvements, highlighting the effectiveness of reinforcement learning training. Notably,
all AGENTRL-trained models, from 3B to 32B, consistently outperform strong baselines including
leading models such as GPT-5, Claude-Sonnet-4 Thinking, and DeepSeek-R1.

Multi-Task vs. Single-Task. Table 4 shows that single-task RL agents excel only in their specific
training environment but fail to generalize, yielding poor transfer across tasks. In contrast, our multi-
task AGENTRL achieves nearly identical performance to the “best-of-five” single-task specialists
while maintaining strong results on all tasks simultaneously. This highlights the effectiveness of
multi-task training in acquiring generalizable skills without sacrificing peak performance.
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Table 5: Generalization Performance on BFCL-v3.

Model single-turn multi-turn overall
nonlive live

Qwen2.5-32B-Instruct 86.0±0.2 77.4±0.1 16.2±0.6 59.9
AGENTRL w/ Qwen2.5-Instruct-32B 85.8±0.2 ↓0.2 79.3±0.2 ↑1.9 19.2±0.8 ↑3.0 61.4 ↑1.5

Generalization on BFCL-v3. To examine generalization, we evaluate the AGENTRL model (trained
on ALFWorld, DB, KG, OS, and Webshop) on the BFCL-v3 benchmark (Patil et al., 2025). BFCL-
v3 evaluates the model’s multi-step function calling ability. As shown in Table 5, AGENTRL
demonstrates clear improvements on multi-turn tasks and modest gains on single-turn tasks. These
results suggest that our approach can enhance the generalizability of function calling, providing a
step toward more broadly capable agentic LLMs. This is further discussed in Appendix D.4.

Table 6: Ablation on cross-policy sampling and task advantage normalization.

Method AF DB KG OS WS AVG

AGENTRL-14B 93.1±0.5 64.0±0.5 67.7±2.0 45.1±2.0 55.0±0.7 65.0
- cross sampling 91.9±1.2 61.6±1.0 55.7±1.4 39.7±2.3 54.5±1.3 60.7
- task adv. norm 91.1±0.9 62.6±0.7 54.7±1.6 38.0±2.0 50.6±1.7 59.4
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(a) Cross-Policy Sampling in KG.
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(b) Task Adv. Norm. in ALFWorld.
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(c) Average over 5 environments.

Figure 7: Ablation studies. (c): The combined effect of Cross-Policy Sampling and Task Advantage
Normalization, averaged over five environments.

4.2 ABLATION STUDY

Cross-Policy Sampling. Table 6 suggests AGENTRL trained without cross-policy sampling performs
worse. This phenomenon is especially obvious in some tasks/environments. We demonstrate the
pass rate on KG during training in Figure 7a as an example; the model’s capability reaches the top
earlier than the model trained with cross-policy sampling. These results demonstrate that cross-policy
sampling is able to explore more possible states, especially in more open-ended environments during
training, thus expanding the border of the model’s capability.

Task Advantage Normalization. Table 6 suggests that removing task advantage normalization leads
to clear performance drops. Also, as shown in Figure 7b, the training efficacy is severely reduced
and demonstrates fluctuations on some tasks. When removing the task advantage normalization, the
model tends to learn different tasks at different rates instead of learning jointly. These results indicate
that normalizing the advantage for each task effectively stabilizes multi-task training and reduces
negative interference, resulting in more robust and consistent learning across tasks.

4.3 VERIFYING THE EFFECT OF THE CROSS-POLICY SAMPLING STRATEGY

Applying Cross-Policy sampling in Inference. The proposed cross-policy sampling strategy
samples actions from a pool of models (as depicted in Figure 6). To verify that the cross-policy
sampling strategy effectively promotes model exploration, we first directly applied our method to
inference. We conducted experiments using the Qwen (Qwen et al., 2025) and Llama (Grattafiori

8
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(a) Cross-policy sampling on Webshop. The mix strat-
egy combines data from both models, so its maximum
K is twice that of the other strategies.
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(b) Results from preliminary experiments on the Web-
Shop environment. Note that settings are not com-
pletely the same as those in the main experiments.

Figure 8: Effects of cross-policy sampling in inference (a) and training (b) on Webshop.

et al., 2024) models in the WebShop (Yao et al., 2022) environment. As shown in Figure 8a, we
observe that in low-k regimes, the performance of the cross-policy sampling strategy is slightly
lower than the best single model strategy. However, as k increases, a surprising trend emerges: the
cross-policy sampling strategy eventually surpasses both individual models in pass@k metrics. The
performance of the cross-policy sampling strategy also surpasses mixing two models’ trajectories,
demonstrating that the strategy has effectively explored something outside both models’ capability
boundaries. This provides strong evidence for our theoretical analysis.

Applying Cross-Policy sampling in RL. To further verify the effectiveness of the cross-policy
sampling strategy during RL training, we conduct a training experiment on the Webshop task. As
shown in Figure 8b, both trained models demonstrated a significant improvement in pass@1 rate
compared to the untrained base model. But the model trained with the cross-policy sampling strategy
demonstrates a consistent advantage as k increases. This suggests that the strategy successfully
preserves the model’s diversity while improving its overall ability.

5 RELATED WORK

Reinforcement Learning AI Agents. RL algorithms like PPO (Schulman et al., 2017) and
GRPO (Shao et al., 2024) have been widely adopted in LLM agent training. Deepseek-R1 (DeepSeek-
AI et al., 2025) demonstrates RL’s ability to incentivize reasoning in LLMs through reward-driven
fine-tuning. Recent works (Qian et al., 2025; Feng et al., 2025; Lu et al., 2025a; Wen et al., 2025)
further develop RL techniques. GUI agents also benefit from RL-driven optimization (Xu et al., 2024;
Qi et al., 2024; Liu et al., 2024b; Qin et al., 2025; Chen et al., 2025). For long-horizon tasks, Chen
et al. (2025) shows RL’s efficacy in balancing exploration and tool usage. DeepResearcher further
scales real-world research by training agents to iteratively refine hypotheses via RL (Zheng et al.,
2025b). Despite these advancements, most current approaches fall short in studying the exploration
aspect of RL training and the multi-task setting. In this work, we propose the cross-policy sampling
strategy and task advantage normalization, addressing a critical gap in existing methods.

Reinforcement Learning Infrastructure. Several frameworks (Sheng et al., 2024; Hu et al., 2024;
Fu et al., 2025) have been developed for RL training. These frameworks usually adopt modern
training (Shoeybi et al., 2019; Zhao et al., 2023) and rollout (Kwon et al., 2023; Zheng et al., 2024)
engines to boost efficiency. However, unlike math or coding tasks, agent scenarios involve multi-turn
interactions with environments. There have been works (Liu et al., 2024c; Ma et al., 2024) to provide
standardized benchmarks for evaluating multi-turn interactions and addressing reproducibility gaps.
Platforms such as E2B (e2b dev, 2025) and OpenHands (Wang et al., 2025a) provide secure sandbox
environments and modular interfaces for code execution, browser automation, and generalist agent
development. While these environments provide strong support for agent evaluation, existing RL
frameworks lack built-in support for multi-turn interactions and agent-specific training optimizations.
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6 CONCLUSION

We propose AGENTRL, a system for training LLM agents with RL across diverse tasks and envi-
ronments. Through asynchronous rollout–training pipelines, scalable environment deployment, and
algorithmic advances including cross-policy sampling and task advantage normalization, AGENTRL
enables more efficient and stable training. Experiments demonstrate competitive results across diverse
agentic benchmarks, with encouraging signs of generalization to unseen tasks.
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STATEMENTS

Ethics Statement This work does not involve human subjects or sensitive personal data. All
experiments are conducted on publicly available datasets and environments, and we provide full
documentation of preprocessing and implementation details to support transparency. The methods
and findings are intended for advancing research on reinforcement learning with LLMs; we do not
foresee immediate risks of harmful applications, but we acknowledge the general possibility of misuse
of LLM agents. We encourage responsible use of our released resources in line with the ICLR Code
of Ethics.

Reproducibility Statement We place a strong emphasis on reproducibility and have made extensive
efforts to ensure that our results can be reliably reproduced. To this end, we release all code,
environments, and training scripts, together with detailed hyperparameters and configuration files, in
our anonymous repository. Additional descriptions of environment setup, data preprocessing, and
implementation details are provided in the appendix and supplementary materials. These resources
collectively support transparent and reproducible verification of our findings.
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A BACKGROUND OF REINFORCEMENT LEARNING IN LARGE LANGUAGE
MODELS

Reinforcement Learning (RL) has significantly enhanced the capabilities of Large Language Models
(LLMs) by optimizing their decision-making through reward-driven training. The fundamental RL
objective is expressed as:

J (θ) = Es∼D,a∼πθ(s)[R(s, a)], (2)
where πθ denotes the policy, s represents the input context, a is the generated output, and R(s, a)
assesses the output quality via a reward function.

A key method, Proximal Policy Optimization (PPO)(Schulman et al., 2017), ensures training
stability using a clipped probability ratio, defined as:

ρt(θ) =
πθ(at|st)
πold(at|st)

, (3)

with the objective function:

JPPO(θ) = Et[min(ρt(θ)Ât, clip(ρt, 1− ϵ, 1 + ϵ)Ât)− βDKL], (4)

where Ât is the advantage estimate, and clipping limits policy updates.

For improved advantage estimation, Generalized Advantage Estimation (GAE)(Schulman et al., 2018)
is utilized, computed as:

ÂGAE
t (γ, λ) =

∞∑
l=0

(γλ)lδt+l, (5)

where δt = rt + γV (st+1) − V (st) is the temporal difference error, and γ and λ adjust the bias-
variance tradeoff.

Another approach, Group Relative Policy Optimization (GRPO)(Shao et al., 2024), optimizes
over groups of outputs with the objective:

JGRPO(θ) = Eoi∼πgroup(θ)[Jgroup(θ)], (6)
where the group objective is:

Jgroup(θ) =
1

G

G∑
i=1

min(ρiÂi, ρ̂i)− βDKL, (7)

and the advantage Âi is a normalized reward:

Âi =
ri − µr

σr
, (8)

with µr and σr as the mean and standard deviation of rewards, fostering adaptive LLM behaviors.

Finally, Decoupled Clip and Dynamic sampling Policy Optimization (DAPO)(Yu et al., 2025)
was proposed to address issues specific to long-CoT reinforcement learning, such as entropy collapse
and training instability. The algorithm modifies the GRPO objective by introducing several key
techniques, including a decoupled clipping mechanism and a dynamic sampling strategy.

The DAPO objective function is formulated as:

JDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold

(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

×min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵlow, 1 + ϵhigh)Âi,t

)]
(9)

subject to the constraint:
0 < |{oi|is_equivalent(a, oi)}| < G, (10)

where the advantage Âi,t is calculated similarly to GRPO. The primary innovations are the decoupled
clipping bounds, ϵlow and ϵhigh, which allow for greater exploration to prevent entropy collapse, and
the dynamic sampling constraint, which filters out batches where all responses are either correct
or incorrect to ensure a non-zero advantage and stable gradients. The loss is also normalized at the
token level ( 1∑

|oi| ) to properly weight responses of varying lengths.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B PRELIMINARIES

B.1 PROBLEM DEFINITION

Agentic Task. We define an agentic task Ti as a Markov Decision Process (MDP):

Ti =
(
Senv
i ,Ai, Pi, ri, ρi

)
, (11)

where Senv
i is the environment state space, Ai is the action space, Pi(s

′|s, a) denotes transition
dynamics, ri(s, a) is the reward function, and ρi(s0) is the initial state distribution.

LLM-based Policy and Composite State. When the policy πθ is implemented by an LLM, the
state at decision step t is the composite state st = (senvt , sctxt ), where senvt is the environment state
and sctxt ∈ V∗ is a tokenized context representing the trajectory prefix up to step t.

In LLM-based settings, a high-level action at is a complete sequence of Lt tokens:

at = (yt,1, yt,2, . . . , yt,Lt), yt,k ∈ V. (12)

The underlying LLM defines a token-level probability distribution Pθ(yt,k | sctxt , yt,<k) for each
token, and the policy probability of producing at from st factorizes as:

πθ(at | st) =
Lt∏
k=1

Pθ

(
yt,k | sctxt , yt,<k

)
. (13)

This factorization allows us to define token-level log-probabilities and, consequently, token-level
policy gradients and advantage estimates.

Trajectory Definition. A trajectory in task Ti is defined as

τ =
(
s(0), a(0), r(1), s(1), a(1), r(2), . . . , s(T−1), a(T−1), r(T ), s(T )

)
, (14)

where each s(t) = (senvt , sctxt ) is a composite state as above. The reward r(t+1) = ri(s
env
t , a(t)) is

assigned after a(t) is applied in senvt . Different from standard MDP trajectories, this formulation
explicitly embeds a context component in each state.

Multi-Task Setting. We study a collection of Ntask tasks:

T = {T1, . . . , TNtask
}. (15)

For each Ti there are Mi samples:

Di = {xi,1, . . . , xi,Mi
}. (16)

Executing sample xi,j produces a group of Ki,j trajectories:

Gi,j = {τi,j,1, . . . , τi,j,Ki,j}, (17)

which, as we will discuss in RLVR, are used in GRPO to compute group-based advantage estimates.

B.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards (RLVR) DeepSeek-AI et al. (2025) refers to
scenarios in which the reward signal associated with a trajectory can be computed in a deterministic
and objective manner based on the observed interaction data. In practice, RLVR is commonly
optimized using Proximal Policy Optimization (PPO) Schulman et al. (2017) or its extensions such
as Group Relative Policy Optimization (GRPO) (Shao et al., 2024).

PPO Objective. Given a batch of trajectories, PPO maximizes the clipped surrogate objective:

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (18)

where rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio and Ât is the advantage estimate.
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GRPO Objective. Under GRPO, each group Gi,j contains Ki,j trajectories compared within the
group, yielding group-relative advantage estimates Âi,j,g . The objective is:

LGRPO(θ) = Ei,j

 1

Ki,j

Ki,j∑
g=1

min
(
ρi,j,g(θ) Âi,j,g, clip(ρi,j,g(θ), 1− ϵ, 1 + ϵ) Âi,j,g

) , (19)

where ρi,j,g(θ) =
πθ(ai,j,g|si,j,g)

πθold
(ai,j,g|si,j,g) and Âi,j,g =

R̂i,j,g−mean(R̂i,j)

std(R̂i,j)
is a group-relative advantage

estimate, computed as the difference between the empirical return R̂i,j,g of trajectory τi,j,g .

B.3 FORMAL DESCRIPTION AND THEORETICAL ANALYSIS OF CROSS-POLICY SAMPLING

Formally, let M = {πθ0 , πθ1 , . . . , πθK} denote the set of candidate policies (e.g., the current policy
and historical snapshots). Unlike standard sampling where actions are drawn from a single policy,
the trajectory obtained by Cross-Policy Sampling (CPS), denoted as τ c, is generated by dynamically
selecting a policy at each step. The trajectory takes the form:

τ c =
(
s(0), ac,(0), r(1), s(1), ac,(1), . . . , s(T )

)
, (20)

where at each timestep t, the action is sampled via a two-stage process:

k ∼ U(0,K), ac,(t) ∼ πθk(· | s(t)). (21)

Here, s(t) = (senvt , sctxt ) represents the composite state of the environment and the language context
context.

To analyze the exploration benefit, we introduce a geometric interpretation of the language-agent
interaction. The language state sctx can be viewed as a point in a high-dimensional semantic space L.
However, effective communication requires the state to remain within the subspace of linguistically
coherent sequences, denoted as Lvalid ⊂ L. The environment state senv is determined stochastically
by a grounding function Γ : Lvalid → ∆(Senv).

Let G ⊂ Senv be the set of goal states (success set). We define the language preimage of the goal as:

LG = Γ−1(G) ∩ Lvalid. (22)

This set LG represents all valid thought/action sequences that lead to success. Finding a solution is
equivalent to locating a trajectory that intersects with LG .

The core advantage of CPS lies in its coverage of this preimage. A single policy πθ tends to
collapse to a specific mode (a subset of valid paths). By sampling from a mixture of policies
πmix = 1

|M|
∑

π∈M π, CPS effectively computes the union of the support of individual policies.
Crucially, since every π ∈ M is a trained language model, their samples remain confined to the valid
manifold Lvalid. Thus, the support of the cross-sampled trajectory τ c satisfies:

supp(τ c) ∩ LG ≈
⋃

π∈M
(supp(τπ) ∩ LG) ⫌ supp(τ current) ∩ LG . (23)

This inequality highlights that CPS strictly expands the explored region within the valid solution
space LG compared to the current policy alone.

Remark on Stability: It is important to note why this is superior to simply increasing the sampling
temperature. High-temperature sampling expands the support isotropically in L, often causing the
trajectory to drift into L \ Lvalid (incoherent or hallucinated text). In contrast, CPS expands diversity
along the "directions" of previous valid policies, thereby increasing the probability P (senv ∈ G)
without sacrificing linguistic coherence.

B.4 MITIGATING THE OFF-POLICY BIAS

The off-policy bias from the asynchronous pipeline is carefully managed at two levels:

At the algorithmic level: GRPO, by building upon PPO, inherits Importance Sampling (IS). The
probability ratio rt(θ) =

πθ(a|s)
πold(a|s) corrects for the distributional shift between the current policy (πθ)
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and the behavior policy (πold) that collected the data. To ensure this correction is accurate, the key is
obtaining the correct logprobs for πold. We achieve this by **directly passing the logprobs from the
rollout engine along with the trajectory data. This ensures the training objective remains unbiased,
even if minor model version discrepancies exist between the training and rollout engines.

At the pipeline level: We enforce a strict data flow where all data sent to the data queue at step
N serves as the training data for step N + 1. This design naturally prevents the data queue from
accumulating stale trajectories and ensures the training data is always "as up-to-date as possible."

Furthermore, our investigation revealed that a more significant source of practical off-policy bias
stemmed from a subtle tokenization issue: the token → text → token mapping is often not identical.
Re-tokenizing multi-turn outputs during training can inadvertently introduce this drift. We have
updated the paper to clarify that AgentRL avoids this effect entirely by preserving the original
token sequences throughout the rollout and training process.

We derive the stale policy from the main policy, which ensures the distributions of the two policies do
not diverge significantly. In our setting, the stale engine is synchronized every 25 steps. With the
help of the approaches introduced above, this off-policy bias can be implicitly corrected and does not
affect training stability.

C DATASET DETAILS

C.1 EXTENDING AGENTBENCH

While the overall framework is decoupled from benchmarks, we perform training on a refined version
of AGENTBENCH, or what we call AGENTBENCH-FC. Specifically, we made several modifications:

C.2 SYNTHESIZING TRAINING SET

To address the scarcity of training data in the original AGENTBENCH framework, we aim to construct
a large-scale and diverse dataset suitable for reinforcement learning across various agent environments.
To this end, we adopted a multifaceted data collection strategy tailored to the unique characteristics
of each environment:

Direct Adoption of Existing Datasets. For environments like AlfWorld and WebShop, which
are accompanied by rich, pre-existing training sets, we directly incorporated these official datasets.
This approach ensures consistency with the original benchmarks and leverages well-established data
sources.

Synthetic Data Generation via Self-Instruct. For tasks in more complex environments such as
OS, KnowledgeGraph, and DB, where training data is not readily available, we employed the Self-
Instruct methodology (Wang et al., 2022). We used high-performance APIs (o3 and claude4-sonnet)
to efficiently sample and filter a large volume of high-quality training instances.

Augmentation with External High-Quality Datasets. To further enrich the diversity and complexity
of our training data, we integrated external, high-quality datasets. Notably, for the DB environment,
we augmented our dataset with the training samples provided by the BIRD benchmark (Li et al.,
2023), a comprehensive text-to-SQL dataset.

C.3 MODIFICATIONS TO AGENTBENCH ENVIRONMENT

To enhance the flexibility and compatibility of AGENTBENCH, we transformed its five environments
into a Function-Call Based framework. We analyzed the distinct action types required by each
environment and categorized them accordingly. For each environment, we extracted specific tools
following the OpenAI Function Call Format. For instance, in the Knowledge Graph (KG) environment,
we identified and implemented seven tools, including get_relations, get_neighbors, and
count, among others. Additionally, we modified the interaction logic of each environment to support
external requests in the Function Call format, ensuring seamless integration with external systems.
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Outlining the refactoring of Controller and Worker interfaces We restructured the interface protocols
for the Controller and Worker components in AGENTBENCH to standardize task management and
interaction. The start_sample interface was introduced to initiate a task, while multi-turn
interactions were facilitated through the interact interface. To improve Controller oversight,
we implemented additional interfaces, such as list_sessions and list_workers, enabling
efficient monitoring of internal worker and session states within the container.

D DETAILED EXPERIMENTAL SETTINGS

D.1 ENVIRONMENTS AND TASKS

We select five representative multi-turn interaction tasks from the AGENTBENCH (Liu et al., 2024c),
a comprehensive and evolving benchmark designed to evaluate the reasoning and decision-making
capabilities of large language models. These tasks, encompassing operating system interactions,
database management, knowledge graph navigation, text-based adventure games, and web shop-
ping scenarios, are chosen for their diverse challenges and ability to assess critical skills such as
long-sequence comprehension, contextual tracking, and environmental interaction. The tasks are
supported by standardized evaluation protocols and open-source code environments, facilitating
robust experimental implementation and framework refinement.

Unified Reward. We normalize all task rewards to the range [0, 1] for consistency. For tasks without
intrinsic reward signals, we assign a reward of 1 for correct responses and 0 otherwise. In addition, we
leverage termination signals and penalize abnormal terminations with a reward of −0.2 to encourage
proper episode completion.

• Operating System (OS) Task: This environment assesses an agent’s ability to interact with a real
Ubuntu Docker-based operating system through Bash command-line inputs. Agents are tasked
with interpreting natural language instructions and translating them into precise Shell commands
to achieve specific objectives, such as file manipulation or directory navigation in an unfamiliar
environment. The task demands high accuracy in command generation, error handling, and result
interpretation (e.g., standard output and error streams), given the vast action space and the need for
adaptive decision-making.

• Database (DB) Task: In this scenario, agents act as database analysts, interacting with a real
database via SQL queries to address natural language questions or perform data modifications (e.g.,
INSERT, UPDATE). The task evaluates the agent’s proficiency in converting natural language to
SQL (Text-to-SQL), understanding database schemas (table structures, column names, data types),
and managing complex queries (e.g., multi-table joins, nested queries, aggregation functions).
Multi-turn interactions require agents to adjust strategies based on query results or error feedback.

• Knowledge Graph (KG) Task: For the KG environment, API results are obtained with one-shot
testing to ensure the model can correctly invoke tool calls, while our trained models are trained and
evaluated without one-shot assistance. This task challenges agents to perform multi-step reasoning
and information retrieval within a large knowledge graph (e.g., Freebase) to answer complex
queries. With only partial observability due to the graph’s scale, agents must use structured query
operations (e.g., retrieving entity relationships or finding intersecting entity sets via callable tools)
to explore and connect information fragments. It emphasizes long-term planning, information
integration, and effective decision-making under incomplete information.

• Text Adventure Game (Text Game / House-Holding, HH - Represented by ALFWorld): Agents
operate in a text-described virtual household environment, executing action sequences to meet
high-level goals (e.g., “clean a soapbar and place it on the workbench”). Actions include navigating
(e.g., “go to cabinet 1”), interacting with objects (e.g., “take soapbar 1 from sinkbasin 1”), and
adjusting plans based on feedback (e.g., “The cabinet 2 is closed”). ALFWorld (Shridhar et al.,
2021) highlights the need for commonsense reasoning, goal decomposition, and dynamic planning
in response to environmental states.

• Web Shopping (WS - Represented by WebShop): This task simulates an e-commerce experience
where agents search for products based on specific criteria (e.g., brand, price) by interacting
with a simulated website. Actions include keyword searches, link clicks, attribute filtering, and
adding items to a cart. The WebShop environment (Yao et al., 2022) offers a rich product dataset,
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requiring agents to analyze requirements, navigate multi-turn interactions, and demonstrate strong
information retrieval, comparison, and decision-making skills in a complex web interface.

D.2 TRAINING AND EVALUATION SETTINGS

Training. We leverage the Verl project as a foundation, implementing a fully asynchronous overhaul
to develop a novel training framework, AGENTRL, tailored for agentic RL tasks. The framework was
applied to train models including Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct,
Qwen2.5-32B-Instruct, and GLM4-9B. The efficiency of the asynchronous design enabled extensive
rollout training across the five selected multi-turn interaction tasks, facilitating large-scale RL with
over 1000 steps in a multi-task mixed setting. This prolonged training ensured convergence of model
performance across diverse tasks.

The interaction format between models and environments was standardized using the OpenAI
Function Call Format. For the Qwen series, RL training commenced directly from the base models.
In contrast, the GLM4-9B model required an initial cold-start phase with a limited set of supervised
fine-tuning (SFT) data to adapt to the Function Call Format, followed by RL training, ultimately
yielding significant performance improvements (see Table 3). Training was conducted on H800
GPUs, with a minimum configuration of 16 GPUs for the 14B model. Scalability was observed, as
training efficiency increased with additional GPU resources.

The training process employed the Group Relative Policy Optimization (GRPO) algorithm as the
baseline, enhanced with custom modifications (see Section 3.1). Rollouts were performed with a
temperature of 0.8, sampling eight times per rollout to ensure diverse action exploration. To maintain
consistency across multi-task environments, a binary reward function was designed, assigning a score
based on the correctness of the entire trajectory. Trajectories exceeding the maximum interaction
rounds or maximum response length incurred a penalty of -0.2. For computational efficiency, SGLang
was adopted as the inference engine, paired with the Fully Sharded Data Parallel (FSDP) strategy to
optimize RL training.

Evaluation. For evaluation, a lightweight eval script was developed using the SGLang engine,
seamlessly integrated with the asynchronous framework to enable rapid assessment of task perfor-
mance. Evaluations were conducted with a temperature of 0.8, averaging results over four consecutive
runs per task to ensure reliability. Additionally, a compatible API evaluation script was created to
assess model APIs across tasks, supporting endpoints served by vllm or SGLang, with identical
parameters (temperature 0.8, four-run average) to maintain consistency.

D.3 DEPLOYMENT FRAMEWORK DETAILS

As shown in Figure 5, each worker in the new framework operates as a containerized execution
unit, capable of managing concurrent task lifecycles under isolated runtime conditions. Workers are
equipped with a detailed instrumentation layer for real-time observability, enabling telemetry at both
session and task granularity. Internally, each worker integrates an abstract environment controller
that mediates between task definitions and environment provisioning services. This controller is
responsible for session instantiation, interaction handling, timeout enforcement, and environment
cleanup. By abstracting the execution logic from physical deployment details, the worker layer can
accommodate diverse backend configurations and support dynamic elasticity under shifting training
loads.

The new controller adopts a non-blocking dispatch strategy that minimizes contention and ensures
deadlock safety through a strict lock acquisition hierarchy. Timeout-driven fault detection and self-
healing routines enable automatic de-registration and reintegration of unstable nodes. The controller
also enforces strict lifecycle policies on session expiration, interaction timeout, and stale data cleanup
through periodic maintenance loops.

D.4 RESULTS ANALYSIS

We provide a comprehensive evaluation of reinforcement learning (RL) performance across a diverse
set of models and tasks. We report results for prominent API-based models and popular open-source
base models. Additionally, we assess the RL-enhanced variants of our models at various scales,
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trained using the AgentRL framework. The evaluation extends to out-of-distribution (OOD) testing
on an unseen benchmark, where the RL-trained model demonstrates performance gains over its base
counterpart. Furthermore, we conduct an ablation study to investigate the impact of our proposed
algorithmic techniques on model efficacy.

Scaling Law The main results reflect a clear scaling law trend, with AgentRL-trained models
showing consistent performance improvements as their size increases. Performance progressively
escalates from the smallest model variants to the largest, indicating the framework’s scalability and
robustness. This progressive enhancement underscores the algorithm’s adaptability to varying model
sizes. The successful application to a model from a different architectural family further validates the
framework’s versatility, demonstrating its broad applicability beyond a single model series.

Frontier Model Performance Comparative analysis highlights the superiority of our largest
AgentRL-trained model over leading API-based models. While prominent proprietary LLMs achieve
high scores, our RL-optimized model reaches a new state-of-the-art performance level, representing a
substantial improvement over its base version before RL training. This suggests that AgentRL not
only competes with but, in certain multi-turn and overall metrics, surpasses these advanced models,
affirming its competitive edge.

Open-Source Baselines To rigorously benchmark our framework, we compare against a diverse
set of representative open-source methods covering supervised fine-tuning (SFT), pre-training, and
evolutionary paradigms. AgentLM (Zeng et al., 2024) and AgentFlan (Chen et al., 2024a) repre-
sent the SFT paradigm; AgentLM employs hybrid instruction tuning on expert trajectories, while
AgentFlan focuses on decomposing and cleaning data distributions to mitigate hallucinations. Hep-
haestus(Zhuang et al., 2025) adopts a continual pre-training paradigm, utilizing large-scale agentic
corpora to enhance fundamental capabilities like tool understanding before fine-tuning. Finally,
AgentGym(Xi et al., 2025) serves as a framework baseline that facilitates agent self-evolution
through interactive environments. In contrast to these approaches, which primarily focus on static
data engineering or synchronous iteration, AGENTRL introduces a fully asynchronous online re-
inforcement learning framework, specifically optimized for multi-turn, multi-task stability via our
proposed Cross-Policy Sampling and Task Advantage Normalization.

OOD Performance The OOD evaluation on the BFCL-v3 benchmark tests generalization on
unseen tasks. The RL-trained model shows a clear improvement in overall performance compared
to the base model, with a particularly significant leap in multi-turn task capability. This outperfor-
mance after extensive RL training underscores the method’s ability to generalize beyond its training
distribution, enhancing its potential for practical deployment in diverse scenarios.

Ablation Study The ablation study further elucidates the efficacy of our methodological enhance-
ments, detailed as follows:

• Cross-Policy Sampling: This technique, designed to explore more states in open-ended environ-
ments, proves to be highly effective. Its inclusion boosts the average performance significantly.
This result underscores the value of encouraging broader exploration, as the strategy success-
fully expands the model’s capability boundaries by exposing it to more diverse and goal-relevant
trajectories during training.

• Task Advantage Normalization: In contrast, this method stabilizes multi-task learning by miti-
gating negative interference and rate disparities across tasks. These findings support the selective
integration of this technique, enhancing AgentRL’s training stability and consistency.

D.5 ADDITIONAL EXPERIMENTS AND ABLATION STUDIES

In this section, we present detailed experimental results to address reviewer inquiries regarding algo-
rithmic effectiveness and system robustness. Note on Experimental Settings: To isolate the specific
effects of Cross-Policy Sampling and the Asynchronous Pipeline, we conducted targeted experiments
on the DB environment. For system-wide stability analyses (Task Advantage Normalization and
Hyperparameter Sensitivity), we utilized the full multi-task setting across all five AgentBench
environments.
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D.5.1 ANALYSIS OF ASYNCHRONOUS PIPELINE

Synchronous vs. Asynchronous Pipeline (Single
Task - DB). To address concerns regarding poten-
tial off-policy bias, we conducted a comparative ex-
periment between synchronous and asynchronous
pipelines on the DB environment. As shown in
Figure 9, the training curves of the two approaches
are nearly identical. This empirical evidence con-
firms that the off-policy bias introduced by the
asynchronous mechanism has a negligible impact
on convergence and performance, while retaining
the substantial efficiency gains demonstrated in the
main paper.
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Figure 9: Async vs. Sync (DB Envi-
ronment). Asynchronous training yields
nearly identical convergence, confirming
negligible off-policy bias.

D.5.2 HYPERPARAMETER SENSITIVITY ANALYSIS

Algorithm Sensitivity (Multi-Task). Figure 10
illustrates the training trajectories under different
hyperparameter settings across the full multi-task
suite. While we could only conduct limited addi-
tional sweeps due to resource constraints, the re-
sults demonstrate that with the aid of our proposed
algorithmic components, the framework exhibits
strong tolerance to hyperparameter adjustments.
The model maintains a competitive trajectory even
when parameters deviate from the local optimum.
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Figure 10: Hyperparameter Sensitivity
(Multi-task). The framework exhibits
tolerance to hyperparameter adjustments
in multi-task settings.

D.5.3 EFFECTIVENESS OF ALGORITHMIC COMPONENTS

We investigate the impact of our two proposed algorithmic improvements under their respective
validation settings.

Effect of Cross-Policy Sampling (Single Task - DB). To verify the motivation and effectiveness
of Cross-Policy Sampling, we conducted a supplementary comparison on the single-task DB en-
vironment. As shown in Figure 11(a), the difference between the two settings is significant. With
Cross-Policy Sampling enabled (blue line), we observe a distinct performance surge, whereas the
curve without it (orange line) remains consistently at a lower level. This confirms that Cross-Policy
Sampling is essential for sustaining exploration in complex single-task scenarios.

Effect of Task Advantage Normalization (Multi-Task - Sub-optimal Hyp.). To demonstrate
the practical utility of Task Advantage Normalization (TAN), we conducted a specific experiment
across the five-task suite using a sub-optimal set of hyperparameters. As shown in Figure 11(b),
Task Advantage Normalization plays a critical role in stabilizing training and boosting performance
under these conditions. While marginal improvements might appear less pronounced under the
carefully tuned hyperparameters used in the main paper, this experiment highlights Task Advantage
Normalization’s value in ensuring robustness when optimal hyperparameters are unknown.

D.5.4 COMPARISON WITH EXPERIENCE REPLAY
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(a) Effect of Cross-Policy Sampling (DB Environ-
ment)
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(b) Effect of Task Adv. Normalization (Multi-task)

Figure 11: Ablation study on core algorithmic designs. (a) Cross-Policy Sampling significantly
boosts performance on the DB task. (b) Task Advantage Normalization stabilizes training across
heterogeneous multi-task settings, especially under sub-optimal hyperparameters.

0 40 80 120 160 200 240
Training Step

0.4

0.5

0.6

0.7

0.8

0.9

Pa
ss 

Ra
te

w/ cross policy sampling
w/ experience replay

Figure 12: Comparison on DB task. ER (or-
ange) plateaus early due to static off-policy
bias, while CPS (blue) sustains exploration
and achieves a significantly higher final suc-
cess rate.

We evaluate the efficacy of Cross-Policy Sampling
(CPS) by comparing it against a standard Experience
Replay (ER) baseline on the DB environment. This
comparison aims to isolate the benefits of dynamic
policy mixing versus replaying historical trajectories.

As illustrated in Figure 12, the two methods demon-
strate divergent training dynamics. Experience Re-
play (Orange Line) exhibits superior sample effi-
ciency in the initial phase (steps 0–80), benefiting
from the reuse of previous transitions. However, per-
formance rapidly saturates at a pass rate of approxi-
mately 79%. We attribute this premature plateau to
the static nature of replayed trajectories; in multi-turn
agentic tasks, as the current policy updates, the distri-
bution mismatch between the behavioral policy (from
the replay buffer) and the target policy grows, leading
to high-variance importance sampling weights and detrimental off-policy bias.

In contrast, Cross-Policy Sampling (Blue Line) shows a steady and sustained improvement trajectory.
Although the initial growth is slower due to the exploration variance introduced by mixing policies,
CPS overtakes ER around step 100 and achieves a significantly higher asymptotic performance
(∼84%). This suggests that CPS effectively mitigates off-policy issues by mixing policies during the
generation phase, thereby ensuring that the explored trajectories remain linguistically coherent and
on-manifold while effectively expanding the state space coverage.

D.6 CASE STUDIES

D.6.1 CASE STUDY ON THE EFFICACY OF CROSS-SAMPLING

To intuitively demonstrate the effectiveness of our proposed cross sampling strategy, we present a
case study on a specific knowledge graph (KG) question-answering task. As shown in fig 13, we
analyze the execution trajectories of two models, GLM-4-9B and Llama-8B, on this task. The results
show that when tasked individually, both models fail for different reasons. However, when applying
our Cross-Policy Sampling strategy, the agent successfully completes the task by finding the correct
answer.

The failures of the two individual models stem from distinct causes. GLM-4 becomes trapped in
a premature conclusion loop; it correctly deduces the final answer through logical inference but
consequently bypasses the required protocol of using tools for verification. It repeatedly outputs its
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Figure 13: An example of GLM,Llama and GLM-Llama cross sampling in a KG task. This case
study demonstrates the Cross-Policy Sampling strategy’s success on a KG question-answering task,
where GLM-4 fails in a conclusion loop and Llama falters with tool comprehension. It combines
GLM-4’s logic with Llama’s tool interaction to achieve the correct answer.

inferred conclusion in a non-standard format, leading to failure. In contrast, Llama’s failure is due to
flawed tool comprehension; it persistently attempts to call tools with incorrect logic and parameters,
indicating a fundamental misunderstanding of the tools’ functionality and usage, which prevents any
effective progress on the task.

The cross sampling strategy’s success stems from a synergy that compensates for each model’s
weaknesses. It leverages GLM-4’s strong logical planning to set a course, then breaks GLM-
4’s resulting non-interactive loop by switching to Llama’s policy. Although Llama’s own tool
comprehension is flawed, its policy’s critical function is to force an attempt at tool interaction. This
switch to a "tool-centric" mode, guided by GLM-4’s original logic, creates the opportunity for a valid
tool call to emerge. This case study highlights the superiority of Cross-Policy sampling by showing
how it dynamically combines different problem-solving approaches to forge a successful path where
single agents fail.

D.6.2 PERFORMANCE SCALING WITH MORE THAN TWO POLICIES

Performance Scaling with Multi-Model Cross-Policy Sampling. To further validate the scaling
potential of Cross-Policy Sampling (CPS) beyond intra-family checkpoints, we conducted an infer-
ence experiment on the DB environment using three distinct models: Qwen2.5-14B, Qwen3-14B,
and GLM-4-9B. As detailed in Table 7, while the individual models exhibit varying performance
levels (with GLM-4 struggling on this specific task), the mixed Cross-Policy strategy successfully
aggregates their capabilities. Notably, at pass@64, the Cross-Policy approach achieves a success rate
of 75.7%, surpassing the best single model (Qwen2.5-14B at 74.0

Scaling Analysis on WebShop. We extended the scaling analysis to the WebShop environment. As
presented in Table 8, we integrated Qwen2.5-14B, Qwen3-14B, and GLM-4-9B. This experiment
reveals an interesting trade-off between average quality and diversity. At low sample counts (k ≤ 16),
the inclusion of the weaker GLM-4 model (5.3% at pass@1) dilutes the ensemble’s precision,
resulting in performance slightly below the best single model. However, as k increases, the benefit of
diversity becomes dominant. The Cross-Policy Sampling strategy successfully overtakes the strongest
single model (Qwen2.5-14B) at pass@32 and achieves 58.7% at pass@64 (vs. 56.8%). This confirms
that even when constituent policies have mixed quality, the ensemble effectively expands the search
coverage to uncover solutions that single policies miss.
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Table 7: Pass@k performance comparison on the DB Environment using distinct models and their
Cross-Policy combination. The Cross-Policy Sampling strategy (mixing Qwen2.5, Qwen3, and
GLM-4) achieves the highest coverage at larger k, demonstrating the benefit of policy diversity.

Model P@1 P@2 P@4 P@8 P@16 P@32 P@64

GLM-4-9B 3.2 5.6 9.6 15.5 22.6 29.6 36.1
Qwen3-14B 53.9 60.3 64.3 67.4 70.0 72.0 73.5
Qwen2.5-14B 48.6 58.7 64.1 67.0 69.3 71.6 74.0

Cross-Policy Sampling 49.6 59.6 65.5 69.0 71.5 73.7 75.7

Table 8: Pass@k performance comparison on the WebShop Environment. At lower k, the inclusion
of a weaker model (GLM-4) impacts precision. However, at higher k (k ≥ 32), the diversity gain
from Cross-Policy Sampling allows it to outperform the best single model, demonstrating superior
solution coverage.

Model P@1 P@2 P@4 P@8 P@16 P@32 P@64

GLM-4-9B 5.3 8.2 11.4 14.6 17.7 20.9 24.5
Qwen3-14B 16.0 22.0 28.6 35.5 41.8 46.9 50.8
Qwen2.5-14B 15.6 23.1 30.6 38.0 45.1 51.5 56.7

Cross-Policy Sampling 15.5 22.2 29.7 36.7 43.2 52.1 58.7

D.6.3 SENSITIVITY TO POLICY MIXING RATIO.

Sensitivity to Policy Mixing Ratio (WebShop). We investigated mixing ratio sensitivity on Web-
Shop using Qwen3-14B and Qwen2.5-14B. As shown in Table 9, while all cross-policy combinations
outperform single models at high k, the Ratio 1:2 (favoring Qwen2.5) achieves the highest ceiling
(62.5% at pass@64). This indicates that maximizing solution coverage requires a strategic balance:
injecting sufficient diversity from the auxiliary policy (Qwen3) while maintaining a higher sampling
probability for the model with superior intrinsic search capabilities (Qwen2.5).

Table 9: Sensitivity analysis of mixing ratios (Qwen3-14B : Qwen2.5-14B) on the WebShop task.
While all mixing strategies surpass single models at high k, favoring the stronger model (Ratio 1:2)
yields the highest performance ceiling (62.5% at P@64), demonstrating the optimal trade-off between
diversity and model capability.

Model / Ratio (Q3:Q2.5) P@1 P@2 P@4 P@8 P@16 P@32 P@64

Qwen3-14B (Single) 16.0 22.0 28.6 35.5 41.8 46.9 50.8
Qwen2.5-14B (Single) 15.6 23.0 30.6 38.0 45.1 51.5 56.7

Ratio 2:1 (Favor Q3) 16.6 23.3 30.7 38.0 44.6 50.9 57.5
Ratio 1:1 (Balanced) 16.7 23.7 31.6 39.6 47.0 53.9 60.0
Ratio 1:2 (Favor Q2.5) 16.8 24.0 31.8 39.9 47.9 55.4 62.5

D.6.4 ERROR ANALYSIS

We analyze the performance of the Qwen2.5-14B-Instruct model and the AGENTRL model across
five environments (AlfWorld, DB, KG, OS, WebShop), focusing on the primary termination states:
Completed and Task Limit Reached.

The data highlights a substantial improvement with the AGENTRL method, where Completed rates
increase significantly (e.g., from 0.070 to 0.926 in AlfWorld) and Task Limit Reached rates decrease
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Environment Base Model AGENTRL Model
Completed Task Limit Reached Completed Task Limit Reached

AlfWorld 0.070 0.68 0.926 0.074
DB 0.957 0.043 0.993 0.007
KG 0.747 0.213 0.947 0.033
OS 0.548 0.444 0.847 0.118
WebShop 0.725 0.275 0.980 0.020

Table 10: Failure Modes Comparison. Note: "Completed" indicates the agent submitted an answer,
not necessarily correctly, and these two statuses are not exhaustive; the sum of percentages may not
reach 100% due to other possible outcomes.

(e.g., from 0.68 to 0.074 in AlfWorld). This suggests that RL training enhances the model’s efficiency,
reducing instances where tasks terminate due to time constraints and boosting successful completions
across all environments.

D.6.5 WHAT REINFORCEMENT LEARNING TEACHES MODELS IN ALFWORLD

We analyze a task from ALFWorld where the agent must place a saltshaker in a drawer. We
compare the base model (Qwen2.5-14B-Instruct), which fails in four runs, with the RL-trained model
(AgentRL-Qwen2.5-14B-Instruct), which succeeds in all four, to highlight RL’s impact.

Base Model Performance The base model struggles with:

• Improper Tool Usage: Repeatedly attempts invalid actions (e.g., look) without using the
take_action tool, leading to errors.

• Ineffective Strategy: Fixates on cabinets (e.g., cabinet 1) without exploring likely locations
like countertops, resulting in failure.

RL-Trained Model Performance The RL-trained model excels by:

• Correct Tool Usage: Consistently uses take_action correctly, avoiding procedural errors.
• Efficient Search: Prioritizes countertops, quickly finding the saltshaker on countertop 3.
• Action Sequencing: Navigates to drawer 1, opens it, and places the saltshaker, completing the

task.

From the above analysis we can see that reinforcement learning significantly enhances the model’s
performance in ALFWorld by imparting tool proficiency for correct use of environment tools, strategic
exploration to prioritize likely locations, and effective action planning for sequencing tasks, enabling
efficient, goal-directed behavior that starkly contrasts with the base model’s repetitive failures.

D.7 COMPUTATION COSTS

We report the computational resources required for our main experiments to demonstrate the scalability
of the AgentRL framework. All training sessions were conducted on a compute cluster consisting of
4 nodes, with each node equipped with 8 GPUs (totaling 32 GPUs). The specific hardware utilized
offers a peak performance of approximately 1500 TFLOPs (BF16) per device.

Table 11 summarizes the computational costs for the 14B and 32B model experiments. Both
models were trained for 1,500 steps. Notably, the reported figures account for the full training
lifecycle, explicitly including the computational overhead incurred by system interruptions and
training resumption. The ability to complete 32B-parameter model training in about 101 hours on 32
GPUs demonstrates the high throughput and efficiency of our asynchronous pipeline.
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Table 11: Computational cost breakdown for main experiments. The training was conducted on a
cluster of 32 GPUs (4 nodes × 8 GPUs). GPU hours include resumption overhead.

Model Size Training Steps Est. GPU Hours Wall-Clock Time Throughput Efficiency
AgentRL-14B 1,500 ∼1,888 ∼59 hours 32 GPUs
AgentRL-32B 1,500 ∼3,232 ∼101 hours 32 GPUs

E PROMPT EXAMPLES

E.1 ALFWROLD TASK

E.2 KNOWLEDGE GRAPH (KG) TASK
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System Prompt for AlfWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household environment
and your target is to perform actions to complete) the task goal.
At the beginning of your interactions, you will be given the detailed description of the current envi-
ronment and your goal to accomplish. A tool will be provided for you to use to submit the action you
want to take. This tool is the only tool you should and must take in order to operate any action in the
environment. The way you perform action is to place the action chosen by you in the arguments field of
your tool call.
For each of your turn, you will be given a list of actions which you can choose one to perform in this
turn. The action you would like to take should be offered in this format: ẗhe name of your next action,̈
and you should fill it in the argument field of your tool call. Note that you should always call a tool to
operate an action from the given choices. After your each turn, the environment will give you immediate
feedback based on which you plan your next few steps. if the environment output N̈othing happened,̈
that means the previous action is invalid and you should try more options.
Reminder:
• the action must be chosen from the given available actions. Any actions except provided available

actions will be regarded as illegal.
• Always call the tool to hand in your next action and think when necessary.

System Prompt for Knowledge Graph

Instructions: You are an intelligent agent tasked with answering questions based on the
knowledge stored in a knowledge base (KB). Utilize the provided tools to probe the KB and
retrieve relevant information to address user queries effectively.
Navigate the KB to identify relationships, attributes, and intersections. where applicable,
ensuring the most pertinent information is used to formulate answers.
Remember:
• A variable can be an entity or a set of entities resulting from previous queries.
• Ensure the tool selected aligns with the question’s demands, following a logical order (e.g.,

fetch relations before finding neighbors).
• After generating a variable, assess whether it constitutes the final answer. Variables are

assigned IDs starting from 0 (e.g., #0, #1, etc.).
• Upon identifying the final answer, respond with ’Final Answer: #id’, where #id is the

variable’s ID (e.g., ’Final Answer: #3’). Do not invoke tools after determining the final
answer!

• Execute one action at a time, with a maximum of 15 actions to find the answer.
• Use the supplied tools unless the final answer is identified.
Your thoughtful application of these tools and careful consideration of interactions will guide
you to correct answers. Note that the task must be completed within 15 rounds— plan your
attempts accordingly!
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E.3 DB TASK

System Prompt for DataBase

I will ask you a question, then you should help me operate a MySQL database with SQL to answer the
question.You have to explain the problem and your solution to me and write down your thoughts.After
thinking and explaining thoroughly, every round you can choose to operate or to answer with the two
specific tools provided.
If you should execute a SQL query, use the ‘execute_sql‘ function, Your SQL should be in one line.
Every time you can only execute one SQL statement. I will only execute the statement in the first SQL
code block. Every time you write a SQL, I will execute it for you and give you the output. If you are
done operating, and you want to commit your final answer, then use the c̀ommit_final_answer‘ function.
DO NOT use this tool unless you are sure about your answer. I expect an accurate and correct
answer.Your answer should be accurate. Your answer must be exactly the same as the correct answer.If
the question is about modifying the database, then after done operation, your answer field can be
anything.If your response cannot match any pattern I mentioned earlier, you will be judged as FAIL
immediately.You should always use the tools provided to submit your answer. Be careful not to write it
in the content field.Your input will be raw MySQL response, you have to deal with it by yourself.

E.4 OS TASK

System Prompt for Operating System

You are an assistant that will act like a person. I will play the role of a Linux (Ubuntu) operating
system. Your goal is to implement the operations required by me or answer the questions proposed by
me.
For each of your turns, you should first think about what you should do, and then call exactly one of
the provided tools according to the situation.If you think the output is too long, I will truncate it. The
truncated output is not complete. You have to deal with the truncating problem by yourself.
Attention, your bash code should not contain any input operation. Once again, you should use one tool
in each turn, and should not respond without function calling.
Note that if you think the task has been finished, or there is some message missing to completely complete
the task, you should respond with calling the function f̈inish_action,̈ as no additional information will
be provided.
Also, note that if you have gotten the answer to the question, you should call the änswer_actionẗool
instead of simply writing your answer in your response.
Your answers should be exact and precise (for example, a single number), do not answer with full
sentences or phrases.Always use a tool provided instead of simply responding with content.

E.5 WEBSHOP TASK

System Prompt for Web Shopping

You are web shopping. I will provide instructions about what to do, and you must follow them strictly.
Every round, you will receive an observation and a list of available actions. You must respond by calling
a tool based on the current state and instructions.
• You can use the search tool if it is available.
• You can click one of the buttons in clickables.
• If an action is not valid, perform nothing.
Keywords for the search tool are your choice, but the value for a click must be from the list of available
actions. Remember to design search keywords carefully.
First, think about what to do, then call a tool accordingly. You should always use a tool, even if you
have questions to confirm, and you can use any available tool without user permission.
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F DISCUSSIONS

F.1 LIMITATIONS

While our framework establishes a new state-of-the-art in agentic RL, we identify two primary areas
for future research that build upon our solid foundation. First, our novel cross-policy sampling
strategy is a key driver of enhanced exploration. By its very design of integrating diverse policies, it
can introduce minor distributional shifts. These shifts can manifest as mild, transient instabilities
in training dynamics, a manageable trade-off for achieving broader state-space coverage. Future
work could explore principled refinements, such as adaptive policy weighting, to further optimize this
powerful mechanism. Second, as a foundational work, this paper focuses on rigorously validating our
framework across a comprehensive suite of controlled environments. Having established the system’s
robustness and scalability, the natural next step is its application to more complex and dynamic
real-world scenarios. We believe our framework provides the ideal testbed for tackling this exciting
challenge.

F.2 FUTURE WORKS

Looking ahead, we plan to extend AGENTRL to a broader range of environments and scale it to larger
models. Future research will also explore more sophisticated variants of cross-policy sampling and
develop improved methods for multi-task optimization. We believe these are crucial steps toward
creating more general and capable LLM agents.

G USE OF LLMS

During the preparation of this manuscript, we used large language models (LLMs) to assist with
language polishing and grammar improvement. All research ideas, methods, experiments, and
analyses were conceived, designed, and validated by the authors.
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