

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AGENTRL: SCALING AGENTIC REINFORCEMENT LEARNING WITH A MULTI-TURN, MULTI-TASK FRAME- WORK

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have sparked growing interest in building generalist agents that can learn through online interactions. However, applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-task settings remains challenging due to lack of scalable infrastructure and stable training algorithms. In this work, we present the AGENTRL framework for scalable multi-turn, multi-task agentic RL training. On the infrastructure side, AGENTRL features a fully-asynchronous generation-training pipeline for efficient multi-turn RL. To support heterogeneous environment development in multi-task RL, we design a unified function-call based API interface, containerized environment development, and a centralized controller. On the algorithm side, we propose cross-policy sampling to encourage model exploration in multi-turn settings and task advantage normalization to stabilize multi-task training. Experiments show that AGENTRL, trained on open LLMs across five agentic tasks, significantly outperforms GPT-5, Claude-Sonnet-4, DeepSeek-R1, and other open-source LLM agents. Multi-task training with AGENTRL matches the best results among all task-specific models. AGENTRL is open-sourced at <https://anonymous.4open.science/r/AgentRL-ICLR-C351>. and has also been adopted for developing other open-source LLM agents.

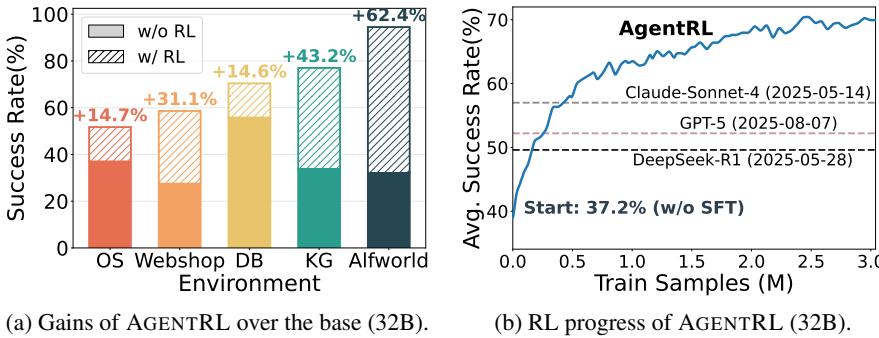


Figure 1: Overall performance of AGENTRL.

1 INTRODUCTION

Reinforcement learning (RL) trains an agent to act by interacting with an environment and optimizing its policy to maximize cumulative rewards. This principle has been effectively adapted for large language models (LLMs) through reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; OpenAI, 2022), where the LLM itself acts as the agent and its policy is refined based on feedback from a learned reward model. This optimization process, typically based on proximal policy optimization (PPO) (Schulman et al., 2017), aligns the model’s outputs with desired behaviors.

More recently, reinforcement learning with verifiable rewards (RLVR) (Shao et al., 2024) has extended RL to reasoning tasks. Instead of relying on a learned reward model, RLVR uses automatically verifiable signals, such as correctness checks in math or unit tests in code. This shift to objective rewards enables significant simplification of the algorithmic design. For example, the group relative

054
055 Table 1: AGENTRL vs. other RL frameworks and methods. Interactive Envs: real-time interaction
056 with the environment during training; Heterogeneous Envs: training with diverse environments.
057

Method	Agentic Setting		Infrastructure		
	Multi-Turn	Multi-Task	Full-Async	Iterative Envs	Heterogeneous Envs
VeRL (Sheng et al., 2024)	✗	✗	✗	✗	✗
OpenRLHF (Hu et al., 2024)	✗	✗	✗	✗	✗
NeMo-Aligner (Shen et al., 2024)	✗	✗	✗	✗	✗
AReAL (Fu et al., 2025)	✓	✗	✓	✗	✗
AgentTuning (Zeng et al., 2024)	✓	✓	✗	✗	✗
EasyR1 (Zheng et al., 2025a)	✗	✗	✗	✗	✗
DigiRL (Bai et al., 2024)	✓	✗	✗	✓	✗
RAGEN (Wang et al., 2025b)	✓	✗	✗	✓	✗
ToolRL (Qian et al., 2025)	✗	✗	✗	✗	✗
GiGPO (Feng et al., 2025)	✓	✗	✗	✓	✗
ARPO (Lu et al., 2025a)	✓	✗	✗	✓	✗
AGENTRL (ours)	✓	✓	✓	✓	✓

069 policy optimization (GRPO) (Shao et al., 2024) algorithm further simplifies PPO and improves LLMs'
070 RL training efficiency. Recent LLMs leveraging RLVR—e.g., DeepSeek-R1 (DeepSeek-AI et al.,
071 2025) and T1 (Hou et al., 2025)—have achieved strong performance in reasoning.

072 However, these RL for LLM achievements have been largely limited to *single-turn* settings for a
073 *single task*, where an agent interacts with the given environment only once for feedback (Qi et al.,
074 2024; Bai et al., 2024; Zheng et al., 2025b; Feng et al., 2025; Qian et al., 2025; Yue et al., 2023).
075 First, to solve agentic tasks with *multi-turn* settings (OpenAI, 2025c; Jin et al., 2025; Lu et al., 2025a;
076 Feng et al., 2025; Lu et al., 2025b), the agent must collect feedback through dynamic interactions
077 with environments (Deng et al., 2023; Wei et al., 2025). In this case, the LLM is trained as an
078 autonomous agent that performs multi-turn reasoning, interacts with tools or environments, and
079 adapts its behavior over extended trajectories, that is, the problem of agentic RL. Second, building a
080 generalist agent that can handle *diverse tasks* has long been a goal for RL. Scaling to heterogeneous
081 multi-task environments in multi-turn settings for agentic RL requires advances in both LLM training
082 infrastructure and algorithm design. Table 1 lists existing solutions.

083 In this work, we present a multi-turn, multi-task framework AGENTRL to scale agentic RL training.
084 AGENTRL includes RL infrastructure, environment, and algorithm designs to address the challenges
085 listed in Table 2. On the infrastructure side, we implement an asynchronous generation-training
086 pipeline that can reduce GPU idle bubbles and improve multi-turn training efficiency. On the
087 environment side, we develop a scalable environment deployment infrastructure with a unified
088 function-call based API interface, containerized deployment, and centralized controller to manage the
089 lifecycle of thousands of parallel training episodes. To further support heterogeneous environment
090 scaling, we introduce consistent interfaces at the controller level. On the algorithm side, we present
091 the cross-policy sampling strategy to encourage model exploration that is negatively impacted by the
092 large state space in the multi-turn setting. We also introduce task advantage normalization to mitigate
093 the training instability resulting from the heterogeneity in different tasks.

094 We apply AGENTRL on open LLMs—Qwen2.5 (Qwen et al., 2025) and GLM-4-9B (GLM et al.,
095 2024)—across five agentic tasks: ALFWorld, DB, KG, OS, and Webshop (Shridhar et al., 2021;
096 Yao et al., 2022; Liu et al., 2024c). Experiments show that AGENTRL achieves state-of-the-art
097 results, significantly outperforming GPT-5 (OpenAI, 2025a), Claude-Sonnet-4 (Anthropic, 2025)
098 and DeepSeek-R1 (DeepSeek-AI et al., 2025) (Figure 1). The single model trained with five tasks
099 together can match the best performance of five models trained separately for individual tasks, while
100 also generalizing into unseen tasks, e.g., BFCL-v3 (Patil et al., 2025). Finally, extensive ablations
101 demonstrate that the algorithmic design choices in AGENTRL bring consistent performance benefits.

102 The contributions of this work are summarized as follows:

- 103 • We develop an asynchronous, multi-task framework AGENTRL for scalable agentic RL training
104 and robust heterogeneous environment deployment.
- 105 • We design a cross-policy sampling strategy to encourage exploration in multi-turn settings and task
106 advantage normalization to stabilize multi-task RL training.
- 107 • AGENTRL achieves state-of-the-art results on various LLM agent tasks, with promising generalization
108 to unseen tasks, demonstrating the potential of building a generalist LLM agent.

108 Table 2: Challenges in agentic RL compared to single-turn RL
109

	Infrastructure	Algorithm
Single-Turn	synchronous rollouts	stable and scalable training
Multi-Turn	compute inefficiency in synchronous rollouts, requiring asynchronous training; difficulty in scaling interactive homogeneous environments	multi-turn tasks demand greater exploration due to larger state spaces, but exploration declines during training
Multi-Task	difficulty in unifying heterogeneous environments	performance drop from task interference and lack of generalization

110
111
112
113
114
115
116
117
118
119

2 THE AGENTIC RL PROBLEM AND ITS CHALLENGES

120121 The shift from single-turn to multi-turn defines the problem of agentic RL, where the LLM acts
122 as an autonomous agent that performs multi-turn reasoning, interacts with tools or environments,
123 and adapts its behavior over extended trajectories. Formally, this can be formulated as a Markov
124 Decision Process(MDP) (Puterman, 2014), a tuple $(\mathcal{S}, \mathcal{A}, P, r, \rho)$, where \mathcal{S} is the state set, \mathcal{A} the
125 action set, P the state-transition probability, r the reward function, and ρ the initial state distribution.
126 In a single-step case, P is trivial and the problem reduces to a multi-armed bandit. In contrast,
127 multi-step MDPs involve non-trivial state evolution over multiple transitions. The definition is listed
128 in Appendix B.129 Moreover, most LLM agents have focused on training a separate policy for each individual task (Zheng
130 et al., 2025b; Feng et al., 2025; Qian et al., 2025). That means multiple LLMs have to be trained, one
131 for each environment or task, respectively. How to build a generalist agent that can handle diverse
132 tasks remains largely unexplored. Table 2 summarizes the challenges that go beyond single-turn RL.133 **Infrastructure Challenges in Multi-Turn RL.** In the single-turn setting, RL is often run in a
134 synchronous way with an interleaved generation-training pipeline (Hu et al., 2024; Sheng et al., 2024).
135 For agentic tasks, generating long trajectories and frequent interactions with the environment is slow,
136 time-consuming, and highly variable compared to single-turn scenarios. As a result, GPUs that
137 handle short trajectories have to stay idle to wait for the generation completion of long trajectories.
138 The imbalance significantly reduces training efficiency and prevents RL scaling, thus requiring an
139 asynchronous RL training framework.140 On the environment side, multi-turn training requires rollouts to run in an interactive environment,
141 which places high demands on the concurrent deployment and management of a large number of
142 homogeneous environments.143 **Algorithm Challenges in Multi-Turn RL.** On the algorithm side, most existing sampling strategies
144 are designed for single-turn settings. Improving exploration and sampling efficiency in multi-turn
145 scenarios is therefore critical for agentic RL training.146 **Infrastructure Challenges in Multi-Task RL.** By definition, multi-task RL requires an architecture
147 that can manage diverse environments. One major challenge lies in the differences in environment
148 interfaces, state-action representations, and computational demands. Effective and scalable integration
149 of these environments is essential for scaling agentic training efficiently across diverse tasks.150 **Algorithm Challenges in Multi-Task RL.** Most existing RL approaches focus on training a single
151 agent task (Jin et al., 2025; Qian et al., 2025; Feng et al., 2025). Thus, developing effective methods
152 for jointly optimizing multiple agent tasks while ensuring training stability remains an open challenge.153
154

3 THE AGENTRL FRAMEWORK

155156 In this work, we develop an agentic RL framework—AGENTRL—to support multi-turn and multi-task
157 RL training, as shown in Figure 2. AGENTRL implements asynchronous training and environment
158 deployment to improve efficiency in multi-turn and multi-task settings. It also introduces cross-policy
159 sampling and task advantage normalization to stabilize the RL training. Together, these technical
160 designs and implementations address the challenges outlined in Table 2, and thus enable the generalist
161 agent training by scaling multiple environments.

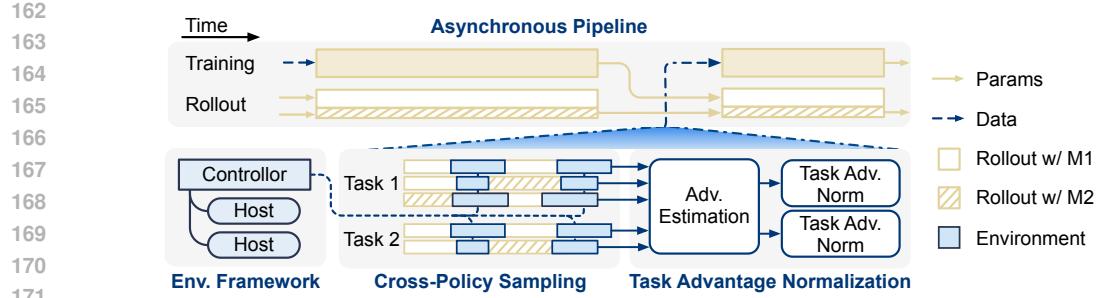


Figure 2: An overview of AGENTRL. Top: asynchronous training and rollout flows. Bottom: the environment framework where a controller manages multiple workers to provide environments, and the rollout details, including cross-policy sampling and task advantage normalization.

3.1 MULTI-TURN AGENTIC RL

Asynchronous Training Framework. To overcome the efficiency bottlenecks of synchronous batching, we introduce an asynchronous rollout-training strategy based on coroutine scheduling. The rollout engine runs in a dedicated resource group and executes asynchronously with training. The training module continuously pulls available data from the rollout engine after each update, without waiting for an entire batch of rollouts to finish. In addition, it accepts a dynamic batch size that fluctuates within a certain range. This design enables the scheduler to fill idle GPU slots with available coroutines, reducing pipeline bubbles and improving overall throughput.

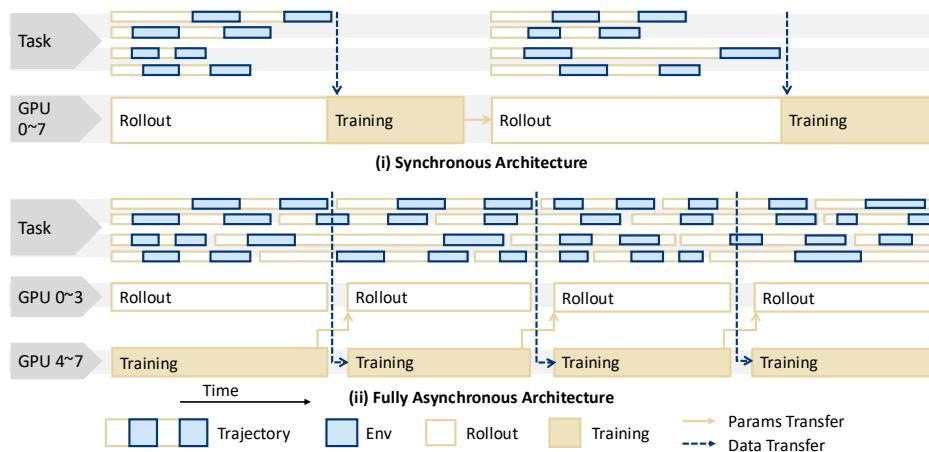


Figure 3: Synchronous vs. Asynchronous Training. The asynchronous design improves efficiency by separating data rollout and model training on different resource groups.

As illustrated in Figure 3, rollout and training are decoupled. They run concurrently and communicate asynchronously. This enables efficient hardware scheduling, as shown in Figure 4, where the asynchronous pipeline in AGENTRL brings significant throughput gains over the synchronous one.

To avoid the off-policy bias in the pipeline, we set a maximum size of the data queue and enforce all trajectories to be moved to the training engine at each step. This ensures that data will not accumulate in the queue. In doing so, all trajectories are kept as up-to-date as possible with the latest policy, which later experiments sug-

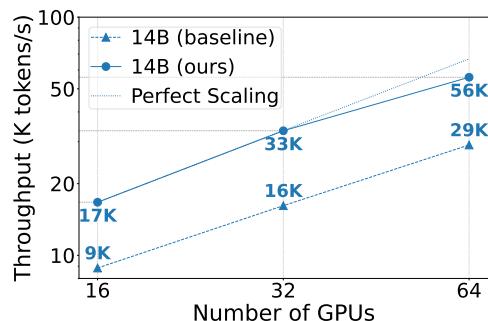


Figure 4: Throughput of AGENTRL vs. the synchronous baseline for 14B parameter (Qwen2.5) models on Webshop (log-scale for both axes).

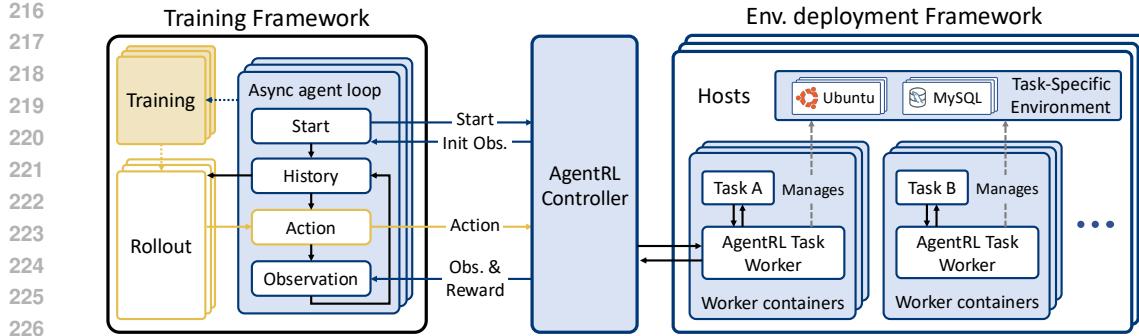


Figure 5: The AGENTRL training pipeline, decoupled into a Training Framework and an Environment Deployment Framework, organized by a central AGENTRL Controller. The Training Framework is responsible for policy rollouts and updates, while the Environment Deployment Framework manages scalable, containerized task environments that provide feedback.

gest to be acceptable. This is further discussed in Appendix B.4.

Scalable Agentic Environment Infrastructure. To enable large-scale agentic RL, we develop a scalable environment deployment infrastructure, shown in Figure 5. It includes the following components: 1. *Function-call based environment interface*. To simplify environment interactions, we introduce a unified, function-call based API. This replaces complex custom action formats and thus enables centralized management and monitoring. 2. *Containerized deployment*. Each task environment is containerized as an isolated execution unit. This design improves resource allocation, isolates faults between concurrent sessions, and supports seamless deployment on diverse hardware. 3. *Centralized high-performance controller*. A central controller, acts as the global orchestrator for the training engine. It is optimized for high-concurrency workloads and manages the lifecycle of thousands of parallel training episodes.

Cross-Policy Sampling Strategy. During RL training, model exploration typically declines over time. This problem becomes more severe in the multi-turn setting with large state spaces. Similarly, Shumailov et al. (2024) reported that repeated training on self-generated data leads to degraded capability and reduced variance. We observed similar phenomenon in our training.

To overcome this issue, we propose a cross-policy sampling strategy (see Figure 6), where multiple LLMs are used to generate actions within a single trajectory. The goal of aggregating data from different models is to increase the diversity of the candidate pool while preserving overall quality. Specifically, cross-policy sampling constructs trajectories by allowing actions at each step to be randomly drawn from the pool of available models, rather than committing to a single model.

Its advantage lies in that the language component of each state is still constrained to remain valid, while the expanded sampling enlarges the coverage of language states that can reach successful outcomes in the environment. By exploring paths that would not appear under any single model, cross-policy sampling increases the likelihood of visiting goal-relevant states without drifting into incoherent or invalid linguistic regions. Details can be found in Appendix B.3.

During RL training, it is hard to incorporate models with different architectures in the pipeline. Instead, we let the model do cross-policy sampling with its early version. Specifically, we mark a set of rollout engines as stale engines; these engines update parameters every multiple steps instead of one step. Early experiments verified the effect of the cross-policy sampling strategy (see Section 4.3).

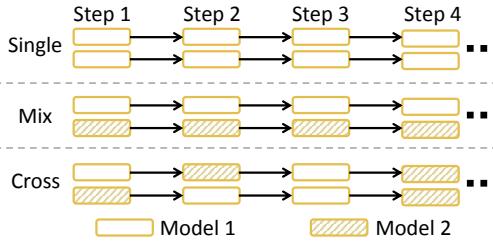


Figure 6: Different rollout strategies. In *single* model generation, all steps of all traces are generated by the same model. In *mix* mode, half of the samples are generated by each model. In *cross-policy* mode, all samples are generated with cross-policy sampling strategy.

270 3.2 MULTI-TASK AGENTIC RL
271272 **Heterogeneous Environment Deployment.** Multi-task RL requires the environment deployment
273 framework to generalize beyond a single task or environment. To host, schedule, and monitor
274 heterogeneous environments under the same infrastructure without incurring additional integration
275 cost, we propose to expose consistent interfaces at both the worker and controller levels. This supports
276 AGENTRL to scale the task (environment) set in size and diversity gracefully.277 We have two complementary designs: On the *environment* side, we unify the worker API across
278 all tasks, such that each task can be instantiated and managed using an identical set of lifecycle
279 operations. On the *training* side (Figure 5), the controller provides a single gateway API to the
280 RL engine, abstracting away task heterogeneity and exposing multi-task execution as a transparent
281 extension of the single-task case.282 **Task Advantage Normalization.** In multi-task RL, agentic tasks often differ substantially in
283 difficulty, sequence length, and sampling efficiency. Such heterogeneity can cause standard RL
284 algorithms to learn at very different rates across tasks. Consequently, one task may exhibit clear
285 reward improvements, while another shows negligible progress, leading to training instability and
286 performance imbalance.287 We normalize the token-level advantage within each to mitigate this issue. For an LLM-based policy,
288 each high-level action a_t consists of multiple tokens $\{y_{t,k}\}_{k=1}^{L_t}$. We compute token-level advantage
289 estimates $\hat{A}_{i,s,g,t,k}$ for each token occurrence, where i denotes the task index, s the sample index
290 within the task, g the trajectory index within the group, t the environment step, and k the token
291 position within a_t .292 Let $\mathcal{A}_i^{\text{tok}} = \left\{ \hat{A}_{i,s,g,t,k} \mid 1 \leq s \leq S_i, 1 \leq g \leq K_{i,s}, 1 \leq t \leq T_{i,s,g}, 1 \leq k \leq L_{i,s,g,t} \right\}$ denote the
293 set of token-level advantages for all tokens in the current batch of task i , where S_i is the number
294 of samples, $K_{i,s}$ the number of trajectories per sample, $T_{i,s,g}$ the number of env steps in trajectory
295 $\tau_{i,s,g}$, and $L_{i,s,g,t}$ the number of tokens in action a_t .

296 We normalize each token’s advantage within its task batch as:

297
$$\tilde{A}_{i,s,g,t,k} = \frac{\hat{A}_{i,s,g,t,k} - \mu_i}{\sigma_i}, \quad (1)$$

298

301 where $\mu_i = \text{mean}(\mathcal{A}_i^{\text{tok}})$ and $\sigma_i = \text{std}(\mathcal{A}_i^{\text{tok}})$. This ensures that, for each task i , the distribution
302 of token-level advantages in a batch has zero mean and unit variance, helping to reduce inter-task
303 variance and stabilize multi-task optimization.305 4 EXPERIMENTS
306307 **Data.** We accommodate five agentic tasks (ALFWorld, DB, KG, OS, WebShop) (Liu et al., 2024c) to
308 the AGENTRL infrastructure. The details of the dataset construction and unifying the function-call
309 format are provided in Appendix C. To ensure that all tasks are sampled uniformly during training,
310 we replicate smaller datasets such that each task appears approximately the same number of times as
311 the largest task. Specifically, we sequentially cycle through multiple datasets, yielding one element
312 from each in turn to produce interleaved output samples.313 **Baselines.** The closed-source API-based baselines include Claude-Sonnet (Anthropic, 2025), GPT-
314 5 (OpenAI, 2025a), and o-series models (OpenAI, 2025b). The general open models adopted include
315 the Qwen2.5-Instruct series (14B, 32B, and 72B) (Qwen et al., 2025), DeepSeek-V3 (Liu et al.,
316 2024a), and DeepSeek-R1 (DeepSeek-AI et al., 2025). We also compare against agent training
317 methods on AGENTBENCH, including Hephaestus (Zhuang et al., 2025), Agent-FLAN (Chen et al.,
318 2024b), and AgentLM (Zeng et al., 2024).319 320 4.1 MAIN RESULTS
321322 We apply AGENTRL on open models, including Qwen2.5-Instruct series and GLM-4-9B-0414. Note
323 that there is *no warm-up supervised fine-tuning* before applying AGENTRL to all Qwen models. The
main results are listed in Table 3.

324 Table 3: Main results (task success rate). Average and standard deviation of four repeats on each task
 325 are reported. The ‘*’ indicates reward results directly extracted from the original papers.

327 Model	328 ALFWorld	328 DB	328 KG	328 OS	328 Webshop	328 AVG
<i>329 API LLMs (Prompting)</i>						
330 Claude-Sonnet-3.7 (2025-02-19)	330 61.1 ± 3.0	330 68.5 ± 0.8	330 59.8 ± 1.0	330 36.5 ± 4.1	330 40.1 ± 1.5	330 53.2
331 Claude-Sonnet-3.7 Thinking (2025-02-19)	331 54.1 ± 3.0	331 68.4 ± 0.3	331 38.2 ± 2.2	331 53.1 ± 1.8	331 36.0 ± 1.7	331 50.0
332 Claude-Sonnet-4 (2025-05-14)	332 73.6 ± 2.6	332 70.1 ± 0.7	332 63.4 ± 1.7	332 45.3 ± 2.8	332 34.6 ± 1.6	332 57.4
333 Claude-Sonnet-4 Thinking (2025-05-14)	333 69.0 ± 3.2	333 68.4 ± 1.0	333 64.4 ± 1.9	333 51.0 ± 2.3	333 38.3 ± 2.8	333 58.2
334 GPT-4o (2024-11-20)	334 28.3 ± 2.8	334 54.3 ± 2.2	334 49.3 ± 2.7	334 38.5 ± 3.2	334 27.8 ± 2.2	334 39.6
335 o3-mini (2025-01-31)	335 28.4 ± 1.3	335 56.5 ± 0.5	335 51.8 ± 0.9	335 35.1 ± 1.7	335 32.7 ± 1.5	335 40.9
336 o4-mini (2025-04-16)	336 32.6 ± 1.8	336 63.4 ± 0.3	336 32.4 ± 3.0	336 41.8 ± 1.0	336 28.5 ± 1.8	336 39.7
337 GPT-5 (2025-08-07)	337 65.4 ± 2.0	337 63.2 ± 0.7	337 64.1 ± 1.8	337 34.5 ± 1.0	337 33.7 ± 2.6	337 52.2
<i>338 Open LLMs (Prompting)</i>						
339 DeepSeek-V3 (2025-03-24)	339 31.9 ± 2.0	339 58.4 ± 1.2	339 14.0 ± 2.0	339 53.0 ± 1.0	339 23.4 ± 2.5	339 36.1
340 DeepSeek-R1 (2025-05-28)	340 51.4 ± 4.1	340 60.4 ± 0.5	340 50.2 ± 2.7	340 53.6 ± 1.0	340 31.0 ± 1.6	340 49.3
341 Qwen2.5-14B-Instruct	341 8.7 ± 3.1	341 48.4 ± 2.2	341 35.3 ± 3.0	341 26.0 ± 3.1	341 17.6 ± 1.0	341 27.2
342 Qwen2.5-32B-Instruct	342 32.1 ± 3.9	342 55.8 ± 0.6	342 33.8 ± 1.5	342 37.0 ± 1.5	342 27.5 ± 2.3	342 37.2
343 Qwen2.5-72B-Instruct	343 47.5 ± 3.3	343 45.3 ± 0.9	343 26.5 ± 3.1	343 49.5 ± 3.5	343 35.4 ± 2.7	343 40.8
<i>344 Open LLMs (Agent Training)</i>						
345 Hephaestus-8B-Base	345 30.0	345 32.3	345 16.0	345 20.8	345 60.5^*	345 31.9
346 Hephaestus-8B-IFT	346 46.0	346 29.7	346 21.2	346 20.8	346 63.9^*	346 36.3
347 AgentLM-7B	347 84.0	347 30.6	347 18.1	347 17.4	347 63.6^*	347 42.7
348 AgentLM-13B	348 76.0	348 33.7	348 26.8	348 18.1	348 70.8^*	348 45.1
349 AgentLM-70B	349 86.0	349 37.7	349 47.0	349 21.5	349 64.9^*	349 51.4
<i>350 AGENTRL</i>						
351 w/ Qwen2.5-3B-Instruct	351 92.4 ± 0.5	351 60.0 ± 1.1	351 55.0 ± 2.0	351 40.5 ± 0.9	351 52.1 ± 0.9	351 60.0
352 w/ Qwen2.5-7B-Instruct	352 91.5 ± 0.9	352 63.7 ± 0.5	352 57.8 ± 2.3	352 40.8 ± 1.2	352 56.1 ± 0.6	352 62.0
353 w/ Qwen2.5-14B-Instruct	353 91.5 ± 0.9	353 72.2 ± 0.9	353 72.8 ± 1.8	353 43.6 ± 1.9	353 58.5 ± 1.2	353 67.7
354 w/ Qwen2.5-32B-Instruct	354 94.5 ± 0.5	354 70.4 ± 0.5	354 77.0 ± 1.2	354 51.7 ± 1.8	354 58.6 ± 0.9	354 70.4
355 w/ GLM-4-9B-0414	355 93.3 ± 0.5	355 66.9 ± 0.4	355 75.7 ± 1.8	355 33.2 ± 1.7	355 55.9 ± 1.9	355 65.0

[†] We provide a one-shot demonstration for Qwen2.5-7B-Instruct in ALFWorld evaluation, as it fails to generate valid tool call format in the environment.

Table 4: Multi-Task vs. Single-Task with Qwen2.5-14B-Instruct.

356 Model	357 ALFWorld	357 DB	357 KG	357 OS	357 Webshop	357 AVG
358 AGENTRL-ALFWorld	358 89.7 ± 1.6	358 49.7 ± 1.6	358 22.3 ± 3.1	358 33.7 ± 3.1	358 15.9 ± 0.5	358 42.3
359 AGENTRL-DB	359 0.2 ± 0.5	359 73.9 ± 0.7	359 26.2 ± 1.7	359 43.1 ± 1.3	359 16.0 ± 0.9	359 31.9
360 AGENTRL-KG	360 4.6 ± 1.1	360 57.6 ± 0.8	360 72.2 ± 1.5	360 40.3 ± 2.4	360 19.5 ± 2.0	360 38.8
361 AGENTRL-OS	361 5.7 ± 1.2	361 58.2 ± 1.2	361 25.3 ± 1.6	361 39.8 ± 1.8	361 22.0 ± 2.3	361 30.2
362 AGENTRL-Webshop	362 0.0 ± 0.0	362 57.9 ± 2.6	362 30.7 ± 2.2	362 40.1 ± 0.7	362 60.3 ± 1.3	362 37.8
363 Best of Five Models Above	363 89.7 ± 1.6	363 73.9 ± 0.7	363 72.2 ± 1.5	363 43.1 ± 1.3	363 60.3 ± 1.3	363 67.8
364 AGENTRL (One Model)	364 91.5 ± 0.9	364 72.2 ± 0.9	364 72.8 ± 1.8	364 43.6 ± 1.9	364 58.5 ± 1.2	364 67.7

365 **SOTA Performance.** Our AGENTRL framework achieves state-of-the-art performance across
 366 five tasks in AGENTBENCH-FC (see Appendix C), establishing a new top average success rate of
 367 70.4%. Compared to the original Qwen2.5-Instruct models under prompting, AGENTRL yields
 368 substantial improvements, highlighting the effectiveness of reinforcement learning training. Notably,
 369 all AGENTRL-trained models, from 3B to 32B, consistently outperform strong baselines including
 370 leading models such as GPT-5, Claude-Sonnet-4 Thinking, and DeepSeek-R1.

371 **Multi-Task vs. Single-Task.** Table 4 shows that single-task RL agents excel only in their specific
 372 training environment but fail to generalize, yielding poor transfer across tasks. In contrast, our multi-
 373 task AGENTRL achieves nearly identical performance to the “best-of-five” single-task specialists
 374 while maintaining strong results on all tasks simultaneously. This highlights the effectiveness of
 375 multi-task training in acquiring generalizable skills without sacrificing peak performance.

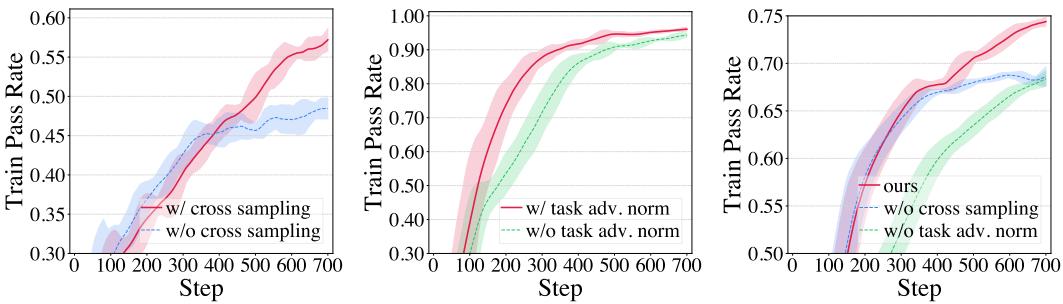
378
379
380 Table 5: Generalization Performance on BFCL-v3.
381
382
383
384
385
386
387
388
389
390

Model	single-turn		multi-turn	overall
	nonlive	live		
Qwen2.5-32B-Instruct	86.0 ± 0.2	77.4 ± 0.1	16.2 ± 0.6	59.9
AGENTRL w/ Qwen2.5-Instruct-32B	85.8 ± 0.2 ↓0.2	79.3 ± 0.2 ↑1.9	19.2 ± 0.8 ↑3.0	61.4 ↑1.5

Generalization on BFCL-v3. To examine generalization, we evaluate the AGENTRL model (trained on ALFWORLD, DB, KG, OS, and Webshop) on the BFCL-v3 benchmark (Patil et al., 2025). BFCL-v3 evaluates the model’s multi-step function calling ability. As shown in Table 5, AGENTRL demonstrates clear improvements on multi-turn tasks and modest gains on single-turn tasks. These results suggest that our approach can enhance the generalizability of function calling, providing a step toward more broadly capable agentic LLMs. This is further discussed in Appendix D.4.

391
392 Table 6: Ablation on cross-policy sampling and task advantage normalization.
393
394
395
396
397

Method	AF	DB	KG	OS	WS	AVG
AGENTRL-14B	93.1 ± 0.5	64.0 ± 0.5	67.7 ± 2.0	45.1 ± 2.0	55.0 ± 0.7	65.0
- cross sampling	91.9 ± 1.2	61.6 ± 1.0	55.7 ± 1.4	39.7 ± 2.3	54.5 ± 1.3	60.7
- task adv. norm	91.1 ± 0.9	62.6 ± 0.7	54.7 ± 1.6	38.0 ± 2.0	50.6 ± 1.7	59.4

408
409 (a) Cross-Policy Sampling in KG. (b) Task Adv. Norm. in ALFWORLD. (c) Average over 5 environments.
410
411410 Figure 7: Ablation studies. (c): The combined effect of Cross-Policy Sampling and Task Advantage
411 Normalization, averaged over five environments.
412
413

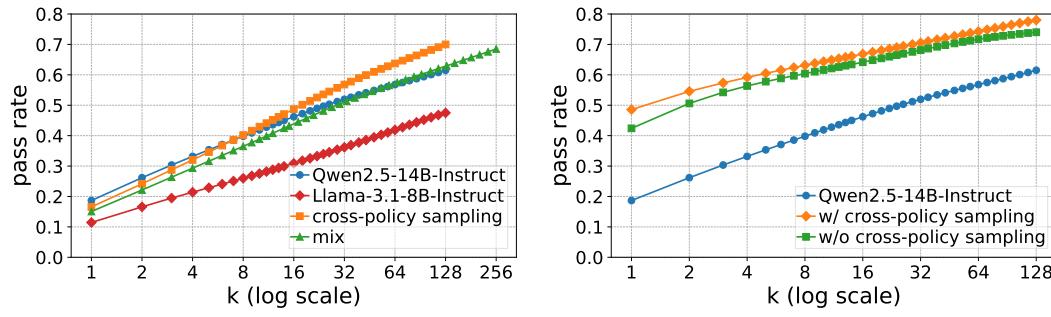
4.2 ABLATION STUDY

Cross-Policy Sampling. Table 6 suggests AGENTRL trained without cross-policy sampling performs worse. This phenomenon is especially obvious in some tasks/environments. We demonstrate the pass rate on KG during training in Figure 7a as an example; the model’s capability reaches the top earlier than the model trained with cross-policy sampling. These results demonstrate that cross-policy sampling is able to explore more possible states, especially in more open-ended environments during training, thus expanding the border of the model’s capability.

Task Advantage Normalization. Table 6 suggests that removing task advantage normalization leads to clear performance drops. Also, as shown in Figure 7b, the training efficacy is severely reduced and demonstrates fluctuations on some tasks. When removing the task advantage normalization, the model tends to learn different tasks at different rates instead of learning jointly. These results indicate that normalizing the advantage for each task effectively stabilizes multi-task training and reduces negative interference, resulting in more robust and consistent learning across tasks.

4.3 VERIFYING THE EFFECT OF THE CROSS-POLICY SAMPLING STRATEGY

Applying Cross-Policy sampling in Inference. The proposed cross-policy sampling strategy samples actions from a pool of models (as depicted in Figure 6). To verify that the cross-policy sampling strategy effectively promotes model exploration, we first directly applied our method to inference. We conducted experiments using the Qwen (Qwen et al., 2025) and Llama (Grattafiori



(a) Cross-policy sampling on Webshop. The *mix* strategy combines data from both models, so its maximum K is twice that of the other strategies. (b) Results from preliminary experiments on the WebShop environment. Note that settings are not completely the same as those in the main experiments.

Figure 8: Effects of cross-policy sampling in inference (a) and training (b) on Webshop.

et al., 2024) models in the WebShop (Yao et al., 2022) environment. As shown in Figure 8a, we observe that in low- k regimes, the performance of the cross-policy sampling strategy is slightly lower than the best single model strategy. However, as k increases, a surprising trend emerges: the cross-policy sampling strategy eventually surpasses both individual models in $\text{pass}@k$ metrics. The performance of the cross-policy sampling strategy also surpasses mixing two models’ trajectories, demonstrating that the strategy has effectively explored something outside both models’ capability boundaries. This provides strong evidence for our theoretical analysis.

Applying Cross-Policy sampling in RL. To further verify the effectiveness of the cross-policy sampling strategy during RL training, we conduct a training experiment on the Webshop task. As shown in Figure 8b, both trained models demonstrated a significant improvement in $\text{pass}@1$ rate compared to the untrained base model. But the model trained with the cross-policy sampling strategy demonstrates a consistent advantage as k increases. This suggests that the strategy successfully preserves the model’s diversity while improving its overall ability.

5 RELATED WORK

Reinforcement Learning AI Agents. RL algorithms like PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) have been widely adopted in LLM agent training. Deepseek-R1 (DeepSeek-AI et al., 2025) demonstrates RL’s ability to incentivize reasoning in LLMs through reward-driven fine-tuning. Recent works (Qian et al., 2025; Feng et al., 2025; Lu et al., 2025a; Wen et al., 2025) further develop RL techniques. GUI agents also benefit from RL-driven optimization (Xu et al., 2024; Qi et al., 2024; Liu et al., 2024b; Qin et al., 2025; Chen et al., 2025). For long-horizon tasks, Chen et al. (2025) shows RL’s efficacy in balancing exploration and tool usage. DeepResearcher further scales real-world research by training agents to iteratively refine hypotheses via RL (Zheng et al., 2025b). Despite these advancements, most current approaches fall short in studying the exploration aspect of RL training and the multi-task setting. In this work, we propose the cross-policy sampling strategy and task advantage normalization, addressing a critical gap in existing methods.

Reinforcement Learning Infrastructure. Several frameworks (Sheng et al., 2024; Hu et al., 2024; Fu et al., 2025) have been developed for RL training. These frameworks usually adopt modern training (Shoeybi et al., 2019; Zhao et al., 2023) and rollout (Kwon et al., 2023; Zheng et al., 2024) engines to boost efficiency. However, unlike math or coding tasks, agent scenarios involve multi-turn interactions with environments. There have been works (Liu et al., 2024c; Ma et al., 2024) to provide standardized benchmarks for evaluating multi-turn interactions and addressing reproducibility gaps. Platforms such as E2B (e2b dev, 2025) and OpenHands (Wang et al., 2025a) provide secure sandbox environments and modular interfaces for code execution, browser automation, and generalist agent development. While these environments provide strong support for agent evaluation, existing RL frameworks lack built-in support for multi-turn interactions and agent-specific training optimizations.

486 6 CONCLUSION
487488 We propose AGENTRL, a system for training LLM agents with RL across diverse tasks and environments. Through asynchronous rollout-training pipelines, scalable environment deployment, and
489 490 algorithmic advances including cross-policy sampling and task advantage normalization, AGENTRL
491 492 enables more efficient and stable training. Experiments demonstrate competitive results across diverse
493 494 agentic benchmarks, with encouraging signs of generalization to unseen tasks.
495 496
497 498
499 500
501 502
503 504
504 505
505 506
506 507
507 508
508 509
509 510
510 511
511 512
512 513
513 514
514 515
515 516
516 517
517 518
518 519
519 520
520 521
521 522
522 523
523 524
524 525
525 526
526 527
527 528
528 529
529 530
530 531
531 532
532 533
533 534
534 535
535 536
536 537
537 538
538 539

540 STATEMENTS
541

542 **Ethics Statement** This work does not involve human subjects or sensitive personal data. All
543 experiments are conducted on publicly available datasets and environments, and we provide full
544 documentation of preprocessing and implementation details to support transparency. The methods
545 and findings are intended for advancing research on reinforcement learning with LLMs; we do not
546 foresee immediate risks of harmful applications, but we acknowledge the general possibility of misuse
547 of LLM agents. We encourage responsible use of our released resources in line with the ICLR Code
548 of Ethics.

549 **Reproducibility Statement** We place a strong emphasis on reproducibility and have made extensive
550 efforts to ensure that our results can be reliably reproduced. To this end, we release all code,
551 environments, and training scripts, together with detailed hyperparameters and configuration files, in
552 our anonymous repository. Additional descriptions of environment setup, data preprocessing, and
553 implementation details are provided in the appendix and supplementary materials. These resources
554 collectively support transparent and reproducible verification of our findings.

556 REFERENCES
557

558 Anthropic. Introducing claude 4. <https://www.anthropic.com/news/claude-4>, 2025.

559

560 Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
561 Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL
562 <https://arxiv.org/abs/2406.11896>.

563 Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen
564 Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive llm agents,
565 2025. URL <https://arxiv.org/abs/2502.01600>.

566

567 Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
568 Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
569 models, 2024a. URL <https://arxiv.org/abs/2403.12881>.

570

571 Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
572 Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
573 models. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 9354–9366,
574 2024b.

575 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
576 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
577 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, and Bingxuan Wang et al.
578 Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
579 <https://arxiv.org/abs/2501.12948>.

580

581 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun,
582 and Yu Su. Mind2web: Towards a generalist agent for the web. In A. Oh, T. Naumann,
583 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information
584 Processing Systems*, volume 36, pp. 28091–28114. Curran Associates, Inc., 2023.
585 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf.

586

587 e2b dev. E2B: Ai agent infrastructure. <https://github.com/e2b-dev/E2B>, 2025.

588

589 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
590 agent training. *arXiv preprint arXiv:2505.10978*, 2025.

591

592 Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
593 Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
language reasoning. *arXiv preprint arXiv:2505.24298*, 2025.

594 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
 595 Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
 596 to glm-4 all tools. *arXiv preprint arXiv:2406.12793*, 2024.

597

598 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
 599 Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, and Angela Fan
 600 et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

601 Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
 602 Dong. T1: Advancing language model reasoning through reinforcement learning and inference
 603 scaling. In *ICML*, 2025.

604

605 Jian Hu, Xibin Wu, Zilin Zhu, Weixun Wang, Dehao Zhang, Yu Cao, et al. Openrlhf: An easy-to-use,
 606 scalable and high-performance rlhf framework. *arXiv preprint arXiv:2405.11143*, 2024.

607 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 608 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 609 learning, 2025. URL <https://arxiv.org/abs/2503.09516>.

610

611 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 612 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 613 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*,
 614 pp. 611–626, 2023.

615 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhu Li, Bowen Li, Bailin Wang, Bowen Qin,
 616 Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
 617 Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
 618 interface? a big bench for large-scale database grounded text-to-sqls, 2023. URL <https://arxiv.org/abs/2305.03111>.

619

620 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 621 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 622 *arXiv:2412.19437*, 2024a.

623

624 Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
 625 Long, Jiadai Sun, Jiaqi Wang, Junjie Gao, Junjun Shan, Kangning Liu, Shudan Zhang, Shuntian
 626 Yao, Siyi Cheng, Wentao Yao, Wenyi Zhao, Xinghan Liu, Xinyi Liu, Xinying Chen, Xinyue Yang,
 627 Yang Yang, Yifan Xu, Yu Yang, Yujia Wang, Yulin Xu, Zehan Qi, Yuxiao Dong, and Jie Tang.
 628 Autoglm: Autonomous foundation agents for guis, 2024b. URL <https://arxiv.org/abs/2411.00820>.

629

630 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 631 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
 632 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
 633 Agentbench: Evaluating LLMs as agents. In *The Twelfth International Conference on Learning
 634 Representations*, 2024c. URL <https://openreview.net/forum?id=zAdUB0aCTQ>.

635

636 Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy
 637 optimization for gui agents with experience replay. *arXiv preprint arXiv:2505.16282*, 2025a.

638

639 Rui Lu, Zhenyu Hou, Zihan Wang, Hanchen Zhang, Xiao Liu, Yujiang Li, Shi Feng, Jie Tang, and
 640 Yuxiao Dong. Deepdive: Advancing deep search agents with knowledge graphs and multi-turn rl.
 641 *arXiv preprint arXiv:2509.10446*, 2025b.

642

643 Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
 644 Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
 645 agents, 2024. URL <https://arxiv.org/abs/2401.13178>.

646

647 OpenAI. Introducing chatgpt. <https://openai.com/index/chatgpt/>, 2022.

648

649 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>,
 650 2025a.

648 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025b.

649

650

651 OpenAI. Introducing deep research. <https://openai.com/index/introducing-deep-research/>, 2025c.

652

653 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.

654

655

656

657 Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic evaluation of large language models. In *Forty-second International Conference on Machine Learning*, 2025.

658

659

660

661 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley & Sons, 2014.

662

663

664 Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang, Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curriculum reinforcement learning. *arXiv preprint arXiv:2411.02337*, 2024.

665

666

667 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*, 2025.

668

669

670 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction with native agents, 2025. URL <https://arxiv.org/abs/2501.12326>.

671

672

673

674

675

676 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

677

678

679

680

681

682

683 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

684

685

686 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation, 2018. URL <https://arxiv.org/abs/1506.02438>.

687

688

689 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

690

691

692

693 Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi Zeng, Yi Dong, Daniel Egert, Shengyang Sun, Jimmy Zhang, Sahil Jain, Ali Taghibakhshi, et al. Nemo-aligner: Scalable toolkit for efficient model alignment. *arXiv preprint arXiv:2405.01481*, 2024.

694

695

696 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv:2409.19256*, 2024.

697

698

699

700 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. *arXiv preprint arXiv:1909.08053*, 2019.

701

702 Mohit Shridhar, Jesse Hsu, Thomas Kollar, Karthik Narasimhan, and Satinder Singh. ALFWorld:
 703 Aligning Text and Embodied Environments for Interactive Learning. In *International Conference*
 704 *on Learning Representations (ICLR)*, 2021.

705

706 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
 707 models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759, 2024.

708

709 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 710 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
 711 Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
 712 Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
 713 developers as generalist agents, 2025a. URL <https://arxiv.org/abs/2407.16741>.

714

715 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 716 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 717 *arXiv preprint arXiv:2212.10560*, 2022.

718

719 Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
 720 Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
 721 Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution in
 722 llm agents via multi-turn reinforcement learning, 2025b. URL <https://arxiv.org/abs/2504.20073>.

723

724 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 725 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 726 challenging benchmark for browsing agents, 2025. URL <https://arxiv.org/abs/2504.12516>.

727

728 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 729 Wang, Junjie Li, Ziming Miao, Jiang Bian, and Mao Yang. Reinforcement learning with verifiable
 730 rewards implicitly incentivizes correct reasoning in base llms, 2025. URL <https://arxiv.org/abs/2506.14245>.

731

732 Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Xin Guo,
 733 Dingwen Yang, Chenyang Liao, Wei He, et al. Agentgym: Evaluating and training large language
 734 model-based agents across diverse environments. In *Proceedings of the 63rd Annual Meeting of*
 735 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 27914–27961, 2025.

736

737 Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
 738 Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
 739 autonomous agents, 2024. URL <https://arxiv.org/abs/2410.24024>.

740

741 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scal-
 742 able real-world web interaction with grounded language agents. In S. Koyejo, S. Mo-
 743 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-*
 744 *formation Processing Systems*, volume 35, pp. 20744–20757. Curran Associates, Inc.,
 745 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf.

746

747 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 748 Fan, GaoHong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
 749 Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
 750 Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 751 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
 752 open-source llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

753

754 Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 755 Mammoth: Building math generalist models through hybrid instruction tuning. *arXiv preprint*
arXiv:2309.05653, 2023.

756 Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
 757 Enabling generalized agent abilities for llms. In *Findings of the Association for Computational*
 758 *Linguistics ACL 2024*, pp. 3053–3077, 2024.

759

760 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 761 Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
 762 parallel. *arXiv preprint arXiv:2304.11277*, 2023.

763

764 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
 765 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
 766 structured language model programs. *Advances in Neural Information Processing Systems*, 37:
 767 62557–62583, 2024.

768

769 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
 770 Easyr1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025a.

771

772 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 773 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments,
 2025b. URL <https://arxiv.org/abs/2504.03160>.

774

775 Yuchen Zhuang, Jingfeng Yang, Haoming Jiang, Xin Liu, Kewei Cheng, Sanket Lokegaonkar, Yifan
 776 Gao, Qing Ping, Tianyi Liu, Binxuan Huang, et al. Hephaestus: Improving fundamental agent capa-
 777 bilities of large language models through continual pre-training. *arXiv preprint arXiv:2502.06589*,
 778 2025.

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A BACKGROUND OF REINFORCEMENT LEARNING IN LARGE LANGUAGE
811 MODELS**

813 Reinforcement Learning (RL) has significantly enhanced the capabilities of Large Language Models
814 (LLMs) by optimizing their decision-making through reward-driven training. The fundamental RL
815 objective is expressed as:

$$816 \quad \mathcal{J}(\theta) = \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_\theta(s)} [R(s, a)], \quad (2)$$

817 where π_θ denotes the policy, s represents the input context, a is the generated output, and $R(s, a)$
818 assesses the output quality via a reward function.

819 **A key method, Proximal Policy Optimization (PPO)**(Schulman et al., 2017), ensures training
820 stability using a clipped probability ratio, defined as:

$$822 \quad \rho_t(\theta) = \frac{\pi_\theta(a_t | s_t)}{\pi_{\text{old}}(a_t | s_t)}, \quad (3)$$

824 with the objective function:

$$825 \quad \mathcal{J}_{\text{PPO}}(\theta) = \mathbb{E}_t [\min(\rho_t(\theta) \hat{A}_t, \text{clip}(\rho_t, 1 - \epsilon, 1 + \epsilon) \hat{A}_t) - \beta D_{\text{KL}}], \quad (4)$$

826 where \hat{A}_t is the advantage estimate, and clipping limits policy updates.

828 For improved advantage estimation, Generalized Advantage Estimation (GAE)(Schulman et al., 2018)
829 is utilized, computed as:

$$830 \quad \hat{A}_t^{\text{GAE}}(\gamma, \lambda) = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}, \quad (5)$$

832 where $\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$ is the temporal difference error, and γ and λ adjust the bias-
833 variance tradeoff.

834 **Another approach, Group Relative Policy Optimization (GRPO)**(Shao et al., 2024), optimizes
835 over groups of outputs with the objective:

$$837 \quad \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{o_i \sim \pi_{\text{group}}(\theta)} [J_{\text{group}}(\theta)], \quad (6)$$

838 where the group objective is:

$$839 \quad \mathcal{J}_{\text{group}}(\theta) = \frac{1}{G} \sum_{i=1}^G \min(\rho_i \hat{A}_i, \hat{\rho}_i) - \beta D_{\text{KL}}, \quad (7)$$

842 and the advantage \hat{A}_i is a normalized reward:

$$843 \quad \hat{A}_i = \frac{r_i - \mu_r}{\sigma_r}, \quad (8)$$

845 with μ_r and σ_r as the mean and standard deviation of rewards, fostering adaptive LLM behaviors.

847 **Finally, Decoupled Clip and Dynamic sampling Policy Optimization (DAPO)**(Yu et al., 2025)
848 was proposed to address issues specific to long-CoT reinforcement learning, such as entropy collapse
849 and training instability. The algorithm modifies the GRPO objective by introducing several key
850 techniques, including a decoupled clipping mechanism and a dynamic sampling strategy.

851 The DAPO objective function is formulated as:

$$852 \quad \mathcal{J}_{\text{DAPO}}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \right. \\ \left. \times \min(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(r_{i,t}(\theta), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}}) \hat{A}_{i,t}) \right] \quad (9)$$

857 subject to the constraint:

$$858 \quad 0 < |\{o_i | \text{is_equivalent}(a, o_i)\}| < G, \quad (10)$$

860 where the advantage $\hat{A}_{i,t}$ is calculated similarly to GRPO. The primary innovations are the **decoupled**
861 **clipping bounds**, ϵ_{low} and ϵ_{high} , which allow for greater exploration to prevent entropy collapse, and
862 the **dynamic sampling constraint**, which filters out batches where all responses are either correct
863 or incorrect to ensure a non-zero advantage and stable gradients. The loss is also normalized at the
864 **token level** ($\frac{1}{\sum |o_i|}$) to properly weight responses of varying lengths.

864 **B PRELIMINARIES**865 **B.1 PROBLEM DEFINITION**866 **Agentic Task.** We define an *agentic task* \mathcal{T}_i as a Markov Decision Process (MDP):

867
$$\mathcal{T}_i = (\mathcal{S}_i^{\text{env}}, \mathcal{A}_i, P_i, r_i, \rho_i), \quad (11)$$

871 where $\mathcal{S}_i^{\text{env}}$ is the environment state space, \mathcal{A}_i is the action space, $P_i(s'|s, a)$ denotes transition
872 dynamics, $r_i(s, a)$ is the reward function, and $\rho_i(s_0)$ is the initial state distribution.
873874 **LLM-based Policy and Composite State.** When the policy π_θ is implemented by an LLM, the
875 state at decision step t is the *composite state* $s_t = (s_t^{\text{env}}, s_t^{\text{ctx}})$, where s_t^{env} is the environment state
876 and $s_t^{\text{ctx}} \in \mathcal{V}^*$ is a tokenized context representing the trajectory prefix up to step t .877 In LLM-based settings, a high-level action a_t is a complete sequence of L_t tokens:

878
$$a_t = (y_{t,1}, y_{t,2}, \dots, y_{t,L_t}), \quad y_{t,k} \in \mathcal{V}. \quad (12)$$

880 The underlying LLM defines a token-level probability distribution $P_\theta(y_{t,k} \mid s_t^{\text{ctx}}, y_{t,<k})$ for each
881 token, and the policy probability of producing a_t from s_t factorizes as:
882

883
$$\pi_\theta(a_t \mid s_t) = \prod_{k=1}^{L_t} P_\theta(y_{t,k} \mid s_t^{\text{ctx}}, y_{t,<k}). \quad (13)$$

884 This factorization allows us to define token-level log-probabilities and, consequently, token-level
885 policy gradients and advantage estimates.
886887 **Trajectory Definition.** A trajectory in task \mathcal{T}_i is defined as

888
$$\tau = (s^{(0)}, a^{(0)}, r^{(1)}, s^{(1)}, a^{(1)}, r^{(2)}, \dots, s^{(T-1)}, a^{(T-1)}, r^{(T)}, s^{(T)}), \quad (14)$$

889 where each $s^{(t)} = (s_t^{\text{env}}, s_t^{\text{ctx}})$ is a composite state as above. The reward $r^{(t+1)} = r_i(s_t^{\text{env}}, a^{(t)})$ is
890 assigned after $a^{(t)}$ is applied in s_t^{env} . Different from standard MDP trajectories, this formulation
891 explicitly embeds a context component in each state.
892893 **Multi-Task Setting.** We study a collection of N_{task} tasks:

894
$$\mathcal{T} = \{\mathcal{T}_1, \dots, \mathcal{T}_{N_{\text{task}}}\}. \quad (15)$$

895 For each \mathcal{T}_i there are M_i samples:
896

897
$$\mathcal{D}_i = \{x_{i,1}, \dots, x_{i,M_i}\}. \quad (16)$$

898 Executing sample $x_{i,j}$ produces a *group* of $K_{i,j}$ trajectories:
899

900
$$G_{i,j} = \{\tau_{i,j,1}, \dots, \tau_{i,j,K_{i,j}}\}, \quad (17)$$

901 which, as we will discuss in RLVR, are used in GRPO to compute group-based advantage estimates.
902903 **B.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)**904 Reinforcement Learning with Verifiable Rewards (RLVR) DeepSeek-AI et al. (2025) refers to
905 scenarios in which the reward signal associated with a trajectory can be computed in a deterministic
906 and objective manner based on the observed interaction data. In practice, RLVR is commonly
907 optimized using Proximal Policy Optimization (PPO) Schulman et al. (2017) or its extensions such
908 as Group Relative Policy Optimization (GRPO) (Shao et al., 2024).
909910 **PPO Objective.** Given a batch of trajectories, PPO maximizes the clipped surrogate objective:
911

912
$$\mathcal{L}_{\text{PPO}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right], \quad (18)$$

913 where $r_t(\theta) = \frac{\pi_\theta(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$ is the probability ratio and \hat{A}_t is the advantage estimate.
914

918 **GRPO Objective.** Under GRPO, each group $G_{i,j}$ contains $K_{i,j}$ trajectories compared within the
 919 group, yielding group-relative advantage estimates $\hat{A}_{i,j,g}$. The objective is:
 920

$$921 \quad \mathcal{L}_{\text{GRPO}}(\theta) = \mathbb{E}_{i,j} \left[\frac{1}{K_{i,j}} \sum_{g=1}^{K_{i,j}} \min \left(\rho_{i,j,g}(\theta) \hat{A}_{i,j,g}, \text{clip}(\rho_{i,j,g}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,j,g} \right) \right], \quad (19)$$

925 where $\rho_{i,j,g}(\theta) = \frac{\pi_\theta(a_{i,j,g}|s_{i,j,g})}{\pi_{\theta_{\text{old}}}(a_{i,j,g}|s_{i,j,g})}$ and $\hat{A}_{i,j,g} = \frac{\hat{R}_{i,j,g} - \text{mean}(\hat{R}_{i,j})}{\text{std}(\hat{R}_{i,j})}$ is a group-relative advantage
 926 estimate, computed as the difference between the empirical return $\hat{R}_{i,j,g}$ of trajectory $\tau_{i,j,g}$.
 927

928 B.3 FORMAL DESCRIPTION AND THEORETICAL ANALYSIS OF CROSS-POLICY SAMPLING

930 Formally, let $\mathcal{M} = \{\pi_{\theta_0}, \pi_{\theta_1}, \dots, \pi_{\theta_K}\}$ denote the set of candidate policies (e.g., the current policy
 931 and historical snapshots). Unlike standard sampling where actions are drawn from a single policy,
 932 the trajectory obtained by Cross-Policy Sampling (CPS), denoted as τ^c , is generated by dynamically
 933 selecting a policy at each step. The trajectory takes the form:

$$934 \quad \tau^c = (s^{(0)}, a^{c,(0)}, r^{(1)}, s^{(1)}, a^{c,(1)}, \dots, s^{(T)}), \quad (20)$$

936 where at each timestep t , the action is sampled via a two-stage process:

$$937 \quad k \sim \mathcal{U}(0, K), \quad a^{c,(t)} \sim \pi_{\theta_k}(\cdot | s^{(t)}). \quad (21)$$

939 Here, $s^{(t)} = (s_t^{\text{env}}, s_t^{\text{ctx}})$ represents the composite state of the environment and the language context
 940 context.

941 To analyze the exploration benefit, we introduce a geometric interpretation of the language-agent
 942 interaction. The language state s^{ctx} can be viewed as a point in a high-dimensional semantic space \mathcal{L} .
 943 However, effective communication requires the state to remain within the subspace of linguistically
 944 coherent sequences, denoted as $\mathcal{L}_{\text{valid}} \subset \mathcal{L}$. The environment state s^{env} is determined stochastically
 945 by a grounding function $\Gamma : \mathcal{L}_{\text{valid}} \rightarrow \Delta(\mathcal{S}^{\text{env}})$.

946 Let $\mathcal{G} \subset \mathcal{S}^{\text{env}}$ be the set of goal states (success set). We define the *language preimage* of the goal as:
 947

$$948 \quad \mathcal{L}_{\mathcal{G}} = \Gamma^{-1}(\mathcal{G}) \cap \mathcal{L}_{\text{valid}}. \quad (22)$$

949 This set $\mathcal{L}_{\mathcal{G}}$ represents all valid thought/action sequences that lead to success. Finding a solution is
 950 equivalent to locating a trajectory that intersects with $\mathcal{L}_{\mathcal{G}}$.

951 The core advantage of CPS lies in its coverage of this preimage. A single policy π_θ tends to
 952 collapse to a specific mode (a subset of valid paths). By sampling from a mixture of policies
 953 $\pi_{\text{mix}} = \frac{1}{|\mathcal{M}|} \sum_{\pi \in \mathcal{M}} \pi$, CPS effectively computes the union of the support of individual policies.
 954 Crucially, since every $\pi \in \mathcal{M}$ is a trained language model, their samples remain confined to the valid
 955 manifold $\mathcal{L}_{\text{valid}}$. Thus, the support of the cross-sampled trajectory τ^c satisfies:
 956

$$957 \quad \text{supp}(\tau^c) \cap \mathcal{L}_{\mathcal{G}} \approx \bigcup_{\pi \in \mathcal{M}} (\text{supp}(\tau^\pi) \cap \mathcal{L}_{\mathcal{G}}) \supsetneq \text{supp}(\tau^{\text{current}}) \cap \mathcal{L}_{\mathcal{G}}. \quad (23)$$

959 This inequality highlights that CPS strictly expands the explored region within the valid solution
 960 space $\mathcal{L}_{\mathcal{G}}$ compared to the current policy alone.
 961

962 **Remark on Stability:** It is important to note why this is superior to simply increasing the sampling
 963 temperature. High-temperature sampling expands the support isotropically in \mathcal{L} , often causing the
 964 trajectory to drift into $\mathcal{L} \setminus \mathcal{L}_{\text{valid}}$ (incoherent or hallucinated text). In contrast, CPS expands diversity
 965 along the "directions" of previous valid policies, thereby increasing the probability $P(s^{\text{env}} \in \mathcal{G})$
 966 without sacrificing linguistic coherence.

967 B.4 MITIGATING THE OFF-POLICY BIAS

969 The off-policy bias from the asynchronous pipeline is carefully managed at two levels:
 970

971 **At the algorithmic level:** GRPO, by building upon PPO, inherits Importance Sampling (IS). The
 972 probability ratio $r_t(\theta) = \frac{\pi_\theta(a|s)}{\pi_{\theta_{\text{old}}}(a|s)}$ corrects for the distributional shift between the current policy (π_θ)

972 and the behavior policy (π_{old}) that collected the data. To ensure this correction is accurate, the key is
 973 obtaining the correct logprobs for π_{old} . We achieve this by **directly passing the logprobs from the
 974 rollout engine along with the trajectory data. This ensures the training objective remains unbiased,
 975 even if minor model version discrepancies exist between the training and rollout engines.

976 **At the pipeline level:** We enforce a strict data flow where all data sent to the data queue at step
 977 N serves as the training data for step $N + 1$. This design naturally prevents the data queue from
 978 accumulating stale trajectories and ensures the training data is always "as up-to-date as possible."

980 Furthermore, our investigation revealed that a more significant source of practical off-policy bias
 981 stemmed from a subtle tokenization issue: the **token → text → token mapping is often not identical**.
 982 Re-tokenizing multi-turn outputs during training can inadvertently introduce this drift. We have
 983 updated the paper to clarify that **AgentRL avoids this effect entirely by preserving the original**
 984 **token sequences** throughout the rollout and training process.

985 We derive the stale policy from the main policy, which ensures the distributions of the two policies do
 986 not diverge significantly. In our setting, the stale engine is synchronized every 25 steps. With the
 987 help of the approaches introduced above, this off-policy bias can be implicitly corrected and does not
 988 affect training stability.

989

990 C DATASET DETAILS

991

992 C.1 EXTENDING AGENTBENCH

994 While the overall framework is decoupled from benchmarks, we perform training on a refined version
 995 of AGENTBENCH, or what we call AGENTBENCH-FC. Specifically, we made several modifications:

996

998 C.2 SYNTHESIZING TRAINING SET

999

1000 To address the scarcity of training data in the original AGENTBENCH framework, we aim to construct
 1001 a large-scale and diverse dataset suitable for reinforcement learning across various agent environments.
 1002 To this end, we adopted a multifaceted data collection strategy tailored to the unique characteristics
 1003 of each environment:

1004

1005 Direct Adoption of Existing Datasets. For environments like AlfWorld and WebShop, which
 1006 are accompanied by rich, pre-existing training sets, we directly incorporated these official datasets.
 1007 This approach ensures consistency with the original benchmarks and leverages well-established data
 1008 sources.

1009

1010 Synthetic Data Generation via Self-Instruct. For tasks in more complex environments such as
 1011 OS, KnowledgeGraph, and DB, where training data is not readily available, we employed the Self-
 1012 Instruct methodology (Wang et al., 2022). We used high-performance APIs (o3 and claude4-sonnet)
 1013 to efficiently sample and filter a large volume of high-quality training instances.

1014

1015 Augmentation with External High-Quality Datasets. To further enrich the diversity and complexity
 1016 of our training data, we integrated external, high-quality datasets. Notably, for the DB environment,
 1017 we augmented our dataset with the training samples provided by the BIRD benchmark (Li et al.,
 1018 2023), a comprehensive text-to-SQL dataset.

1019

1018 C.3 MODIFICATIONS TO AGENTBENCH ENVIRONMENT

1019

1020 To enhance the flexibility and compatibility of AGENTBENCH, we transformed its five environments
 1021 into a Function-Call Based framework. We analyzed the distinct action types required by each
 1022 environment and categorized them accordingly. For each environment, we extracted specific tools
 1023 following the OpenAI Function Call Format. For instance, in the Knowledge Graph (KG) environment,
 1024 we identified and implemented seven tools, including `get_relations`, `get_neighbors`, and
 1025 `count`, among others. Additionally, we modified the interaction logic of each environment to support
 1026 external requests in the Function Call format, ensuring seamless integration with external systems.

1026 Outlining the refactoring of Controller and Worker interfaces We restructured the interface protocols
 1027 for the Controller and Worker components in AGENTBENCH to standardize task management and
 1028 interaction. The `start_sample` interface was introduced to initiate a task, while multi-turn
 1029 interactions were facilitated through the `interact` interface. To improve Controller oversight,
 1030 we implemented additional interfaces, such as `list_sessions` and `list_workers`, enabling
 1031 efficient monitoring of internal worker and session states within the container.
 1032
 1033

1034 D DETAILED EXPERIMENTAL SETTINGS

1035 D.1 ENVIRONMENTS AND TASKS

1036 We select five representative multi-turn interaction tasks from the AGENTBENCH (Liu et al., 2024c),
 1037 a comprehensive and evolving benchmark designed to evaluate the reasoning and decision-making
 1038 capabilities of large language models. These tasks, encompassing operating system interactions,
 1039 database management, knowledge graph navigation, text-based adventure games, and web shopping
 1040 scenarios, are chosen for their diverse challenges and ability to assess critical skills such as
 1041 long-sequence comprehension, contextual tracking, and environmental interaction. The tasks are
 1042 supported by standardized evaluation protocols and open-source code environments, facilitating
 1043 robust experimental implementation and framework refinement.
 1044
 1045

1046 **Unified Reward.** We normalize all task rewards to the range $[0, 1]$ for consistency. For tasks without
 1047 intrinsic reward signals, we assign a reward of 1 for correct responses and 0 otherwise. In addition, we
 1048 leverage termination signals and penalize abnormal terminations with a reward of -0.2 to encourage
 1049 proper episode completion.
 1050

- 1051 • **Operating System (OS) Task:** This environment assesses an agent’s ability to interact with a real
 1052 Ubuntu Docker-based operating system through Bash command-line inputs. Agents are tasked
 1053 with interpreting natural language instructions and translating them into precise Shell commands
 1054 to achieve specific objectives, such as file manipulation or directory navigation in an unfamiliar
 1055 environment. The task demands high accuracy in command generation, error handling, and result
 1056 interpretation (e.g., standard output and error streams), given the vast action space and the need for
 1057 adaptive decision-making.
- 1058 • **Database (DB) Task:** In this scenario, agents act as database analysts, interacting with a real
 1059 database via SQL queries to address natural language questions or perform data modifications (e.g.,
 1060 `INSERT`, `UPDATE`). The task evaluates the agent’s proficiency in converting natural language to
 1061 SQL (Text-to-SQL), understanding database schemas (table structures, column names, data types),
 1062 and managing complex queries (e.g., multi-table joins, nested queries, aggregation functions).
 1063 Multi-turn interactions require agents to adjust strategies based on query results or error feedback.
- 1064 • **Knowledge Graph (KG) Task:** For the KG environment, API results are obtained with one-shot
 1065 testing to ensure the model can correctly invoke tool calls, while our trained models are trained and
 1066 evaluated without one-shot assistance. This task challenges agents to perform multi-step reasoning
 1067 and information retrieval within a large knowledge graph (e.g., Freebase) to answer complex
 1068 queries. With only partial observability due to the graph’s scale, agents must use structured query
 1069 operations (e.g., retrieving entity relationships or finding intersecting entity sets via callable tools)
 1070 to explore and connect information fragments. It emphasizes long-term planning, information
 1071 integration, and effective decision-making under incomplete information.
- 1072 • **Text Adventure Game (Text Game / House-Holding, HH - Represented by ALFWorld):** Agents
 1073 operate in a text-described virtual household environment, executing action sequences to meet
 1074 high-level goals (e.g., “clean a soapbar and place it on the workbench”). Actions include navigating
 1075 (e.g., “go to cabinet 1”), interacting with objects (e.g., “take soapbar 1 from sinkbasin 1”), and
 1076 adjusting plans based on feedback (e.g., “The cabinet 2 is closed”). ALFWorld (Shridhar et al.,
 1077 2021) highlights the need for commonsense reasoning, goal decomposition, and dynamic planning
 1078 in response to environmental states.
- 1079 • **Web Shopping (WS - Represented by WebShop):** This task simulates an e-commerce experience
 1080 where agents search for products based on specific criteria (e.g., brand, price) by interacting
 1081 with a simulated website. Actions include keyword searches, link clicks, attribute filtering, and
 1082 adding items to a cart. The WebShop environment (Yao et al., 2022) offers a rich product dataset,

1080 requiring agents to analyze requirements, navigate multi-turn interactions, and demonstrate strong
 1081 information retrieval, comparison, and decision-making skills in a complex web interface.
 1082

1083 D.2 TRAINING AND EVALUATION SETTINGS 1084

1085 **Training.** We leverage the Verl project as a foundation, implementing a fully asynchronous overhaul
 1086 to develop a novel training framework, AGENTRL, tailored for agentic RL tasks. The framework was
 1087 applied to train models including Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct,
 1088 Qwen2.5-32B-Instruct, and GLM4-9B. The efficiency of the asynchronous design enabled extensive
 1089 rollout training across the five selected multi-turn interaction tasks, facilitating large-scale RL with
 1090 over 1000 steps in a multi-task mixed setting. This prolonged training ensured convergence of model
 1091 performance across diverse tasks.

1092 The interaction format between models and environments was standardized using the OpenAI
 1093 Function Call Format. For the Qwen series, RL training commenced directly from the base models.
 1094 In contrast, the GLM4-9B model required an initial cold-start phase with a limited set of supervised
 1095 fine-tuning (SFT) data to adapt to the Function Call Format, followed by RL training, ultimately
 1096 yielding significant performance improvements (see Table 3). Training was conducted on H800
 1097 GPUs, with a minimum configuration of 16 GPUs for the 14B model. Scalability was observed, as
 1098 training efficiency increased with additional GPU resources.

1099 The training process employed the Group Relative Policy Optimization (GRPO) algorithm as the
 1100 baseline, enhanced with custom modifications (see Section 3.1). Rollouts were performed with a
 1101 temperature of 0.8, sampling eight times per rollout to ensure diverse action exploration. To maintain
 1102 consistency across multi-task environments, a binary reward function was designed, assigning a score
 1103 based on the correctness of the entire trajectory. Trajectories exceeding the maximum interaction
 1104 rounds or maximum response length incurred a penalty of -0.2. For computational efficiency, SGLang
 1105 was adopted as the inference engine, paired with the Fully Sharded Data Parallel (FSDP) strategy to
 1106 optimize RL training.

1107 **Evaluation.** For evaluation, a lightweight eval script was developed using the SGLang engine,
 1108 seamlessly integrated with the asynchronous framework to enable rapid assessment of task perfor-
 1109 mance. Evaluations were conducted with a temperature of 0.8, averaging results over four consecutive
 1110 runs per task to ensure reliability. Additionally, a compatible API evaluation script was created to
 1111 assess model APIs across tasks, supporting endpoints served by vllm or SGLang, with identical
 1112 parameters (temperature 0.8, four-run average) to maintain consistency.

1113 D.3 DEPLOYMENT FRAMEWORK DETAILS 1114

1115 As shown in Figure 5, each worker in the new framework operates as a containerized execution
 1116 unit, capable of managing concurrent task lifecycles under isolated runtime conditions. Workers are
 1117 equipped with a detailed instrumentation layer for real-time observability, enabling telemetry at both
 1118 session and task granularity. Internally, each worker integrates an abstract environment controller
 1119 that mediates between task definitions and environment provisioning services. This controller is
 1120 responsible for session instantiation, interaction handling, timeout enforcement, and environment
 1121 cleanup. By abstracting the execution logic from physical deployment details, the worker layer can
 1122 accommodate diverse backend configurations and support dynamic elasticity under shifting training
 1123 loads.

1124 The new controller adopts a non-blocking dispatch strategy that minimizes contention and ensures
 1125 deadlock safety through a strict lock acquisition hierarchy. Timeout-driven fault detection and self-
 1126 healing routines enable automatic de-registration and reintegration of unstable nodes. The controller
 1127 also enforces strict lifecycle policies on session expiration, interaction timeout, and stale data cleanup
 1128 through periodic maintenance loops.

1129 D.4 RESULTS ANALYSIS 1130

1132 We provide a comprehensive evaluation of reinforcement learning (RL) performance across a diverse
 1133 set of models and tasks. We report results for prominent API-based models and popular open-source
 base models. Additionally, we assess the RL-enhanced variants of our models at various scales,

1134 trained using the AgentRL framework. The evaluation extends to out-of-distribution (OOD) testing
 1135 on an unseen benchmark, where the RL-trained model demonstrates performance gains over its base
 1136 counterpart. Furthermore, we conduct an ablation study to investigate the impact of our proposed
 1137 algorithmic techniques on model efficacy.

1138 **Scaling Law** The main results reflect a clear scaling law trend, with AgentRL-trained models
 1139 showing consistent performance improvements as their size increases. Performance progressively
 1140 escalates from the smallest model variants to the largest, indicating the framework’s scalability and
 1141 robustness. This progressive enhancement underscores the algorithm’s adaptability to varying model
 1142 sizes. The successful application to a model from a different architectural family further validates the
 1143 framework’s versatility, demonstrating its broad applicability beyond a single model series.

1144 **Frontier Model Performance** Comparative analysis highlights the superiority of our largest
 1145 AgentRL-trained model over leading API-based models. While prominent proprietary LLMs achieve
 1146 high scores, our RL-optimized model reaches a new state-of-the-art performance level, representing a
 1147 substantial improvement over its base version before RL training. This suggests that AgentRL not
 1148 only competes with but, in certain multi-turn and overall metrics, surpasses these advanced models,
 1149 affirming its competitive edge.

1150 **Open-Source Baselines** To rigorously benchmark our framework, we compare against a diverse
 1151 set of representative open-source methods covering supervised fine-tuning (SFT), pre-training, and
 1152 evolutionary paradigms. **AgentLM** (Zeng et al., 2024) and **AgentFlan** (Chen et al., 2024a) repre-
 1153 sent the SFT paradigm; AgentLM employs hybrid instruction tuning on expert trajectories, while
 1154 AgentFlan focuses on decomposing and cleaning data distributions to mitigate hallucinations. **Hep-**
 1155 **haestus** (Zhuang et al., 2025) adopts a continual pre-training paradigm, utilizing large-scale agentic
 1156 corpora to enhance fundamental capabilities like tool understanding before fine-tuning. Finally,
 1157 **AgentGym** (Xi et al., 2025) serves as a framework baseline that facilitates agent self-evolution
 1158 through interactive environments. In contrast to these approaches, which primarily focus on static
 1159 data engineering or synchronous iteration, AGENTRL introduces a fully asynchronous *online* re-
 1160 enforcement learning framework, specifically optimized for multi-turn, multi-task stability via our
 1161 proposed Cross-Policy Sampling and Task Advantage Normalization.

1162 **OOD Performance** The OOD evaluation on the BFCL-v3 benchmark tests generalization on
 1163 unseen tasks. The RL-trained model shows a clear improvement in overall performance compared
 1164 to the base model, with a particularly significant leap in multi-turn task capability. This outperfor-
 1165 mance after extensive RL training underscores the method’s ability to generalize beyond its training
 1166 distribution, enhancing its potential for practical deployment in diverse scenarios.

1167 **Ablation Study** The ablation study further elucidates the efficacy of our methodological enhance-
 1168 ments, detailed as follows:

- 1169 • **Cross-Policy Sampling:** This technique, designed to explore more states in open-ended environ-
 1170 ments, proves to be highly effective. Its inclusion boosts the average performance significantly.
 1171 This result underscores the value of encouraging broader exploration, as the strategy success-
 1172 fully expands the model’s capability boundaries by exposing it to more diverse and goal-relevant
 1173 trajectories during training.
- 1174 • **Task Advantage Normalization:** In contrast, this method stabilizes multi-task learning by miti-
 1175 gating negative interference and rate disparities across tasks. These findings support the selective
 1176 integration of this technique, enhancing AgentRL’s training stability and consistency.

1180 D.5 ADDITIONAL EXPERIMENTS AND ABLATION STUDIES

1181 In this section, we present detailed experimental results to address reviewer inquiries regarding algo-
 1182 rithmic effectiveness and system robustness. **Note on Experimental Settings:** To isolate the specific
 1183 effects of Cross-Policy Sampling and the Asynchronous Pipeline, we conducted targeted experiments
 1184 on the **DB environment**. For system-wide stability analyses (Task Advantage Normalization and
 1185 Hyperparameter Sensitivity), we utilized the full **multi-task setting across all five AgentBench**
 1186 **environments**.

1188 D.5.1 ANALYSIS OF ASYNCHRONOUS PIPELINE
1189

1190 **Synchronous vs. Asynchronous Pipeline (Single**
 1191 **Task - DB).** To address concerns regarding poten-
 1192 **tial off-policy bias, we conducted a comparative ex-**
 1193 **periment between synchronous and asynchronous**
 1194 **pipelines on the DB environment. As shown in**
 1195 **Figure 9, the training curves of the two approaches**
 1196 **are nearly identical. This empirical evidence con-**
 1197 **firms that the off-policy bias introduced by the**
 1198 **asynchronous mechanism has a negligible impact**
 1199 **on convergence and performance, while retaining**
 1200 **the substantial efficiency gains demonstrated in the**
 1201 **main paper.**

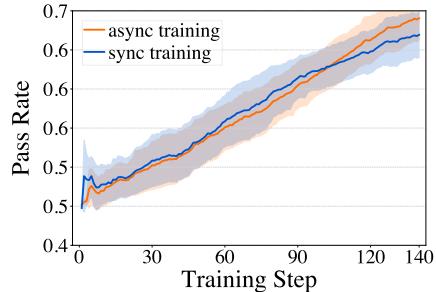


Figure 9: Async vs. Sync (**DB Environment**). Asynchronous training yields nearly identical convergence, confirming negligible off-policy bias.

1206 D.5.2 HYPERPARAMETER SENSITIVITY ANALYSIS
1207

1208 **Algorithm Sensitivity (Multi-Task).** Figure 10
 1209 illustrates the training trajectories under different
 1210 hyperparameter settings across the full multi-task
 1211 suite. While we could only conduct limited addi-
 1212 tional sweeps due to resource constraints, the
 1213 results demonstrate that with the aid of our pro-
 1214 posed algorithmic components, the framework ex-
 1215 hibits strong tolerance to hyperparameter adjust-
 1216 ments. The model maintains a competitive trajectory
 1217 even when parameters deviate from the local optimum.

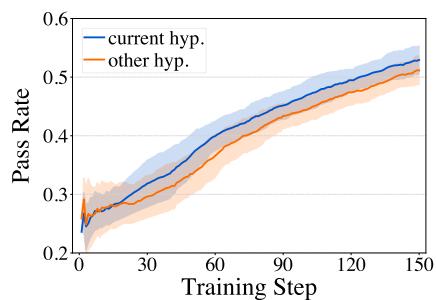


Figure 10: Hyperparameter Sensitivity (**Multi-task**). The framework exhibits tolerance to hyperparameter adjustments in multi-task settings.

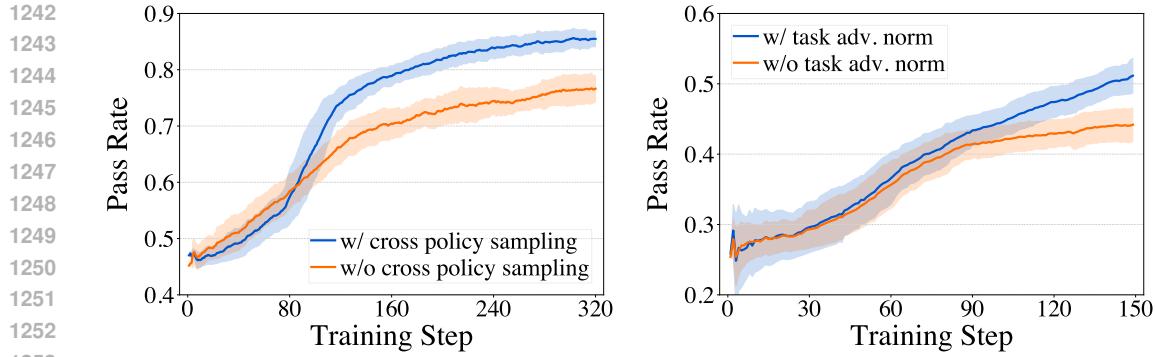
1224 D.5.3 EFFECTIVENESS OF ALGORITHMIC COMPONENTS
1225

1226 We investigate the impact of our two proposed algorithmic improvements under their respective
 1227 validation settings.

1228 **Effect of Cross-Policy Sampling (Single Task - DB).** To verify the motivation and effectiveness
 1229 of Cross-Policy Sampling, we conducted a supplementary comparison on the single-task DB en-
 1230 vironment. As shown in Figure 11(a), the difference between the two settings is significant. With
 1231 Cross-Policy Sampling enabled (blue line), we observe a distinct performance surge, whereas the
 1232 curve without it (orange line) remains consistently at a lower level. This confirms that Cross-Policy
 1233 Sampling is essential for sustaining exploration in complex single-task scenarios.

1234 **Effect of Task Advantage Normalization (Multi-Task - Sub-optimal Hyp.).** To demonstrate
 1235 the practical utility of Task Advantage Normalization (TAN), we conducted a specific experiment
 1236 across the five-task suite using a *sub-optimal* set of hyperparameters. As shown in Figure 11(b),
 1237 Task Advantage Normalization plays a critical role in stabilizing training and boosting performance
 1238 under these conditions. While marginal improvements might appear less pronounced under the
 1239 carefully tuned hyperparameters used in the main paper, this experiment highlights Task Advantage
 1240 Normalization's value in ensuring robustness when optimal hyperparameters are unknown.

1241 D.5.4 COMPARISON WITH EXPERIENCE REPLAY



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
(a) Effect of Cross-Policy Sampling (**DB Environment**) (b) Effect of Task Adv. Normalization (**Multi-task**)

Figure 11: Ablation study on core algorithmic designs. (a) Cross-Policy Sampling significantly boosts performance on the **DB task**. (b) Task Advantage Normalization stabilizes training across **heterogeneous multi-task settings**, especially under sub-optimal hyperparameters.

We evaluate the efficacy of Cross-Policy Sampling (CPS) by comparing it against a standard Experience Replay (ER) baseline on the **DB environment**. This comparison aims to isolate the benefits of dynamic policy mixing versus replaying historical trajectories.

As illustrated in Figure 12, the two methods demonstrate divergent training dynamics. **Experience Replay (Orange Line)** exhibits superior sample efficiency in the initial phase (steps 0–80), benefiting from the reuse of previous transitions. However, performance rapidly saturates at a pass rate of approximately 79%. We attribute this premature plateau to the *static* nature of replayed trajectories; in multi-turn agentic tasks, as the current policy updates, the distribution mismatch between the behavioral policy (from the replay buffer) and the target policy grows, leading to high-variance importance sampling weights and detrimental off-policy bias.

In contrast, **Cross-Policy Sampling (Blue Line)** shows a steady and sustained improvement trajectory. Although the initial growth is slower due to the exploration variance introduced by mixing policies, CPS overtakes ER around step 100 and achieves a significantly higher asymptotic performance (~84%). This suggests that CPS effectively mitigates off-policy issues by mixing policies during the *generation* phase, thereby ensuring that the explored trajectories remain linguistically coherent and on-manifold while effectively expanding the state space coverage.

D.6 CASE STUDIES

D.6.1 CASE STUDY ON THE EFFICACY OF CROSS-SAMPLING

To intuitively demonstrate the effectiveness of our proposed cross sampling strategy, we present a case study on a specific knowledge graph (KG) question-answering task. As shown in fig 13, we analyze the execution trajectories of two models, **GLM-4-9B** and **Llama-8B**, on this task. The results show that when tasked individually, both models fail for different reasons. However, when applying our Cross-Policy Sampling strategy, the agent successfully completes the task by finding the correct answer.

The failures of the two individual models stem from distinct causes. **GLM-4** becomes trapped in a **premature conclusion loop**; it correctly deduces the final answer through logical inference but consequently bypasses the required protocol of using tools for verification. It repeatedly outputs its

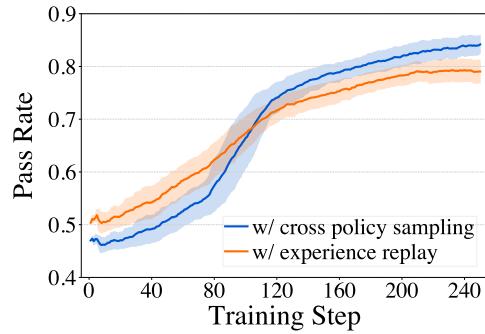


Figure 12: Comparison on DB task. **ER (orange)** plateaus early due to static off-policy bias, while **CPS (blue)** sustains exploration and achieves a significantly higher final success rate.

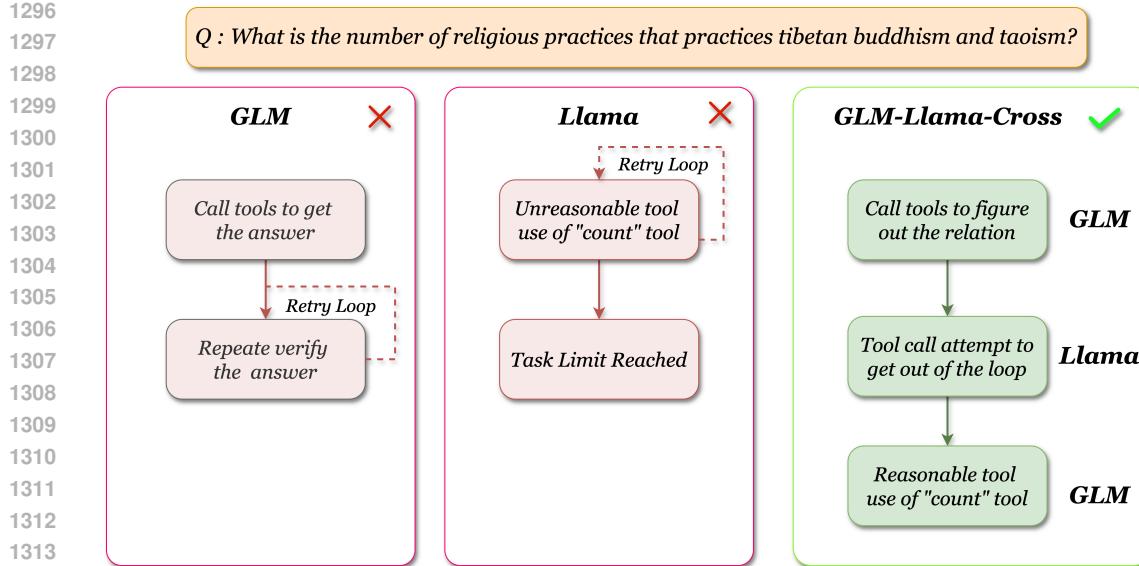


Figure 13: An example of GLM, Llama and GLM-Llama cross sampling in a KG task. This case study demonstrates the Cross-Policy Sampling strategy’s success on a KG question-answering task, where GLM-4 fails in a conclusion loop and Llama falters with tool comprehension. It combines GLM-4’s logic with Llama’s tool interaction to achieve the correct answer.

inferred conclusion in a non-standard format, leading to failure. In contrast, **Llama**’s failure is due to **flawed tool comprehension**; it persistently attempts to call tools with incorrect logic and parameters, indicating a fundamental misunderstanding of the tools’ functionality and usage, which prevents any effective progress on the task.

The cross sampling strategy’s success stems from a synergy that compensates for each model’s weaknesses. It leverages GLM-4’s strong logical planning to set a course, then breaks GLM-4’s resulting non-interactive loop by switching to Llama’s policy. Although Llama’s own tool comprehension is flawed, its policy’s critical function is to force an attempt at tool interaction. This switch to a “tool-centric” mode, guided by GLM-4’s original logic, creates the opportunity for a valid tool call to emerge. This case study highlights the superiority of Cross-Policy sampling by showing how it dynamically combines different problem-solving approaches to forge a successful path where single agents fail.

D.6.2 PERFORMANCE SCALING WITH MORE THAN TWO POLICIES

Performance Scaling with Multi-Model Cross-Policy Sampling. To further validate the scaling potential of Cross-Policy Sampling (CPS) beyond intra-family checkpoints, we conducted an inference experiment on the **DB environment** using three distinct models: Qwen2.5-14B, Qwen3-14B, and GLM-4-9B. As detailed in Table 7, while the individual models exhibit varying performance levels (with GLM-4 struggling on this specific task), the mixed Cross-Policy strategy successfully aggregates their capabilities. Notably, at *pass@64*, the Cross-Policy approach achieves a success rate of **75.7%**, surpassing the best single model (Qwen2.5-14B at 74.0)

Scaling Analysis on WebShop. We extended the scaling analysis to the **WebShop environment**. As presented in Table 8, we integrated Qwen2.5-14B, Qwen3-14B, and GLM-4-9B. This experiment reveals an interesting trade-off between average quality and diversity. At low sample counts ($k \leq 16$), the inclusion of the weaker GLM-4 model (5.3% at *pass@1*) dilutes the ensemble’s precision, resulting in performance slightly below the best single model. However, as k increases, the benefit of diversity becomes dominant. The Cross-Policy Sampling strategy successfully overtakes the strongest single model (Qwen2.5-14B) at *pass@32* and achieves **58.7%** at *pass@64* (vs. 56.8%). This confirms that even when constituent policies have mixed quality, the ensemble effectively expands the search coverage to uncover solutions that single policies miss.

1350 Table 7: Pass@ k performance comparison on the **DB Environment** using distinct models and their
 1351 Cross-Policy combination. The Cross-Policy Sampling strategy (mixing Qwen2.5, Qwen3, and
 1352 GLM-4) achieves the highest coverage at larger k , demonstrating the benefit of policy diversity.
 1353

Model	P@1	P@2	P@4	P@8	P@16	P@32	P@64
GLM-4-9B	3.2	5.6	9.6	15.5	22.6	29.6	36.1
Qwen3-14B	53.9	60.3	64.3	67.4	70.0	72.0	73.5
Qwen2.5-14B	48.6	58.7	64.1	67.0	69.3	71.6	74.0
Cross-Policy Sampling	49.6	59.6	65.5	69.0	71.5	73.7	75.7

1361 Table 8: Pass@ k performance comparison on the **WebShop Environment**. At lower k , the inclusion
 1362 of a weaker model (GLM-4) impacts precision. However, at higher k ($k \geq 32$), the diversity gain
 1363 from Cross-Policy Sampling allows it to outperform the best single model, demonstrating superior
 1364 solution coverage.
 1365

Model	P@1	P@2	P@4	P@8	P@16	P@32	P@64
GLM-4-9B	5.3	8.2	11.4	14.6	17.7	20.9	24.5
Qwen3-14B	16.0	22.0	28.6	35.5	41.8	46.9	50.8
Qwen2.5-14B	15.6	23.1	30.6	38.0	45.1	51.5	56.7
Cross-Policy Sampling	15.5	22.2	29.7	36.7	43.2	52.1	58.7

D.6.3 SENSITIVITY TO POLICY MIXING RATIO.

1375 **Sensitivity to Policy Mixing Ratio (WebShop).** We investigated mixing ratio sensitivity on **Web-
 1376 Shop** using Qwen3-14B and Qwen2.5-14B. As shown in Table 9, while all cross-policy combinations
 1377 outperform single models at high k , the Ratio 1:2 (favoring Qwen2.5) achieves the highest ceiling
 1378 (**62.5%** at pass@64). This indicates that maximizing solution coverage requires a strategic balance:
 1379 injecting sufficient diversity from the auxiliary policy (Qwen3) while maintaining a higher sampling
 1380 probability for the model with superior intrinsic search capabilities (Qwen2.5).
 1381

1382 Table 9: Sensitivity analysis of mixing ratios (Qwen3-14B : Qwen2.5-14B) on the **WebShop task**.
 1383 While all mixing strategies surpass single models at high k , favoring the stronger model (Ratio 1:2)
 1384 yields the highest performance ceiling (62.5% at P@64), demonstrating the optimal trade-off between
 1385 diversity and model capability.
 1386

Model / Ratio (Q3:Q2.5)	P@1	P@2	P@4	P@8	P@16	P@32	P@64
Qwen3-14B (Single)	16.0	22.0	28.6	35.5	41.8	46.9	50.8
Qwen2.5-14B (Single)	15.6	23.0	30.6	38.0	45.1	51.5	56.7
Ratio 2:1 (Favor Q3)	16.6	23.3	30.7	38.0	44.6	50.9	57.5
Ratio 1:1 (Balanced)	16.7	23.7	31.6	39.6	47.0	53.9	60.0
Ratio 1:2 (Favor Q2.5)	16.8	24.0	31.8	39.9	47.9	55.4	62.5

D.6.4 ERROR ANALYSIS

1399 We analyze the performance of the Qwen2.5-14B-Instruct model and the AGENTRL model across
 1400 five environments (AlfWorld, DB, KG, OS, WebShop), focusing on the primary termination states:
 1401 Completed and Task Limit Reached.
 1402

1403 The data highlights a substantial improvement with the AGENTRL method, where Completed rates
 1404 increase significantly (e.g., from 0.070 to 0.926 in AlfWorld) and Task Limit Reached rates decrease

Environment	Base Model		AGENTRL Model	
	Completed	Task Limit Reached	Completed	Task Limit Reached
AlfWorld	0.070	0.68	0.926	0.074
DB	0.957	0.043	0.993	0.007
KG	0.747	0.213	0.947	0.033
OS	0.548	0.444	0.847	0.118
WebShop	0.725	0.275	0.980	0.020

Table 10: Failure Modes Comparison. *Note: "Completed" indicates the agent submitted an answer, not necessarily correctly, and these two statuses are not exhaustive; the sum of percentages may not reach 100% due to other possible outcomes.*

(e.g., from 0.68 to 0.074 in AlfWorld). This suggests that RL training enhances the model’s efficiency, reducing instances where tasks terminate due to time constraints and boosting successful completions across all environments.

D.6.5 WHAT REINFORCEMENT LEARNING TEACHES MODELS IN ALFWORLD

We analyze a task from ALFWorld where the agent must place a saltshaker in a drawer. We compare the base model (Qwen2.5-14B-Instruct), which fails in four runs, with the RL-trained model (AgentRL-Qwen2.5-14B-Instruct), which succeeds in all four, to highlight RL’s impact.

Base Model Performance The base model struggles with:

- **Improper Tool Usage:** Repeatedly attempts invalid actions (e.g., `look`) without using the `take_action` tool, leading to errors.
- **Ineffective Strategy:** Fixates on cabinets (e.g., `cabinet 1`) without exploring likely locations like countertops, resulting in failure.

RL-Trained Model Performance The RL-trained model excels by:

- **Correct Tool Usage:** Consistently uses `take_action` correctly, avoiding procedural errors.
- **Efficient Search:** Prioritizes countertops, quickly finding the saltshaker on `countertop 3`.
- **Action Sequencing:** Navigates to `drawer 1`, opens it, and places the saltshaker, completing the task.

From the above analysis we can see that reinforcement learning significantly enhances the model’s performance in ALFWorld by imparting tool proficiency for correct use of environment tools, strategic exploration to prioritize likely locations, and effective action planning for sequencing tasks, enabling efficient, goal-directed behavior that starkly contrasts with the base model’s repetitive failures.

D.7 COMPUTATION COSTS

We report the computational resources required for our main experiments to demonstrate the scalability of the AgentRL framework. All training sessions were conducted on a compute cluster consisting of 4 nodes, with each node equipped with 8 GPUs (totaling 32 GPUs). The specific hardware utilized offers a peak performance of approximately 1500 TFLOPs (BF16) per device.

Table 11 summarizes the computational costs for the 14B and 32B model experiments. Both models were trained for 1,500 steps. Notably, the reported figures account for the full training lifecycle, explicitly including the computational overhead incurred by system interruptions and training resumption. The ability to complete 32B-parameter model training in about 101 hours on 32 GPUs demonstrates the high throughput and efficiency of our asynchronous pipeline.

1458 Table 11: Computational cost breakdown for main experiments. The training was conducted on a
 1459 cluster of 32 GPUs (4 nodes \times 8 GPUs). GPU hours include resumption overhead.
 1460

Model Size	Training Steps	Est. GPU Hours	Wall-Clock Time	Throughput Efficiency
AgentRL-14B	1,500	~1,888	~59 hours	32 GPUs
AgentRL-32B	1,500	~3,232	~101 hours	32 GPUs

1464
 1465
E PROMPT EXAMPLES
 1466

1467
 1468 **E.1 ALFWORLD TASK**
 1469

1470 **E.2 KNOWLEDGE GRAPH (KG) TASK**
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

System Prompt for AlfWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household environment and your target is to perform actions to complete) the task goal.

At the beginning of your interactions, you will be given the detailed description of the current environment and your goal to accomplish. A tool will be provided for you to use to submit the action you want to take. This tool is the only tool you should and must take in order to operate any action in the environment. The way you perform action is to place the action chosen by you in the arguments field of your tool call.

For each of your turn, you will be given a list of actions which you can choose one to perform in this turn. The action you would like to take should be offered in this format: the name of your next action, and you should fill it in the argument field of your tool call. Note that you should always call a tool to operate an action from the given choices. After your each turn, the environment will give you immediate feedback based on which you plan your next few steps. if the environment output Nothing happened, that means the previous action is invalid and you should try more options.

Reminder:

- the action must be chosen from the given available actions. Any actions except provided available actions will be regarded as illegal.
- Always call the tool to hand in your next action and think when necessary.

System Prompt for Knowledge Graph

Instructions: You are an intelligent agent tasked with answering questions based on the knowledge stored in a **knowledge base (KB)**. Utilize the provided tools to probe the KB and retrieve relevant information to address user queries effectively.

Navigate the KB to identify **relationships**, **attributes**, and **intersections**. where applicable, ensuring the most pertinent information is used to formulate answers.

Remember:

- A variable can be an entity or a set of entities resulting from previous queries.
- Ensure the tool selected aligns with the question's demands, following a logical order (e.g., fetch relations before finding neighbors).
- After generating a variable, assess whether it constitutes the **final answer**. Variables are assigned IDs starting from 0 (e.g., #0, #1, etc.).
- Upon identifying the **final answer**, respond with 'Final Answer: #id', where #id is the variable's ID (e.g., 'Final Answer: #3'). Do not invoke tools after determining the final answer!
- Execute one action at a time, with a maximum of 15 actions to find the answer.
- Use the supplied tools unless the **final answer** is identified.

Your thoughtful application of these tools and careful consideration of interactions will guide you to correct answers. Note that the task must be completed within 15 rounds— plan your attempts accordingly!

1561

1562

1563

1564

1565

1566
1567

E.3 DB TASK

1568
1569

System Prompt for DataBase

1570
1571
1572
1573

I will ask you a question, then you should help me operate a **MySQL database** with SQL to answer the question. You have to explain the problem and your solution to me and write down your thoughts. After thinking and explaining thoroughly, every round you can choose to **operate or to answer** with the two specific tools provided.

1574
1575
1576
1577
1578
1579
1580
1581

If you should execute a SQL query, use the ‘execute_sql’ function, Your SQL should be in one line. Every time you can only execute one SQL statement. I will only execute the statement in the first SQL code block. Every time you write a SQL, I will execute it for you and give you the output. If you are done operating, and you want to commit your final answer, then use the ‘commit_final_answer’ function. DO NOT use this tool unless you are sure about your answer. I expect an accurate and correct answer. Your answer should be accurate. Your answer must be exactly the same as the correct answer. If the question is about modifying the database, then after done operation, your answer field can be anything. If your response cannot match any pattern I mentioned earlier, you will be judged as FAIL immediately. You should always use the tools provided to submit your answer. Be careful not to write it in the content field. Your input will be raw MySQL response, you have to deal with it by yourself.

1582
1583
1584

E.4 OS TASK

1585

System Prompt for Operating System

1589
1590
1591

You are an assistant that will act like a person. I will play the role of a **Linux (Ubuntu) operating system**. Your goal is to implement the operations required by me or answer the questions proposed by me.

1592
1593
1594

For each of your turns, you should first think about what you should do, and then call exactly one of the provided tools according to the situation. If you think the output is too long, I will truncate it. The truncated output is not complete. You have to deal with the truncating problem by yourself.

1595
1596
1597

Attention, your bash code should not contain any input operation. Once again, you should use one tool in each turn, and should not respond without function calling.

1598
1599
1600

Note that if you think the task has been finished, or there is some message missing to completely complete the task, you should respond with calling the function `finish_action`, as no additional information will be provided.

1601
1602
1603
1604

Also, note that if you have gotten the answer to the question, you should call the `answer_action` tool instead of simply writing your answer in your response.

1605
1606

Your answers should be exact and precise (for example, a single number), do not answer with full sentences or phrases. Always use a tool provided instead of simply responding with content.

E.5 WEBSHOP TASK

1607
1608

System Prompt for Web Shopping

1609
1610
1611

You are web shopping. I will provide **instructions** about what to do, and you must follow them strictly. Every round, you will receive an observation and a list of available actions. You must respond by calling a tool based on the current state and instructions.

1612
1613
1614

- You can use the **search tool** if it is available.
- You can click one of the buttons in **clickables**.
- If an action is not valid, perform nothing.

1615
1616
1617

Keywords for the **search tool** are your choice, but the value for a click must be from the list of available actions. Remember to design search keywords carefully.

1618
1619

First, think about what to do, then call a tool accordingly. You should always use a tool, even if you have questions to confirm, and you can use any available tool without user permission.

1620 **F DISCUSSIONS**
16211622 **F.1 LIMITATIONS**
16231624 While our framework establishes a new state-of-the-art in agentic RL, we identify two primary areas
1625 for future research that build upon our solid foundation. First, our novel cross-policy sampling
1626 strategy is a key driver of enhanced exploration. By its very design of integrating diverse policies, it
1627 can introduce minor distributional shifts. These shifts can manifest as mild, transient instabilities
1628 in training dynamics, a manageable trade-off for achieving broader state-space coverage. Future
1629 work could explore principled refinements, such as adaptive policy weighting, to further optimize this
1630 powerful mechanism. Second, as a foundational work, this paper focuses on rigorously validating our
1631 framework across a comprehensive suite of controlled environments. Having established the system's
1632 robustness and scalability, the natural next step is its application to more complex and dynamic
1633 real-world scenarios. We believe our framework provides the ideal testbed for tackling this exciting
1634 challenge.1635 **F.2 FUTURE WORKS**
16361637 Looking ahead, we plan to extend AGENTRL to a broader range of environments and scale it to larger
1638 models. Future research will also explore more sophisticated variants of cross-policy sampling and
1639 develop improved methods for multi-task optimization. We believe these are crucial steps toward
1640 creating more general and capable LLM agents.1641 **G USE OF LLMs**
16421643 During the preparation of this manuscript, we used large language models (LLMs) to assist with
1644 language polishing and grammar improvement. All research ideas, methods, experiments, and
1645 analyses were conceived, designed, and validated by the authors.