
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENTRL: SCALING AGENTIC REINFORCEMENT
LEARNING WITH A MULTI-TURN, MULTI-TASK FRAME-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have sparked growing interest
in building generalist agents that can learn through online interactions. However,
applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-
task settings remains challenging due to lack of scalable infrastructure and stable
training algorithms. In this work, we present the AGENTRL framework for scalable
multi-turn, multi-task agentic RL training. On the infrastructure side, AGENTRL
features a fully-asynchronous generation-training pipeline for efficient multi-turn
RL. To support heterogeneous environment development in multi-task RL, we
design a unified function-call based API interface, containerized environment
development, and a centralized controller. On the algorithm side, we propose
cross-policy sampling to encourage model exploration in multi-turn settings and
task advantage normalization to stabilize multi-task training. Experiments show
that AGENTRL, trained on open LLMs across five agentic tasks, significantly
outperforms GPT-5, Clause-Sonnet-4, DeepSeek-R1, and other open-source LLM
agents. Multi-task training with AGENTRL matches the best results among all
task-specific models. AGENTRL is open-sourced at https://anonymous.
4open.science/r/AgentRL-ICLR-C351 and has also been adopted for
developing other open-source LLM agents.

OS Webshop DB KG Alfworld
Environment

0

20

40

60

80

100

Su
cc

es
s R

at
e(

%
)

+14.7%
+31.1%

+14.6%
+43.2%

+62.4%
w/o RL
w/ RL

(a) Gains of AGENTRL over the base (32B).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Train Samples (M)

40

50

60

70

Av
g.

 S
uc

ce
ss

 R
at

e(
%

)

Claude-Sonnet-4 (2025-05-14)
GPT-5 (2025-08-07)

DeepSeek-R1 (2025-05-28)

AgentRL

Start: 37.2% (w/o SFT)

(b) RL progress of AGENTRL (32B).

Figure 1: Overall performance of AGENTRL.

1 INTRODUCTION

Reinforcement learning (RL) trains an agent to act by interacting with an environment and optimizing
its policy to maximize cumulative rewards. This principle has been effectively adapted for large
language models (LLMs) through reinforcement learning from human feedback (RLHF) (Ouyang
et al., 2022; OpenAI, 2022), where the LLM itself acts as the agent and its policy is refined based on
feedback from a learned reward model. This optimization process, typically based on proximal policy
optimization (PPO) (Schulman et al., 2017), aligns the model’s outputs with desired behaviors.

More recently, reinforcement learning with verifiable rewards (RLVR) (Shao et al., 2024) has extended
RL to reasoning tasks. Instead of relying on a learned reward model, RLVR uses automatically
verifiable signals, such as correctness checks in math or unit tests in code. This shift to objective
rewards enables significant simplification of the algorithmic design. For example, the group relative

1

https://anonymous.4open.science/r/AgentRL-ICLR-C351
https://anonymous.4open.science/r/AgentRL-ICLR-C351

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: AGENTRL vs. other RL frameworks and methods. Interactive Envs: real-time interaction
with the environment during training; Heterogeneous Envs: training with diverse environments.

Method Agentic Setting Infrastructure

Multi-Turn Multi-Task Full-Async Interative Envs Heterogeneous Envs

VeRL (Sheng et al., 2024) ✗ ✗ ✗ ✗ ✗
OpenRLHF (Hu et al., 2024) ✗ ✗ ✗ ✗ ✗
NeMo-Aligner (Shen et al., 2024) ✗ ✗ ✗ ✗ ✗
AReaL (Fu et al., 2025) ✓ ✗ ✓ ✗ ✗

AgentTuning (Zeng et al., 2024) ✓ ✓ ✗ ✗ ✗
EasyR1 (Zheng et al., 2025a) ✗ ✗ ✗ ✗ ✗
DigiRL (Bai et al., 2024) ✓ ✗ ✗ ✓ ✗
RAGEN (Wang et al., 2025b) ✓ ✗ ✗ ✓ ✗
ToolRL (Qian et al., 2025) ✗ ✗ ✗ ✗ ✗
GiGPO (Feng et al., 2025) ✓ ✗ ✗ ✓ ✗
ARPO (Lu et al., 2025a) ✓ ✗ ✗ ✓ ✗
AGENTRL (ours) ✓ ✓ ✓ ✓ ✓

policy optimization (GRPO) (Shao et al., 2024) algorithm further simplifies PPO and improves LLMs’
RL training efficiency. Recent LLMs leveraging RLVR—e.g., DeepSeek-R1 (DeepSeek-AI et al.,
2025) and T1 (Hou et al., 2025)—have achieved strong performance in reasoning.

However, these RL for LLM achievements have been largely limited to single-turn settings for a
single task, where an agent interacts with the given environment only once for feedback (Qi et al.,
2024; Bai et al., 2024; Zheng et al., 2025b; Feng et al., 2025; Qian et al., 2025; Yue et al., 2023).
First, to solve agentic tasks with multi-turn settings (OpenAI, 2025c; Jin et al., 2025; Lu et al., 2025a;
Feng et al., 2025; Lu et al., 2025b), the agent must collect feedback through dynamic interactions
with environments (Deng et al., 2023; Wei et al., 2025). In this case, the LLM is trained as an
autonomous agent that performs multi-turn reasoning, interacts with tools or environments, and
adapts its behavior over extended trajectories, that is, the problem of agentic RL. Second, building a
generalist agent that can handle diverse tasks has long been a goal for RL. Scaling to heterogeneous
multi-task environments in multi-turn settings for agentic RL requires advances in both LLM training
infrastructure and algorithm design. Table 1 lists existing solutions.

In this work, we present a multi-turn, multi-task framework AGENTRL to scale agentic RL training.
AGENTRL includes RL infrastructure, environment, and algorithm designs to address the challenges
listed in Table 2. On the infrastructure side, we implement an asynchronous generation-training
pipeline that can reduce GPU idle bubbles and improve multi-turn training efficiency. On the
environment side, we develop a scalable environment deployment infrastructure with a unified
function-call based API interface, containerized deployment, and centralized controller to manage the
lifecycle of thousands of parallel training episodes. To further support heterogeneous environment
scaling, we introduce consistent interfaces at the controller level. On the algorithm side, we present
the cross-policy sampling strategy to encourage model exploration that is negatively impacted by the
large state space in the multi-turn setting. We also introduce task advantage normalization to mitigate
the training instability resulting from the heterogeneity in different tasks.

We apply AGENTRL on open LLMs—Qwen2.5 (Qwen et al., 2025) and GLM-4-9B (GLM et al.,
2024)—across five agentic tasks: ALFWorld, DB, KG, OS, and Webshop (Shridhar et al., 2021;
Yao et al., 2022; Liu et al., 2024c). Experiments show that AGENTRL achieves state-of-the-art
results, significantly outperforming GPT-5 (OpenAI, 2025a), Claude-Sonnet-4 (Anthropic, 2025)
and DeepSeek-R1 (DeepSeek-AI et al., 2025) (Figure 1). The single model trained with five tasks
together can match the best performance of five models trained separately for individual tasks, while
also generalizing into unseen tasks, e.g., BFCL-v3 (Patil et al., 2025). Finally, extensive ablations
demonstrate that the algorithmic design choices in AGENTRL bring consistent performance benefits.

The contributions of this work are summarized as follows:

• We develop an asynchronous, multi-task framework AGENTRL for scalable agentic RL training
and robust heterogeneous environment deployment.

• We design a cross-policy sampling strategy to encourage exploration in multi-turn settings and task
advantage normalization to stabilize multi-task RL training.

• AGENTRL achieves state-of-the-art results on various LLM agent tasks, with promising generaliza-
tion to unseen tasks, demonstrating the potential of building a generalist LLM agent.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 2: Challenges in agentic RL compared to single-turn RL

Infrastructure Algorithm

Single-Turn synchronous rollouts stable and scalable training

Multi-Turn
compute inefficiency in synchronous rollouts,
requiring asynchronous training; difficulty in
scaling interactive homogeneous environments

multi-turn tasks demand greater explo-
ration due to larger state spaces, but ex-
ploration declines during training

Multi-Task difficulty in unifying heterogeneous environ-
ments

performance drop from task interference
and lack of generalization

2 THE AGENTIC RL PROBLEM AND ITS CHALLENGES

The shift from single-turn to multi-turn defines the problem of agentic RL, where the LLM acts
as an autonomous agent that performs multi-turn reasoning, interacts with tools or environments,
and adapts its behavior over extended trajectories. Formally, this can be formulated as a Markov
Decision Process(MDP) (Puterman, 2014), a tuple (S,A, P, r, ρ), where S is the state set, A the
action set, P the state-transition probability, r the reward function, and ρ the initial state distribution.
In a single-step case, P is trivial and the problem reduces to a multi-armed bandit. In contrast,
multi-step MDPs involve non-trivial state evolution over multiple transitions. The definition is listed
in Appendix B.

Moreover, most LLM agents have focused on training a separate policy for each individual task (Zheng
et al., 2025b; Feng et al., 2025; Qian et al., 2025). That means multiple LLMs have to be trained, one
for each environment or task, respectively. How to build a generalist agent that can handle diverse
tasks remains largely unexplored. Table 2 summarizes the challenges that go beyond single-turn RL.

Infrastructure Challenges in Multi-Turn RL. In the single-turn setting, RL is often run in a
synchronous way with an interleaved generation-training pipeline (Hu et al., 2024; Sheng et al., 2024).
For agentic tasks, generating long trajectories and frequent interactions with the environment is slow,
time-consuming, and highly variable compared to single-turn scenarios. As a result, GPUs that
handle short trajectories have to stay idle to wait for the generation completion of long trajectories.
The imbalance significantly reduces training efficiency and prevents RL scaling, thus requiring an
asynchronous RL training framework.

On the environment side, multi-turn training requires rollouts to run in an interactive environment,
which places high demands on the concurrent deployment and management of a large number of
homogeneous environments.

Algorithm Challenges in Multi-Turn RL. On the algorithm side, most existing sampling strategies
are designed for single-turn settings. Improving exploration and sampling efficiency in multi-turn
scenarios is therefore critical for agentic RL training.

Infrastructure Challenges in Multi-Task RL. By definition, multi-task RL requires an architecture
that can manage diverse environments. One major challenge lies in the differences in environment
interfaces, state-action representations, and computational demands. Effective and scalable integration
of these environments is essential for scaling agentic training efficiently across diverse tasks.

Algorithm Challenges in Multi-Task RL. Most existing RL approaches focus on training a single
agent task (Jin et al., 2025; Qian et al., 2025; Feng et al., 2025). Thus, developing effective methods
for jointly optimizing multiple agent tasks while ensuring training stability remains an open challenge.

3 THE AGENTRL FRAMEWORK

In this work, we develop an agentic RL framework—AGENTRL—to support multi-turn and multi-task
RL training, as shown in Figure 2. AGENTRL implements asynchronous training and environment
deployment to improve efficiency in multi-turn and multi-task settings. It also introduces cross-policy
sampling and task advantage normalization to stabilize the RL training. Together, these technical
designs and implementations address the challenges outlined in Table 2, and thus enable the generalist
agent training by scaling multiple environments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Time

Cross-Policy SamplingEnv. Framework

Rollout

Training

Host

Host

Controllor Task 1

Task 2
Task Adv.

Norm

Adv.
Estimation

Task Adv.
Norm

 Rollout w/ M1

Rollout w/ M2

Environment

Data

Params

Task Advantage Normalization

Asynchronous Pipeline

Figure 2: An overview of AGENTRL. Top: asynchronous training and rollout flows. Bottom: the
environment framework where a controller manages multiple workers to provide environments, and
the rollout details, including cross-policy sampling and task advantage normalization.

3.1 MULTI-TURN AGENTIC RL

Asynchronous Training Framework. To overcome the efficiency bottlenecks of synchronous
batching, we introduce an asynchronous rollout-training strategy based on coroutine scheduling.
The rollout engine runs in a dedicated resource group and executes asynchronously with training.
The training module continuously pulls available data from the rollout engine after each update,
without waiting for an entire batch of rollouts to finish. In addition, it accepts a dynamic batch size
that fluctuates within a certain range. This design enables the scheduler to fill idle GPU slots with
available coroutines, reducing pipeline bubbles and improving overall throughput.

Task

GPU
0~7

GPU 0~3

(ii) Fully Asynchronous Architecture

(i) Synchronous Architecture

Time

Task

Training

Rollout Rollout

Rollout

Trajectory Rollout Training
Params Transfer

...

Env

Rollout

Training Training Training

Rollout

GPU 4~7

Rollout

Data Transfer

...

...

Training Training

Figure 3: Synchronous vs. Asynchronous Training. The asynchronous design improves efficiency by
separating data rollout and model training on different resource groups.

16 32 64
Number of GPUs

10

20

50

100

Th
ro

ug
hp

ut
 (K

 to
ke

ns
/s

)

17K

33K

56K

9K

16K

29K

14B (baseline)
14B (ours)
Perfect Scaling

Figure 4: Throughput of AGENTRL vs. the syn-
chronous baseline for 14B parameter (Qwen2.5)
models on Webshop (log-scale for both axes).

As illustrated in Figure 3, rollout and training
are decoupled—they run concurrently and com-
municate asynchronously. This enables effi-
cient hardware scheduling, as shown in Figure 4,
where the asynchronous pipeline in AGENTRL
brings significant throughput gains over the syn-
chronous one.

To avoid off-policy bias of the rollout engine,
we set a maximum size of the data queue and en-
force all trajectories to be moved to the training
engine at each step. In doing so, all trajectories
are kept as up-to-date as possible with the latest
policy, which later experiments suggest to be
acceptable.

Scalable Agentic Environment Infrastructure.
To enable large-scale agentic RL, we develop
a scalable environment deployment infrastructure, shown in Figure 5. It includes the following

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Training Framework

Rollout
Engine

Rollout
EngineRollout

Async agent loop

Start

History

Action

Observation

Env. deployment Framework

Action

Obs. &
Reward

AgentRL
Controller

Worker containers

AgentRL Task
Worker

Task A Manages

Start
Init Obs.

Task-Specific
EnvironmentUbuntuHosts MySQL

Worker containers

AgentRL Task
Worker

Task B Manages

Training
Engine

Training
EngineTraining

Figure 5: The AGENTRL training pipeline, decoupled into a Training Framework and an Environment
Deployment Framework, organized by a central AGENTRL Controller. The Training Framework is
responsible for policy rollouts and updates, while the Environment Deployment Framework manages
scalable, containerized task environments that provide feedback.

components: 1. Function-call based environment interface. To simplify environment interactions,
we introduce a unified, function-call based API. This replaces complex custom action formats and
thus enables centralized management and monitoring. 2. Containerized deployment. Each task
environment is containerized as an isolated execution unit. This design improves resource allocation,
isolates faults between concurrent sessions, and supports seamless deployment on diverse hardware.
3. Centralized high-performance controller. A central controller, acts as the global orchestrator for
the training engine. It is optimized for high-concurrency workloads and manages the lifecycle of
thousands of parallel training episodes.

Cross-Policy Sampling Strategy. During RL training, model exploration typically declines over
time. This problem becomes more severe in the multi-turn setting with large state spaces. In addition,
model collapse (Shumailov et al., 2024) has been reported, where repeated training on self-generated
data leads to degraded capability and reduced variance.

Step 1 Step 2 Step 3 Step 4

Cross

Mix

Single

Model 2Model 1

Figure 6: Different rollout strategies. In single
model generation, all steps of all traces are gen-
erated by the same model. In mix mode, half of
the samples are generated by each model. In cross-
policy mode, all samples are generated with cross-
policy sampling strategy.

To overcome this issue, we propose a cross-
policy sampling strategy (see Figure 6), where
multiple LLMs are used to generate actions with
a single trajectory. The goal of aggregating data
from different models is to increase the diversity
of the candidate pool while preserving overall
quality. Specifically, cross-policy sampling con-
structs trajectories by allowing actions at each
step to be randomly drawn from the pool of
available models, rather than committing to a
single model.

Its advantage lies in that the language compo-
nent of each state is still constrained to remain
valid, while the expanded sampling enlarges the
coverage of language states that can reach suc-
cessful outcomes in the environment. By explor-
ing paths that would not appear under any single
model, cross-policy sampling increases the likelihood of visiting goal-relevant states without drifting
into incoherent or invalid linguistic regions. Details can be found in Appendix C.

During RL training, it is hard to incorporate models with different architectures in the pipeline.
Instead, we let the model do cross-policy sampling with its early version. Specifically, we mark a set
of rollout engines as stale engines; these engines update parameters every multiple steps instead of
one step. Early experiments verified the effect of the cross-policy sampling strategy (see Section 4.3).

3.2 MULTI-TASK AGENTIC RL

Heterogeneous Environment Deployment. Multi-task RL requires the environment deployment
framework to generalize beyond a single task or environment. To host, schedule, and monitor

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

heterogeneous environments under the same infrastructure without incurring additional integration
cost, we propose to expose consistent interfaces at both the worker and controller levels. This supports
AGENTRL to scale the task (environment) set in size and diversity gracefully.

We have two complementary designs: On the environment side, we unify the worker API across
all tasks, such that each task can be instantiated and managed using an identical set of lifecycle
operations. On the training side (Figure 5), the controller provides a single gateway API to the
RL engine, abstracting away task heterogeneity and exposing multi-task execution as a transparent
extension of the single-task case.

Task Advantage Normalization. In multi-task RL, agentic tasks often differ substantially in
difficulty, sequence length, and sampling efficiency. Such heterogeneity can cause standard RL
algorithms to learn at very different rates across tasks. Consequently, one task may exhibit clear
reward improvements where another shows negligible progress, leading to training instability and
performance imbalance.

For an LLM-based policy, each high-level action at consists of multiple tokens {yt,k}Lt

k=1. We
compute token-level advantage estimates Âi,s,g,t,k for each token occurrence, where i denotes
the task index, s the sample index within the task, g the trajectory index within the group, t the
environment step, and k the token position within at.

Let Atok
i =

{
Âi,s,g,t,k

∣∣∣ 1 ≤ s ≤ Si, 1 ≤ g ≤ Ki,s, 1 ≤ t ≤ Ti,s,g, 1 ≤ k ≤ Li,s,g,t

}
denote the

set of token-level advantages for all tokens in the current batch of task i, where Si is the number
of samples, Ki,s the number of trajectories per sample, Ti,s,g the number of env steps in trajectory
τi,s,g , and Li,s,g,t the number of tokens in action at.

We normalize each token’s advantage within its task batch as:

Ãi,s,g,t,k =
Âi,s,g,t,k − µi

σi
, (1)

where µi = mean(Atok
i) and σi = std(Atok

i). This ensures that, for each task i, the distribution
of token-level advantages in a batch has zero mean and unit variance, helping to reduce inter-task
variance and stabilize multi-task optimization.

4 EXPERIMENTS

Data. We accommodate five agentic tasks (ALFWorld, DB, KG, OS, WebShop) (Liu et al., 2024c) to
the AGENTRL infrastructure. The details of the dataset construction and unifying the function-call
format are provided in Appendix D. To ensure that all tasks are sampled uniformly during training,
we replicate smaller datasets such that each task appears approximately the same number of times as
the largest task. Specifically, we sequentially cycle through multiple datasets, yielding one element
from each in turn to produce interleaved output samples.

Baselines. The closed-source API-based baselines include Claude-Sonnet (Anthropic, 2025), GPT-
5 (OpenAI, 2025a), and o-series models (OpenAI, 2025b). The general open models adopted include
Qwen2.5-Instruct series (14B, 32B, and 72B) (Qwen et al., 2025)and DeepSeek-V3 (Liu et al.,
2024a) and R1 (DeepSeek-AI et al., 2025). We also compare against agent training methods on
AGENTBENCH, including Hephaestus (Zhuang et al., 2025) and AgentLM (Zeng et al., 2024).

4.1 MAIN RESULTS

We apply AGENTRL on open models, including Qwen2.5-Instruct series and GLM-4-9B-0414. Note
that there is no warm-up supervised fine-tuning before applying AGENTRL to all Qwen models. The
main results are listed in Table 3.

SOTA Performance. Our AGENTRL framework achieves state-of-the-art performance across
five tasks in AGENTBENCH-FC (see Appendix D), establishing a new top average success rate of
70.4%. Compared to the original Qwen2.5-Instruct models under prompting, AGENTRL yields
substantial improvements, highlighting the effectiveness of reinforcement learning training. Notably,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Main results (task success rate). Average and standard deviation of four repeats on each task
are reported. The ‘*’ indicates reward results directly extracted from the original papers.

Model ALFWorld DB KG OS Webshop AVG

API LLMs (Prompting)

Claude-Sonnet-3.7 (2025-02-19) 61.1±3.0 68.5±0.8 59.8±1.0 36.5±4.1 40.1±1.5 53.2
Claude-Sonnet-3.7 Thinking (2025-02-19) 54.1±3.0 68.4±0.3 38.2±2.2 53.1±1.8 36.0±1.7 50.0
Claude-Sonnet-4 (2025-05-14) 73.6±2.6 70.1±0.7 63.4±1.7 45.3±2.8 34.6±1.6 57.4
Claude-Sonnet-4 Thinking (2025-05-14) 69.0±3.2 68.4±1.0 64.4±1.9 51.0±2.3 38.3±2.8 58.2
GPT-4o (2024-11-20) 28.3±2.8 54.3±2.2 49.3±2.7 38.5±3.2 27.8±2.2 39.6
o3-mini (2025-01-31) 28.4±1.3 56.5±0.5 51.8±0.9 35.1±1.7 32.7±1.5 40.9
o4-mini (2025-04-16) 32.6±1.8 63.4±0.3 32.4±3.0 41.8±1.0 28.5±1.8 39.7
GPT-5 (2025-08-07) 65.4±2.0 63.2±0.7 64.1±1.8 34.5±1.0 33.7±2.6 52.2

Open LLMs (Prompting)

DeepSeek-V3 (2025-03-24) 31.9±2.0 58.4±1.2 14.0±2.0 53.0±1.0 23.4±2.5 36.1
DeepSeek-R1 (2025-05-28) 51.4±4.1 60.4±0.5 50.2±2.7 53.6±1.0 31.0±1.6 49.3
Qwen2.5-14B-Instruct 8.7±3.1 48.4±2.2 35.3±3.0 26.0±3.1 17.6±1.0 27.2
Qwen2.5-32B-Instruct 32.1±3.9 55.8±0.6 33.8±1.5 37.0±1.5 27.5±2.3 37.2
Qwen2.5-72B-Instruct 47.5±3.3 45.3±0.9 26.5±3.1 49.5±3.5 35.4±2.7 40.8

Open LLMs (Agent Training)

Hephaestus-8B-Base 30.0 32.3 16.0 20.8 60.5∗ 31.9
Hephaestus-8B-IFT 46.0 29.7 21.2 20.8 63.9∗ 36.3
AgentLM-7B 84.0 30.6 18.1 17.4 63.6∗ 42.7
AgentLM-13B 76.0 33.7 26.8 18.1 70.8∗ 45.1
AgentLM-70B 86.0 37.7 47.0 21.5 64.9∗ 51.4

AGENTRL
w/ Qwen2.5-3B-Instruct 92.4±0.5 60.0±1.1 55.0±2.0 40.5±0.9 52.1±0.9 60.0
w/ Qwen2.5-7B-Instruct 91.5†±0.9 63.7±0.5 57.8±2.3 40.8±1.2 56.1±0.6 62.0
w/ Qwen2.5-14B-Instruct 91.5±0.9 72.2±0.9 72.8±1.8 43.6±1.9 58.5±1.2 67.7
w/ Qwen2.5-32B-Instruct 94.5±0.5 70.4±0.5 77.0±1.2 51.7±1.8 58.6±0.9 70.4
w/ GLM-4-9B-0414 93.3±0.5 66.9±0.4 75.7±1.8 33.2±1.7 55.9±1.9 65.0
†

We provide a one-shot demonstration for Qwen2.5-7B-Instruct in ALFWorld evaluation, as it fails to generate
valid tool call format in the environment.

Table 4: Multi-Task vs. Single-Task with Qwen2.5-14B-Instruct.

Model ALFWorld DB KG OS Webshop AVG

AGENTRL-ALFWorld 89.7±1.6 49.7±1.6 22.3±3.1 33.7±3.1 15.9±0.5 42.3
AGENTRL-DB 0.2±0.5 73.9±0.7 26.2±1.7 43.1±1.3 16.0±0.9 31.9
AGENTRL-KG 4.6±1.1 57.6±0.8 72.2±1.5 40.3±2.4 19.5±2.0 38.8
AGENTRL-OS 5.7±1.2 58.2±1.2 25.3±1.6 39.8±1.8 22.0±2.3 30.2
AGENTRL-Webshop 0.0±0.0 57.9±2.6 30.7±2.2 40.1±0.7 60.3±1.3 37.8

Best of Five Models Above 89.7±1.6 73.9±0.7 72.2±1.5 43.1±1.3 60.3±1.3 67.8

AGENTRL (One Model) 91.5±0.9 72.2±0.9 72.8±1.8 43.6±1.9 58.5±1.2 67.7

all AGENTRL-trained models, from 3B to 32B, consistently outperform strong baselines including
leading models such as GPT-5, Claude-Sonnet-4 Thinking, and DeepSeek-R1.

Multi-Task vs. Single-Task. Table 4 shows that single-task RL agents excel only in their specific
training environment but fail to generalize, yielding poor transfer across tasks. In contrast, our multi-
task AGENTRL achieves nearly identical performance to the “best-of-five” single-task specialists
while maintaining strong results on all tasks simultaneously. This highlights the effectiveness of
multi-task training in acquiring generalizable skills without sacrificing peak performance.

Generalization on BFCL-v3. To examine generalization, we evaluate the AGENTRL model (trained
on ALFWorld, DB, KG, OS, and Webshop) on the BFCL-v3 benchmark (Patil et al., 2025). As
shown in Table 5, AGENTRL demonstrates clear improvements on multi-turn tasks and modest gains

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Generalization Performance on BFCL-v3.

Model single-turn multi-turn overall
nonlive live

Qwen2.5-32B-Instruct 86.0±0.2 77.4±0.1 16.2±0.6 59.9
AGENTRL w/ Qwen2.5-Instruct-32B 85.8±0.2 ↓0.2 79.3±0.2 ↑1.9 19.2±0.8 ↑3.0 61.4 ↑1.5

on single-turn tasks. These results suggest that our approach can enhance the generalizability of
function calling, providing a step toward more broadly capable agentic LLMs.

Table 6: Ablation on cross-policy sampling and task advantage normalization.

Method AF DB KG OS WS AVG

AGENTRL-14B 93.1±0.5 64.0±0.5 67.7±2.0 45.1±2.0 55.0±0.7 65.0
- cross sampling 91.9±1.2 61.6±1.0 55.7±1.4 39.7±2.3 54.5±1.3 60.7
- task adv. norm 91.1±0.9 62.6±0.7 54.7±1.6 38.0±2.0 50.6±1.7 59.4

0 100 200 300 400 500 600 700
Step

0.30
0.35
0.40
0.45
0.50
0.55
0.60

Tr
ain

 Pa
ss

Ra
te

w/ cross sampling
w/o cross sampling

(a) Cross-Policy Sampling in KG.

0 100 200 300 400 500 600 700
Step

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Tr
ain

 Pa
ss

Ra
te

w/ task adv. norm
w/o task adv. norm

(b) Task Adv. Norm. in ALFWorld.

0 100 200 300 400 500 600 700
Step

0.50

0.55

0.60

0.65

0.70

0.75

Tr
ain

 Pa
ss

Ra
te

ours
w/o cross sampling
w/o task adv. norm

(c) Average over 5 environments.
Figure 7: Ablation studies. (c): The combined effect of Cross-Policy Sampling and Task Advantage
Normalization, averaged over five environments.

4.2 ABLATION STUDY

Cross-Policy Sampling. Table 6 suggests AGENTRL trained without cross-policy sampling performs
worse. This phenomenon is especially obvious in some tasks/environments. We demonstrate the
pass rate on KG during training in Figure 7a as an example; the model’s capability reaches the top
earlier than the model trained with cross-policy sampling. These results demonstrate that cross-policy
sampling is able to explore more possible states, especially in more open-ended environments during
training, thus expanding the border of the model’s capability.

Task Advantage Normalization. Table 6 suggests that removing task advantage normalization leads
to clear performance drops. Also, as shown in Figure 7b, the training efficacy is severely reduced
and demonstrates fluctuations on some tasks. When removing the task advantage normalization, the
model tends to learn different tasks at different rates instead of learning jointly. These results indicate
that normalizing the advantage for each task effectively stabilizes multi-task training and reduces
negative interference, resulting in more robust and consistent learning across tasks.

4.3 VERIFYING THE EFFECT OF THE CROSS-POLICY SAMPLING STRATEGY

4.3.1 APPLYING CROSS-POLICY SAMPLING IN INFERENCE

The proposed cross-policy sampling strategy samples actions from a pool of models (as depicted in
Figure 6). To verify that the cross-policy sampling strategy effectively promotes model exploration, we
first directly applied our method to inference. We conducted experiments using the Qwen (Qwen et al.,
2025) and Llama (Grattafiori et al., 2024) models in the WebShop (Yao et al., 2022) environment. As
shown in Figure 8a, we observe that in low-k regimes, the performance of the cross-policy sampling
strategy is slightly lower than the best single model strategy. However, as k increases, a surprising
trend emerges: the cross-policy sampling strategy eventually surpasses both individual models in
pass@k metrics. The performance of the cross-policy sampling strategy also surpasses mixing two
models’ trajectories, demonstrating that the strategy has effectively explored something outside both
models’ capability boundaries. This provides strong evidence for our theoretical analysis.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 4 8 16 32 64 128 256
k (log scale)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pa
ss

 ra
te

Qwen2.5-14B-Instruct
Llama-3.1-8B-Instruct
cross-policy sampling
mix

(a) Cross-policy sampling on Webshop. The mix strat-
egy combines data from both models, so its maximum
K is twice that of the other strategies.

1 2 4 8 16 32 64 128
k (log scale)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pa
ss

 ra
te

Qwen2.5-14B-Instruct
w/ cross-policy sampling
w/o cross-policy sampling

(b) Results from preliminary experiments on the Web-
Shop environment. Note that settings are not com-
pletely the same as those in the main experiments.

Figure 8: Effects of cross-policy sampling in inference (a) and training (b) on Webshop.

4.3.2 APPLYING CROSS-POLICY SAMPLING IN RL

To further verify the effectiveness of the cross-policy sampling strategy during RL training, we
conduct a training experiment on the Webshop task. As shown in Figure 8b, both trained models
demonstrated a significant improvement in pass@1 rate compared to the untrained base model.
But the model trained with the cross-policy sampling strategy demonstrates a consistent advantage
as k increases. This suggests that the strategy successfully preserves the model’s diversity while
improving its overall ability.

5 RELATED WORK

Reinforcement Learning AI Agents. RL algorithms like PPO (Schulman et al., 2017) and
GRPO (Shao et al., 2024) have been widely adopted in LLM agent training. Deepseek-R1 (DeepSeek-
AI et al., 2025) demonstrates RL’s ability to incentivize reasoning in LLMs through reward-driven
fine-tuning. Recent works (Qian et al., 2025; Feng et al., 2025; Lu et al., 2025a; Wen et al., 2025)
further develop RL techniques. GUI agents also benefit from RL-driven optimization (Xu et al., 2024;
Qi et al., 2024; Liu et al., 2024b; Qin et al., 2025; Chen et al., 2025). For long-horizon tasks, Chen
et al. (2025) shows RL’s efficacy in balancing exploration and tool usage. DeepResearcher further
scales real-world research by training agents to iteratively refine hypotheses via RL (Zheng et al.,
2025b). Despite these advancements, most current approaches fall short in studying the exploration
aspect of RL training and the multi-task setting. In this work, we propose the cross-policy sampling
strategy and task advantage normalization, addressing a critical gap in existing methods.

Reinforcement Learning Infrastructure. Several frameworks (Sheng et al., 2024; Hu et al., 2024;
Fu et al., 2025) have been developed for RL training. These frameworks usually adopt modern
training (Shoeybi et al., 2019; Zhao et al., 2023) and rollout (Kwon et al., 2023; Zheng et al., 2024)
engines to boost efficiency. However, unlike math or coding tasks, agent scenarios involve multi-turn
interactions with environments. There have been works (Liu et al., 2024c; Ma et al., 2024) to provide
standardized benchmarks for evaluating multi-turn interactions and addressing reproducibility gaps.
Platforms such as E2B (e2b dev, 2025) and OpenHands (Wang et al., 2025a) provide secure sandbox
environments and modular interfaces for code execution, browser automation, and generalist agent
development. While these environments provide strong support for agent evaluation, existing RL
frameworks lack built-in support for multi-turn interactions and agent-specific training optimizations.

6 CONCLUSION

We propose AGENTRL, a system for training LLM agents with RL across diverse tasks and envi-
ronments. Through asynchronous rollout–training pipelines, scalable environment deployment, and
algorithmic advances including cross-policy sampling and task advantage normalization, AGENTRL
enables more efficient and stable training. Experiments demonstrate competitive results across diverse
agentic benchmarks, with encouraging signs of generalization to unseen tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

STATEMENTS

Ethics Statement This work does not involve human subjects or sensitive personal data. All
experiments are conducted on publicly available datasets and environments, and we provide full
documentation of preprocessing and implementation details to support transparency. The methods
and findings are intended for advancing research on reinforcement learning with LLMs; we do not
foresee immediate risks of harmful applications, but we acknowledge the general possibility of misuse
of LLM agents. We encourage responsible use of our released resources in line with the ICLR Code
of Ethics.

Reproducibility Statement We place a strong emphasis on reproducibility and have made extensive
efforts to ensure that our results can be reliably reproduced. To this end, we release all code,
environments, and training scripts, together with detailed hyperparameters and configuration files, in
our anonymous repository. Additional descriptions of environment setup, data preprocessing, and
implementation details are provided in the appendix and supplementary materials. These resources
collectively support transparent and reproducible verification of our findings.

REFERENCES

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2025.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL
https://arxiv.org/abs/2406.11896.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen
Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive llm agents,
2025. URL https://arxiv.org/abs/2502.01600.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, and Bingxuan Wang et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun,
and Yu Su. Mind2web: Towards a generalist agent for the web. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 28091–28114. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.
pdf.

e2b dev. E2B: Ai agent infrastructure. https://github.com/e2b-dev/E2B, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
language reasoning. arXiv preprint arXiv:2505.24298, 2025.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, and Angela Fan
et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

10

https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/2502.01600
https://arxiv.org/abs/2501.12948
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://github.com/e2b-dev/E2B
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
Dong. T1: Advancing language model reasoning through reinforcement learning and inference
scaling. In ICML, 2025.

Jian Hu, Xibin Wu, Zilin Zhu, Weixun Wang, Dehao Zhang, Yu Cao, et al. Openrlhf: An easy-to-use,
scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.09516.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pp. 611–626, 2023.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls, 2023. URL https:
//arxiv.org/abs/2305.03111.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, Junjie Gao, Junjun Shan, Kangning Liu, Shudan Zhang, Shuntian
Yao, Siyi Cheng, Wentao Yao, Wenyi Zhao, Xinghan Liu, Xinyi Liu, Xinying Chen, Xinyue Yang,
Yang Yang, Yifan Xu, Yu Yang, Yujia Wang, Yulin Xu, Zehan Qi, Yuxiao Dong, and Jie Tang.
Autoglm: Autonomous foundation agents for guis, 2024b. URL https://arxiv.org/abs/
2411.00820.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024c. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy
optimization for gui agents with experience replay. arXiv preprint arXiv:2505.16282, 2025a.

Rui Lu, Zhenyu Hou, Zihan Wang, Hanchen Zhang, Xiao Liu, Yujiang Li, Shi Feng, Jie Tang, and
Yuxiao Dong. Deepdive: Advancing deep search agents with knowledge graphs and multi-turn rl.
arXiv preprint arXiv:2509.10446, 2025b.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents, 2024. URL https://arxiv.org/abs/2401.13178.

OpenAI. Introducing chatgpt. https://openai.com/index/chatgpt/, 2022.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/,
2025a.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025b.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025c.

11

https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2411.00820
https://arxiv.org/abs/2411.00820
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2401.13178
https://openai.com/index/chatgpt/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curriculum
reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur,
and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958, 2025.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation, 2018. URL https://arxiv.org/
abs/1506.02438.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi Zeng, Yi Dong, Daniel Egert, Shengyang Sun,
Jimmy Zhang, Sahil Jain, Ali Taghibakhshi, et al. Nemo-aligner: Scalable toolkit for efficient
model alignment. arXiv preprint arXiv:2405.01481, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256, 2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Mohit Shridhar, Jesse Hsu, Thomas Kollar, Karthik Narasimhan, and Satinder Singh. ALFWorld:
Aligning Text and Embodied Environments for Interactive Learning. In International Conference
on Learning Representations (ICLR), 2021.

12

https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
models collapse when trained on recursively generated data. Nature, 631(8022):755–759, 2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2025a. URL https://arxiv.org/abs/2407.16741.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution in
llm agents via multi-turn reinforcement learning, 2025b. URL https://arxiv.org/abs/
2504.20073.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents, 2025. URL https://arxiv.org/abs/2504.
12516.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, Jiang Bian, and Mao Yang. Reinforcement learning with verifiable
rewards implicitly incentivizes correct reasoning in base llms, 2025. URL https://arxiv.
org/abs/2506.14245.

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
autonomous agents, 2024. URL https://arxiv.org/abs/2410.24024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scal-
able real-world web interaction with grounded language agents. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 20744–20757. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
open-source llm reinforcement learning system at scale, 2025. URL https://arxiv.org/
abs/2503.14476.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 3053–3077, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557–62583, 2024.

13

https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2506.14245
https://arxiv.org/abs/2506.14245
https://arxiv.org/abs/2410.24024
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
Easyr1: An efficient, scalable, multi-modality rl training framework. https://github.com/
hiyouga/EasyR1, 2025a.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments,
2025b. URL https://arxiv.org/abs/2504.03160.

Yuchen Zhuang, Jingfeng Yang, Haoming Jiang, Xin Liu, Kewei Cheng, Sanket Lokegaonkar, Yifan
Gao, Qing Ping, Tianyi Liu, Binxuan Huang, et al. Hephaestus: Improving fundamental agent capa-
bilities of large language models through continual pre-training. arXiv preprint arXiv:2502.06589,
2025.

14

https://github.com/hiyouga/EasyR1
https://github.com/hiyouga/EasyR1
https://arxiv.org/abs/2504.03160

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A BACKGROUND OF REINFORCEMENT LEARNING IN LARGE LANGUAGE
MODELS

Reinforcement Learning (RL) has significantly enhanced the capabilities of Large Language Models
(LLMs) by optimizing their decision-making through reward-driven training. The fundamental RL
objective is expressed as:

J (θ) = Es∼D,a∼πθ(s)[R(s, a)], (2)
where πθ denotes the policy, s represents the input context, a is the generated output, and R(s, a)
assesses the output quality via a reward function.

A key method, Proximal Policy Optimization (PPO)(Schulman et al., 2017), ensures training
stability using a clipped probability ratio, defined as:

ρt(θ) =
πθ(at|st)
πold(at|st)

, (3)

with the objective function:

JPPO(θ) = Et[min(ρt(θ)Ât, clip(ρt, 1− ϵ, 1 + ϵ)Ât)− βDKL], (4)

where Ât is the advantage estimate, and clipping limits policy updates.

For improved advantage estimation, Generalized Advantage Estimation (GAE)(Schulman et al., 2018)
is utilized, computed as:

ÂGAE
t (γ, λ) =

∞∑
l=0

(γλ)lδt+l, (5)

where δt = rt + γV (st+1) − V (st) is the temporal difference error, and γ and λ adjust the bias-
variance tradeoff.

Another approach, Group Relative Policy Optimization (GRPO)(Shao et al., 2024), optimizes
over groups of outputs with the objective:

JGRPO(θ) = Eoi∼πgroup(θ)[Jgroup(θ)], (6)
where the group objective is:

Jgroup(θ) =
1

G

G∑
i=1

min(ρiÂi, ρ̂i)− βDKL, (7)

and the advantage Âi is a normalized reward:

Âi =
ri − µr

σr
, (8)

with µr and σr as the mean and standard deviation of rewards, fostering adaptive LLM behaviors.

Finally, Decoupled Clip and Dynamic sampling Policy Optimization (DAPO)(Yu et al., 2025)
was proposed to address issues specific to long-CoT reinforcement learning, such as entropy collapse
and training instability. The algorithm modifies the GRPO objective by introducing several key
techniques, including a decoupled clipping mechanism and a dynamic sampling strategy.

The DAPO objective function is formulated as:

JDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold

(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

×min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵlow, 1 + ϵhigh)Âi,t

)]
(9)

subject to the constraint:
0 < |{oi|is_equivalent(a, oi)}| < G, (10)

where the advantage Âi,t is calculated similarly to GRPO. The primary innovations are the decoupled
clipping bounds, ϵlow and ϵhigh, which allow for greater exploration to prevent entropy collapse, and
the dynamic sampling constraint, which filters out batches where all responses are either correct
or incorrect to ensure a non-zero advantage and stable gradients. The loss is also normalized at the
token level (1∑

|oi|) to properly weight responses of varying lengths.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PRELIMINARIES

B.1 PROBLEM DEFINITION

Agentic Task. We define an agentic task Ti as a Markov Decision Process (MDP):

Ti =
(
Senv
i ,Ai, Pi, ri, ρi

)
, (11)

where Senv
i is the environment state space, Ai is the action space, Pi(s

′|s, a) denotes transition
dynamics, ri(s, a) is the reward function, and ρi(s0) is the initial state distribution.

LLM-based Policy and Composite State. When the policy πθ is implemented by an LLM, the
state at decision step t is the composite state st = (senvt , sctxt), where senvt is the environment state
and sctxt ∈ V∗ is a tokenized context representing the trajectory prefix up to step t.

In LLM-based settings, a high-level action at is a complete sequence of Lt tokens:

at = (yt,1, yt,2, . . . , yt,Lt), yt,k ∈ V. (12)

The underlying LLM defines a token-level probability distribution Pθ(yt,k | sctxt , yt,<k) for each
token, and the policy probability of producing at from st factorizes as:

πθ(at | st) =
Lt∏
k=1

Pθ

(
yt,k | sctxt , yt,<k

)
. (13)

This factorization allows us to define token-level log-probabilities and, consequently, token-level
policy gradients and advantage estimates.

Trajectory Definition. A trajectory in task Ti is defined as

τ =
(
s(0), a(0), r(1), s(1), a(1), r(2), . . . , s(T−1), a(T−1), r(T), s(T)

)
, (14)

where each s(t) = (senvt , sctxt) is a composite state as above. The reward r(t+1) = ri(s
env
t , a(t)) is

assigned after a(t) is applied in senvt . Different from standard MDP trajectories, this formulation
explicitly embeds a context component in each state.

Multi-Task Setting. We study a collection of Ntask tasks:

T = {T1, . . . , TNtask
}. (15)

For each Ti there are Mi samples:

Di = {xi,1, . . . , xi,Mi
}. (16)

Executing sample xi,j produces a group of Ki,j trajectories:

Gi,j = {τi,j,1, . . . , τi,j,Ki,j}, (17)

which, as we will discuss in RLVR, are used in GRPO to compute group-based advantage estimates.

B.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards (RLVR) DeepSeek-AI et al. (2025) refers to
scenarios in which the reward signal associated with a trajectory can be computed in a deterministic
and objective manner based on the observed interaction data. In practice, RLVR is commonly
optimized using Proximal Policy Optimization (PPO) Schulman et al. (2017) or its extensions such
as Group Relative Policy Optimization (GRPO) (Shao et al., 2024).

PPO Objective. Given a batch of trajectories, PPO maximizes the clipped surrogate objective:

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (18)

where rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio and Ât is the advantage estimate.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GRPO Objective. Under GRPO, each group Gi,j contains Ki,j trajectories compared within the
group, yielding group-relative advantage estimates Âi,j,g . The objective is:

LGRPO(θ) = Ei,j

 1

Ki,j

Ki,j∑
g=1

min
(
ρi,j,g(θ) Âi,j,g, clip(ρi,j,g(θ), 1− ϵ, 1 + ϵ) Âi,j,g

) , (19)

where ρi,j,g(θ) =
πθ(ai,j,g|si,j,g)

πθold
(ai,j,g|si,j,g) and Âi,j,g =

R̂i,j,g−mean(R̂i,j)

std(R̂i,j)
is a group-relative advantage

estimate, computed as the difference between the empirical return R̂i,j,g of trajectory τi,j,g .

C FORMAL DESCRIPTION AND INTUITION OF THE CROSS-POLICY SAMPLING
STRATEGY

Formally speaking, compared to Equation 14, the trajectory obtained by cross sampling takes the
form of:
τ c =

(
s(0), ac,(0), r(1), s(1), ac,(1), r(2), . . . , s(T)

)
where ac,(t) ∼ random(M)(· | s(t)), (20)

where each s(t) = (senvt , sctxt) is the composite state defined earlier, and M is the set of models.

Intuitively speaking, the language state sctx stochastically maps to environmental states senv through
a grounding function Γ : Lvalid → ∆(Senv), where Lvalid ⊂ L is the space of linguistically coherent
token sequences. For a success set G ⊂ Senv, define its language preimage LG = Γ−1(G) ∩ Lvalid –
the set of valid language states that can reach G.

Cross sampling expands coverage of LG while preserving validity:

supp(τ c) ∩ LG ⫌
⋃
m

(supp(τm) ∩ LG)

where supp(τ) denotes language states visited in the trajectory τ . This increases the probability
P (senv ∈ G) by exploring more paths in LG , without deviating into L \ Lvalid.

D DATASET DETAILS

D.1 EXTENDING AGENTBENCH

While the overall framework is decoupled from benchmarks, we perform training on a refined version
of AGENTBENCH, or what we call AGENTBENCH-FC. Specifically, we made several modifications:

D.2 SYNTHESIZING TRAINING SET

To address the scarcity of training data in the original AGENTBENCH framework, we aim to construct
a large-scale and diverse dataset suitable for reinforcement learning across various agent environments.
To this end, we adopted a multifaceted data collection strategy tailored to the unique characteristics
of each environment:

Direct Adoption of Existing Datasets. For environments like AlfWorld and WebShop, which
are accompanied by rich, pre-existing training sets, we directly incorporated these official datasets.
This approach ensures consistency with the original benchmarks and leverages well-established data
sources.

Synthetic Data Generation via Self-Instruct. For tasks in more complex environments such as
OS, KnowledgeGraph, and DB, where training data is not readily available, we employed the Self-
Instruct methodology (Wang et al., 2022). We used high-performance APIs (o3 and claude4-sonnet)
to efficiently sample and filter a large volume of high-quality training instances.

Augmentation with External High-Quality Datasets. To further enrich the diversity and complexity
of our training data, we integrated external, high-quality datasets. Notably, for the DB environment,
we augmented our dataset with the training samples provided by the BIRD benchmark (Li et al.,
2023), a comprehensive text-to-SQL dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.3 MODIFICATIONS TO AGENTBENCH ENVIRONMENT

To enhance the flexibility and compatibility of AGENTBENCH, we transformed its five environments
into a Function-Call Based framework. We analyzed the distinct action types required by each
environment and categorized them accordingly. For each environment, we extracted specific tools
following the OpenAI Function Call Format. For instance, in the Knowledge Graph (KG) environment,
we identified and implemented seven tools, including get_relations, get_neighbors, and
count, among others. Additionally, we modified the interaction logic of each environment to support
external requests in the Function Call format, ensuring seamless integration with external systems.

Outlining the refactoring of Controller and Worker interfaces We restructured the interface protocols
for the Controller and Worker components in AGENTBENCH to standardize task management and
interaction. The start_sample interface was introduced to initiate a task, while multi-turn
interactions were facilitated through the interact interface. To improve Controller oversight,
we implemented additional interfaces, such as list_sessions and list_workers, enabling
efficient monitoring of internal worker and session states within the container.

E DETAILED EXPERIMENTAL SETTINGS

E.1 ENVIRONMENTS AND TASKS

We select five representative multi-turn interaction tasks from the AgentBench dataset Liu et al.
(2024c), a comprehensive and evolving benchmark designed to evaluate the reasoning and decision-
making capabilities of large language models. These tasks, encompassing operating system inter-
actions, database management, knowledge graph navigation, text-based adventure games, and web
shopping scenarios, are chosen for their diverse challenges and ability to assess critical skills such
as long-sequence comprehension, contextual tracking, and environmental interaction. The tasks
are supported by standardized evaluation protocols and open-source code environments, facilitating
robust experimental implementation and framework refinement.

Unified Reward. We normalize all task rewards to the range [0, 1] for consistency. For tasks without
intrinsic reward signals, we assign a reward of 1 for correct responses and 0 otherwise. In addition, we
leverage termination signals and penalize abnormal terminations with a reward of −0.2 to encourage
proper episode completion.

• Operating System (OS) Task: This environment assesses an agent’s ability to interact with a real
Ubuntu Docker-based operating system through Bash command-line inputs. Agents are tasked
with interpreting natural language instructions and translating them into precise Shell commands
to achieve specific objectives, such as file manipulation or directory navigation in an unfamiliar
environment. The task demands high accuracy in command generation, error handling, and result
interpretation (e.g., standard output and error streams), given the vast action space and the need for
adaptive decision-making.

• Database (DB) Task: In this scenario, agents act as database analysts, interacting with a real
database via SQL queries to address natural language questions or perform data modifications (e.g.,
INSERT, UPDATE). The task evaluates the agent’s proficiency in converting natural language to
SQL (Text-to-SQL), understanding database schemas (table structures, column names, data types),
and managing complex queries (e.g., multi-table joins, nested queries, aggregation functions).
Multi-turn interactions require agents to adjust strategies based on query results or error feedback.

• Knowledge Graph (KG) Task: For the KG environment, API results are obtained with one-shot
testing to ensure the model can correctly invoke tool calls, while our trained models are trained and
evaluated without one-shot assistance. This task challenges agents to perform multi-step reasoning
and information retrieval within a large knowledge graph (e.g., Freebase) to answer complex
queries. With only partial observability due to the graph’s scale, agents must use structured query
operations (e.g., retrieving entity relationships or finding intersecting entity sets via callable tools)
to explore and connect information fragments. It emphasizes long-term planning, information
integration, and effective decision-making under incomplete information.

• Text Adventure Game (Text Game / House-Holding, HH - Represented by ALFWorld): Agents
operate in a text-described virtual household environment, executing action sequences to meet
high-level goals (e.g., “clean a soapbar and place it on the workbench”). Actions include navigating

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(e.g., “go to cabinet 1”), interacting with objects (e.g., “take soapbar 1 from sinkbasin 1”), and
adjusting plans based on feedback (e.g., “The cabinet 2 is closed”). ALFWorld (Shridhar et al.,
2021) highlights the need for commonsense reasoning, goal decomposition, and dynamic planning
in response to environmental states.

• Web Shopping (WS - Represented by WebShop): This task simulates an e-commerce experience
where agents search for products based on specific criteria (e.g., brand, price) by interacting
with a simulated website. Actions include keyword searches, link clicks, attribute filtering, and
adding items to a cart. The WebShop environment (Yao et al., 2022) offers a rich product dataset,
requiring agents to analyze requirements, navigate multi-turn interactions, and demonstrate strong
information retrieval, comparison, and decision-making skills in a complex web interface.

E.2 TRAINING AND EVALUATION SETTINGS

Training. We leverage the Verl project as a foundation, implementing a fully asynchronous overhaul
to develop a novel training framework, AGENTRL, tailored for agentic RL tasks. The framework was
applied to train models including Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct,
Qwen2.5-32B-Instruct, and GLM4-9B. The efficiency of the asynchronous design enabled extensive
rollout training across the five selected multi-turn interaction tasks, facilitating large-scale RL with
over 1000 steps in a multi-task mixed setting. This prolonged training ensured convergence of model
performance across diverse tasks.

The interaction format between models and environments was standardized using the OpenAI
Function Call Format. For the Qwen series, RL training commenced directly from the base models.
In contrast, the GLM4-9B model required an initial cold-start phase with a limited set of supervised
fine-tuning (SFT) data to adapt to the Function Call Format, followed by RL training, ultimately
yielding significant performance improvements (see Table 3). Training was conducted on H800
GPUs, with a minimum configuration of 16 GPUs for the 14B model. Scalability was observed, as
training efficiency increased with additional GPU resources.

The training process employed the Group Relative Policy Optimization (GRPO) algorithm as the
baseline, enhanced with custom modifications (see Section 3.1). Rollouts were performed with a
temperature of 0.8, sampling eight times per rollout to ensure diverse action exploration. To maintain
consistency across multi-task environments, a binary reward function was designed, assigning a score
based on the correctness of the entire trajectory. Trajectories exceeding the maximum interaction
rounds or maximum response length incurred a penalty of -0.2. For computational efficiency, SGLang
was adopted as the inference engine, paired with the Fully Sharded Data Parallel (FSDP) strategy to
optimize RL training.

Evaluation. For evaluation, a lightweight eval script was developed using the SGLang engine,
seamlessly integrated with the asynchronous framework to enable rapid assessment of task perfor-
mance. Evaluations were conducted with a temperature of 0.8, averaging results over four consecutive
runs per task to ensure reliability. Additionally, a compatible API evaluation script was created to
assess model APIs across tasks, supporting endpoints served by vllm or SGLang, with identical
parameters (temperature 0.8, four-run average) to maintain consistency.

E.3 DEPLOYMENT FRAMEWORK DETAILS

As shown in Figure 5, each worker in the new framework operates as a containerized execution
unit, capable of managing concurrent task lifecycles under isolated runtime conditions. Workers are
equipped with a detailed instrumentation layer for real-time observability, enabling telemetry at both
session and task granularity. Internally, each worker integrates an abstract environment controller
that mediates between task definitions and environment provisioning services. This controller is
responsible for session instantiation, interaction handling, timeout enforcement, and environment
cleanup. By abstracting the execution logic from physical deployment details, the worker layer can
accommodate diverse backend configurations and support dynamic elasticity under shifting training
loads.

The new controller adopts a non-blocking dispatch strategy that minimizes contention and ensures
deadlock safety through a strict lock acquisition hierarchy. Timeout-driven fault detection and self-
healing routines enable automatic de-registration and reintegration of unstable nodes. The controller

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

also enforces strict lifecycle policies on session expiration, interaction timeout, and stale data cleanup
through periodic maintenance loops.

E.4 RESULTS ANALYSIS

We provide a comprehensive evaluation of reinforcement learning (RL) performance across a diverse
set of models and tasks. We report results for prominent API-based models and popular open-source
base models. Additionally, we assess the RL-enhanced variants of our models at various scales,
trained using the AgentRL framework. The evaluation extends to out-of-distribution (OOD) testing
on an unseen benchmark, where the RL-trained model demonstrates performance gains over its base
counterpart. Furthermore, we conduct an ablation study to investigate the impact of our proposed
algorithmic techniques on model efficacy.

Scaling Law The main results reflect a clear scaling law trend, with AgentRL-trained models
showing consistent performance improvements as their size increases. Performance progressively
escalates from the smallest model variants to the largest, indicating the framework’s scalability and
robustness. This progressive enhancement underscores the algorithm’s adaptability to varying model
sizes. The successful application to a model from a different architectural family further validates the
framework’s versatility, demonstrating its broad applicability beyond a single model series.

Frontier Model Performance Comparative analysis highlights the superiority of our largest
AgentRL-trained model over leading API-based models. While prominent proprietary LLMs achieve
high scores, our RL-optimized model reaches a new state-of-the-art performance level, representing a
substantial improvement over its base version before RL training. This suggests that AgentRL not
only competes with but, in certain multi-turn and overall metrics, surpasses these advanced models,
affirming its competitive edge.

OOD Performance The OOD evaluation on the BFCL-v3 benchmark tests generalization on
unseen tasks. The RL-trained model shows a clear improvement in overall performance compared
to the base model, with a particularly significant leap in multi-turn task capability. This outperfor-
mance after extensive RL training underscores the method’s ability to generalize beyond its training
distribution, enhancing its potential for practical deployment in diverse scenarios.

Ablation Study The ablation study further elucidates the efficacy of our methodological enhance-
ments, detailed as follows:

• Cross-Policy Sampling: This technique, designed to explore more states in open-ended environ-
ments, proves to be highly effective. Its inclusion boosts the average performance significantly.
This result underscores the value of encouraging broader exploration, as the strategy success-
fully expands the model’s capability boundaries by exposing it to more diverse and goal-relevant
trajectories during training.

• Task Advantage Normalization: In contrast, this method stabilizes multi-task learning by miti-
gating negative interference and rate disparities across tasks. These findings support the selective
integration of this technique, enhancing AgentRL’s training stability and consistency.

E.5 CASE STUDIES

E.5.1 CASE STUDY ON THE EFFICACY OF CROSS-SAMPLING

To intuitively demonstrate the effectiveness of our proposed cross sampling strategy, we present a
case study on a specific knowledge graph (KG) question-answering task. As shown in fig 9, we
analyze the execution trajectories of two models, GLM-4-9B and Llama-8B, on this task. The results
show that when tasked individually, both models fail for different reasons. However, when applying
our Cross-Policy Sampling strategy, the agent successfully completes the task by finding the correct
answer.

The failures of the two individual models stem from distinct causes. GLM-4 becomes trapped in
a premature conclusion loop; it correctly deduces the final answer through logical inference but
consequently bypasses the required protocol of using tools for verification. It repeatedly outputs its
inferred conclusion in a non-standard format, leading to failure. In contrast, Llama’s failure is due to
flawed tool comprehension; it persistently attempts to call tools with incorrect logic and parameters,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: An example of GLM,Llama and GLM-Llama cross sampling in a KG task. This case study
demonstrates the Cross-Policy Sampling strategy’s success on a KG question-answering task, where
GLM-4 fails in a conclusion loop and Llama falters with tool comprehension. It combines GLM-4’s
logic with Llama’s tool interaction to achieve the correct answer.

Environment Base Model AGENTRL Model
Completed Task Limit Reached Completed Task Limit Reached

AlfWorld 0.070 0.68 0.926 0.074
DB 0.957 0.043 0.993 0.007
KG 0.747 0.213 0.947 0.033
OS 0.548 0.444 0.847 0.118
WebShop 0.725 0.275 0.980 0.020

Table 7: Failure Modes Comparison. Note: "Completed" indicates the agent submitted an answer,
not necessarily correctly, and these two statuses are not exhaustive; the sum of percentages may not
reach 100% due to other possible outcomes.

indicating a fundamental misunderstanding of the tools’ functionality and usage, which prevents any
effective progress on the task.

The cross sampling strategy’s success stems from a synergy that compensates for each model’s
weaknesses. It leverages GLM-4’s strong logical planning to set a course, then breaks GLM-
4’s resulting non-interactive loop by switching to Llama’s policy. Although Llama’s own tool
comprehension is flawed, its policy’s critical function is to force an attempt at tool interaction. This
switch to a "tool-centric" mode, guided by GLM-4’s original logic, creates the opportunity for a valid
tool call to emerge. This case study highlights the superiority of Cross-Policy sampling by showing
how it dynamically combines different problem-solving approaches to forge a successful path where
single agents fail.

E.5.2 ERROR ANALYSIS

We analyze the performance of the Qwen2.5-14B-Instruct model and the AGENTRL model across
five environments (AlfWorld, DB, KG, OS, WebShop), focusing on the primary termination states:
Completed and Task Limit Reached.

The data highlights a substantial improvement with the AGENTRL method, where Completed rates
increase significantly (e.g., from 0.070 to 0.926 in AlfWorld) and Task Limit Reached rates decrease

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(e.g., from 0.68 to 0.074 in AlfWorld). This suggests that RL training enhances the model’s efficiency,
reducing instances where tasks terminate due to time constraints and boosting successful completions
across all environments.

E.5.3 WHAT REINFORCEMENT LEARNING TEACHES MODELS IN ALFWORLD

We analyze a task from ALFWorld where the agent must place a saltshaker in a drawer. We
compare the base model (Qwen2.5-14B-Instruct), which fails in four runs, with the RL-trained model
(AgentRL-Qwen2.5-14B-Instruct), which succeeds in all four, to highlight RL’s impact.

Base Model Performance The base model struggles with:

• Improper Tool Usage: Repeatedly attempts invalid actions (e.g., look) without using the
take_action tool, leading to errors.

• Ineffective Strategy: Fixates on cabinets (e.g., cabinet 1) without exploring likely locations
like countertops, resulting in failure.

RL-Trained Model Performance The RL-trained model excels by:

• Correct Tool Usage: Consistently uses take_action correctly, avoiding procedural errors.
• Efficient Search: Prioritizes countertops, quickly finding the saltshaker on countertop 3.
• Action Sequencing: Navigates to drawer 1, opens it, and places the saltshaker, completing the

task.

From the above analysis we can see that reinforcement learning significantly enhances the model’s
performance in ALFWorld by imparting tool proficiency for correct use of environment tools, strategic
exploration to prioritize likely locations, and effective action planning for sequencing tasks, enabling
efficient, goal-directed behavior that starkly contrasts with the base model’s repetitive failures.

F PROMPT EXAMPLES

F.1 ALFWROLD TASK

System Prompt for AlfWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household environment
and your target is to perform actions to complete) the task goal.
At the beginning of your interactions, you will be given the detailed description of the current envi-
ronment and your goal to accomplish. A tool will be provided for you to use to submit the action you
want to take. This tool is the only tool you should and must take in order to operate any action in the
environment. The way you perform action is to place the action chosen by you in the arguments field of
your tool call.
For each of your turn, you will be given a list of actions which you can choose one to perform in this
turn. The action you would like to take should be offered in this format: ẗhe name of your next action,̈
and you should fill it in the argument field of your tool call. Note that you should always call a tool to
operate an action from the given choices. After your each turn, the environment will give you immediate
feedback based on which you plan your next few steps. if the environment output N̈othing happened,̈
that means the previous action is invalid and you should try more options.
Reminder:
• the action must be chosen from the given available actions. Any actions except provided available

actions will be regarded as illegal.
• Always call the tool to hand in your next action and think when necessary.

F.2 KNOWLEDGE GRAPH (KG) TASK

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

System Prompt for Knowledge Graph

Instructions: You are an intelligent agent tasked with answering questions based on the
knowledge stored in a knowledge base (KB). Utilize the provided tools to probe the KB and
retrieve relevant information to address user queries effectively.
Navigate the KB to identify relationships, attributes, and intersections. where applicable,
ensuring the most pertinent information is used to formulate answers.
Remember:
• A variable can be an entity or a set of entities resulting from previous queries.
• Ensure the tool selected aligns with the question’s demands, following a logical order (e.g.,

fetch relations before finding neighbors).
• After generating a variable, assess whether it constitutes the final answer. Variables are

assigned IDs starting from 0 (e.g., #0, #1, etc.).
• Upon identifying the final answer, respond with ’Final Answer: #id’, where #id is the

variable’s ID (e.g., ’Final Answer: #3’). Do not invoke tools after determining the final
answer!

• Execute one action at a time, with a maximum of 15 actions to find the answer.
• Use the supplied tools unless the final answer is identified.
Your thoughtful application of these tools and careful consideration of interactions will guide
you to correct answers. Note that the task must be completed within 15 rounds— plan your
attempts accordingly!

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.3 DB TASK

System Prompt for DataBase

I will ask you a question, then you should help me operate a MySQL database with SQL to answer the
question.You have to explain the problem and your solution to me and write down your thoughts.After
thinking and explaining thoroughly, every round you can choose to operate or to answer with the two
specific tools provided.
If you should execute a SQL query, use the ‘execute_sql‘ function, Your SQL should be in one line.
Every time you can only execute one SQL statement. I will only execute the statement in the first SQL
code block. Every time you write a SQL, I will execute it for you and give you the output. If you are
done operating, and you want to commit your final answer, then use the c̀ommit_final_answer‘ function.
DO NOT use this tool unless you are sure about your answer. I expect an accurate and correct
answer.Your answer should be accurate. Your answer must be exactly the same as the correct answer.If
the question is about modifying the database, then after done operation, your answer field can be
anything.If your response cannot match any pattern I mentioned earlier, you will be judged as FAIL
immediately.You should always use the tools provided to submit your answer. Be careful not to write it
in the content field.Your input will be raw MySQL response, you have to deal with it by yourself.

F.4 OS TASK

System Prompt for Operating System

You are an assistant that will act like a person. I will play the role of a Linux (Ubuntu) operating
system. Your goal is to implement the operations required by me or answer the questions proposed by
me.
For each of your turns, you should first think about what you should do, and then call exactly one of
the provided tools according to the situation.If you think the output is too long, I will truncate it. The
truncated output is not complete. You have to deal with the truncating problem by yourself.
Attention, your bash code should not contain any input operation. Once again, you should use one tool
in each turn, and should not respond without function calling.
Note that if you think the task has been finished, or there is some message missing to completely complete
the task, you should respond with calling the function f̈inish_action,̈ as no additional information will
be provided.
Also, note that if you have gotten the answer to the question, you should call the änswer_actionẗool
instead of simply writing your answer in your response.
Your answers should be exact and precise (for example, a single number), do not answer with full
sentences or phrases.Always use a tool provided instead of simply responding with content.

F.5 WEBSHOP TASK

System Prompt for Web Shopping

You are web shopping. I will provide instructions about what to do, and you must follow them strictly.
Every round, you will receive an observation and a list of available actions. You must respond by calling
a tool based on the current state and instructions.
• You can use the search tool if it is available.
• You can click one of the buttons in clickables.
• If an action is not valid, perform nothing.
Keywords for the search tool are your choice, but the value for a click must be from the list of available
actions. Remember to design search keywords carefully.
First, think about what to do, then call a tool accordingly. You should always use a tool, even if you
have questions to confirm, and you can use any available tool without user permission.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G DISCUSSIONS

G.1 LIMITATIONS

While our framework establishes a new state-of-the-art in agentic RL, we identify two primary areas
for future research that build upon our solid foundation. First, our novel cross-policy sampling
strategy is a key driver of enhanced exploration. By its very design of integrating diverse policies, it
can introduce minor distributional shifts. These shifts can manifest as mild, transient instabilities
in training dynamics, a manageable trade-off for achieving broader state-space coverage. Future
work could explore principled refinements, such as adaptive policy weighting, to further optimize this
powerful mechanism. Second, as a foundational work, this paper focuses on rigorously validating our
framework across a comprehensive suite of controlled environments. Having established the system’s
robustness and scalability, the natural next step is its application to more complex and dynamic
real-world scenarios. We believe our framework provides the ideal testbed for tackling this exciting
challenge.

G.2 FUTURE WORKS

Looking ahead, we plan to extend AGENTRL to a broader range of environments and scale it to larger
models. Future research will also explore more sophisticated variants of cross-policy sampling and
develop improved methods for multi-task optimization. We believe these are crucial steps toward
creating more general and capable LLM agents.

H USE OF LLMS

During the preparation of this manuscript, we used large language models (LLMs) to assist with
language polishing and grammar improvement. All research ideas, methods, experiments, and
analyses were conceived, designed, and validated by the authors.

25

	Introduction
	The Agentic RL Problem and its Challenges
	The AgentRL Framework
	Multi-Turn Agentic RL
	Multi-Task Agentic RL

	Experiments
	Main Results
	Ablation Study
	Verifying the Effect of the Cross-Policy Sampling Strategy
	Applying Cross-Policy sampling in Inference
	Applying Cross-Policy sampling in RL

	Related Work
	Conclusion
	Background of Reinforcement Learning in Large Language Models
	Preliminaries
	Problem Definition
	Reinforcement Learning with Verifiable Rewards (RLVR)

	Formal Description and Intuition of the Cross-Policy Sampling Strategy
	Dataset Details
	Extending AgentBench
	Synthesizing Training Set
	Modifications to AgentBench Environment

	Detailed Experimental Settings
	Environments and Tasks
	Training and Evaluation Settings
	Deployment Framework Details
	Results Analysis
	Case Studies
	Case Study on the Efficacy of Cross-Sampling
	Error Analysis
	What Reinforcement Learning Teaches Models in ALFWorld

	Prompt Examples
	AlfWrold Task
	Knowledge Graph (KG) Task
	DB Task
	OS Task
	Webshop Task

	Discussions
	Limitations
	Future Works

	Use of LLMs

