

# WHEN SPECULATION SPILLS SECRETS: SIDE CHANNELS VIA SPECULATIVE DECODING IN LLMs

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review

## ABSTRACT

009  
010 Deployed large language models (LLMs) often rely on speculative decoding, a  
011 technique that generates and verifies multiple candidate tokens in parallel, to  
012 improve throughput and latency. In this work, we reveal a new side-channel  
013 whereby input-dependent patterns of correct and incorrect speculations can be  
014 inferred by monitoring per-iteration token counts or packet sizes. In evaluations  
015 using research prototypes and production-grade vLLM serving frameworks, we  
016 show that an adversary monitoring these patterns can fingerprint user queries (from  
017 a set of 50 prompts) with over 75% accuracy across four speculative-decoding  
018 schemes at temperature 0.3: REST (100%), LADE (91.6%), BiLD (95.2%), and  
019 EAGLE (77.6%). Even at temperature 1.0, accuracy remains far above the 2%  
020 random baseline—REST (99.6%), LADE (61.2%), BiLD (63.6%), and EAGLE  
021 (24%). We also show the capability of the attacker to leak confidential datastore  
022 contents used for prediction at rates exceeding 25 tokens/sec. To defend against  
023 these, we propose and evaluate a suite of mitigations, including packet padding and  
024 iteration-wise token aggregation.

## 1 INTRODUCTION

025 Large Language Models (LLMs) have transformed natural language processing (NLP), allowing  
026 machines to generate and understand human language at an unprecedented scale (Vaswani et al., 2017;  
027 Devlin et al., 2019; Brown et al., 2020; Zhang et al., 2022; Le Scao et al., 2022; Touvron et al., 2023).  
028 LLMs typically generate text using *auto-regressive* decoding (Touvron et al., 2023; OpenAI, 2024),  
029 where the generation happens serially and each token depends on all the previous ones. Unfortunately,  
030 this serial process causes a significant bottleneck in the LLM response latency (Miao et al., 2024; Fu  
031 et al., 2024) and under-utilizes the available hardware-level parallelism, limiting token generation  
032 throughput and latency.

033 Speculative decoding (Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2024; Spector & Re,  
034 2023) addresses this problem without impacting model accuracy. It uses smaller models or heuristics  
035 such as retrieval or self-drafting to inexpensively generate tokens speculatively, which the larger  
036 target model verifies in parallel in a single iteration. By tuning the heuristics to maintain a high  
037 rate of correct speculations, such techniques provide 2 $\times$  to 5 $\times$  speedups in inference latency and  
038 throughput (Xia et al., 2024). These techniques are being extensively adopted in inference services  
039 deployed by companies such as Cerebras (Wang, 2024) and Google (Leviathan et al., 2024).

040 However, the adoption of speculation techniques is not without risks. Speculative execution in CPUs  
041 (Burton, 1985; Hennessy & Patterson, 2012), which inspired speculative decoding, has led to security  
042 vulnerabilities in processors, such as Spectre (Kocher et al., 2019) and their variants, which exploit  
043 *side-channels*, i.e. timing variations due to mis-speculations that leak secret data accessed during  
044 mis-speculations. This raises the question, does speculative decoding in LLMs also introduce new  
045 risks to privacy? In this paper, we provide a study of the privacy risks of speculative decoding in  
046 LLMs, including leakage of private user inputs.

047 **Problem.** We observe two key issues in speculative decoding implementations: (1) the pattern of  
048 correct and incorrect speculations of output tokens is dependent on the input, and (2) input-dependent  
049 speculation patterns can be inferred from the variations in packet sizes: upon correct speculation,  
050 more tokens generated per iteration leads to a larger packet and so observing the packet size leaks the  
051 degree of correct speculation. Consequently, an adversary capable of measuring the number of tokens  
052 generated per iteration or packet sizes can gain access to input-dependent speculation-patterns based  
053 on variation in packet sizes and leak out private input attributes, or even entire inputs and outputs.

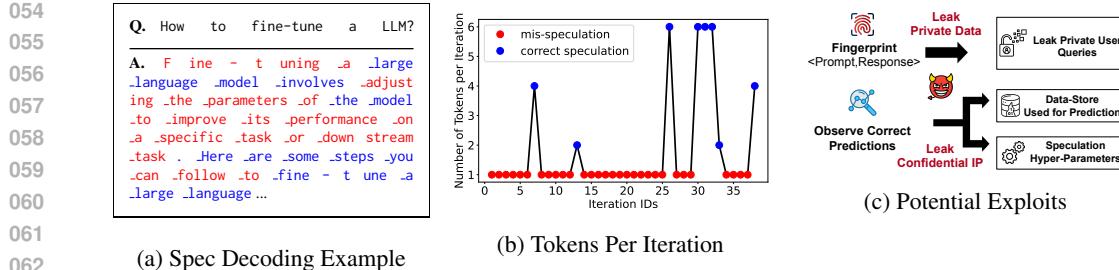


Figure 1: (a) In an LLM response with Speculative Decoding (e.g., LADE), tokens are either correctly speculated (blue) and verified in parallel, or mis-specified (red) and generated via auto-regressive decoding. (b) This pattern can be inferred by measuring the number of tokens generated per iteration, where multiple tokens per iteration indicates correct speculation, and a single token per iteration indicates mis-speculation. (c) Using these patterns, a network-based adversary can fingerprint user queries and learn private user prompts and responses; a malicious user can observe correct predictions and leak out data-stores and hyper-parameters used for predictions.

Figure 1a shows a response by TinyLlama 1.1B Chat (Zhang et al., 2024a) with a speculative decoding technique, Lookahead Decoding (LADE) (Fu et al., 2024), with correct (blue) and mis-specified (red) tokens illustrated. On correct speculation, up to  $n$  tokens are verified per iteration, as shown in Figure 1b, while on mis-speculation, only one token is generated per iteration. In LLM applications streaming responses to the user, token by token, a network-based adversary, such as a malicious ISP or a compromised router (Weiss et al., 2024), can observe network packet sizes corresponding to each iteration to deduce the number of tokens per iteration and learn the input-dependent pattern of correct and incorrect speculations. We target medical chatbots (e.g., Hippocratic AI (Shah, 2025)), where users interact by asking questions about symptoms or diseases, as this is a privacy-sensitive application where any information leakage (e.g., disease or symptoms of users) breaks privacy laws.

**Exploits.** We demonstrate privacy breaches based on speculation patterns (Figure 1c). First, we show a query fingerprinting attack (e.g., leaking diseases or symptoms in medical chatbots) by a network adversary. By profiling speculation pattern fingerprints for prompt-response pairs offline, an adversary can then compare the speculation pattern for an unknown query with the fingerprints to recover private user prompts. Across speculative decoding schemes (BiLD, REST, LADE) (Fu et al., 2024; He et al., 2024; Kim et al., 2023), our prompt identification attacks (within a set of 50 queries) reaches accuracies of  $\sim 100\%$  for REST, 91.6% for LADE, and 95% for BiLD with a temperature of 0.3. On a remote vLLM inference server (Kwon et al., 2023), which supports speculation with EAGLE (Li et al., 2024a), we similarly observe a high accuracy of 77.6%. We further show that when the actual prompts are unavailable, the adversary can train effective fingerprints using publicly available proxy datasets; e.g., by querying a medical chatbot with the top 50 most common diseases as stand-ins for real prompts. In this case, the attack still achieves 20–40% accuracy in recovering the disease or symptoms from user prompts, far exceeding random guessing (2–6%). Lastly, we show how adversaries crafting malicious inputs can leak confidential data-store contents used for predictions with REST (He et al., 2024) at a rate of  $> 25$  tokens/second by observing correctly predicted tokens.

**Mitigations.** To mitigate these, we propose two defenses: (1) aggregating tokens over multiple iterations before transmission to obscure speculation patterns, and (2) padding packets with fixed or random bytes. Token aggregation reduces attack accuracy by up to 50% without impacting the payload size within each packet; random padding reduces it by 70% with up to 8.7 $\times$  increase in the payload size. A full mitigation requires fixed size padding, which reduces attack accuracy by 98%, but increases payload size in each packet by 230 $\times$ .

In summary, our contributions are as follows:

1. We observe that variation in the number of tokens generated per autoregressive iteration due to LLM speculative decoding can result in privacy breaches.
2. We demonstrate query fingerprinting attacks that can leak out exact matches of private user queries with  $> 90\%$  accuracy and approximate matches with 20% to 40% accuracy.
3. We also demonstrate attacks that leak confidential IP controlling the performance of the speculative decoding mechanisms, such as data from data-stores used for prediction.
4. We propose mitigations including padding packet sizes and aggregating tokens from multiple iterations to limit the potential for these exploits.

108  
109  

## 2 RELATED WORK

110  

### 2.1 PRIOR SPECULATIVE DECODING TECHNIQUES

111  
112  
113  
Speculative decoding improves the efficiency of auto-regressive decoding in LLMs by verifying  
multiple token predictions in parallel, reducing latency. These works generate tokens using a smaller  
model or other heuristics as predictions, which are verified by the target model.114  
115  
116  
117  
118  
**Speculation with Smaller Draft Models.** Prior works propose using smaller, faster draft models to  
generate sequences of tokens speculatively (Miao et al., 2024; Kim et al., 2023), and then verify a  
single sequence or a tree of such sequences in parallel using the larger target model. The draft model  
can be a smaller version of the model family or a pruned larger model (Yan et al., 2025). In this paper,  
we demonstrate our attacks on BiLD (Kim et al., 2023), as a example of this type of speculation.119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
**Speculation via Self-Drafting.** Recent works reuse the target model for producing predictions,  
eliminating the need for a separate draft model. Look-Ahead Decoding (LADE) (Fu et al., 2024)  
caches previous output tokens and uses them to speculate future tokens via a key-value store populated  
with token sequence N-grams. These are populated using Jacobi decoding, by selecting random  
tokens from the input and generating successive chain of tokens. When this key token reappears in the  
output stream, LADE uses the stored N-grams for speculation. Medusa (Cai et al., 2024) trains extra  
heads in the target model, each responsible for a token position in the draft sequence, for speculative  
tokens. EAGLE and EAGLE-2 (Li et al., 2024a;b) perform auto-regressive decoding directly on  
the feature layers itself to generate speculative tokens, and are integrated in the vLLM inference  
serving platform. Our attacks target LADE (locally) and EAGLE (on a remote vLLM server) as  
representative examples, but our techniques are broadly applicable to other techniques as well.130  
131  
132  
133  
**Speculation Using Retrieval.** REST (He et al., 2024) generates predictions by retrieving data from a  
datastore containing relevant text or code, organized as a set of prefixes and continuations that can be  
potentially used as speculative tokens. If there are multiple candidates, REST organizes them in a  
tree, applying a tree attention mask during decoding with the target model.134  
135  
136  
137  
138  
**Tree-Based Verification.** SpecInfer (Miao et al., 2024), SpecTr (Sun et al., 2023) and REST (He  
et al., 2024) generate multiple drafts of speculation per iteration, organized in a tree structure, to  
increase the length of successful verification for higher speedup. These drafts are organized with a  
custom tree attention mask to prevent inter-tree interactions and verified in parallel. In this work, we  
demonstrate our attacks on REST (He et al., 2024), as a representative example of such techniques.139  
140  

### 2.2 SIDE-CHANNEL ATTACKS ON LLMs

141  
142  
143  
(Debenedetti et al., 2024) pioneered side-channel attacks on LLMs. Their attack exploits variation in  
output token counts due to the tokenizer, to leak uncommon strings in the tokenizer vocabulary. Our  
work instead exploits variation in token count per iteration due to speculative decoding.144  
145  
146  
147  
148  
149  
150  
151  
152  
(Weiss et al., 2024) identified a token-length side channel in streaming LLMs, where network attackers  
can infer token values by analyzing encrypted packet sizes. This attack reconstructs around 27%  
of the LLM outputs using the character length of each token. In our work, we similarly focus on  
a network-attacker observing the encrypted packet sizes, and leverage the variation in packet sizes  
based on speculative-decoding to identify user inputs. Moreover, we show mitigating the token-length  
side channel by padding tokens to the maximum token-size still results in packet size variations due  
to speculative decoding varying the output token counts per packet. We show that this can be used  
to fingerprint prompts and responses in our attacks with greater than 50% accuracy, even after the  
token-length side-channel is mitigated, in Appendix E.153  
154  
155  
156  
157  
158  
(Carlini & Nasr, 2024) demonstrated timing attacks on LLM inference optimizations in commercial  
models like GPT-4 and Claude. Their attacks rely on timing variations due to these optimizations,  
i.e. variations in packet inter-arrival times, which is considerably susceptible to noise due to network  
congestion and server loads. In comparison, our attacks exploit packet size variations due to inference  
optimizations, which are inherently more robust and independent of server or network load variations.  
We show the resilience of our attacks compared to this prior work in Section 4.7.159  
160  
161  
(Song et al., 2024) and (Zheng et al., 2024) demonstrated timing side-channel attacks exploiting  
shared key-value (KV) and semantic caches to leak sensitive LLM inputs. Wiretapping  
LLMs (Soleimani et al., 2025) also reveals private attributes in LLM-based medical and financial  
applications.

162 **3 THREAT MODEL**  
 163

164 Like prior works (Weiss et al., 2024), we focus on *streaming* LLMs, where the LLM server sends  
 165 back responses to the user token-by-token. Here, we study the following attacker models.

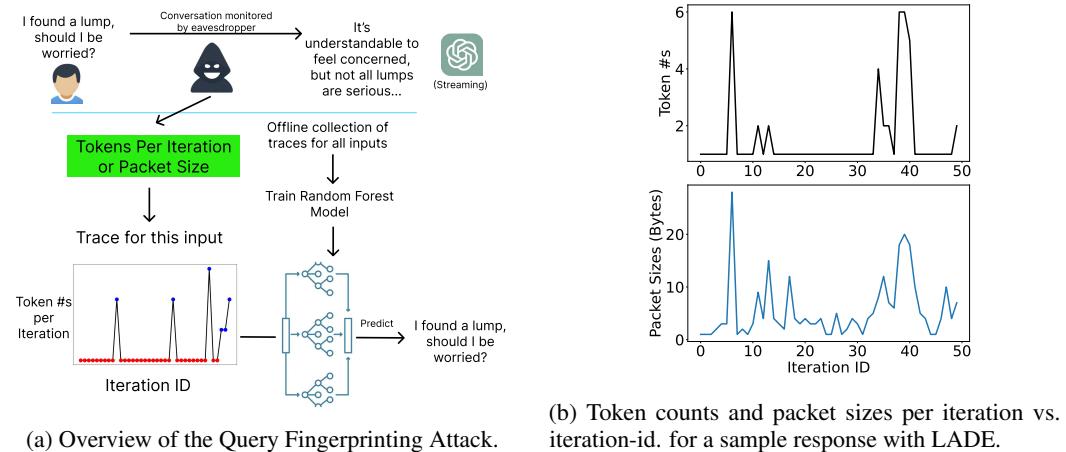
166 **Network Attacker.** We assume a malicious ISP or a compromised router that can observe network  
 167 packet sizes, similar to (Weiss et al., 2024). The attacker’s goal is to leak private user queries.  
 168 Although LLM response packets are encrypted, the packet size is still observable. The attacker can  
 169 also observe the time between each packet to identify the iteration ID. We show how an adversary  
 170 can fingerprint and leak private user queries based on this in Section 4.

171 **Malicious User.** Here we assume the attacker is a malicious user interacting with the LLM, similar  
 172 to (Debenedetti et al., 2024). The user can craft arbitrary inputs and inspect the output, and the  
 173 tokens per iteration with the goal of leaking confidential data used by the LLM’s speculative decoding  
 174 mechanism for generating predictions. We demonstrate this attack in Section 5.

175  
 176 **4 QUERY FINGERPRINTING ATTACK**  
 177

178 **4.1 ATTACK OVERVIEW**  
 179

180 **Attack Scenario.** Consider a medical AI chatbot, programmed to answer a predefined set of user  
 181 queries through the system prompt, such as a patient in a healthcare setting asking an LLM medical  
 182 symptoms related to a disease. The queries are sent from a client device, over a network, to a server  
 183 that hosts the LLM equipped with speculative decoding. This leads to the threat of a network-based  
 184 attacker trying to eavesdrop on the queries and responses, as described in Section 3. Figure 2a shows  
 185 the overview of our attack. Our attacker over the network seeks to learn the private query asked by  
 186 the user. While the query and response packets are encrypted, the attacker can intercept the response  
 187 packets, and the packet size to approximate the number of tokens per packet.



202 (a) Overview of the Query Fingerprinting Attack. (b) Token counts and packet sizes per iteration vs.  
 203 iteration-id. for a sample response with LADE.  
 204  
 205 Figure 2: (a) In the offline phase, the network-based attacker profiles variation in number of tokens  
 206 per iteration influenced by speculative decoding, (based on packet sizes) and trains a classifier. In the  
 207 online phase, the attacker uses the classifier to leak the input. (b) Packet sizes and tokens per iteration  
 208 are correlated, allowing variations in packet sizes to be used to approximate token count variations.

209 **Attack Mechanism.** Since the input set is limited, the attacker fingerprints inputs based on the  
 210 pattern of output token counts per iteration influenced by speculative decoding. There are two phases  
 211 to the attack: offline and online. In the offline phase, the attacker profiles the number of output tokens  
 212 generated per iteration vs iteration-id (we call this a *trace*) for each input in the input set, and trains  
 213 a random forest classifier to predict the input based on the trace. In the online phase, the attacker  
 214 collects the trace for an unknown input and uses the classifier to identify the input. Next, we provide  
 215 more details about how these fingerprints are obtained, and then describe how the attack works on  
 various speculative decoding techniques (LADE, REST, BiLD, and EAGLE).

216 4.2 FINGERPRINTING USING SPECULATION PATTERNS  
217

218 Speculative decoding causes variation in the number of tokens generated per iteration, as correct  
219 speculation results in multiple tokens verified and sent together, while incorrect speculation generates  
220 one token per iteration. This variation can be used to fingerprint prompt/response pairs. We observe  
221 that the variations in tokens per iteration versus iteration-ID are both unique to each prompt-response  
222 combination, and are also reproducible to a great extent, as shown in Figure 8 in Appendix B.

223 To quantitatively validate this, we generated 2 traces each from 50 prompts taken from MedAlpaca  
224 dataset (Han et al., 2023) (Human-LLM interactions asking questions on different diseases; see  
225 Appendix A) input to LADE, with temperature of 0.3, and computed the pairwise cosine similarity  
226 between them. Traces of the same prompt (or disease) have cosine similarity of 0.9–1, whereas traces  
227 from different prompts have cosine similarity between 0.4 - 0.8. This shows that the trace of tokens  
228 per iteration with speculative decoding can uniquely fingerprint and identify a prompt and response.

229 As packets are encrypted, the attacker cannot see the token counts directly. However, as shown in  
230 Figure 2b, packet size strongly correlates with the number of tokens per iteration (Pearson Correlation  
231 Coefficient of 0.747 across all packets above). Thus, encrypted packet sizes serves as an effective  
232 proxy for the tokens per iteration in our fingerprinting attack. Note that exact token counts are not  
233 necessary; merely correlation of packet size with token counts suffices. Furthermore, any mitigation  
234 for prior token-size side-channels (Weiss et al., 2024) by hiding individual token sizes is insufficient,  
235 as speculation itself introduces packet size variations due to varying token counts (see Appendix E).

## 236 4.3 ATTACK DESIGN

237 We attack an AI Chatbot answering medical queries from a patient. The attacker seeks to learn which  
238 query a patient asks from a finite set of queries the model can answer, to potentially leak a disease the  
239 patient has, a privacy violation by law in geographies like EU or USA. We perform three attacks:

240 **Experiment 1 - Exact Knowledge** The attacker has exact knowledge of the complete set of queries,  
241 allowing the attacker to profile the exact queries offline and leak them out in the online phase.  
242 We choose a set of 50 prompts from a real-world human-LLM interactions dataset (Han et al.,  
243 2023). These prompts ask a variety of questions about different diseases (the list of prompts is in  
244 Appendix A).

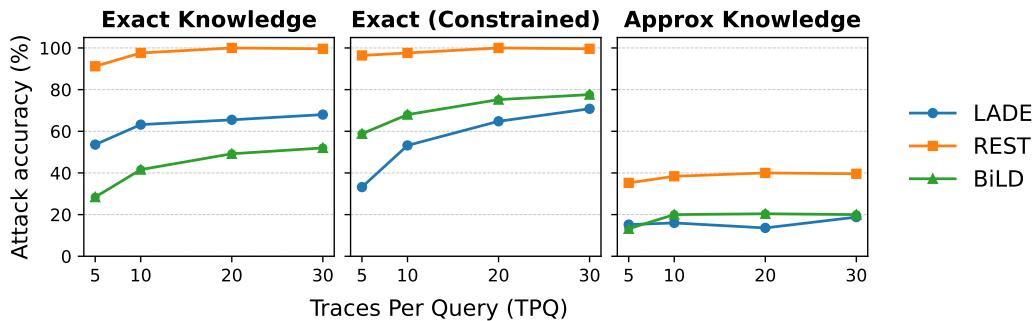
245 **Experiment 2 - Exact Knowledge (Constrained)** Next, we ask the question, do the speculation  
246 patterns depend on *structural patterns* or deeper *semantic meanings* within the response? To analyze  
247 this better, we choose 50 prompts about diseases that all starts with “What are the symptoms of” from  
248 the same dataset, ensuring all prompts have a similar structure. With this, we seek to understand  
249 whether our attack can be used to leak deeper semantic meanings associated with the prompts (e.g.,  
250 diseases of the prompts) even when all the prompts have similar structures.

251 **Experiment 3 - Approximate Knowledge** Assuming that speculation patterns rely on semantic  
252 meanings of responses, can the attacker use this to leak private information about the prompt  
253 (e.g., user’s disease) *without the exact knowledge* of the user’s query? While Experiment 1 and 2  
254 assumed training and testing prompts to be the identical, here in Experiment 3, the attacker only  
255 has approximate knowledge of user queries during profiling. The attacker’s training set consists of  
256 queries that are *semantically* similar to user’s test-set queries (e.g., profiled query: “For how long  
257 should you take zolpidem?” and user’s query: “How long is zolpidem typically prescribed for?”).  
258 We use the prompts from Experiment 1 as our training prompts, but during testing, we rephrase  
259 the prompts using ChatGPT-4o by prompting it as “Can you rephrase the following 50 questions  
260 while keeping the content in the question the same?”. We provide a more general experiment with an  
261 out-of-distribution training set in Section 4.8.

## 262 4.4 EXPERIMENTAL SETUP

263 **Target Models.** We target four representative speculative decoding techniques: LADE (Fu et al.,  
264 2024) and EAGLE (Li et al., 2024a) using self-drafting, REST (He et al., 2024) using retrieval and  
265 tree-verification, and BiLD (Kim et al., 2023) using a smaller draft model. We run LADE with  
266 TinyLlama 1.1B Chat V1.0 (Zhang et al., 2024a), REST with Vicuna 7B (Chiang et al., 2023) as  
267 the target model and ShareGPT (Aeala, 2023) data-store of 120K conversations, and BiLD with  
268 Llama2 7B (Touvron et al., 2023) and TinyLlama 1.1B (Zhang et al., 2024a) as the target and draft  
269 model respectively. We run LADE and REST on NVIDIA RTX4090 (24GB) and BiLD on NVIDIA  
A100 (40GB) GPUs with Question-Answer tasks, to model a chatbot under attack.

270 **Datasets and Classifier.** For each experiment, we use 50 queries of varying complexity, length, and  
 271 semantics (Appendix A lists the prompts). For our attack, we studied three types of classifiers - CNN,  
 272 Gaussian Mixture Models (GMM) and Random Forest, and use Random Forest since it has the best  
 273 accuracy. (See Figure 12 in Appendix G for the accuracy comparisons of Random Forest with CNN  
 274 and GMM). For the training set in the profiling phase of the attack, we run each query 5 to 30 times  
 275 (with varying temperatures) and extract the packet size trace (5 to 30 traces per query) to train our  
 276 Random Forest classifier. For the test set in the online phase, we use the corresponding 50 queries and  
 277 5 new traces per query, collecting 250 data points for evaluation, and report accuracy. For our attack,  
 278 we use scikit-learn’s Random Forest with 150 estimators, max depth of 15, minimum 10 samples per  
 279 split and 1 sample per leaf, and mean squared error as loss function.



291 Figure 3: Accuracy of the query fingerprinting attack on LADE, REST, and BiLD with temperature  
 292 of 0.8, using 5 to 30 Traces Per Query (TPQ) for training.  
 293

## 294 4.5 RESULTS

295 Figure 3 shows the results for the query fingerprinting attack on LADE, REST, and BiLD.

296 **Exact Knowledge Scenarios.** In both Experiment 1 and 2, the attacker leaks the input prompt  
 297 with high accuracy: with accuracy of up to 70.8%, 100%, and 77.6% for LADE, REST, and BiLD  
 298 respectively, compared to random guessing (2% for a set of 50 prompts). In Experiment 1, where  
 299 the set of profiled and leaked prompts are identical, the attack success rates improve as the number  
 300 of traces per query (TPQ) profiled increases, reaching up to 68% accuracy and an F1 score of 0.66  
 301 with 30 TPQ for LADE, reaching 99.6% accuracy with 30 TPQ and an F1 score of 1.0 for REST,  
 302 and reaching 52% accuracy with 30 TPQ and an F1 score of 0.55 for BiLD. In Experiment 2, where  
 303 all our prompts have a similar structure but different semantic meaning, the results are similar, with  
 304 attack accuracy for LADE, REST, and BiLD reaching 90.8%, 99.6%, and 95.2% respectively. This  
 305 indicates that our attack success rate is not influenced by the structure of the prompt, but relies and  
 306 leaks the semantic meanings of the prompt and response.

307 **Approximate Knowledge Scenario.** Based on the above results, Experiment 3 uses profiled prompts  
 308 that are not identical to the leaked prompts, but still semantically similar. Here, the attack success  
 309 rates are lower (up to 18.8% for LADE, 20% BiLD, and 40% for REST), but still significantly better  
 310 than random-guessing (2%). Thus, speculative decoding can still leak the topic of a user’s prompt  
 311 (e.g., user’s disease), with queries that are approximately similar in semantics to the user queries.  
 312 Section 4.8 details a broader out-of-distribution experiment, where the training set is taken from  
 313 public sources independent of the test set.

314 The attacks are more successful on REST than BiLD and LADE. This is because REST has higher  
 315 correct speculation rates and more stable speculation patterns (due to its reliance on retrieval from a  
 316 datastore of previous conversations) compared to BiLD and LADE, enabling higher attack accuracies.  
 317

## 318 4.6 ABLATION STUDIES

319 Figure 4 presents an ablation study for the attack accuracy as the temperature of our target model  
 320 varies. For LADE and BiLD, as the temperature increases from 0.3 to 1.0, the attack accuracy for both  
 321 Experiment 1 and 2 decreases. This is because at lower temperatures, the generations and speculation  
 322 patterns are more stable and alike. Hence, the output tokens for the same prompt and the packet sizes  
 323 are more similar across runs, making the attack more successful. For REST, the attack accuracy is

stable for both Experiment 1 and 2 despite the increasing temperature. This is because the features are so pronounced that it withstands perturbations in the output caused by the increasing temperature.

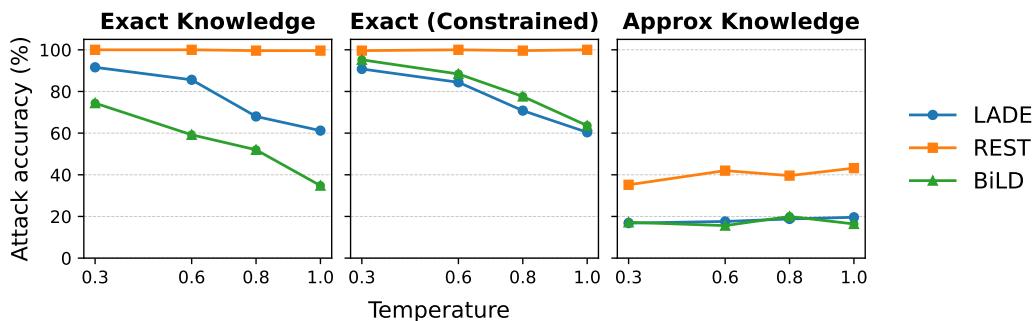


Figure 4: Attack accuracy of query fingerprinting as temperatures vary (0.3, 0.6, 0.8, 1.0), using 30 Traces Per Query (TPQ) for training.

In Experiment 3, the attacker accuracy is lower than Exp 1 or 2, as it only has approximate knowledge of the prompts (train and test set are different). However, unlike Experiment 1 and 2, for Experiment 3 the attack accuracy increases moderately as the temperature increases. This is because, at low temperatures, with limited variation in the training data, the classifier overfits on the training set, and at higher temperatures, this problem does not exist, allowing the attack to be slightly more accurate.

#### 4.7 ATTACK ON REMOTE vLLM SERVER

To show real-world practicality, we demonstrate our attack on a remote LLM inference server on vLLM, with Llama3 8B Instruct as the target model and EAGLE speculative decoding. Our LLM server is hosted on a cloud-based A100 GPU, while our client is located in an academic network more than 1500 miles away. Our attacker snoops the encrypted network packets in between the server and the client, using Wireshark, and captures the bytes per packet. We also compare our attack with prior work, (Carlini & Nasr, 2024), that used packet inter-arrival-times as a side-channel, that varies based on inference-time optimizations. To mimic their setup, which focused on ChatGPT, that sends tokens generated in the same iteration in separate packets, we modify vLLM to similarly send separate packets for individual tokens generated in the same iteration. For our packet size side channel, we generate our trace by combining sizes of packets received within 55 ms of each other (based on observed network latencies).

| Classifiers   | Side Channel                                 | No Server Load |       |       |       | High Server Load |       |       |       |
|---------------|----------------------------------------------|----------------|-------|-------|-------|------------------|-------|-------|-------|
|               |                                              | T → 0.3        | 0.6   | 0.8   | 1.0   | T → 0.3          | 0.6   | 0.8   | 1.0   |
| Random Forest | Packet Size (ours)                           | 77.6%          | 65.6% | 44.8% | 24.0% | 77.6%            | 65.6% | 44.8% | 24.0% |
|               | Inter-Arrival Time<br>(Carlini & Nasr, 2024) | 14.4%          | 6.0%  | 5.2%  | 4.8%  | 6.4%             | 4%    | 2.4%  | 2.8%  |
| GMM           | Packet Size (ours)                           | 27.2%          | 7.2%  | 4.8%  | 4%    | 27.2%            | 7.2%  | 4.8%  | 4%    |
|               | Inter-Arrival Time<br>(Carlini & Nasr, 2024) | 2.6%           | 1.2%  | 3.2%  | 1.2%  | 1.6%             | 1.2%  | 2.8%  | 1.2%  |

Table 1: Attack accuracy for the query fingerprinting (Experiment 1 - Exact Knowledge) on vLLM with EAGLE’s speculative decoding at different temperatures (0.3, 0.6, 0.8, 1.0), using 30 Traces Per Query (TPQ) for training. We evaluate the attack using our packet-size side channel, and with inter-arrival times based side channel from prior work (Carlini & Nasr, 2024).

Table 1 shows that, under no additional server load, our attack achieves a maximum of 77.6% accuracy, significantly outperforming prior work which achieves a maximum accuracy of 14.4% (both using Random Forest classifier). This is because inter-arrival times provide a noisy signal due to varying network contentions. Moreover, under spikes in server load, the inter-arrival times (time per output token) can significantly spike as observed in recent work (Zhang et al., 2024b), causing test-time observations to vary dramatically compared to training time. Consequently, assuming a standard log-normal distribution of time-per-iteration to mimic high server load (Benson et al., 2009), the accuracy of prior timing channel attacks drops to 6.4%. In comparison, our attack accuracy is unaffected, since we rely on the packet size side-channel, which remains robust to variations in server loads or network congestion. Even when using GMM instead of Random Forest like prior

378 work (Carlini & Nasr, 2024), the trends are similar, with our packet-size side-channel outperforming  
 379 prior inter-arrival time side-channel (Carlini & Nasr, 2024) under both low and high server loads.  
 380

#### 381 4.8 OUT-OF-DISTRIBUTION TRAINING

382 To study the effect of distribution mismatch between profiling and attack phases, we conducted  
 383 an additional experiment where the attacker trains on an out-of-distribution (OOD) set of queries.  
 384 Shown in Appendix A.5, we used GPT-4o to generate 50 common diseases that users typically ask AI  
 385 chatbots about, prepending the phrase “what are the symptoms of” to each. This OOD set was used  
 386 for training, while evaluation was performed on the same 50 disease-related queries from Experiment  
 387 1 (with model temperature of 0.3 to 0.8), ensuring no prior knowledge of the test dataset during  
 388 training.

389 Despite the lack of prior knowledge of the true query set, the attack substantially outperformed [our](#)  
 390 [previous naive](#) random guessing [attacks](#) ( $\sim 2\%$ ). LADE achieved 23% - 25% accuracy, REST 35% -  
 391 36%, and BiLD 23% - 25%, where success was defined as predicting a disease with similar symptoms  
 392 (as per GPT-5 mini) compared to the ground truth, as temperature of the target model varies between  
 393 0.3 and 0.8 (see Table 3 in Appendix F for detailed results). [For comparison, we also perform a](#)  
 394 [more “sophisticated” random guessing attack using OOD data: for each query in our test set, we](#)  
 395 [randomly pick a disease from the OOD set as our guess, and check whether the guess has symptoms](#)  
 396 [overlapping with the ground truth. This random guessing with OOD data has 6% accuracy \(higher](#)  
 397 [than 2% with our previous naive random guessing\); this is still much lower than the 23% to 35%](#)  
 398 [accuracy we achieve by training our classifier using the speculation traces observed with OOD data.](#)

399 These results show that although accuracy drops relative to the in-distribution setting, speculative  
 400 decoding still leaks strong and learnable signals even under OOD conditions, without being much  
 401 affected by temperature, underscoring the robustness of our side-channel attack.

## 402 5 LEAKING PRIVATE DATA USED FOR SPECULATION

404 Speculative decoding techniques may use carefully tuned data to ensure high correct speculation  
 405 rates, which may contain private user data or other intellectual property. In this section, we show how  
 406 a malicious user can leak out private data used for predictions. We show this on REST (He et al.,  
 407 2024), which relies on retrieval from a datastore to generate speculative tokens. This datastore can be  
 408 populated with proprietary information to tailor model output to specific domains, or data collected  
 409 from user interactions, which may be leaked by our attack. A similar attack can also leak speculation  
 410 hyperparameters, which can be a company’s intellectual property, as shown in Appendix C.

411 **Attack Design.** REST retrieves the longest matching sequence from its datastore based on the tokens  
 412 generated so far and uses the subsequent continuations as speculative tokens. Any tokens that are  
 413 correctly speculated, *i.e.*, returned as a group of tokens per iteration, have to exist in the datastore.  
 414 We propose an attack where a malicious user crafts inputs and observes which tokens are correctly  
 415 speculated and systematically leaks sequences of tokens from the datastore. We study the following  
 416 attacker strategies for input generation to achieve high token leakage rates:

417 **1. Random Generation:** The user prompts the LLM to generate random paragraphs of text.

419 **2. Leveraging Common Words.** The LLM is prompted to generate paragraphs containing the most  
 420 frequently occurring words, drawn from a dataset of the 10,000 most common English words (Brants  
 421 & Franz, 2021). This exploits the high likelihood that phrases in the datastore contain these words.

422 **3. Reusing Leaked Sequences.** The LLM is iteratively prompted to generate text extending phrases  
 423 already leaked out, as shown in Figure 5a. This approach is based on the insight that the sequence  
 424 that is already leaked out may be a part of a longer phrase in the datastore.

425 **Results.** We test our attacks on REST using the ShareGPT datastore of 120K conversations for  
 426 retrieval on NVIDIA RTX 4090. Figure 5b shows the unique sequences leaked by each attack  
 427 strategy, averaged over three runs. Random generation initially leaks 20K sequences in 20 minutes,  
 428 but slows down, leaking only 70K sequences in 3 hours. Leveraging common words improves this to  
 429 31K unique sequences leaked in 20 minutes and 190K after 3 hours. Lastly, prompting with leaked  
 430 sequences is the most effective, leaking 35K unique sequences in 20 minutes and 200K in 3 hours,  
 431 demonstrating how feedback amplifies leakage. These results show that a malicious user can reliably  
 extract REST’s datastore via speculation patterns.

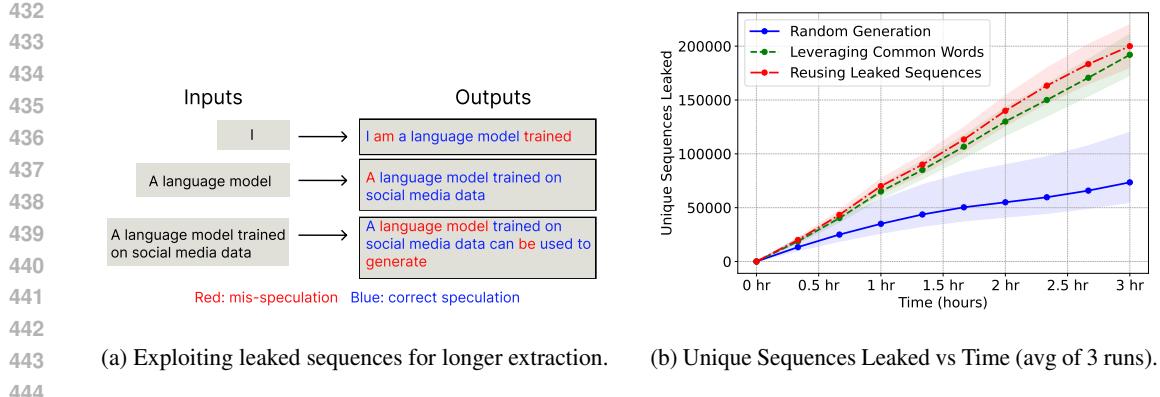


Figure 5: Analysis of datastore leakage from REST.

## 6 MITIGATION STRATEGIES

## 6.1 MITIGATING QUERY FINGERPRINTING ATTACKS

To mitigate the query fingerprinting attacks, we propose (1) padding token packets and (2) aggregating tokens over multiple iterations. We describe both below:

**1. Padding Token Packets:** Padding the network packet size with additional bytes can mask the actual number of tokens per iteration and conceal the differences between correct and mis-speculations to prevent the attack. The padding can be added in two ways:

**A. Constant Length Padding.** The payload (token bytes) within each packet is padded to a constant size, selected based on the maximum number of tokens per iteration, multiplied by the maximum bytes per token. We pick this size as 1024 bytes without loss of generality, given that the maximum number of tokens per iteration can be as high as 128 in recent works (Zhao et al., 2024). This completely mitigates the side channel, reducing the attack accuracy to random guessing (2%). However, this comes at the cost of increased communication overheads, with an increase in payload size within the packet by  $230\times$  (calculated using only the token bytes and ignoring metadata, since metadata size varies across inference frameworks). This bounds the worst-case increase in packet size.

**B. Random Padding.** Packets can also be padded with a random number of bytes ( $\epsilon$ ) selected from a uniform distribution of  $\epsilon \sim \text{Unif}(0, D)$ , where  $D$  is an upper bound of padding and  $\epsilon$  is an integer.

Figure 6 shows the attack accuracy, as  $D$  goes from 6 to 48. As  $D$  increases to 48, the attack accuracy for LADE and BiLD drops close to random guess (2%) for all experiments. The attack accuracy for REST also shows a considerable drop from 100% without padding to 27% and 34% with padding of  $D=48$  for Experiments 1 and 2 respectively. Similarly, for Experiment 3, attack accuracy drops from 40% to 8% with  $D=48$ . These come at the cost of a  $5\times$  to  $8\times$  increase in [payload size within packets](#) for  $D=48$  ([See Table 2 for details](#)). Thus, variable length padding provides better reduction in attack accuracy with limited increase in [payload size](#), compared to constant length padding.

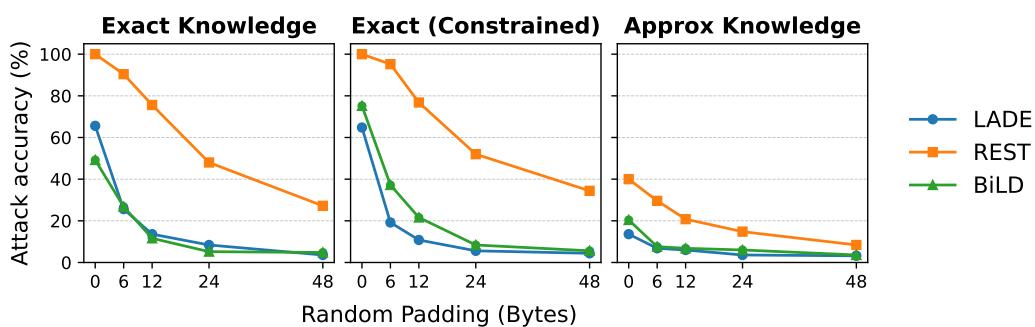
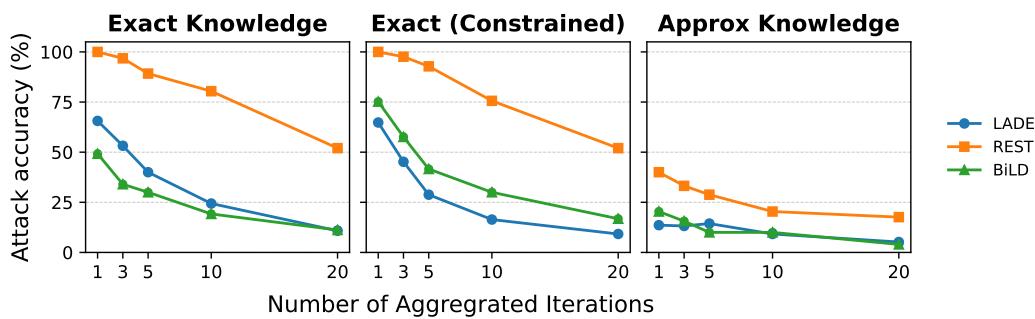


Figure 6: Attack accuracy under variable-length padding (random padding) **added to payloads within packets as a mitigation**. Variable-length padding follows a uniform distribution,  $\epsilon \sim \text{Unif}(0, D)$ , with  $D$  from 6 to 48. (Attack: 20 traces per prompt; model temperature: 0.8).

486  
 487 **2. Reduce Granularity of Attacker Observation:** Alternatively, the LLM server can aggregate  
 488 output tokens over multiple iterations and return them together to the client. This limits observability  
 489 of fine-grain speculation patterns from packet sizes, reducing the success of fingerprinting attacks.  
 490 **However, token aggregation linearly increases the inter-arrival time for packets, which linearly**  
 491 **increases the latency observed by a user between text renderings that may hinder user experience.**

492 Figure 7 shows the accuracy for all our fingerprinting attacks after aggregating output tokens over 3  
 493 to 20 iterations. The accuracy of the exact knowledge attacks (Experiment 1 and 2) for LADE, REST,  
 494 and BiLD drop to a minimum of 9.2%, 52%, and 11.2% respectively after aggregating tokens over  
 495 20 iterations, down from 65%, 100%, and 49.2% respectively without aggregation; accuracy of the  
 496 approximate knowledge attacks (Experiment 3) decreases to a minimum of 5.2%, 17.6%, and 4%  
 497 respectively, down from 14%, 40%, and 20% respectively. Thus, token aggregation is an effective  
 498 mitigation. A downside of aggregating tokens over larger iterations is the increased latency between  
 499 outputs, which can hinder system responsiveness. At the extreme, aggregating all tokens in a single  
 500 packet resembles a non-streaming LLM.



511 Figure 7: Token Aggregation Mitigation. Attack accuracy (30 traces/prompt, temperature of 0.8)  
 512 decreases as aggregation granularity (AGG) increases, i.e., iterations tokens are aggregated over,  
 513 varies from 1 (no aggregation) to 20.

514  
 515 **3. Packet Splitting.** Another way of limiting attacker observability of token counts, is to split the  
 516 multiple tokens generated in an iteration into individual packets that are spread out in time throughout  
 517 the decode iteration time period. To ensure that the attacker cannot observe even an approximate  
 518 count of tokens-per-iteration by tracking the number of packets sent during one decode iteration, the  
 519 defense needs to further also limit the number of packets per iteration and carry excess tokens to  
 520 later iterations. This can introduce an overall latency impact, varying based on the framework, model  
 521 and speculation technique. Future works can develop novel speculation techniques with such traffic  
 522 shaping built in, to get both security and performance.

## 523 6.2 MITIGATING DATASTORE LEAKS

524 **Use Public Data for Speculation.** In addition to padding or token aggregation, to prevent confidential  
 525 data leakage, a simple approach is to ensure any data-store used for speculation (like in REST) only  
 526 contains public data, and any private or personal identifiable information (e.g., usernames or address)  
 527 is anonymized. This eliminates the risk of sensitive data leakage through speculation.

## 528 7 CONCLUSION

529 This paper reveals significant privacy risks associated with speculative decoding in Large Language  
 530 Models. Across multiple speculative decoding techniques, we demonstrate that attacks can exploit  
 531 speculation patterns to infer user inputs with > 90% accuracy via fingerprinting attacks on local  
 532 models and on models remotely hosted on vLLM inference servers, and similarly leak data from  
 533 datastores used for predictions. These leaks highlight the careful consideration needed when deploying  
 534 speculative decoding techniques to ensure that performance does not come at the cost of privacy.

540        **8 ETHICS STATEMENT**

541

542        This research investigates side-channel vulnerabilities arising from speculative decoding in large  
 543        language models (LLMs). All our attacks were conducted on academic prototypes and locally hosted  
 544        inference servers (e.g., vLLM). No live production systems were targeted, and no real user data  
 545        was accessed or exposed. While our work demonstrates the existence of new leakage vectors, we  
 546        also attempt to prevent harmful misuse. Specifically, we present mitigation strategies alongside  
 547        our findings to support the development of more secure future LLM deployments. Our intent is to  
 548        improve the resilience of systems rather than enable adversarial exploitation.

549

550        **9 REPRODUCIBILITY STATEMENT**

551

552        We have uploaded the source code for all our experiments in the supplementary material. Upon  
 553        acceptance of the paper, we will also make the source code and instructions to run it publicly  
 554        accessible, for ease of reproducibility.

555        **REFERENCES**

556

557        Aeala. Sharegpt vicuna unfiltered dataset of 120k conversations. *HuggingFace Datasets*, 2023.  
 558        Accessed at [https://huggingface.co/datasets/Aeala/ShareGPT\\_Vicuna\\_unfiltered](https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered).

559        Theophilus A. Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding data center  
 560        traffic characteristics. In *Proceedings of the ACM SIGCOMM Workshop on Research on Enterprise  
 561        Networking (WREN)*, pp. 65–72, 2009. doi: 10.1145/1592681.1592692. URL <https://dl.acm.org/doi/10.1145/1672308.1672325>.

562        Thorsten Brants and Alex Franz. Google web trillion word corpus. *GitHub Repository*, 2021.  
 563        Accessed at <https://github.com/first20hours/google-10000-english>.

564        Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,  
 565        Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are  
 566        few-shot learners. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.

567        F. W. Burton. Speculative computation, parallelism, and functional programming. *IEEE Transactions  
 568        on Computers*, C-34(12):1190–1193, 1985. doi: 10.1109/TC.1985.6312218.

569        Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri  
 570        Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In  
 571        *Proceedings of the 41st International Conference on Machine Learning (ICML)*, volume 235,  
 572        Vienna, Austria, 2024. PMLR. arXiv preprint arXiv:2401.10774.

573        Nicholas Carlini and Milad Nasr. Remote timing attacks on efficient language model inference. *arXiv  
 574        preprint arXiv:2410.17175*, 2024.

575        Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John  
 576        Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint  
 577        arXiv:2302.01318*, 2023.

578        Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,  
 579        Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An  
 580        open-source chatbot impressing gpt-4 with 90% chatgpt quality. *arXiv preprint arXiv:2306.05685*,  
 581        2023.

582        Edoardo Debenedetti, Giorgio Severi, Nicholas Carlini, Christopher A. Choquette-Choo, Matthew  
 583        Jagielski, Milad Nasr, Eric Wallace, and Florian Tramèr. Privacy side channels in machine  
 584        learning systems. In *33rd USENIX Security Symposium (USENIX Security 24)*, pp. 6861–6848,  
 585        Philadelphia, PA, August 2024. USENIX Association. ISBN 978-1-939133-44-1. URL <https://www.usenix.org/conference/usenixsecurity24/presentation/debenedetti>.

586        Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-  
 587        rectional transformers for language understanding. In *North American Chapter of the Association  
 588        for Computational Linguistics (NAACL)*, 2019.

594 Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference  
 595 using lookahead decoding. *arXiv preprint arXiv:2402.02057*, 2024.  
 596

597 Tianyu Han, Lisa C Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser, Alexan-  
 598 der Löser, Daniel Truhn, and Keno K Bressem. Medalpaca—an open-source collection of medical  
 599 conversational ai models and training data. *arXiv preprint arXiv:2304.08247*, 2023.

600 Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative  
 601 decoding. In *North American Chapter of the Association for Computational Linguistics (NAACL)*,  
 602 2024.

603 J. L. Hennessy and D. A. Patterson. *Computer Architecture: A Quantitative Approach*. Morgan  
 604 Kaufmann, Amsterdam, 5 edition, 2012. ISBN 978-0-12-383872-8.

605 Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir  
 606 Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. *Advances in Neural*  
 607 *Information Processing Systems (NeurIPS)*, 2023. URL <https://doi.org/10.48550/arXiv.2302.07863>.

608 Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,  
 609 Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre  
 610 attacks: Exploiting speculative execution. In *2019 IEEE Symposium on Security and Privacy (SP)*,  
 611 pp. 1–19, 2019. doi: 10.1109/SP.2019.00002.

612 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.  
 613 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model  
 614 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*  
 615 *Systems Principles*, 2023.

616 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman  
 617 Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-  
 618 parameter open-access multilingual language model. *arXiv preprint arXiv:2211.05100*, 2022.

619 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative  
 620 decoding. In *International Conference on Machine Learning (ICML)*, 2023.

621 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Looking back at speculative decoding.  
 622 *Google Research Blog*, December 2024. Accessed at <https://research.google/blog/looking-back-at-speculative-decoding/>.

623 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires  
 624 rethinking feature uncertainty. In *International Conference on Machine Learning*, 2024a.

625 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of language  
 626 models with dynamic draft trees. In *Empirical Methods in Natural Language Processing*, 2024b.

627 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae  
 628 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large  
 629 language model serving with tree-based speculative inference and verification. In *Proceedings of*  
 630 *the 29th ACM International Conference on Architectural Support for Programming Languages and*  
 631 *Operating Systems (ASPLOS '24)*, volume 3, pp. 932–949, 2024. doi: 10.1145/3620666.3651335.

632 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2024.

633 Munjal Shah. Hippocratic ai - do no harm. 2025. Accessed at <https://www.hippocraticai.com/>.

634 Mahdi Soleimani, Grace Jia, In Gim, Seung-seob Lee, and Anurag Khandelwal. Wiretapping llms:  
 635 Network side-channel attacks on interactive llm services. *Cryptology ePrint Archive, Paper*  
 636 *2025/167*, 2025. Accessed at <https://eprint.iacr.org/2025/167>.

637 Linke Song, Zixuan Pang, Wenhao Wang, Zihao Wang, XiaoFeng Wang, Hongbo Chen, Wei Song,  
 638 Yier Jin, Dan Meng, and Rui Hou. The early bird catches the leak: Unveiling timing side channels  
 639 in llm serving systems, 2024. URL <https://arxiv.org/abs/2409.20002>.

648 Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. *arXiv*  
649 *preprint arXiv:2308.04623*, 2023.

650

651 Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.  
652 Spectr: Fast speculative decoding via optimal transport. In *Proceedings of the 37th International*  
653 *Conference on Neural Information Processing Systems (NeurIPS)*, number 1314, pp. 30222–30242,  
654 2023. doi: 10.48550/arXiv.2302.07863.

655 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay  
656 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-  
657 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,  
658 Wenjin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,  
659 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel  
660 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,  
661 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,  
662 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,  
663 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh  
664 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen  
665 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,  
666 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.  
667 <https://arxiv.org/abs/2307.09288>, 2023.

668

669 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz  
670 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*  
671 *Processing Systems (NeurIPS)*, 2017.

672

673 James Wang. Cerebras inference now 3x faster: Llama3.1-70b breaks 2,100 token-  
674 s/s. *Cerebras Blog*, October 2024. Accessed at <https://www.cerebras.ai/blog/cerebras-inference-3x-faster>.

675

676 Roy Weiss, Daniel Ayzenshteyn, and Yisroel Mirsky. What was your prompt? a remote keylogging  
677 attack on AI assistants. In *33rd USENIX Security Symposium (USENIX Security 24)*, pp. 3367–  
678 3384, Philadelphia, PA, August 2024. USENIX Association. ISBN 978-1-939133-44-1. URL  
679 <https://www.usenix.org/conference/usenixsecurity24/presentation/weiss>.

680

681 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and  
682 Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey  
683 of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of*  
684 *the Association for Computational Linguistics ACL 2024*, pp. 7655–7671, Bangkok, Thailand and  
685 virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.  
686 findings-acl.456. URL <https://aclanthology.org/2024.findings-acl.456>.

687

688 Minghao Yan, Saurabh Agarwal, and Shivaram Venkataraman. Decoding speculative decoding. *arXiv*  
689 *preprint arXiv:2402.01528*, 2025.

690

691 Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small  
692 language model. *arXiv preprint arXiv:2401.02385*, 2024a.

693

694 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher  
695 Dewan, Mona Diab, Xian Victoria Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer  
696 language models. *arXiv preprint arXiv:2205.01068*, 2022.

697

698 Tianchen Zhang, Gururaj Saileshwar, and David Lie. Time will tell: Timing side channels via output  
699 token count in large language models. *arXiv preprint arXiv:2412.15431*, 2024b.

700

701 Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference  
702 acceleration framework for large language model with lossless generation accuracy. In *Proceedings*  
703 *of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6344–6355,  
704 2024.

705

706 Xinyao Zheng, Husheng Han, Shangyi Shi, Qiyan Fang, Zidong Du, Xing Hu, and Qi Guo.  
707 Inputsnatch: Stealing input in llm services via timing side-channel attacks. *arXiv preprint*  
708 *arXiv:2411.18191*, 2024.

702 A PROMPTS FOR FINGERPRINTING ATTACKS  
703704 A.1 TRAINING AND TESTING PROMPTS FOR EXPERIMENT 1  
705706 What to expect if I have Allergy (Outlook/Prognosis)?  
707708 What causes Cardiogenic shock?  
709710 What to expect if I have Congenital heart block (Outlook/Prognosis)?  
711712 What are the symptoms of Congestive heart failure?  
713714 What are the symptoms of Coronary heart disease?  
715716 What to expect if I have Dengue fever (Outlook/Prognosis)?  
717718 What causes Stroke?  
719720 Who is at highest risk for Heart attack?  
721722 What to expect if I have Heart murmur (Outlook/Prognosis)?  
723724 When to seek urgent medical care when I have Metabolic syndrome?  
725726 What are the symptoms of Palpitation?  
727728 What causes Radiation injury?  
729730 What are the symptoms of shock?  
731732 Who is at highest risk for Back pain?  
733734 What are the symptoms of Athlete's foot?  
735736 What causes Boil?  
737738 When to seek urgent medical care when I have Burns?  
739740 What causes Corns & calluses?  
741742 Who is at highest risk for Fleas?  
743744 When to seek urgent medical care when I have Hand-foot-and-mouth disease?  
745746 When to seek urgent medical care when I have Hives?  
747748 When to seek urgent medical care when I have Liver spots?  
749750 What to expect if I have Measles (Outlook/Prognosis)?  
751752 When to seek urgent medical care when I have Mumps?  
753754 What are the symptoms of a Rash?  
755756 When to seek urgent medical care when I have Ringworm?  
757758 What are the symptoms of Scarlet fever?  
759760 What causes Shingles?  
761762 What are the symptoms of Sunburn?  
763764 When to seek urgent medical care when I have Wart?  
765766 What are the symptoms of Common cold?  
767768 Who is at highest risk for AIDS ?  
769770 What are the causes of Alcoholic liver disease?  
771772 What to expect if I have Anal cancer (Outlook/Prognosis)?  
773774 When to seek urgent medical care when I have Anal fissure?  
775

776 When to seek urgent medical care when I have Anemia?

756 When to seek urgent medical care when I have Antisocial personality disorder?

757 How many children have Autism?

758 What are the symptoms of Avian influenza?

759 When to seek urgent medical care when I have Avoidant personality disorder?

760 What causes cataract?

761 Who is at highest risk for Chickenpox?

762 What causes Chronic fatigue syndrome?

763 When to seek urgent medical care when I have Depression?

764 What to expect if I have Color blindness?

765 How many children have Dependent personality disorder?

766 When to seek urgent medical care when I have Adolescent depression?

767 Who is at highest risk for Diabetes?

768 What to expect if I have Ebola?

769 What causes fatty liver?

770

## A.2 TRAINING AND TESTING PROMPTS FOR EXPERIMENT 2

771 What are the symptoms of Allergy?

772 What are the symptoms of Cardiogenic shock?

773 What are the symptoms of heart block?

774 What are the symptoms of Congestive heart failure?

775 What are the symptoms of Coronary heart disease?

776 What are the symptoms of Dengue fever?

777 What are the symptoms of stroke?

778 What are the symptoms of a Heart attack?

779 What are the symptoms of Heart murmur?

780 What are the symptoms of Metabolic syndrome?

781 What are the symptoms of Palpitation?

782 What are the symptoms of Radiation injury?

783 What are the symptoms of shock?

784 What are the symptoms of Back pain?

785 What are the symptoms of Athlete's foot?

786 What are the symptoms of Boil?

787 What are the symptoms of Burns?

788 What are the symptoms of Corns & calluses?

789 What are the symptoms of Fleas?

790 What are the symptoms of Hand-foot-and-mouth disease?

791 What are the symptoms of Hives?

792 What are the symptoms of Liver spots?

793 What are the symptoms of Measles?

810 What are the symptoms of Mumps?  
811  
812 What are the symptoms of a Rash?  
813  
814 What are the symptoms of Ringworm?  
815  
816 What are the symptoms of Scarlet fever?  
817  
818 What are the symptoms of Shingles?  
819  
820 What are the symptoms of Sunburn?  
821  
822 What are the symptoms of Warts?  
823  
824 What are the symptoms of Common cold?  
825  
826 What are the symptoms of AIDS?  
827  
828 What are the symptoms of Alcoholic liver disease?  
829  
830 What are the symptoms of Anal cancer?  
831  
832 What are the symptoms of an Anal fissure?  
833  
834 What are the symptoms of Anemia?  
835  
836 What are the symptoms of Antisocial personality disorder?  
837  
838 What are the symptoms of Autism?  
839  
840 What are the symptoms of Avian influenza?  
841  
842 What are the symptoms of Avoidant personality disorder?  
843  
844 What are the symptoms of a cataract?  
845  
846 What are the symptoms of Chickenpox?  
847  
848 What are the symptoms of Chronic fatigue syndrome?  
849  
850 What are the symptoms of Depression?  
851  
852 What are the symptoms of Color blindness?  
853  
854 What are the symptoms of Dependent personality disorder?  
855  
856 What are the symptoms of Adolescent depression?  
857  
858 What are the symptoms of Diabetes?  
859  
860 What are the symptoms of Ebola?  
861  
862 What are the symptoms of fatty liver?  
863  
A.3 TRAINING PROMPTS FOR EXPERIMENT 3  
851 Same as Appendix A.1  
A.4 TESTING PROMPTS FOR EXPERIMENT 3  
852  
853 What is the outlook for someone with an allergy?  
854  
855 What leads to cardiogenic shock?  
856  
857 How might congenital heart block affect me in the long term?  
858  
859 How does congestive heart failure present itself?  
860  
861 How can coronary heart disease symptoms be identified?  
862  
863 What is the prognosis for someone with dengue fever?  
What are the main causes of a stroke?  
Who faces the greatest risk for a heart attack?

864 What is the long-term prognosis for someone with a heart murmur?  
865  
866 When is it critical to get help for metabolic syndrome?  
867 How can I tell if I'm experiencing palpitations?  
868  
869 What factors contribute to radiation injury?  
870 What are the warning signs of shock?  
871 Who is most susceptible to back pain?  
872  
873 What should I look out for if I suspect athlete's foot?  
874 What are the main causes of a boil?  
875  
876 When are burns severe enough to seek emergency medical care?  
877 Why do corns and calluses form?  
878 Who is most at risk of getting fleas?  
879  
880 When should I go to the doctor for hand-foot-and-mouth disease?  
881 When is hives a sign to seek urgent medical attention?  
882  
883 When should liver spots be evaluated by a doctor?  
884 What can I expect if I have measles?  
885  
886 When should I seek medical help for mumps?  
887 How do I know if I have a rash?  
888 When should ringworm be treated urgently?  
889  
890 What are the common symptoms of scarlet fever?  
891 What is the underlying cause of shingles?  
892  
893 How can I recognize sunburn symptoms?  
894 When should a wart be looked at by a doctor?  
895 What are the signs of the common cold?  
896  
897 Who is most at risk of contracting HIV/AIDS?  
898 What factors contribute to alcoholic liver disease?  
899  
900 What is the outlook for someone diagnosed with anal cancer?  
901 When is an anal fissure an emergency?  
902  
903 When should anemia symptoms prompt immediate medical care?  
904 When is antisocial personality disorder considered an urgent issue?  
905  
906 How common is autism in children?  
907 What symptoms are typical of avian influenza?  
908  
909 When should avoidant personality disorder be addressed by a professional?  
910 What are the main causes of cataracts?  
911 Who is most vulnerable to contracting chickenpox?  
912  
913 What are the underlying causes of chronic fatigue syndrome?  
914 When should I seek emergency medical help if I have depression?  
915  
916 What are the typical symptoms or outcomes if I have color blindness?  
917 How common is dependent personality disorder in children?

918 When is urgent medical attention needed for adolescent depression?  
919  
920 Who faces the highest risk of developing diabetes?  
921  
922 What should I expect if I have Ebola?  
923  
924 What leads to the development of fatty liver?

#### 925 A.5 OOD TRAINING PROMPTS FOR SECTION 4.8

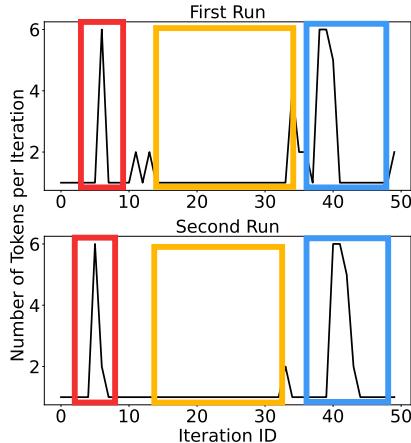
926 What are the symptoms of Common cold?  
927  
928 What are the symptoms of Influenza (flu)?  
929  
930 What are the symptoms of COVID-19?  
931  
932 What are the symptoms of Strep throat?  
933  
934 What are the symptoms of Pneumonia?  
935  
936 What are the symptoms of Bronchitis?  
937  
938 What are the symptoms of Tuberculosis (TB)?  
939  
940 What are the symptoms of Urinary tract infection (UTI)?  
941  
942 What are the symptoms of Sexually transmitted infections (chlamydia, gonorrhea)?  
943  
944 What are the symptoms of Lyme disease?  
945  
946 What are the symptoms of Type 2 diabetes?  
947  
948 What are the symptoms of Hypertension (high blood pressure)?  
949  
950 What are the symptoms of High cholesterol?  
951  
952 What are the symptoms of Obesity?  
953  
954 What are the symptoms of Chronic kidney disease?  
955  
956 What are the symptoms of Osteoarthritis?  
957  
958 What are the symptoms of Rheumatoid arthritis?  
959  
960 What are the symptoms of Asthma?  
961  
962 What are the symptoms of Chronic obstructive pulmonary disease (COPD)?  
963  
964 What are the symptoms of Hypothyroidism?  
965  
966 What are the symptoms of Coronary artery disease?  
967  
968 What are the symptoms of Heart failure?  
969  
970 What are the symptoms of Atrial fibrillation?  
971  
972 What are the symptoms of Stroke / transient ischemic attack (TIA)?  
973  
974 What are the symptoms of Peripheral artery disease?  
975  
976 What are the symptoms of Migraine?  
977  
978 What are the symptoms of Epilepsy?  
979  
980 What are the symptoms of Parkinson's disease?  
981  
982 What are the symptoms of Multiple sclerosis?  
983  
984 What are the symptoms of Alzheimer's disease / dementia?  
985  
986 What are the symptoms of Gastroesophageal reflux disease (GERD)?  
987  
988 What are the symptoms of Irritable bowel syndrome (IBS)?  
989  
990 What are the symptoms of Peptic ulcer disease?

972 What are the symptoms of Gallstones?  
 973  
 974 What are the symptoms of Hepatitis (A, B, C)?  
 975  
 976 What are the symptoms of Breast cancer?  
 977  
 978 What are the symptoms of Prostate cancer?  
 979  
 980 What are the symptoms of Lung cancer?  
 981  
 982 What are the symptoms of Colorectal cancer?  
 983  
 984 What are the symptoms of Skin cancer (melanoma, basal cell carcinoma)?  
 985  
 986 What are the symptoms of Depression?  
 987  
 988 What are the symptoms of Generalized anxiety disorder?  
 989  
 990 What are the symptoms of Panic disorder?  
 991  
 992 What are the symptoms of Bipolar disorder?  
 993  
 994 What are the symptoms of Post-traumatic stress disorder (PTSD)?  
 995  
 996 What are the symptoms of Eczema (atopic dermatitis)?  
 997  
 998 What are the symptoms of Psoriasis?  
 999  
 1000 What are the symptoms of Acne?  
 1001  
 1002 What are the symptoms of Rosacea?  
 1003  
 1004 What are the symptoms of Fungal skin infections (ringworm, athlete's foot)?  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025

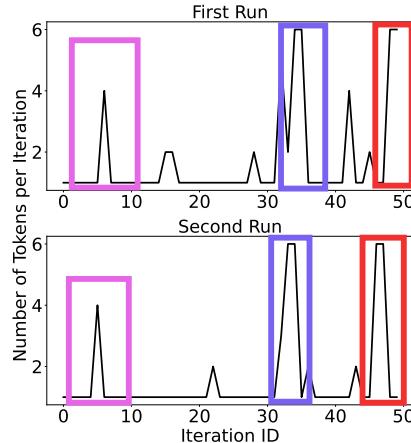
## B UNIQUENESS AND REPRODUCIBILITY OF FINGERPRINTS

Figure 8 shows the trace of tokens per iteration for two different prompts with LADE (temperature of 0.3) across different runs. By inspecting these traces, we observe two key properties that make these traces suitable for usage to identify and leak the prompt and response:

1. **Traces are unique to a prompt and response** - different prompts result in different traces of tokens per iteration.
2. **Traces are reproducible** - repeating the same prompt produces similar patterns in the trace of token counts.



(a) What is narcissistic personality disorder?



(b) What are the symptoms of cancer?

Figure 8: Trace of Tokens per iteration vs Iteration-ID, for two runs of different prompts (a) and (b) with LADE. The trace has **unique** and **reproducible** patterns, enabling its usage as a fingerprint for leaking prompts.

## 1026 C LEAKAGE OF SPECULATION HYPER-PARAMETERS

1028 Speculative decoding mechanisms rely on hyper-parameters to control speculation, directly impacting  
 1029 correct speculation rates and performance. By analyzing traces of these patterns, we can reverse-  
 1030 engineer the hyper-parameters used. We demonstrate this attack on LADE Fu et al. (2024).

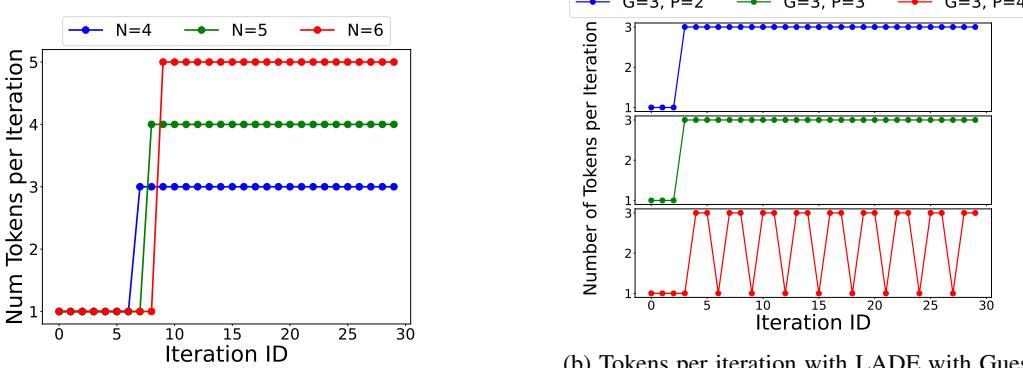
### 1031 C.1 BACKGROUND ON LADE’s IMPLEMENTATION

1032 LADE generates speculative tokens by caching and reusing prior n-grams generated by the model.  
 1033 LADE has two main parameters:  $N$  for n-gram size, and  $G$  for guess set size. Its cache is structured  
 1034 as a key-value store, where the key is a token, and the value is a list of  $G$  candidate  $(N-1)$ -grams  
 1035 following the key token, that are used for speculation. These are replaced in the Least-Recently-Used  
 1036 (LRU) order. During execution, LADE use the last token of the previous iteration or the input to  
 1037 query this cache, and the associated  $G$  candidate  $(N-1)$ -grams are used as speculation candidates, and  
 1038 the best match with target model generation is accepted.

### 1039 C.2 LEAKING HYPER-PARAMETER $N$ IN LADE

1040 As each iteration outputs at most  $N-1$  tokens under correct speculation, we expect the maximum  
 1041 number of tokens per iteration to be  $N-1$ . Therefore, we prompt LADE with a simple prompt, “Repeat  
 1042 Letter ‘A’ 60 times” that should sustain the maximum correctly speculated tokens per iteration. We  
 1043 observe the maximum number of tokens per iteration with this prompt to deduce  $N-1$ , and learn  $N$ .

1044 Figure 9a shows the number of correct speculated tokens for LADE with three different values of  $N$   
 1045 for this prompt. We see that for each value of  $N$  (4, 5, and 6), this prompt has a maximum of 3, 4, and  
 1046 5 tokens per iteration ( $N-1$ ), letting us learn the value of  $N$  as 4, 5, or 6 in each of these cases. This  
 1047 technique can be extended to learn any value of  $N$  used in LADE.



1049  
 1050  
 1051  
 1052  
 1053  
 1054  
 1055  
 1056  
 1057  
 1058  
 1059  
 1060  
 1061  
 1062  
 1063  
 1064  
 1065  
 1066  
 1067  
 1068  
 1069  
 1070  
 1071  
 1072  
 1073  
 1074  
 1075  
 1076  
 1077  
 1078  
 1079  
 (a) Tokens per iteration with LADE for different  $N$ , with a prompt that achieves maximum correct speculation (“Repeat Letter ‘A’ 60 times”). The maximum tokens per iteration corresponds to  $N-1$ .

(b) Tokens per iteration with LADE with Guess Set ( $G = 3$ ), using a prompt that asks to repeat  $P$  phrases sharing a common prefix “I run”. Periodic mis-speculations occur after “run”, only when  $P > G$ , leaking the value of  $G$ .

Figure 9: Leaking Speculation Hyper-parameters of LADE.

### 1070 C.3 LEAKING HYPER-PARAMETER $G$ IN LADE

1071 To leak  $G$ , the number of candidate predictions considered for speculation, we force LADE to incur  
 1072 targeted mis-speculations. Here, we prompt the model to repeat a sequence of phrases with the same  
 1073 prefix (“I run”), i.e., “I run to the grocery shop. I run as fast as cars. I run with my best friend. I  
 1074 run from the lecture hall.”. If the number of such phrases is less than or equal to  $G$ , LADE caches  
 1075 all the  $N$ -grams following the key “run”, resulting in it being able to correctly speculate the token  
 1076 that follows “run” in each of these phrases. However, if the number of phrases are greater than  $G$ ,  
 1077 then with LRU replacement, newer n-grams evict older n-grams for the key “run” from the set of  
 1078 candidates which has a limited capacity of  $G$ . This causes the token following “run” to always be  
 1079 mis-specified.

Figure 9b shows the traces of token generation time for LADE ( $G = 3$ ), as the number of phrases ( $P$ ) of the type “I run ...” increases from 2 to 4. When  $P$  is 2 or 3 ( $\leq G$ ), we notice all the tokens

1080 after the initial ones are correctly predicted in the generation (high number of tokens per iteration).  
 1081 But when  $P$  is 4 ( $> G$ ), every 7th token, i.e. the token following “run” is mis-speculated (one token  
 1082 per iteration). Thus, we leak the value of  $G$  to be 3. This attack can be generalized to any value of  
 1083 parameter  $G$  in LADE.

## D RESULTS FOR RANDOM PADDING MITIGATION

1086 Table 2 shows the impact of constant-size padding added to payloads and padding random bytes  
 1087 to the payload within the packets. We show both the impact to the accuracy of the attack and the  
 1088 increase in the payload size within packets (token bytes). Across all attacker knowledge settings, no  
 1089 padding allows high attack accuracy (up to 100%). Fixed padding (1024 bytes) consistently reduces  
 1090 accuracy to within 2–4% but can have a high overhead in the payload size (increasing token bytes by  
 1091  $230\times$ . Random padding ( $D=48$ ) suppresses accuracy to a minimum of 4.4–34.4% across models at  
 1092 reasonable overhead ( $5\times$ – $8\times$ ).

|                                                     | No Padding | Fixed Padding<br>(1024 bytes) | Random Padding (bytes) |       |       |       | Payload Size Overhead |      |      |      |
|-----------------------------------------------------|------------|-------------------------------|------------------------|-------|-------|-------|-----------------------|------|------|------|
|                                                     |            |                               | D → 6                  | 12    | 24    | 48    | D → 6                 | 12   | 24   | 48   |
| <b>Experiment 1 - Exact Knowledge</b>               |            |                               |                        |       |       |       |                       |      |      |      |
| LADE                                                | 65.6%      | 3.2%                          | 25.6%                  | 13.6% | 8.4%  | 3.6%  | 1.5×                  | 2×   | 3.1× | 5.1× |
| REST                                                | 100%       | 2%                            | 90.4%                  | 75.6% | 48%   | 27.2% | 1.9×                  | 2.8× | 4.6× | 8.2× |
| BiLD                                                | 49.2%      | 2%                            | 26.8%                  | 11.6% | 5.2%  | 4.8%  | 1.7×                  | 2.3× | 3.6× | 6.3× |
| <b>Experiment 2 - Exact Knowledge (Constrained)</b> |            |                               |                        |       |       |       |                       |      |      |      |
| LADE                                                | 64.8%      | 2.4%                          | 19.2%                  | 10.8% | 5.6%  | 4.4%  | 1.6×                  | 2.1× | 3.2× | 5.4× |
| REST                                                | 100%       | 2%                            | 95.2%                  | 76.8% | 52%   | 34.4% | 2×                    | 3×   | 4.8× | 8.7× |
| BiLD                                                | 75.2%      | 2%                            | 37.2%                  | 21.6% | 8.4%  | 5.6%  | 1.7×                  | 2.4× | 3.7× | 6.5× |
| <b>Experiment 3 - Approx Knowledge</b>              |            |                               |                        |       |       |       |                       |      |      |      |
| LADE                                                | 13.6%      | 4%                            | 6.8%                   | 6%    | 3.6%  | 3.2%  | 1.5×                  | 2×   | 3×   | 5×   |
| REST                                                | 40%        | 2%                            | 29.6%                  | 20.8% | 14.8% | 8.4%  | 1.9×                  | 2.8× | 4.6× | 8.1× |
| BiLD                                                | 20.4%      | 2%                            | 7.6%                   | 6.8%  | 6%    | 3.6%  | 1.7×                  | 2.3× | 3.6× | 6.2× |

1109 Table 2: Attack accuracy under constant size padding (**payload within** packets padded to 1024  
 1106 bytes) and variable-length padding (random padding) mitigations. Variable-length padding follows a  
 1107 uniform distribution,  $\epsilon \sim \text{Unif}(0, D)$ , with  $D$  from 6 to 48. (Attack: 20 traces per prompt; model  
 1108 temperature: 0.8).

## E IMPACT OF MITIGATION FOR TOKEN-LENGTH SIDE CHANNEL

1112 In this experiment, we want to measure the impact on our attacks of mitigation against prior attacks,  
 1113 such as token-length side channels (Weiss et al., 2024) that leaks the value of a token based on its  
 1114 associated character length. We evaluate the impact of a mitigation, where every token has been  
 1115 padded to the same size to mask its character length. We measure the attack success rate for our  
 1116 attacks with this mitigation. Note that even with this mitigation, there is variation in the packet  
 1117 sizes, due to the number of tokens contained in each packet, which varies due to speculation. Thus,  
 1118 measuring the packet sizes in this scenario is the same as measuring the token counts.

1119 Figure 10 shows the accuracy for our attack despite this mitigation as temperature varies. At smaller  
 1120 temperatures, the accuracy of our attacks is still significant (with temperature 0.3, in both **exact**  
 1121 **knowledge** attacks (experiment 1 and 2), for LADE, the accuracy is about 40–50%, and for BiLD, it  
 1122 is about 80%). At high temperatures, our attack accuracy is reduced: with temperature 1.0, in both  
 1123 the **exact knowledge scenarios** (experiment 1 and 2), for LADE, the accuracy is reduced to around  
 1124 20%, and for BiLD, it is reduced to 30%.

1125 Overall, this experiment shows that variations in the tokens counts still enable our attacks despite  
 1126 mitigations against token length side-channels. To fully eliminate our attack, one needs to pad the  
 1127 **payload in the** packets to the maximum number of tokens per iteration  $\times$  the maximum token size,  
 1128 which can bloat payload sizes by over 200 $\times$ .

1129  
 1130  
 1131  
 1132  
 1133

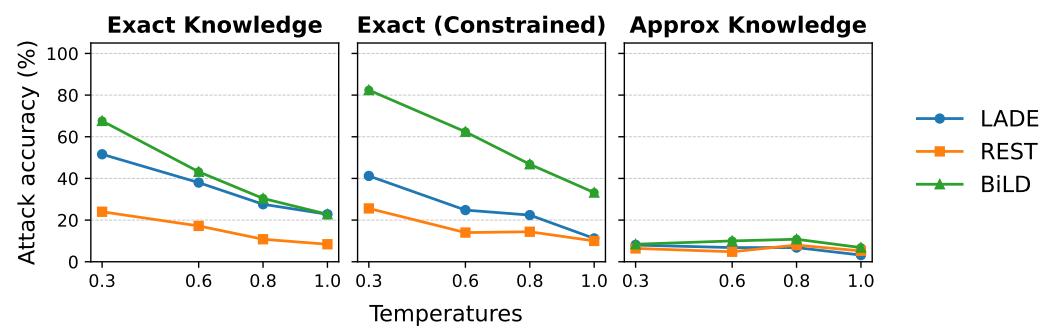


Figure 10: Accuracy of the query fingerprinting attack with each token padded to the maximum size of tokens that can be generated per iteration (1024 bytes)

## F OUT OF DISTRIBUTION TRAINING

### F.1 ATTACK ACCURACY

Table 3 shows the attack accuracy using out of distribution dataset with 50 queries about diseases as training data, and using our original evaluation data set from Experiment 1 as the test set. Our attack achieves an accuracy of 23% to 36% of guessing overlapping symptoms by training with the OOD set, achieving significantly higher accuracy than random guessing using OOD set, which achieves only a accuracy of 6%.

| Temperature → | 0.3 | 0.6 | 0.8 |
|---------------|-----|-----|-----|
| LADE          | 25% | 24% | 23% |
| REST          | 36% | 35% | 36% |
| BiLD          | 25% | 23% | 24% |

Table 3: Accuracy of the Query Fingerprinting Attack with out of distribution training, as the temperature of target model varies from 0.3 to 0.8.

### F.2 DEGREE OF OVERLAP BETWEEN OOD TRAINING SET AND EVALUATION SET

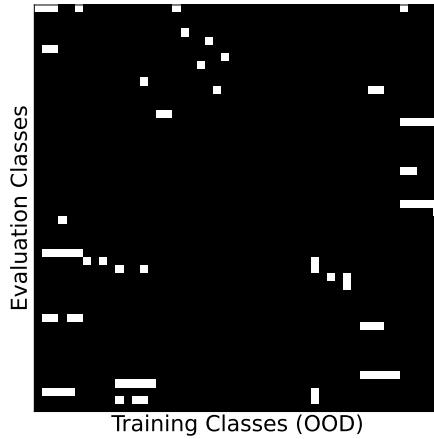
Since we use a 50 class OOD data set (generated using ChatGPT) as training set, and a 50 class data set for the evaluation set (used in Experiment 1), there is no direct 1-1 correspondence between training and evaluation sets. However, artificially, if the symptoms of each disease in the OOD training set has a high overlap with *all* the diseases of the test set, then our attack accuracy can be artificially high. To understand whether this is the case, we study the the overlap in symptoms between diseases in the OOD training set and that in the evaluation set (Experiment 1 - Exact Knowledge).

Figure 13 shows a 2D matrix illustrating symptom overlap between diseases in the OOD training set (X-axis) and diseases in the evaluation set from Experiment 1 (Y-axis). Both sets have 50 diseases. A cell is colored white if the corresponding pair of diseases shares overlapping symptoms. To determine overlap, we query an LLM (e.g., ChatGPT) with the two diseases and check whether they have common symptoms.

In the OOD training set, a small number of diseases (3-4) share symptoms with multiple (5-6) diseases in the evaluation set, and vice versa. However, most training-set diseases overlap with only one or two evaluation-set diseases. Additionally, some evaluation-set diseases have no symptom overlap with any training-set disease; in such cases, an attacker cannot infer the patient's symptoms. This is expected, as the OOD training set is independently constructed from the top 50 diseases most commonly queried on ChatGPT, while the evaluation set is derived from real-world user queries to medical chatbots.

This diversity in overlap patterns reflects a realistic deployment setting. Consequently, the observed attack accuracy of 23%–36% is realistic.

1188  
 1189 In comparison, a random guessing baseline attack, that assigns a random OOD training-set disease  
 1190 to each evaluation set disease achieves only 6% accuracy, aligning with our observation that most  
 1191 diseases in OOD training set do not overlap in symptoms with many test set diseases. This highlights  
 1192 the potency of our attack using speculative decoding when realistic OOD data is used for training.  
 1193  
 1194  
 1195  
 1196  
 1197  
 1198  
 1199  
 1200  
 1201  
 1202  
 1203  
 1204  
 1205  
 1206  
 1207  
 1208  
 1209  
 1210

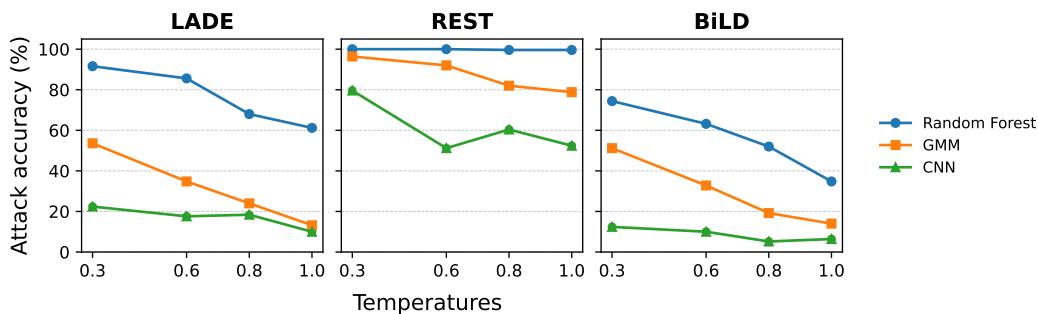


1211 Figure 11: Overlap in symptoms between diseases in the OOD Training set (X-axis) and in the  
 1212 Evaluation set used in Experiment 1 - Exact Knowledge (Y-axis). A white entry indicates that two  
 1213 diseases have similar symptoms (as per GPT-4o), while a black entry indicates no overlap. Overall,  
 1214 there is minimal overlap in symptoms across any random pair of diseases from OOD training dataset  
 1215 and evaluation dataset, representative of realistic OOD datasets.  
 1216  
 1217

## G COMPARING CLASSIFICATION METHODS (RANDOM FOREST, GMM, CNN)

1218 In this section, we evaluate the accuracy of the query fingerprinting attack (Experiment 1 - Exact  
 1219 Knowledge) using different classifiers - Random Forest, GMM and CNN. We study this with for the  
 1220 three speculative decoding techniques LADE, REST and BiLD for a range of temperatures (0.3, 0.6,  
 1221 0.8, 1), all with traces per query (TPQ) of 30.

1222 For the GMM classifier, we trained the scikit-learn's GMM with 1 component per class, and make  
 1223 predictions via Bayes' Rule. For the CNN classifier, we use three 1D convolution layers with max  
 1224 pooling followed by average pooling and a fully connected layer. For the Random Forest classifier,  
 1225 our setup is similar to Section 4.4.  
 1226  
 1227



1238 Figure 12: Accuracy of query fingerprinting attack (Experiment 1 - Exact Knowledge) using Random  
 1239 Forest, GMM, and CNN classifiers, for temperatures 0.3, 0.6, 0.8, 1.0 (using 30 traces per query).  
 1240  
 1241

1242 As shown in Figure 12, the attack accuracy for the GMM classifier ranges from 13-54% for LADE,  
 1243 79-96% for REST, and 14-51% for BiLD. However the GMM performs worse than the Random Forest  
 1244 classifier which achieves an accuracy of 61-92% for LADE, 99-100% for REST, and 34-74% for  
 1245 BiLD. While prior work Carlini & Nasr (2024) showed that GMM can achieve query fingerprinting  
 1246 with high accuracy (up to 100%), we observe that their attacks were restricted to 2 classes, contrary  
 1247 to our attacks that classify across 50 classes, in which scenario the GMM achieves lower accuracy  
 1248 and the Random Forest is able to outperform it.

1249 In comparison, the CNN performs worse than both the Random Forest and the GMM, achieving an  
 1250 accuracy of 10-22% for LADE, 52-80% for REST, and 5-12% for BiLD. This is because the training  
 1251 data set is relatively small, with only 250 to 1500 training data points. So we observe that the CNN  
 1252 overfits to a given trace, leading to lower accuracy.

1253 These results lead us to choose Random Forest classifier for all our attacks in this paper, given that it  
 1254 outperforms GMM and CNN.  
 1255

## H SCALING BEHAVIOR

1257 In this section, we study how the accuracy of the query fingerprinting attack (with Experiment 1 -  
 1258 Exact Knowledge) with temperature of 0.8 changes as the dataset size (number of diseases) scales  
 1259 from 5 to 50. As shown in Table 4, for BiLD and REST, the accuracy remains relatively stable as  
 1260 the number of diseases increase. The attack accuracy for LADE decreases by about 7 percent when  
 1261 we double the dataset size from 25 diseases to 50. This shows that the attack is relatively robust to  
 1262 scaling of the dataset size.

|      | Number of Diseases in Dataset |      |       |      |       |       |       |       |       |       |
|------|-------------------------------|------|-------|------|-------|-------|-------|-------|-------|-------|
|      | 5                             | 10   | 15    | 20   | 25    | 30    | 35    | 40    | 45    | 50    |
| LADE | 92%                           | 86%  | 89.3% | 84%  | 76.8% | 74.7% | 74.3% | 73.5% | 74.2% | 68%   |
| REST | 100%                          | 100% | 100%  | 100% | 100%  | 100%  | 100%  | 99.5% | 99.6% | 99.6% |
| BiLD | 48%                           | 40%  | 60%   | 58%  | 45.6% | 48%   | 49.1% | 48.5% | 48.8% | 52%   |

1269 Table 4: Accuracy of query fingerprinting attack (Experiment 1 - Exact Knowledge) with temperature  
 1270 of 0.8, using 30 traces per query (TPQ) for training as the number of diseases in the dataset scales  
 1271 from 5 to 50.

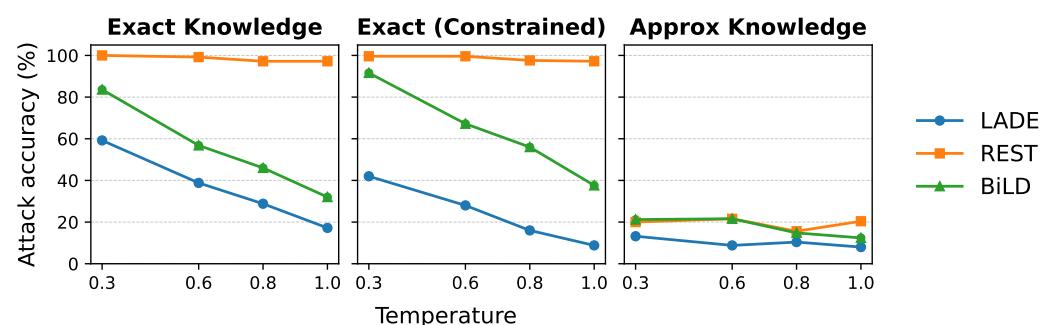
1272 Next, we study how the training cost scales with the dataset size. Specifically, we measure the  
 1273 cost in terms of the number of traces per query required to reach 90% of the fingerprinting attack  
 1274 (Experiment 1 - Exact Knowledge, with temperature 0.8, and dataset of 50 diseases). We measure  
 1275 this cost as the dataset size scales from 5 to 50 diseases.

1277 As shown in Table 5, we observe that the number of traces (cost) remains relatively stable (for REST)  
 1278 or increases moderately (LADE and BiLD). For REST, this is because the retrieval based speculation  
 1279 provides an extremely stable signal, which allows for high accuracy in the attack with a limited  
 1280 number of traces. In comparison, both LADE and BiLD have more variations, requiring more traces  
 1281 per query as the number of diseases increase.

|             | Number of Diseases in Dataset |    |    |    |    |    |    |    |    |    |
|-------------|-------------------------------|----|----|----|----|----|----|----|----|----|
|             | 5                             | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| LADE(61.2%) | 3                             | 3  | 3  | 4  | 5  | 7  | 7  | 10 | 9  | 9  |
| REST(89.6%) | 4                             | 2  | 3  | 4  | 4  | 5  | 5  | 3  | 4  | 4  |
| BiLD(46.8%) | 22                            | 30 | 15 | 16 | 28 | 29 | 28 | 27 | 19 | 19 |

1287 Table 5: Number of queries needed to achieve 90% of the fingerprinting attack accuracy (exact  
 1288 knowledge - experiment 1) with temperature of 0.8, as the number of diseases in the dataset scales  
 1289 from 5 to 50.

1290  
 1291  
 1292  
 1293  
 1294  
 1295

1296 **I ABLATION: QUERY FINGERPRINTING ATTACK ON INSURANCE CHATBOT**  
12971298 To show that our attack is not restricted to the medical domain, and also works on other domains, we  
1299 demonstrate our attack on an insurance chatbot.1311 Figure 13: Attack accuracy of query fingerprinting with 50 insurance-related queries as temperatures  
1312 vary (0.3, 0.6, 0.8, 1.0), using 30 Traces Per Query (TPQ) for training.1313  
1314  
1315 We perform the query fingerprinting attack over a set of 50 queries consisting of insurance-related  
1316 questions, generated by asking ChatGPT for commonly asked insurance-related questions by users.  
1317 These include questions on health, car, and home insurance. Learning whether a user is asking such  
1318 questions can allow an attacker to know private information such as whether a user owns a car or a  
1319 home or has health concerns. We perform the Exact Knowledge, Exact (Constrained) and Approx  
1320 Knowledge experiments , as designed for the medical chatbot in 4.3. Our REST and BiLD, our  
1321 attack on an insurance chatbot achieves 97.2–100% and 37.6–91.6% query-fingerprinting accuracy  
1322 for temperatures 0.3–1.0, slightly outperforming the results we observed on the medical chatbot.  
1323 LADE with 17.2–59.2% attack accuracy performs worse than in the medical case, however it still  
1324 outperforms random chance (2%). This shows that the attack does not rely on any medical specific  
1325 terminologies and can generalize to more diverse domains.