
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

iclrfinalcopy

REAL-TIME LAYOUT ADAPTATION USING GENERA-
TIVE AI

Anonymous authors
Paper under double-blind review

AUTHOR NOTE

First Section: An overview about the how the research got instantiated .
Second section: Utilization of AI Models to make more precise analysis
Third section: Our purpose/ goal that we would want to aim via the research.
Final section: A retrospective view of our research and conclusion.

ABSTRACT

In modern web design, ensuring adaptability and user engagement through dy-
namic layouts is increasingly important. With the growing demand for person-
alized user experiences, traditional static web layouts are insufficient for meeting
user preferences. This paper introduces an innovative approach that leverages gen-
erative AI to dynamically adapt web layouts in real-time. With the help of data
that is collected under the banner of user interactions through technologies such
as java script and node.js, we are able to save those interactions which not only
include the click patterns, but also the timestamps, user’s name, day and date and
number of clicks. These clicks correspond to interactions of users with different
react components. This data is being stored as a csv file as it is more easier to read
when it comes to parsing it to an AI model. Once every designated cycle, the data
is fed to a python script which does an API call to the Chat GPT 4o model which
then analyzes the data and re-writes the CSS to create a new web layout which
is based on the user’s interactions. This successfully gives a web interface that
adapts its layout in real-time, which is somewhat similar to many recommended
systems of popular applications like netflix, amazon prime etc. Its significance
extends across multiple fields, as this approach can enhance user engagement by
dynamically displaying components based on user interaction patterns. Addition-
ally, it offers potential revenue growth for companies, allowing them to charge
higher rates for ads strategically placed in high-engagement areas of the layout,
based on inferred user data.

1 INTRODUCTION

Similar to the recommendation systems used by platforms like Netflix and Amazon Prime, the key
motivation for integrating GenAI into FullStack development was to bring that concept to web appli-
cations. The goal is to create an immersive and adaptive user experience where behavioral analysis
dynamically adjusts the positioning of elements on the webpage.

2 METHODOLOGY

2.1 INITIALIZATION

Before integrating GenAI with the frontend, our primary goal was to extract reusable React compo-
nents from Figma files to streamline various development tasks. To achieve this, we provided GenAI
with three key inputs: a JSON file extracted via Figma’s API, a base64-encoded image for enhanced
feedback, and a custom prompt to address specific design requirements. This setup allowed the
project to generate reusable React components based on Figma designs. This led to a pivotal obser-
vation: with the React components generated using the established architecture, we could automate
their deployment, effectively eliminating the need for manual intervention by a moderator.

2.2 DEVELOPMENT

Starting from an existing web page composed of React components, user interactions are tracked
and stored in the form of click data. This includes timestamps for each click, the number of clicks
per component, the user’s name, and the date of interaction. All this data is recorded and stored in
a CSV file for analysis. The data is then parsed to a GPT-4 model for advanced analytics, where
user click patterns are examined. Based on these insights, the model predicts an optimized layout,
enhancing the user experience by making it more immersive and adaptive. This enables the website’s
interface to be updated during periods of user inactivity, with the goal of increasing both screen time
and the time spent on the same webpage.

3 SYSTEM ARCHITECTURE AND DESIGN

We adopted a systematic approach to building the application. The process started by creating a
foundational webpage composed of various React components, each uniquely named and differing
in size. To enhance user engagement, a login page was implemented, requiring users to input their
name before proceeding to the main webpage. Upon successful login, users are directed to the
main interface. From there, we track user interactions with the components. For every component
click, the system records key details such as the component name, the exact timestamp, date of the
interaction, and the total number of times the component has been clicked. This data is stored in
the backend for further analysis. For simplicity and efficiency, we chose to store the interaction
data in a CSV file format, making it easy to parse and process. In summary, each user’s interaction
history, including clicks and timestamps, is systematically logged in a structured CSV file, providing
a detailed record of user engagement.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

4 DATA ANALYSIS VIA GPT4O

After successfully collecting user interaction data, we developed a Python script to analyze this data
and update the webpage’s CSS dynamically. The script utilizes libraries such as Pandas, OpenAI,
and OS to facilitate the analysis and modifications. The process begins by using Pandas to read
and analyze the CSV file containing user interaction data. The script focuses on the last row of the
CSV file to determine the recently logged in user so as to know if the username in this row exists
elsewhere in the data.

4.1 USERNAME IN THE DATA-SET

If the username is found in the contents of CSV except the last row via a function
check username in csv, the script invokes the function update css from interactions. This function
takes three arguments: the username, the location of the CSS file, and the user query. Next, the CSS
file, which contains the web page layout information, is opened and its contents are loaded into a
temporary variable named css file. The function interact with csv is then called with the user query,
the address of the CSV file, and the contents of the CSS file as arguments. This function performs
the following steps:

• Convert CSV to Data-Frame: It uses Pandas to convert the CSV data into a Data-Frame.
• Generate Prompt: A prompt is created based on the user query.
• Generate Custom CSS: The prompt is sent to the generate text function, which utilizes the

GPT-4 model to generate custom CSS.

Here is the generate text function:

def generate_text(prompt):
chat_completion = client.chat.completions.create(

messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}

],
model="gpt-4o"

)
return chat_completion.choices[0].message.content

The generate text function communicates with the GPT-4 model to generate a custom CSS file. This
CSS file is designed not only to match the existing format for consistency but also to reflect the user’s
interactions, thereby dynamically adjusting the webpage layout according to user preferences.

4.2 USERNAME NOT IN THE DATA-SET

If the username from the last row of the CSV file is not found in the dataset, indicating that the
current active user is visiting the website for the first time, the load original css function is called.
This function accepts two arguments: the path to the original CSS file (og css file) and the path to
the actual CSS file used by the webpage. The contents of the (og css file) are read and then written
to the actual CSS file. This ensures that new users, who have never visited the website before, are
presented with the default layout. As they interact with the page, the layout can be customized based
on their interactions, providing a personalized experience over time.

5 GOAL

5.1 REINFORCEMENT LEARNING (RL) FRAMEWORK FOR DYNAMIC WEBSITE LAYOUT
OPTIMIZATION

In this problem, the goal is to optimize the layout of a website to maximize user engagement and
specific business objectives (such as increasing user time on the site, clicks, or revenue). The layout
changes are dynamically applied based on user interactions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

5.2 STATE (S)

The state st at time t represents the current layout of the webpage along with the user’s interaction
data. This data can include:

• Component positions and sizes (as defined by CSS),
• User clicks on components,
• Time spent on different sections of the webpage,
• User engagement metrics like scroll depth, bounce rate, and interaction frequencies.

s(t) = {current layout, user clicks, time spent, engagement metrics}

5.3 ACTIONS (A)

The actions at represent the potential modifications to the webpage’s CSS layout. These actions can
include:

• Repositioning components (e.g., moving a button or banner),
• Resizing components (e.g., changing the size of images or text areas),
• Recoloring or restyling elements (e.g., adjusting font size or colors to improve visibility).

a(t) = {layout modification: component resizing, repositioning, etc.}

5.4 REWARD (R)

The reward R(st, at) is a function that quantifies the success of an action based on the change in
user engagement. This reward can be constructed by considering the following factors:

• Maximizing user time on the website,
• Encouraging specific actions, such as clicks on ads or buttons,
• Minimizing the bounce rate (i.e., keeping users engaged and preventing them from leaving),
• Increasing overall revenue generated from user interactions.

You can define the reward function as:

R(st, at) = α·(user time on website)+β·(click-through rate)−γ·(bounce rate)+δ·(revenue from ads)

where α, β, γ, and δ are tunable coefficients that represent the relative importance of each metric.

6 OBJECTIVE

The objective is to learn an optimal policy π that maximizes the cumulative reward over time. The
goal is to find the policy that tells the system which layout changes should be made to maximize
long-term user engagement and business metrics.

The cumulative reward is mathematically defined as:

max
π

E

[∞∑
t=0

γtR(st, at)

]

Where:

• Π is the policy (the strategy of adjusting the layout based on user interactions),
• R(st, at) is the reward at time t,
• γ ∈ [0, 1] is the discount factor that controls the trade-off between immediate and future re-

wards (e.g., a higher γ means that long-term rewards are prioritized over short-term gains).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

7 CONCLUSION

The problem is cast as a Markov Decision Process (MDP) where:

• States represent the layout and user interactions,
• Actions are layout modifications,
• Rewards are computed based on user engagement and business goals.

The RL algorithm’s objective is to learn a policy π that optimally adjusts the layout in real-time
to maximize the cumulative reward by improving user engagement and achieving specific business
outcomes.

8 RESULT

Reinforcement learning (RL), a subfield of unsupervised learning, provides a goal-driven framework
ideal for optimizing dynamic website layouts. By integrating supervised learning, using existing user
data for predictions, this approach enhances the accuracy of layout optimization. The combination
allows the system to not only adapt based on user interactions but also predict user preferences,
moving toward more effective outcomes.

While human behavioral patterns serve as core inputs to the model, the reward system plays a crucial
role in guiding layout adjustments. It addresses the challenge of accurate predictions, ensuring that
the layout aligns with user behavior. This cyclical process continuously refines the user experience,
making the website more responsive to individual preferences.

Beyond increasing engagement and revenue, this method offers valuable insights into how users
interact with components, allowing developers to design layouts that cater more effectively to user
attention. As layouts dynamically evolve in response to real-time data, this system fosters a person-
alized user experience, advancing both design quality and user satisfaction.

4

	Introduction
	Methodology
	Initialization
	Development

	System Architecture and Design
	Data Analysis via GPT4o
	Username in the Data-Set
	Username not in the Data-Set

	Goal
	Reinforcement Learning (RL) Framework for Dynamic Website Layout Optimization
	State (s)
	Actions (a)
	Reward (R)

	Objective
	Conclusion
	Result

