

000 R2PS: WORST-CASE ROBUST REAL-TIME PURSUIT 001 STRATEGIES UNDER PARTIAL OBSERVABILITY 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Computing worst-case robust strategies in pursuit-evasion games (PEGs) is time-
010 consuming, especially when real-world factors like partial observability are consid-
011 ered. While important for general security purposes, real-time applicable pursuit
012 strategies for graph-based PEGs are currently missing when the pursuers only
013 have imperfect information about the evader’s position. Although state-of-the-art
014 reinforcement learning (RL) methods like Equilibrium Policy Generalization (EPG)
015 and Grasper provide guidelines for learning graph neural network (GNN) policies
016 robust to different game dynamics, they are restricted to the scenario of perfect
017 information and do not take into account the possible case where the evader can
018 predict the pursuers’ actions. This paper introduces the first approach to worst-case
019 robust real-time pursuit strategies (R2PS) under partial observability. We first
020 prove that a traditional dynamic programming (DP) algorithm for solving Markov
021 PEGs maintains optimality under the asynchronous moves by the evader. Then,
022 we propose a belief preservation mechanism about the evader’s possible positions,
023 extending the DP pursuit strategies to a partially observable setting. Finally, we
024 embed the belief preservation into the state-of-the-art EPG framework to finish our
025 R2PS learning scheme, which leads to a real-time pursuer policy through cross-
026 graph reinforcement learning against the asynchronous-move DP evasion strategies.
027 After reinforcement learning, our policy achieves robust zero-shot generalization to
028 unseen real-world graph structures and consistently outperforms the policy directly
029 trained on the test graphs by the existing game RL approach.
030

031 1 INTRODUCTION 032

033 Pursuit-evasion game (PEG) is an important topic long examined in the fields of robotics and security
034 (Vidal et al., 2001; 2002; Chung et al., 2011). Many real-world tasks can benefit from the solution to
035 an abstracted PEG, e.g., guiding a team of cops to capture a robber and aligning a team of guards to
036 defend against an intruder. In comparison with traditional differential games (Margellos & Lygeros,
037 2011; Zhou et al., 2012), graph-based PEGs are convenient for describing complicated scenarios,
038 possibly with a large scale. When we use graphs as a common structural representation, the actions
039 of the pursuers and the evader can be abstracted as moving from a vertex to an adjacent one at each
040 discrete timestep. The edges between the vertices can possibly represent urban streets in reality.
041

042 However, exactly solving graph-based PEGs is computationally expensive (see Goldstein & Reingold
043 (1995)). Even under a slight structural change, the worst-case robust pursuit strategies can be different
044 and thus require a large amount of time to be recomputed. For example, when a traffic jam happens
045 in the city, the related edges in the PEG graph can be frequently removed and added. This severely
046 limits the real-time applicability of the existing methods featuring mathematical programming (Vieira
047 et al., 2008; Horák & Bošanský, 2017). Besides, real-world factors like partial observability, which
048 leads to PSPACE-hardness even under a fixed opponent (see Papadimitriou & Tsitsiklis (1987)),
049 further increase the difficulty of deriving a well-performing pursuit strategy within a time limit.

050 Reinforcement learning (RL), which has demonstrated strong generalization capabilities in domains
051 like large language models (see Chu et al. (2025)), provides an alternative solution to this problem.
052 We may train a parameterized policy represented by a suitable neural network, e.g., a graph neural
053 network (GNN) (Wu et al., 2020), on a diverse set of graphs and then generalize it to the unseen
graph structures. Unfortunately, while RL has been applied to solving large-scale PEGs (Xue et al.,

054 2022; 2021), existing research focuses more on its scalability rather than generalization capability.
 055 The methods like MT-PSRO (Li et al., 2023) and Grasper (Li et al., 2024) are limited to few-shot
 056 generalization to unseen opponent strategies and initial conditions. As is pointed out by Zhuang
 057 et al. (2025), they still have difficulty adapting to rapid changes of graph structures. The state-of-the-
 058 art method, Equilibrium Policy Generalization (EPG) (Lu et al., 2025a), first examines zero-shot
 059 generalization at the level of graphs. However, whether the paradigm of EPG works under partial
 060 observability remains underexplored. Besides, all of the mentioned works do not consider the possible
 061 case that the evader may have stronger observation capabilities than the pursuers. This makes the
 062 strength of the learned pursuit strategies less convincing for real-world security purposes.

063 In this paper, we present an approach to finding pursuit strategies that are both worst-case robust
 064 and real-time applicable under partial observability. We start by analyzing a dynamic programming
 065 (DP) algorithm for efficiently solving Markov PEGs and proving that it also finds optimal strategies
 066 when the evader can predict the pursuer’s action and move asynchronously. With a belief update
 067 mechanism, we further extend the DP policies to a partially observable setting. The belief preservation
 068 serves to avoid the complexity of recording all observation histories through abstracting opponent
 069 information for effective decision-making. Finally, we embed the belief preservation mechanism into
 070 the reinforcement learning framework of EPG and train a generalized GNN pursuer policy under
 071 partial observability. Following the principle of EPG, the training proceeds in a diverse set of graphs
 072 against the provably optimal DP evader. We then evaluate the worst-case robustness of our real-time
 073 RL pursuer policy under unseen real-world graph structures.

074 Specifically, the contributions of this paper are three threefold:

- 075 • We theoretically analyze a dynamic programming (DP) algorithm and extend the optimal
 076 strategies induced by this algorithm to asynchronous-move and partially observable scenarios.
 077 We prove that the DP algorithm induces strictly optimal pursuit and evasion strategies when
 078 the evader moves asynchronously and design a belief preservation mechanism against the
 079 possibly unobserved evaders. Under belief preservation, we verify that the extended pursuer
 080 policy remains strong against the provably optimal perfect-information evader.
- 081 • We practically train an observation-based pursuer policy across different graph structures,
 082 deriving the first worst-case robust real-time pursuit strategies (R2PS) applicable to dy-
 083 namically changing PEGs with partial observations. We combine our belief preservation
 084 mechanism with the state-of-the-art robust policy generalization paradigm, EPG, and provide
 085 an inference time complexity bound for our GNN-represented RL pursuer policy.
- 086 • Through extensive experiments, we verify that under partial observability, our RL training
 087 against the asynchronous-move DP evaders under a diverse set of graphs leads to robust zero-
 088 shot performance in unseen real-world graphs. Comparative results reveal the superiority of
 089 our approach over the standard game RL approach, PSRO (Lanctot et al., 2017), even against
 090 a best-responding evader. Additionally, we confirm that our RL policy scales effectively
 091 with more complex real-world graphs and that the pursuit performance can benefit from our
 092 belief updates and be enhanced by increased observation ranges.

093 2 PRELIMINARIES

094 2.1 PROBLEM FORMULATION

095 Adversarial games with partial observability can be generally represented by partially observable
 096 stochastic games (POSGs), where equilibrium learning has been rigorously examined in existing
 097 game-theoretic research (e.g., Lu et al. (2025b)). However, this formulation considers all possible
 098 observation histories and leads to a large set of decision points whose size is possibly exponential
 099 in the time horizon of the game. For the worst scenario of pursuit-evasion, while the pursuers have
 100 limited observation capabilities, the evader could still obtain the global information of the game.
 101 Since at least one side of the players possesses perfect information, it is less efficient to formulate
 102 PEGs as complete POSGs. Therefore, in order to avoid the inherent PSPACE-hardness from the
 103 problem formulation, we consider first expressing PEGs as two-player zero-sum Markov games and
 104 then extending the definitions to incorporate practical adversarial factors like partial observability and
 105 asynchronous moves of the evader. The ultimate goal is to adjust the efficient algorithms for solving
 106 Markov PEGs to the imperfect-information setting with little sacrifice of robustness.

Two-player zero-sum Markov game. An infinite-horizon two-player zero-sum Markov game is represented by a tuple $(S, \mathcal{A}, \mathcal{B}, \mathcal{P}, r, \gamma)$, where S is the state space, \mathcal{A} is the action space of the max-player (who aims to maximize the cumulative reward), \mathcal{B} is the action space of the min-player (who aims to minimize the cumulative reward), $\mathcal{P} \in [0, 1]^{|S||\mathcal{A}||\mathcal{B}| \times |S|}$ is the transition probability matrix, $r \in [0, 1]^{|S||\mathcal{A}||\mathcal{B}|}$ is the reward vector, and $\gamma \in (0, 1)$ is the discount factor. In PEGs, the max-player is the team of m pursuers, and the min-player is the evader. We use a termination function $f : S \rightarrow \{0, 1\}$ to mark the states where the pursuit is successful. When $f(s) = 1$, the game is terminated, and a reward of $+1$ is received. Otherwise, a reward of 0 is received. The discount factor $\gamma < 1$ encourages the pursuers to capture the evader as soon as possible.

Graph-based pursuit-evasion game. Considering the requirements of formulating large-scale real-world scenarios, we describe states and actions on a graph structure $G = \langle \mathcal{V}, \mathcal{E} \rangle$: \mathcal{V} is the set of vertices v . The global state $s = (s_p, s_e)$ in a game is an element of $\mathcal{V}^m \times \mathcal{V}$, where $s_p = (v_p^1, v_p^2, \dots, v_p^m) \in \mathcal{V}^m$, and $s_e = v_e \in \mathcal{V}$. An edge $e = (v, v') \in \mathcal{E}$ defines the adjacency between two vertices $v, v' \in \mathcal{V}$. For example, when we represent an urban scenario by a graph G , an edge e can be used to describe a unit length of streets. The valid actions of the $m + 1$ agents in a graph-based PEG are either moving to an adjacent vertex via an edge or staying at the current node.

Policy and value function. Following common notations, we denote by (μ, ν) the joint policy of the two players, where μ is the policy of the max-player (pursuers) and ν is the policy of the min-player (evader): $\mu(s) \in \Delta(\mathcal{A})$ (resp., $\nu(s) \in \Delta(\mathcal{B})$) is the max-player's (resp., min-player's) action distribution at state $s \in S$. Since $\Delta(\mathcal{A})$ is the probability simplex over \mathcal{A} , $\mu(s, a)$ corresponds to the probability of selecting action $a \in \mathcal{A}$ at state s . Given the joint policy, we further define the value function $V^{\mu, \nu}(s) = \mathbb{E} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) | s_0 = s; \mu, \nu]$ as in Markov decision processes.

Solution concept. A Nash equilibrium (NE) in a game is a joint policy where each individual player cannot benefit from unilaterally deviating from his/her own policy (Roughgarden, 2016). Specifically, in a two-player zero-sum MG, an NE (μ^*, ν^*) satisfies $V^{\mu^*, \nu^*} \leq V^{\mu^*, \nu^*} \leq V^{\mu^*, \nu^*}$ for any μ and ν at all states. As is well known, every MG with finite states and actions has at least one NE, and all NEs in a two-player zero-sum MG share the same value $V^*(s) = V^{\mu^*, \nu^*}(s) = \max_{\mu} \min_{\nu} V^{\mu, \nu}(s) = \min_{\nu} \max_{\mu} V^{\mu, \nu}(s)$ (Shapley, 1953). In two-player zero-sum Markov games, Nash equilibrium can be viewed as a globally optimal joint policy since both players cannot be exploited by their worst-case opponents when the players move synchronously (simultaneously).

Game extension. Since Markov games only take into account synchronous moves and full observations, we further allow for two variations concerning asynchronous moves and partial observability. In reality, the worst evader (from the pursuers' perspective) may have good predictions of the pursuit actions. Therefore, we allow it to decide after the pursuers' move a at each timestep. In this case, the evader policy $\nu(s)$ is transformed into an asynchronous one $\nu(s, a)$, and we say that a strategy is optimal for the pursuer/evader side at state s if the worst-case termination timesteps of all possible trajectories starting from s are maximized/minimized. Besides, the availability of sensors may not allow the pursuers to observe an agent that is far away (while the worst evader can). In this case, the pursuer policy $\mu(s)$ is transformed into $\mu(o)$, where o is the history of the pursuers' local observations.

2.2 DYNAMIC PROGRAMMING FOR MARKOV PEGS

The traditional marking algorithm (Chung et al., 2011) provides a general idea of recursively finding optimal strategies in perfect-information PEGs. If all possible evading actions lead to the states that have been marked, then we can also mark the current state, which means the pursuers can capture the evader starting from this state. However, a direct implementation of the marking algorithm incurs a time complexity much higher than the theoretical lower bound $\Omega(|S|)$. In view of this gap, Lu et al. (2025a) introduce a dynamic programming (DP) algorithm (see Algorithm 1) that guarantees near-optimal time complexity for solving Markov PEGs.

Algorithm 1 computes a distance table D through preserving a queue \mathcal{Q} . Intuitively, the distance value $D(s)$ indicates the worst-case timestep for the pursuer side to capture the evader starting from the global state $s = (s_p, s_e)$, which is guaranteed through the use of a minimax policy

$$\mu^*(s_p, s_e) = \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e) \right\}. \quad (1)$$

162 **Algorithm 1:** Dynamic Programming for Markov PEGs

163 **Input:** Graph $G = \langle \mathcal{V}, \mathcal{E} \rangle$, Pursuer Number m , and Termination Function $f : \mathcal{V}^m \times \mathcal{V} \rightarrow \{0, 1\}$

164 1 Initialize an empty queue \mathcal{Q} and the distance table $D = \infty$

165 2 **for** pursuer state (positions) $s_p \in \mathcal{V}^m$ **do**

166 3 **for** evader state $s_e \in \mathcal{V}$ **do**

167 4 **if** $f(s_p, s_e) = 1$ **then**

168 5 $D(s_p, s_e) \leftarrow 0$

169 6 Push (s_p, s_e) into \mathcal{Q}

170 7 **end**

171 8 **end**

172 9 **end**

173 10 **while** \mathcal{Q} is not empty **do**

174 11 Pop the first element (s_p, s_e) from \mathcal{Q}

175 12 **for** evader neighbor $n_e \in \text{Neighbor}(s_e)$, $\nexists n'_e \in \mathcal{V}$, $(n_e, n'_e) \in \mathcal{E}$, $D(s_p, n'_e) > D(s_p, s_e)$ **do**

176 13 **for** pursuer neighbor $n_p \in \text{Neighbor}(s_p) \subset \mathcal{V}^m$, $D(n_p, n_e) = \infty$ **do**

177 14 $D(n_p, n_e) \leftarrow D(s_p, s_e) + 1$

178 15 Push (n_p, n_e) into \mathcal{Q}

179 16 **end**

180 17 **end**

181 18 **end**

182 **Output:** Distance Table D

184 Under synchronous moves, the evader's policy is symmetrically defined as

186
$$\nu^*(s_p, s_e) = \arg \max_{\text{neighbor } n_e \text{ of } s_e} \left\{ \min_{\text{neighbor } n_p \text{ of } s_p} D(n_p, n_e) \right\}. \quad (2)$$

189 Using mathematical induction, Lu et al. (2025a) prove that the joint policy (μ^*, ν^*) is a near-optimal
190 pure strategy (the proof can be found in Appendix A.1):

191 **Theorem 1.** *If there exists a pure-strategy Nash equilibrium in the Markov PEG, then the joint policy
192 (μ^*, ν^*) defined by (1) and (2) is a Nash equilibrium.*

194 3 EXTENDING DYNAMIC PROGRAMMING POLICIES TO ASYNCHRONOUS 195 MOVES AND PARTIAL OBSERVABILITY

197 In this section, we further show that the distance table D generated by the DP algorithm (Algorithm
198 1) can also be used to construct the optimal evader policy under asynchronous moves, as well as the
199 observation-based pursuer policies under partial observability.

201 3.1 ASYNCHRONOUS-MOVE SETTING

203 When the evader moves asynchronously, we define the DP policy for the evader as

204
$$\nu^*(s_p, s_e, n_p) = \arg \max_{\text{neighbor } n_e \text{ of } s_e} \{D(n_p, n_e)\}, \quad (3)$$

206 where n_p is the neighbor of s_p that the pursuers choose to move to in the current decision step, which
207 is perceived or predicted by the evader in advance. With this information as an additional input, the
208 evader can decide based on the pursuers' positions after their decision rather than before. As a result,
209 the policy (3) no longer requires the inner enumeration in (2).

210 In this case, we can show that the pursuer policy (1) and evader policy (3) induced by the distance
211 table D are strictly optimal at all states. We start our analysis by proving Lemma 1, which reveals the
212 minimax essence of the distance table D . The detailed proof can be found in Appendix A.2.

213 **Lemma 1.** *When $D(n_p, n_e) > 0$, Algorithm 1 guarantees that*

215
$$D(n_p, n_e) = \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\} + 1.$$

Using Lemma 1, we can further prove that $D(s)$ implies the best possible worst-case timesteps starting from state s for both pursuer and evader sides under the asynchronous-move setting. The main results are shown as follows, and the omitted proofs can be found in Appendix A.3-A.5.

Theorem 2. *Starting from any state $s = (s_p, s_e)$ satisfying $D(s) = d < \infty$, μ^* guarantees pursuit within d steps against any evasion strategy, and ν^* avoids being captured in less than d steps by any pursuit strategy.*

Based on the definition of optimal strategies in the asynchronous-move setting (see Section 2.1), Theorem 2 directly implies the following corollary:

Corollary 1. *For any state $s = (s_p, s_e)$ with $D(s) < \infty$, both μ^* and ν^* are optimal strategies.*

Furthermore, we use Theorem 3 to show that whether m perfect-information pursuers are sufficient to capture the evader starting from state s can be determined by whether $D(s) < \infty$:

Theorem 3. *Starting from any state $s = (s_p, s_e)$ with $D(s) = \infty$, ν^* can never be captured by any pursuit strategy.*

3.2 PARTIALLY OBSERVABLE SETTING

Since the DP algorithm provably generates optimal strategies when both pursuer and evader sides have full observations, it is appealing to reuse the distance table D to construct a pursuit strategy under partial observability for real-world security purposes. We expect that the observation-based pursuer policy, which is extended from the DP policy under perfect information, should effectively extract history information and align with the original policy when the observation range is infinity.

We consider the following partially observable setting for the pursuers, who may serve as guards in a large area. The PEG begins because an intruder is observed, whose initial position is revealed to the pursuers. Once the game starts, the position of the evader (intruder) can no longer be detected unless it is in the observation range of at least one pursuer. For example, setting the observation range to be 2 means that the evader can be detected only when its distance to one pursuer is less than 3.

Under the partially observable setting, the observation history o induces the possible positions of the evader, which we denote by a set Pos . This set is initialized as $\{s_e\}$, where s_e is the initial position of the evader. As the game proceeds, it is updated based on the pursuers' observations at each timestep:

$$\text{Pos}_{\text{new}} = \begin{cases} \{s_e\} & \text{evader is observed at } s_e, \\ \text{Remove}(\text{Neighbor}(\text{Pos}_{\text{old}})) & \text{evader is not observed.} \end{cases} \quad (4)$$

where the operator $\text{Remove}(\cdot)$ excludes all currently observed positions (since the evader is currently unobserved) from the possible evader positions represented by $\text{Neighbor}(\text{Pos}_{\text{old}})$, which corresponds to the set of one-step neighbors of the nodes in Pos_{old} .

Given Pos , we can express $\mu(o)$ as $\mu(s_p, \text{Pos})$ and construct a minimax policy that bounds the worst-case pursuit timesteps if we assume that the pursuers resume full observability after this step:

$$\begin{aligned} \mu(s_p, \text{Pos}) &= \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{s_e \in \text{Pos}} \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e) \right\} \\ &= \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{n_e \in \text{Neighbor}(\text{Pos})} D(n_p, n_e) \right\}. \end{aligned} \quad (5)$$

While this policy is applicable to the case of partial observability, it is based on an assumption that the observation limitation is not continual. Under continual partial observability, we find that averaging the timesteps through preserving a **belief** about the evader's position can further encourage effective pursuit, especially when the set Pos is large. The belief-averaged pursuer policy is expressed as

$$\mu(s_p, \text{belief}) = \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \frac{\sum_{s_e} \text{belief}(s_e) \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e)}{\sum_{s_e} \text{belief}(s_e)} \right\}, \quad (6)$$

where the belief function is initialized to be 0 except for the initial evader position and updated by

$$\text{belief}_{\text{new}}(s_e) \leftarrow \begin{cases} 0 & s_e \notin \text{Pos}, \\ \sum_{\text{neighbor } v \text{ of } s_e} \nu(v, s_e) \text{belief}_{\text{old}}(v) & s_e \in \text{Pos}. \end{cases} \quad (7)$$

270 Since the pursuer side cannot obtain the evader’s policy ν when no prior knowledge is available, $\nu(v)$
 271 is set to be a uniform distribution over $\text{Neighbor}(v)$ by default.
 272

273 As the original DP policy $\mu^*(s)$ is provably optimal, Lemma 2 guarantees that both the position-
 274 extended policy $\mu(s_p, \text{Pos})$ and the belief-averaged policy $\mu(s_p, \text{belief})$ maintain the pursuit optimality
 275 when there is unlimited observation capability. The proof can be found in Appendix A.6.

276 **Lemma 2.** *When Pos is always a singleton, both pursuer policies (5) and (6) will be reduced to their
 277 perfect-information counterpart (1).*

278 Note that the time complexity of preserving Pos and belief is only $\tilde{\mathcal{O}}(|\mathcal{V}|)$ at each timestep, where $\tilde{\mathcal{O}}$
 279 hides the additional factor of enumerating the neighbors. Since the average degree in the real-world
 280 graphs can be small (see Table 1 in Section 5), the computation is practically efficient. In Appendix
 281 B, we provide the illustrations of the belief preservation process for a more intuitive understanding.
 282

283 4 FINDING ROBUST REAL-TIME PURSUIT STRATEGIES (R2PS) VIA 284 ADVERSARIAL REINFORCEMENT LEARNING ACROSS GRAPHS 285

286 4.1 ADVERSARIAL REINFORCEMENT LEARNING 287

288 Since the DP algorithm has a lower-bound time complexity exponential in the agent number, it
 289 can be impractical to directly apply the DP policies in real time when the graph structure of the
 290 game dynamically changes. In view of this problem, we further combine our belief preservation
 291 mechanism with the idea of Equilibrium Policy Generalization (EPG) (Lu et al., 2025a) to construct
 292 a reinforcement learning method, which makes use of some preprocessed D tables and the induced
 293 policies to train a generalized pursuer policy across a diverse set of graphs. We use the cross-graph
 294 RL policy for zero-shot generalization under unseen graph structures, aiming to derive worst-case
 295 robust real-time pursuit strategies (R2PS) under partial observability.
 296

312 Figure 1: Cross-Graph Reinforcement Learning of Generalized Pursuer Policy
 313

314 Figure 1 illustrates the cross-graph reinforcement learning pipeline, which features unexploitable
 315 evader policies as adversaries. The training set contains graphs with various topologies G_i and the
 316 DP policies (μ_i^*, ν_i^*) induced by the preprocessed D tables. In each iteration, a graph G_i along with
 317 the policy (μ_i^*, ν_i^*) is sampled. Under graph $G = G_i$, we use $\mu^* = \mu_i^*$ as the reference policy to
 318 guide policy training and use $\nu^* = \nu_i^*$ as the adversarial policy. Following the principle of EPG, we
 319 train a cross-graph pursuer policy through reinforcement learning against ν^* with the guidance of μ^* .
 320

321 Specifically, for a transition (s, a, b, r, s') in the replay buffer: s is a randomly generated global state
 322 in the sampled graph; a is the pursuers’ joint action sampled from the current policy model π_θ , which
 323 is ideally a graph neural network (Wu et al., 2020) with parameter θ that enables real-time inference;
 324 b is the evader’s action generated from the asynchronous-move opponent policy ν^* (3); the instant
 325 reward r and the next state s' are generated by the PEG dynamics under graph structure $G = \langle \mathcal{V}, \mathcal{E} \rangle$.
 326

324 Given state s , the reference policy μ^* generates a deterministic reference action $a^* = \mu^*(s)$ and
 325 serves to construct the policy loss
 326

$$\mathcal{L}(\theta|s) = J_\pi(\theta|s) + \beta D_{\text{KL}}(\mu^*(s), \pi(s)) = J_\pi(\theta|s) - \beta \log \pi_\theta(s, a^*), \quad (8)$$

328 where $J_\pi(\theta|s)$ is the original policy loss of any backbone (multi-agent) reinforcement learning
 329 algorithm (e.g., MAPPO (Yu et al., 2022)), and β is a hyperparameter that balances policy guidance
 330 (for efficient exploration) and reinforcement learning loss (for policy optimization).

331 When training pursuers under partial observability, we transform the input of the policy model π_θ by
 332

$$s \leftarrow (s_p, \text{Pos}, \text{belief})$$

334 and use the observation-based policy $\mu(s_p, \text{Pos})$ (5) or $\mu(s_p, \text{belief})$ (6) to replace $\mu^*(s)$ (1), where
 335 Pos and belief are the preserved evader information under partial observability.

336 For dynamic games like PEGs, the policy space has certain transitivity structures. Czarnecki et al.
 337 (2020) show that the strategies in real-world games have different levels of transitive strength, with
 338 Nash equilibrium being the strongest. In a single-graph PEG, reinforcement learning against the
 339 optimal evader policy ν^* helps to exclude the pursuer policies that are transitively weaker. Cross-
 340 graph training is similar to finding the joint part of the remaining strategies and abstracting them
 341 to a worst-case robust policy under a diverse set of graph structures, where the divisions on the
 342 policy space through adversarial RL can be different. Imagine that a half space is excluded after each
 343 single-graph division and that the division criteria of different graphs are independent due to structural
 344 distinctions. In this ideal case, the cross-graph policy will be improved at an exponential level across
 345 a diverse training corpus, leading to robust pursuit strategies even under partial observability.

346 4.2 IMPLEMENTATION AND COMPLEXITY ANALYSIS

347 Technically, we use soft-actor critic (SAC) (Haarnoja et al., 2018; Christodoulou, 2019) as the
 348 backbone RL algorithm and employ a decentralized architecture with a parameter-sharing graph
 349 neural network (GNN) (Cao et al., 2023; Lu et al., 2025a) to represent the graph-based policy of
 350 the homogeneous pursuers. The SAC algorithm features a self-adaptive entropy regularization that
 351 balances exploration and exploitation, with double Q-learning (Hasselt, 2010) employed to avoid
 352 overestimation. The GNN architecture combines multi-head self-attention (Vaswani et al., 2017) with
 353 adjacent-matrix masks to encode graph-based states. The state embedding is then sent into a decoder
 354 followed by a pointer network (Vinyals et al., 2015) for graph-based policy output.

355 The implementation details and hyperparameter setting are reserved in Appendix C to save space.
 356 According to the corresponding analysis, the overall time complexity of computing the graph-based
 357 state feature is $\mathcal{O}(n^2m)$, where $n = |\mathcal{V}|$ is the number of vertices in the graph, and m is the number
 358 of pursuers. Since the complexity of GNN queries is also $\mathcal{O}(n^2m)$, and the complexity of preserving
 359 Pos and belief is $\tilde{\mathcal{O}}(n)$, the overall inference time complexity of the RL pursuer policy at each
 360 timestep is only $\mathcal{O}(n^2m) + \mathcal{O}(n^2m) + \tilde{\mathcal{O}}(n) = \mathcal{O}(n^2m)$. In comparison, the time complexity of
 361 recomputing DP policies is $\tilde{\mathcal{O}}(n^{m+1})$ under dynamically changing graph structures (see Lu et al.
 362 (2025a)), as Algorithm 1 needs to be repeatedly executed. Here we briefly show the inference time
 363 gap arising from this complexity distinction. When $n = 1000$ and $m = 2$, it takes over 2 minutes to
 364 run Algorithm 1 at each timestep using an Intel Core i9-13900HX CPU. The inference time of our
 365 GNN-represented RL policy, however, is less than 1 second under the same condition. Our subsequent
 366 tests further show this inference can be reduced to below 0.01 seconds under GPU accelerations.

367 5 EVALUATIONS

368
 369 Here we provide our experimental evaluations of single-graph DP pursuers and cross-graph RL
 370 pursuers under partial observability. We assume that there are two pursuers ($m = 2$) against the
 371 single evader. This is a reasonable setting in view of the graph-theoretic result that 3 pursuers with
 372 full observations can always capture the evader in any planar graph (Fromme & Aigner, 1984). The
 373 initial position is randomly generated under the restriction that the distance between the evader and
 374 the pursuers is larger than the observation range of 2. Besides, no observation sensors except for the
 375 pursuers themselves are allowed. The test graphs include Grid Map (a 10×10 grid), Scotland-Yard
 376 Map (from the board game Scotland-Yard), Downtown Map (a real-world location from Google
 377

378 Maps), and 7 famous real-world spots (from Times Square to Sydney Opera House). The graph
 379 details are shown in Appendix D.1, and the statistics of these graphs are shown in Table 1 (left).
 380

381
 382 Table 1: Graph Data (Total Node Number, Average Degree, Diameter) and Success Rate Comparison

	Node	Degree	Diameter	Shortest Path	DP _{Pos}	DP _{belief}
Grid Map	100	3.60	18	0.00	0.59	0.78
Scotland-Yard Map	200	3.91	19	0.00	0.44	0.63
Downtown Map	206	2.98	19	0.02	0.73	0.90
Times Square	171	2.58	22	0.01	0.41	0.69
Hollywood Walk of Fame	201	2.42	31	0.01	0.25	0.48
Sagrada Familia	231	2.60	25	0.00	0.24	0.36
The Bund	200	2.53	29	0.03	0.30	0.57
Eiffel Tower	202	2.34	38	0.29	0.69	0.94
Big Ben	192	2.48	34	0.08	0.54	0.74
Sydney Opera House	183	2.33	37	0.05	0.47	0.87

393
 394
 395 5.1 EVALUATIONS OF EXTENDED DP PURSUERS
 396

397 We first evaluate the strength of the extended DP pursuers under partial observability (Section 3.2).
 398 We denote by DP_{Pos} the position-extended pursuer (5) and by DP_{belief} the belief-averaged pursuer
 399 (6). The pursuers succeed ($f(s) = 1$) when at least one of them is adjacent to the evader on the graph
 400 within 128 timesteps, and the success rates are averaged over 500 tests. To simulate the difficult
 401 case for security purposes, the evader is set to be the provably optimal DP evader (3) with global
 402 observations and asynchronous moves. For an intuitive comparison, we also include the result of
 403 directly following the shortest path to the evader under full observability.

404 As is shown in Table 1 (right), the shortest-path strategy can hardly capture the optimal DP evader. In
 405 comparison, though under a limited observation range of 2, the extended DP pursuers demonstrate
 406 significantly higher success rates. Besides, DP_{belief} consistently outperforms DP_{Pos}. This result
 407 verifies that the direct minimax policy (5) can be improved through belief averaging. Actually, since
 408 equation (5) treats all possible positions as equal, the result of the inner max can be very large when
 409 the size of Pos is large, leading to pessimistic pursuit behaviors like staying at certain “rest points.”

410 We further take a look at how observation capabilities could affect success rates. We increase the
 411 observation range and evaluate the performance of DP_{belief} (6). As is shown in Table 6 (Appendix
 412 D.2), the success rates monotonically increase with the observation range and reach 100% when the
 413 range exceeds 5. While $D(\cdot)$ is an accurate estimator of the worst-case pursuit distance in Markov
 414 PEGs, it becomes an optimistic one under partial observability. Nevertheless, the experimental results
 415 show that combining this optimistic estimator with belief information can maintain the strength of
 416 the DP-based pursuit strategies, even under very limited observation capabilities.

417 5.2 EVALUATIONS OF GENERALIZED RL PURSUERS
 418

419 Now, we implement and evaluate our cross-graph reinforcement learning method aimed at R2PS
 420 (Section 4). We discretize the maps from the Dungeon environment (Chen et al., 2019) to construct a
 421 synthetic training set containing 150 graphs and further include 150 random urban locations from
 422 Google Maps to create a large training set with a total of 300 graphs, where the maximum node
 423 number is no more than 500. We apply the R2PS learning scheme to the synthetic training set and the
 424 large training set. Appendix C.4 provides the learning curves of the pursuer policies under partial
 425 observability. As is shown in Figure 4, using the extended DP pursuers as guidance ($\beta = 0.1$) helps
 426 to improve the training efficiency over pure reinforcement learning ($\beta = 0$) under either training set.

427 Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017) is a general reinforcement learning
 428 method extended from the game-theoretic approach of double oracle (DO) (McMahan et al., 2003)
 429 for equilibrium finding. Here we compare the zero-shot performance of our generalized pursuer
 430 policy with a PSRO policy that is directly trained on the 10 test graphs using 10 iterations (10000
 431 episodes per iteration). Our RL policy aimed at R2PS, however, is pretrained under the synthetic
 training set with 150 graphs for 30000 episodes ($\beta = 0.1$) and then trained under the 150 random

432

433

Table 2: Success Rate Comparison across Different Graphs and Strategies

Evader Policy	Stay		DP _{sync}		DP _{async}		BR _{async}
Pursuer Policy	Ours	PSRO	Ours	PSRO	Ours	PSRO	Ours
Grid Map	1.00	1.00	1.00	0.94	1.00	0.88	1.00
Scotland-Yard Map	1.00	1.00	1.00	0.47	0.76	0.00	0.73
Downtown Map	1.00	0.99	1.00	0.88	0.99	0.03	0.92
Times Square	1.00	0.93	1.00	0.16	0.95	0.04	0.27
Hollywood Walk of Fame	1.00	0.95	0.90	0.00	0.38	0.00	0.10
Sagrada Familia	0.99	0.93	0.96	0.07	0.20	0.00	0.20
The Bund	1.00	0.95	0.92	0.31	0.25	0.04	0.23
Eiffel Tower	1.00	0.99	1.00	0.97	1.00	0.52	0.55
Big Ben	1.00	0.99	1.00	0.29	0.82	0.24	0.65
Sydney Opera House	1.00	0.98	1.00	0.07	0.95	0.11	0.31

446

447

urban graphs for 70000 episodes. Since our training process never comes across the test graphs, our RL policy has to zero-shot generalize to these unseen graph structures during evaluations.

449

450

As is shown in Table 2, our pursuer policy consistently outperforms the PSRO pursuer policy in the real-world graphs against a variety of opponents, where:

452

453

454

455

- Stay corresponds to an evader that stays at the initial position. Since the initial distance between the pursuers and the evader is larger than the observation range, and the pursuers have no prior knowledge about the evader’s policy, staying still is a reasonable strategy and leads to the occasional failure of these RL pursuers.
- DP_{sync} corresponds to the DP evader policy (2) under synchronous moves, and DP_{async} corresponds to the strictly optimal policy (3) under asynchronous moves. It is clear that the asynchronous-move evaders are much stronger than the synchronous-move ones due to the advantage of forecasting the pursuers’ decisions. Against DP_{async}, the PSRO pursuers struggle under most of the test graphs in comparison with ours.
- BR_{async} corresponds to the best-responding asynchronous-move evader directly trained against our RL pursuers in the test graphs for 30000 episodes (converged). Even under this worst case, the success rates of our generalized pursuers are over 50% in half of the graphs.

461

462

463

464

Since our worst-case zero-shot performance is clearly better than the PSRO policy directly trained on the test graphs, we can say that our real-time strategies are worst-case robust even under varying graph structures, which implies that our approach achieves R2PS under partial observability.

468

469

5.3 SCALABILITY TESTS AND ABLATION STUDIES

470

471

Table 3: RL Success Rate (against DP_{async}) and Comparison of Inference Time in Large Graphs

	Node Number	Sucess Rate	RL Time (s)	DP Time (s)
Times Square	1805	0.56	0.009837	101
Hollywood Walk of Fame	1251	0.46	0.007917	33
Sagrada Familia	2065	0.33	0.009895	139
The Bund	1723	0.46	0.008117	83
Eiffel Tower	1825	0.41	0.009616	96
Big Ben	1681	0.49	0.007752	79
Sydney Opera House	744	0.76	0.007648	6

481

482

483

484

485

Now we further verify the real-time pursuit capability under the graphs with higher complexity. We create another set of test graphs based on the seven famous locations in Table 1 (from Times Square to Sydney Opera House). Compared to the original graphs, the new graphs double both the map range and the discretization accuracy, leading to significantly larger node numbers. The success rates of our RL pursuer policy against the optimal evader DP_{async} and the inference time

486 comparisons under an NVIDIA GeForce RTX 2080 Ti GPU are shown in Table 3. Clearly, our RL
 487 policy requires significantly smaller inference time in comparison with DP and maintains desirable
 488 overall performance under large graphs in comparison with the results in Table 2. Figure 6 (Appendix
 489 D.2) provides the scaling plots of our GNN-based RL policy inference and DP computation time.

490 We are also curious about whether our RL policy trained under the limited observation range of 2 can
 491 demonstrate better performance when the observation range is larger during inference time. As is
 492 shown in Table 7 (Appendix D.2), the success rates of our RL pursuers monotonically increase with
 493 the observation range. This additional result implies that our RL policy trained with the minimum
 494 observability can be directly applied to the cases with better sensing capabilities.

495 Finally, we examine how the belief updates affect pursuit performance. As we have mentioned,
 496 our belief preservation (7) always employs a uniform evader policy ν since we could not access
 497 prior information about the true opponent. However, if we manage to obtain such information in
 498 reality, we can instantly improve the pursuit performance by replacing ν with the actual evader policy.
 499 As is shown in Table 4, utilizing known opponent information improves success rates against the
 500 best-responding evader BR_{async} . On the other hand, if we reduce the belief update frequency from
 501 every single step (original) to every 2 or 3 steps, then the pursuit success rates will instantly decline.
 502 This result further demonstrates the benefits of our belief update mechanism.

503
 504 Table 4: **RL Success Rate (against BR_{async}) Comparison under Different Belief Update Conditions**

Belief Update Condition	Known Opponent	Original	Every 2 Steps	Every 3 Steps
Grid Map	1.00	1.00	0.60	0.42
Scotland-Yard Map	0.99	0.73	0.34	0.28
Downtown Map	1.00	0.92	0.61	0.39
Times Square	0.42	0.27	0.18	0.17
Hollywood Walk of Fame	0.13	0.10	0.04	0.03
Sagrada Familia	0.28	0.20	0.12	0.05
The Bund	0.54	0.23	0.13	0.12
Eiffel Tower	0.81	0.55	0.32	0.29
Big Ben	0.82	0.65	0.40	0.25
Sydney Opera House	0.54	0.31	0.22	0.15

518 6 CONCLUSION

519 This paper presents a novel approach to worst-case robust real-time pursuit strategies under partial
 520 observability and varying graph structures. We first theoretically examine a dynamic programming
 521 (DP) algorithm and prove that it can unify the solutions to Markov PEGs with either synchronous
 522 moves or asynchronous moves. Then, we propose a belief preservation mechanism to efficiently
 523 abstract evader information from the observation histories of the pursuers under partial observability.
 524 The belief information is combined with the distance table computed by the DP algorithm to derive
 525 observation-based pursuer policies, which demonstrates strong empirical performance against the
 526 perfect-information DP evader. Finally, we embed the belief preservation mechanism into the
 527 framework of EPG (Lu et al., 2025a) to find robust real-time pursuit strategies, fulfilling cross-
 528 graph reinforcement learning against the asynchronous-move DP evader under partial observability.
 529 Experiments show that our observation-based DP pursuers can be used as guidance to facilitate
 530 efficient policy exploration during RL training. Under unseen real-world graph structures, our cross-
 531 graph policy manages to generate real-time pursuit strategies with worst-case robustness, consistently
 532 outperforming the PSRO policy directly trained under the test graphs. Comparative results also reveal
 533 that the pursuers can benefit from belief updates, while the evader benefits from asynchronous moves.

534 In this work, the belief preservation mechanism provides an efficient way to handle partial observability.
 535 We show that this mechanism can be effectively combined with the existing PEG methods like
 536 DP and EPG. After adversarial reinforcement learning across graphs, a generalized pursuer policy
 537 under belief preservation is eventually derived, leading to the first worst-case robust real-time pursuit
 538 strategies under partial observability. Hopefully, the current research on PEGs could encourage
 539 subsequent works on the broader research topics concerning real-world security.

540 REFERENCES

542 Yuhong Cao, Tianxiang Hou, Yizhuo Wang, Xian Yi, and Guillaume Sartoretti. Ariadne: A rein-
 543 forcement learning approach using attention-based deep networks for exploration. In *2023 IEEE*
 544 *International Conference on Robotics and Automation (ICRA)*, pp. 10219–10225. IEEE, 2023.

545 Fanfei Chen, Shi Bai, Tixiao Shan, and Brendan Englot. Self-learning exploration and mapping for
 546 mobile robots via deep reinforcement learning. In *Aiaa scitech 2019 forum*, pp. 0396, 2019.

547 Petros Christodoulou. Soft actor-critic for discrete action settings. *arXiv preprint arXiv:1910.07207*,
 548 2019.

550 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 551 Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
 552 model post-training. In *Forty-second International Conference on Machine Learning*, 2025.

553 Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. Search and pursuit-evasion in mobile
 554 robotics: A survey. *Autonomous robots*, 31:299–316, 2011.

556 Wojciech M Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David
 557 Balduzzi, and Max Jaderberg. Real world games look like spinning tops. *Advances in Neural*
 558 *Information Processing Systems*, 33:17443–17454, 2020.

559 M Fromme and M Aigner. A game of cops and robbers. *Discrete Appl. Math*, 8:1–12, 1984.

560 Arthur S Goldstein and Edward M Reingold. The complexity of pursuit on a graph. *Theoretical*
 561 *computer science*, 143(1):93–112, 1995.

563 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 564 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
 565 applications. *arXiv preprint arXiv:1812.05905*, 2018.

566 Hado Hasselt. Double Q-learning. *Advances in Neural Information Processing Systems*, 23, 2010.

567 Karel Horák and Branislav Bošanský. Dynamic programming for one-sided partially observable
 568 pursuit-evasion games. In *International Conference on Agents and Artificial Intelligence*, volume 2,
 569 pp. 503–510. SCITEPRESS, 2017.

571 Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
 572 David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
 573 learning. *Advances in Neural Information Processing Systems*, 30, 2017.

575 Pengdeng Li, Shuxin Li, Xinrun Wang, Jakub Černý, Youzhi Zhang, Stephen McAleer, Hau Chan,
 576 and Bo An. Grasper: A generalist pursuer for pursuit-evasion problems. In *Proceedings of the 23rd*
 577 *International Conference on Autonomous Agents and Multiagent Systems*, pp. 1147–1155, 2024.

578 Shuxin Li, Xinrun Wang, Youzhi Zhang, Wanqi Xue, Jakub Černý, and Bo An. Solving large-scale
 579 pursuit-evasion games using pre-trained strategies. In *Proceedings of the AAAI Conference on*
 580 *Artificial Intelligence*, volume 37, pp. 11586–11594, 2023.

582 Runyu Lu, Peng Zhang, Ruochuan Shi, Yuanheng Zhu, Dongbin Zhao, Yang Liu, Dong Wang, and
 583 Cesare Alippi. Equilibrium policy generalization: A reinforcement learning framework for cross-
 584 graph zero-shot generalization in pursuit-evasion games. In *The Thirty-ninth Annual Conference*
 585 *on Neural Information Processing Systems*, 2025a.

586 Runyu Lu, Yuanheng Zhu, and Dongbin Zhao. Divergence-regularized discounted aggregation:
 587 Equilibrium finding in multiplayer partially observable stochastic games. In *The Thirteenth*
 588 *International Conference on Learning Representations*, 2025b.

589 Kostas Margellos and John Lygeros. Hamilton-Jacobi formulation for reach-avoid differential games.
 590 *IEEE Transactions on Automatic Control*, 56(8):1849–1861, 2011.

592 H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
 593 functions controlled by an adversary. In *Proceedings of the 20th International Conference on*
Machine Learning (ICML-03), pp. 536–543, 2003.

594 Christos H Papadimitriou and John N Tsitsiklis. The complexity of Markov decision processes.
595 *Mathematics of operations research*, 12(3):441–450, 1987.
596

597 Tim Roughgarden. *Twenty lectures on algorithmic game theory*. Cambridge University Press, 2016.

598 Lloyd S Shapley. Stochastic games. *Proceedings of the National Academy of Sciences*, 39(10):
599 1095–1100, 1953.
600

601 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
602 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing
603 Systems*, 30, 2017.

604 Rene Vidal, Shahid Rashid, Cory Sharp, Omid Shakernia, Jin Kim, and Shankar Sastry. Pursuit-
605 evasion games with unmanned ground and aerial vehicles. In *Proceedings 2001 ICRA. IEEE
606 International Conference on Robotics and Automation (Cat. No. 01CH37164)*, volume 3, pp.
607 2948–2955. IEEE, 2001.

608 Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar Sastry. Probabilistic
609 pursuit-evasion games: Theory, implementation, and experimental evaluation. *IEEE Transactions
610 on Robotics and Automation*, 18(5):662–669, 2002.

611 Marcos AM Vieira, Ramesh Govindan, and Gaurav S Sukhatme. Optimal policy in discrete pursuit-
612 evasion games. *Department of Computer Science, University of Southern California, Tech. Rep*,
613 2008.

614 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. *Advances in Neural Informa-
615 tion Processing Systems*, 28, 2015.

616 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
617 comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and
618 Learning Systems*, 32(1):4–24, 2020.

619 Wanqi Xue, Youzhi Zhang, Shuxin Li, Xinrun Wang, Bo An, and Chai Kiat Yeo. Solving large-scale
620 extensive-form network security games via neural fictitious self-play. In *Proceedings of the 28th
621 International Joint Conference on Artificial Intelligence*, 2021.

622 Wanqi Xue, Bo An, and Chai Kiat Yeo. NSGZero: Efficiently learning non-exploitable policy in
623 large-scale network security games with neural Monte Carlo tree search. In *Proceedings of the
624 AAAI Conference on Artificial Intelligence*, volume 36, pp. 4646–4653, 2022.

625 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
626 surprising effectiveness of PPO in cooperative multi-agent games. *Advances in Neural Information
627 Processing Systems*, 35:24611–24624, 2022.

628 Zhengyuan Zhou, Ryo Takei, Haomiao Huang, and Claire J Tomlin. A general, open-loop formulation
629 for reach-avoid games. In *2012 IEEE 51st IEEE Conference on Decision and Control (CDC)*, pp.
630 6501–6506. IEEE, 2012.

631 Shuxin Zhuang, Shuxin Li, Tianji Yang, Muheng Li, Xianjie Shi, Bo An, and Youzhi Zhang. Solving
632 urban network security games: Learning platform, benchmark, and challenge for AI research.
633 *arXiv preprint arXiv:2501.17559*, 2025.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A OMITTED PROOFS**649 **A.1 PROOF OF THEOREM 1**650 *Proof.* For no-exit PEGs, the Nash value satisfies the following Bellman minimax equation:

651
$$652 V^*(s) = \begin{cases} \max_{\mu(s) \in \Delta(\mathcal{A})} \min_{b \in \mathcal{B}} \sum_{a \in \mathcal{A}} \mu(s, a) \left(r(s, a, b) + \gamma \sum_{s' \in S} \mathcal{P}(s, a, b, s') V^*(s') \right) & f(s) = 0, \\ 1 & f(s) = 1. \end{cases}$$

653 Since the transition is deterministic and a non-zero reward is received only when a termination state
654 is reached, we can simplify the Bellman equation as follows:

655
$$656 V^*(s) = \begin{cases} \max_{\mu(s) \in \Delta(\mathcal{A})} \min_{b \in \mathcal{B}} \sum_{a \in \mathcal{A}} \mu(s, a) \gamma V^*(s' = \mathcal{P}(s, a, b)) & f(s) = 0, \\ 1 & f(s) = 1. \end{cases}$$

657 The equilibrium policy for the max-player satisfies:

658
$$659 \mu^*(s) \in \arg \max_{\mu(s) \in \Delta(\mathcal{A})} \left\{ \min_{b \in \mathcal{B}} \sum_{a \in \mathcal{A}} \mu(s, a) V^*(s' = \mathcal{P}(s, a, b)) \right\}.$$

660 When there is a pure-strategy Nash equilibrium in the game, the arg max has a pure-strategy solution,
661 and the Bellman equation can be further simplified:

662
$$663 V^*(s) = \gamma \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} V^*(s' = \mathcal{P}(s, a, b)). \quad (9)$$

664 Note that the Nash value has the form of $V^*(s) = \gamma^d$ ($d \in \mathbb{N}$). Therefore, we consider using
665 mathematical induction. We assume that $V^*(s) = \gamma^{D(s)}$ holds for all states s that satisfies either
666 $V^*(s) = \gamma^d$ or $D(s) = d$ when $d < k$ ($\gamma^d > \gamma^k$). We want to prove that $V^*(s) = \gamma^{D(s)}$ holds for
667 all states s that satisfies either $V^*(s) = \gamma^k$ or $D(s) = k$. Clearly, our initialization guarantees that
668 the proposition holds for $k = 0$. Our update condition $D(n_p, n_e) = \infty$ guarantees that every state
669 $s \in S$ is pushed into and popped from \mathcal{Q} at most once. Note that the following proof reverses the
670 notations of s and s' in (9) to better align with $s = (s_p, s_e)$ in Algorithm 1.671 Now, we prove the first half of the proposition. For an arbitrary state $s' = (n_p, n_e)$ that satisfies
672 $V^*(s') = \gamma^k$, the simplified Bellman equation (9) guarantees that there exists $a = s_p \in \mathcal{A}(n_p)$ and
673 $b = s_e \in \mathcal{B}(n_e)$ such that $V^*(s') = \gamma V^*(s = \mathcal{P}(s', a, b))$. Therefore, there exists $s = (s_p, s_e)$
674 such that $V^*(s) = \gamma^{k-1}$. According to the first half of the induction hypothesis, we have that
675 $D(s) = k - 1 < \infty$, which implies that the algorithm once pushed s' into \mathcal{Q} . Besides, the Bellman
676 equation guarantees that $\forall b' \in \mathcal{B}(n_e), V^*(\mathcal{P}(s', a, b')) \geq V^*(\mathcal{P}(s', a, b)) = V^*(s) = \gamma^{k-1} > \gamma^k$.
677 By induction hypothesis, $D(s_p, n'_e) \leq D(s_p, s_e)$ holds for any neighbor n'_e of n_e . Therefore, the
678 algorithm must enumerate n_e when popping $s = (s_p, s_e)$. If we have $D(n_p, n_e) = \infty$ at the moment,
679 then n_p will be enumerated in the inner loop, and we will have $D(n_p, n_e) = D(s_p, s_e) + 1 = k$.
680 Now we complete the proof by showing that $D(n_p, n_e) < \infty$ implies $D(n_p, n_e) = k$. Actually, if
681 $k < D(n_p, n_e) < \infty$, then $D(s')$ must be computed by adding 1 to some $D(s'') \geq k$. Since s'' must
682 be popped from \mathcal{Q} no later than s , it is contradictory to the fact that $D(s'') > D(s) = k - 1$. If
683 $D(n_p, n_e) < k$, then the second half of the induction hypothesis implies that $V^*(s') = \gamma^{D(n_p, n_e)}$,
684 which is contradictory to the fact that $V^*(s') = \gamma^k$.685 Then, we prove the second half of the proposition. For an arbitrary state $s' = (n_p, n_e)$ that satisfies
686 $D(s') = k$, the $D(s)$ must be computed by adding 1 to some $D(s) = k - 1$, where $s = (s_p, s_e)$.687 According to the first half of the induction hypothesis, we have $V^*(s) = \gamma^k$. The algorithm guarantees
688 that $D(s_p, n'_e) \leq D(s_p, s_e) = k - 1$ holds for any neighbor n'_e of n_e . By induction hypothesis, it holds
689 that $\forall b' \in \mathcal{B}(n_e), V^*(\mathcal{P}(s', a, b')) \geq V^*(\mathcal{P}(s', a, b))$ when $a = s_p \in \mathcal{A}(n_p)$ and $b = s_e \in \mathcal{B}(n_e)$.
690 Therefore, $\min_{b \in \mathcal{B}(n_e)} V^*(\mathcal{P}(s', a, b)) = \gamma^{k-1}$ when $a = s_p \in \mathcal{A}(n_p)$. If there exists $a^\dagger = s_p^\dagger \in \mathcal{A}(n_p)$
691 such that $\min_{b \in \mathcal{B}(n_e)} V^*(\mathcal{P}(s', a^\dagger, b)) > \gamma^{k-1}$, then we let $b^\dagger = \arg \min_{b \in \mathcal{B}(n_e)} V^*(\mathcal{P}(s', a^\dagger, b)) > \gamma^{k-1}$

702 and let $s^\dagger = (s_p^\dagger, s_e^\dagger = b^\dagger)$. According to the first half of the induction hypothesis, $D(s_p^\dagger, n'_e) \leq$
 703 $D(s_p^\dagger, s_e^\dagger) < k - 1$ holds for any neighbor n'_e of n_e . Since $D(s_p^\dagger, s_e^\dagger) < D(s_p, s_e)$, s^\dagger must be popped
 704 from \mathcal{Q} earlier than s , which means that $D(s) = \infty$ when s^\dagger is popped. Therefore, $s' = (n_p, n_e)$
 705 must be enumerated when s^\dagger is popped, which is contradictory to the fact that $D(s') = \infty$ when s is
 706 popped. Therefore, $V^*(s') = \gamma \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} V^*(\mathcal{P}(s', a, b)) = \gamma^k$.
 707

708 For now, we have proved that $V^*(s) = \gamma^{D(s)}$. Therefore:
 709

$$710 \mu^*(s_p, s_e) = \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e) \right\} \Rightarrow \mu^*(s) = \arg \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} V^*(\mathcal{P}(s, a, b)),$$

$$711 \nu^*(s_p, s_e) = \arg \max_{\text{neighbor } n_e \text{ of } s_e} \left\{ \min_{\text{neighbor } n_p \text{ of } s_p} D(n_p, n_e) \right\} \Rightarrow \nu^*(s) = \arg \min_{b \in \mathcal{B}} \max_{a \in \mathcal{A}} V^*(\mathcal{P}(s, a, b)).$$

$$712$$

$$713$$

$$714$$

715 As there exists a pure-strategy Nash equilibrium, it is directly guaranteed that (μ^*, ν^*) is a Nash
 716 equilibrium. \square
 717

718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 A.2 PROOF OF LEMMA 1
757758 *Proof.* We consider the cases of $D(n_p, n_e) = \infty$ and $0 < D(n_p, n_e) < \infty$, separately.
759760 The first case is $D(n_p, n_e) = \infty$, which implies that (n_p, n_e) is never enqueued:
761762 Suppose that $\min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\} < \infty$. Then, we let
763

764
$$s_p = \arg \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\}, s_e = \arg \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e).$$

765

766
767 Since $D(s_p, s_e) = \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\} < \infty$, (s_p, s_e) is once enqueued.
768769 Since $s_e = \arg \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e)$, we have that $\nexists n'_e \in \mathcal{V}, (n_e, n'_e) \in E, D(s_p, n'_e) > D(s_p, s_e)$.
770771 Since $D(n_p, n_e) = \infty$, state (n_p, n_e) will be enumerated when (s_p, s_e) is dequeued. Then, $D(n_p, n_e)$
772 is enqueued, which leads to a contradiction.
773774 Therefore, we have $\min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\} = \infty$, which means the equation holds
775 in the first case.
776777 The second case is $0 < D(n_p, n_e) < \infty$, which implies that (n_p, n_e) is once enumerated when
778 a state $(s_p, s_e) \in \text{Neighbor}(n_p, n_e)$ is dequeued. According to the enumeration rule, we have
779 $\nexists n'_e \in \mathcal{V}, (n_e, n'_e) \in E, D(s_p, n'_e) > D(s_p, s_e)$, which implies $s_e = \arg \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e)$. Since
780781 $D(n_p, n_e) = D(s_p, s_e) + 1$, we have:
782

783
$$D(n_p, n_e) \geq \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\} + 1.$$

784

785 Now redefine $s_p = \arg \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\}, s_e = \arg \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e)$.
786787 Then, we have $D(s_p, s_e) = \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\}$ and $\nexists n'_e \in \mathcal{V}, (n_e, n'_e) \in E, D(s_p, n'_e) > D(s_p, s_e)$. Since the D values in \mathcal{Q} do not decrease, we have $D(n_p, n_e) \leq$
791 $D(s_p, s_e) + 1 = \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\} + 1$.
792793 Therefore, $D(n_p, n_e) = \min_{\text{neighbor } s_p \text{ of } n_p} \left\{ \max_{\text{neighbor } s_e \text{ of } n_e} D(s_p, s_e) \right\} + 1$ holds in the second case.
794795 To conclude, the equation always holds when $D(n_p, n_e) > 0$. \square
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A.3 PROOF OF THEOREM 2
811812 *Proof.* First, we prove that for any state $s = (s_p, s_e)$ satisfying $D(s) = d < \infty$, μ^* guarantees
813 pursuit within d steps against any evasion strategy:814 Clearly, the proposition holds true when $d = 0$. Assume that the proposition holds for all $d < k$.
815 When $d = k$, we let $n_p = \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e) \right\}$, $n_e = \arg \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e)$.
816 By Lemma 1, we have $D(n_p, n'_e) \leq D(n_p, n_e) = D(s_p, s_e) - 1 \leq k - 1 < k$, $\forall n'_e \in \text{Neighbor}(s_e)$.
817 By induction hypothesis, μ^* guarantees pursuit within $k - 1$ steps for the states (n_p, n'_e) that satisfies
818 $n'_e \in \text{Neighbor}(s_e)$. Therefore, $\mu^*(s) = n_p$ guarantees pursuit within k steps. By induction, the
819 proposition holds true for all $d < \infty$.
820821 Second, we prove that for any state $s = (s_p, s_e)$ satisfying $D(s) = d < \infty$, ν^* avoids being captured
822 in less than d steps by any pursuit strategy:
823824 Suppose there exists a pursuit movement sequence $\{n_p^0, n_p^1, \dots, n_p^{T-1}\}$ that captures the evader
825 within $T < d$ steps under policy ν^* . Then, we denote by $\{s^0, s^1, s^2, \dots, s^T\}$ the corresponding state
826 sequence, where $s_0 = s$ and $D(s^T) = 0$. By Lemma 1, $D(s_p, s_e) = \min_{\text{neighbor } n_p \text{ of } s_p} \{\nu^*(s_p, s_e, n_p)\} +$
827 1, which implies that $D(s_p, s_e) \geq D(n_p, \nu^*(s_p, s_e, n_p)) + 1, \forall n_p$. Therefore, $D(s^t) = D(s_p^t, s_e^t) \geq$
828 $D(n_p^t, \nu^*(s_p^t, s_e^t, n_p^t)) + 1 = D(s_p^{t+1}, s_e^{t+1}) + 1 = D(s^{t+1}) + 1$. This leads to a contradiction:
829 $D(s) = D(s^0) \geq D(s^1) + 1 \geq D(s^2) + 2 \geq D(s^T) + T = T < d = D(s)$. Therefore, ν^* always
830 avoids being captured in less than d steps when $D(s) = d < \infty$. \square
831832 A.4 PROOF OF COROLLARY 1
833834 *Proof.* By Theorem 2:
835836 For $s = (s_p, s_e)$ with $D(s) = d < \infty$, since μ^* guarantees pursuit within d steps against any evasion
837 strategy, no evader can guarantee evasion for d steps against a worst-case pursuit strategy. Since ν^*
838 avoids being captured in less than d steps by any pursuit strategy, ν^* is the optimal evasion strategy.839 For $s = (s_p, s_e)$ with $D(s) = d < \infty$, since ν^* avoids being captured in less than d steps by any
840 pursuit strategy, no pursuer can guarantee pursuit in less than d steps against a worst-case evasion
841 strategy. Since μ^* guarantees pursuit within d steps against any evasion strategy, μ^* is the optimal
842 pursuit strategy. \square
843844 A.5 PROOF OF THEOREM 3
845846 *Proof.* Suppose that there exists a pursuit strategy that captures ν^* within T steps.847 In this case, we denote by $\{s^0, s^1, s^2, \dots, s^T\}$ the state sequence of a successful pursuit, where
848 $s_0 = s$ and $D(s^T) = 0$. By Lemma 1, $D(s_p, s_e) = \min_{\text{neighbor } n_p \text{ of } s_p} \{D(n_p, \nu^*(n_p))\} + 1$, which
849 implies $D(n_p, \nu^*(n_p)) = \infty, \forall n_p \in \text{Neighbor}(s_p)$. Then, we have $D(s^0) = \infty \Rightarrow D(s^1) = \infty \Rightarrow$
850 $\dots \Rightarrow D(s^T) = \infty$, which leads to a contradiction.
851852 Therefore, for $s = (s_p, s_e)$ with $D(s) = \infty$, ν^* can never be captured by any pursuit strategy. \square
853854
855
856
857
858
859
860
861
862
863

864
865

A.6 PROOF OF LEMMA 2

866

Proof. When Pos is a singleton, we have $\text{Pos} = \{s_e\}$. Therefore,

867

868

869

870

871

872

$$\begin{aligned}\mu(s_p, \text{Pos}) &= \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{n_e \in \text{Neighbor}(\text{Pos})} D(n_p, n_e) \right\} \\ &= \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e) \right\} = \mu^*(s_p, s_e).\end{aligned}$$

873

Besides, we have

874

875

876

877

878

$$\begin{aligned}\text{belief}(s) &= \begin{cases} 0 & s \notin \text{Pos} \\ \sum_{\text{neighbor } v \text{ of } s} \nu(v, s) \text{belief}_{\text{old}}(v) & s \in \text{Pos} \end{cases} \\ &= \mathbb{I}[s = s_e] \text{belief}_{\text{new}}(s_e).\end{aligned}$$

879

880

Therefore, it holds that

881

882

883

884

885

886

$$\begin{aligned}\mu(s_p, \text{belief}) &= \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \frac{\text{belief}_{\text{new}}(s_e) \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e)}{\text{belief}_{\text{new}}(s_e)} \right\} \\ &= \arg \min_{\text{neighbor } n_p \text{ of } s_p} \left\{ \max_{\text{neighbor } n_e \text{ of } s_e} D(n_p, n_e) \right\} = \mu^*(s_p, s_e).\end{aligned}$$

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

□

918 B ILLUSTRATION OF BELIEF PRESERVATION
919

957 Figure 2: Pursuit Initialization under Limited Observation Range (Nodes with Blue Outlines)

959 Figure 2 illustrates the initial state of one pursuit episode. Two green pursuers with an observation
960 range of 2 are going to capture the red evader that stays still within a total of 13 steps. The purple
961 nodes are some auxiliary sensors that provide additional information for the pursuers (also with an
962 observation range of 2). Therefore, all of the nodes with dark blue outlines can be observed by the
963 pursuers, while the other nodes cannot. At the first step, only the red node has non-zero belief and is
964 marked as high probability (represented by the yellow star).

965 Figure 3 illustrates the pursuit process under belief preservation, where the black or shadowed area
966 around the evader corresponds to belief and the darkness of the nodes indicates the current belief
967 distribution. Following (7), the belief is spread as the game proceeds (see timesteps 2, 4, 6, 8, 10) and
968 used to generate the pursuit strategy (6) under partial observability. At timestep 12, the evader is
969 eventually observed. Since Pos becomes a singleton by (4), the shadowed area disappears, and the
970 observed evader node is marked as high probability again.

971 Note that when the observed area covers all nodes, the game will be reduced to its perfect-information
972 counterpart, where the DP pursuer policy is provably optimal.

Figure 3: Pursuit Illustration under Belief Preservation (Shadowed Area around Evader)

1026 **C IMPLEMENTATION DETAILS**
10271028 **C.1 SOFT ACTOR-CRITIC (SAC)**
10291030 To fulfill R2PS training, we use discrete-action soft-actor critic (SAC) (Christodoulou, 2019) as the
1031 backbone RL algorithm, where:1032 The value function is defined as
1033

1034
$$V(s) = \mathbb{E}_{a \sim \pi(s)} [Q(s, a) - \alpha \log \pi(s, a)].$$

1035 The loss of the value network Q_ϕ is computed as
1036

1037
$$J_Q(\phi) = \mathbb{E}_{s, a} \left[\frac{1}{2} (Q_\phi(s, a) - (r + \gamma \mathbb{E}_{s'} [V(s')]))^2 \right].$$

1038

1039 The loss of the policy network π_θ is computed as
1040

1041
$$J_\pi(\theta) = \mathbb{E}_{s, a \sim \pi_\theta(s)} [\alpha \log \pi_\theta(s, a) - Q(s, a)].$$

1042

1043 The temperature α under target entropy \bar{H} is adaptively updated under loss
1044

1045
$$J(\alpha) = \mathbb{E}_{s, a} [-\alpha (\log \pi(s, a) + \bar{H})].$$

1046 **C.2 GRAPH NEURAL NETWORK (GNN)**
10471048 We employ a sequence model with a parameter-sharing graph neural network (GNN) architecture (Lu
1049 et al., 2025a) to represent the graph-based policy of the homogeneous pursuers:1050 Under the principle of sequential decision-making, a joint policy can be decomposed as
1051

1052
$$\pi(a_1, a_2, \dots, a_m | s) = \prod_{l=1}^m \pi(a_l | s, a_1, \dots, a_{l-1}),$$

1053

1054 where (s, a_1, \dots, a_{l-1}) indicates the global state after the first $l-1$ pursuers take actions $(a_i)_{i \in [l-1]}$.1055 For a team of pursuers with m agents, the sequence model queries the policy network m times under
1056 a fixed adjacent matrix $M \in \{0, 1\}^{n \times n}$ ($n = |\mathcal{V}|$) for the current graph. The input is composed of
1057 a state feature s_f and the information of node index c for the current acting agent. Note that under
1058 partial observability, the global state s is replaced by $(s_p, \text{Pos}, \text{belief})$. We use the shortest path
1059 distances to the m pursuers as the initial feature of each node $v \in \mathcal{V}$. The normalized features of
1060 all n nodes are concatenated with $(\text{Pos}, \text{belief})$ to construct the state feature s_f . Also note that the
1061 distances between one node and all other nodes can be computed using the $\mathcal{O}(n^2)$ Dijkstra algorithm.1062 Given the state feature input s_f , we embed it into $\mathbb{R}^{d \times n}$ and send the result into an encoder composed
1063 of 6 self-attention layers, where d is the embedding dimension. Each layer takes the output h of the
1064 last layer as the input and outputs h' using a masked attention, whose time complexity is also $\mathcal{O}(n^2)$:

1065
$$q_i = W_Q h_i, k_i = W_K h_i, v_i = W_V h_i, u_{ij} = \frac{q_i^T k_j}{\sqrt{d}}, w_{ij} = \frac{e^{u_{ij}}}{\sum_{t=1}^n e^{u_{it}}}, h'_i = \sum_{j=1}^n \min \{w_{ij}, M_{ij}\} v_j,$$

1066
1067

1068 where $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ are the weights to be learned.
10691070 Given the output of the encoder \hat{h} , we employ a decoder without masks to gather global information.
1071 The decoder uses \hat{h}_c to query in the output features \hat{h} of all nodes, with the keys equal to the values:

1072
$$q = W_Q \hat{h}_c, k_i = W_K \hat{h}_i, v_i = W_V \hat{h}_i, u_j = \frac{q^T k_j}{\sqrt{d}}, w_j = \frac{e^{u_j}}{\sum_{t=1}^n e^{u_t}}, \tilde{h}_c = \sum_{j=1}^n w_j v_j.$$

1073
1074

1075 The decoder output \tilde{h}_c is further concatenated with \hat{h}_c and projected into \mathbb{R}^d . Then, it is used as a
1076 query for a pointer network, which takes the features of the neighbor nodes \hat{h}_{ne} for the current agent
1077 as the keys and values. The pointer network directly outputs the attention vector w as the current
1078 policy $\pi(\cdot | s)$ since the number of the neighbors aligns with the number of the valid actions. After the
1079 first query through the policy network, an action a_1 for the first agent is sampled from $\pi(\cdot | s)$, and the
state is updated as $s' = (s, a_1)$. The subsequent $m-1$ queries follow the same process as above.

1080
1081

C.3 HYPERPARAMETER SETTING

1082
1083

Table 5 shows the detailed hyperparameter setting used in the training of our RL pursuer policy.

1084

1085

Table 5: Hyperparameter Setting of R2PS Training

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

C.4 LEARNING CURVES OF RL PURSUERS

1096

1097

1098

1110

1111

1112

1113

Figure 4: Cross-Graph Learning Curves of Generalized Pursuer Policies

1114

During the cross-graph R2PS training, we consider the use of $\beta = 0.1$ and $\beta = 0$ in the policy loss $\mathcal{L}(\theta)$ (8). For the former, we employ the belief-averaged DP policy (6) as the reference policy. For the latter, it means that the training process is without policy guidance. Figure 4 shows the learning curves of our RL pursuer policies. Clearly, training with policy guidance is more efficient than pure reinforcement learning under SAC loss. This comparison verifies that the DP pursuer policy can serve as guidance to facilitate efficient exploration of the cross-graph RL policy. Besides, training under the synthetic training set is relatively easier than under the large one that contains more real-world graph structures. Nevertheless, our R2PS learning scheme gradually improves the quality of the RL pursuer policies under all of the four settings, using a very limited observation range of 2.

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134
1135 **D EXPERIMENTAL DETAILS**1136 **D.1 DETAILS OF TEST GRAPHS**1152 Figure 5: Illustration of Test Graphs (Starting from Scotland-Yard Map)
1153

1154 The test graphs for both DP and RL pursuers include Grid Map (a 10×10 grid), Scotland-Yard Map
1155 (from the board game Scotland-Yard), Downtown Map (a real-world location from Google Maps),
1156 and 7 famous real-world spots (from Times Square to Sydney Opera House). The graph structures
1157 are illustrated in Figure 5, following the order in Table 1.

1158 The real-world graphs are generated through a program designed for discretizing the regions around
1159 the location centers in Google Maps. The map range is set to be 600 by default (corresponding to
1160 a radius of 600 meters). Nodes correspond to actual road intersections, endpoints, and geometry-
1161 defined shape points along roadways. Edges represent the physical road segments connecting these
1162 nodes, typically encoded as polylines that capture the true geometry of each street. To ensure a
1163 topologically coherent intersection structure, closely spaced intersection points (within 20 meters of
1164 one another) are abstracted into single representative nodes. After establishing the intersection-level
1165 skeleton, the program further adjusts the spatial resolution by subdividing any road segment whose
1166 length exceeds 100 (discretization granularity) meters. For such long segments, the program inserts
1167 additional intermediate points at regular intervals along the original road geometry. These newly
1168 added points are treated as supplementary nodes, and the original long segment is replaced by several
1169 shorter segments. The resulting graph therefore adopts a hybrid granularity: true intersections are
1170 preserved as primary nodes, while long road segments are discretized into shorter units of no more
1171 than 100 (discretization granularity) meters.

1172 **D.2 ADDITIONAL RESULTS**
11731174
1175 Table 6: Success Rates of Belief-Averaged DP Pursuers under Different Observation Ranges
1176

Observation Range	2	3	4	5	6
Grid Map	0.78	0.92	0.99	1.00	1.00
Scotland-Yard Map	0.63	0.95	1.00	1.00	1.00
Downtown Map	0.90	1.00	1.00	1.00	1.00
Times Square	0.69	0.88	1.00	1.00	1.00
Hollywood Walk of Fame	0.48	0.79	0.94	0.98	1.00
Sagrada Familia	0.36	0.70	0.92	0.96	1.00
The Bund	0.57	0.87	0.97	0.99	1.00
Eiffel Tower	0.94	0.98	0.99	1.00	1.00
Big Ben	0.74	0.94	1.00	1.00	1.00
Sydney Opera House	0.87	0.96	0.99	0.99	1.00

1188

1189

Table 7: Success Rates of RL Pursuers under Different Observation Ranges

1190

1191

Observation Range	2	3	4	5	6
Grid Map	1.00	1.00	1.00	1.00	1.00
Scotland-Yard Map	0.76	0.98	0.99	0.99	1.00
Downtown Map	0.99	0.99	1.00	1.00	1.00
Times Square, New York	0.95	0.98	1.00	1.00	1.00
Hollywood Walk of Fame, LA	0.38	0.59	0.96	1.00	1.00
Sagrada Familia, Barcelona	0.20	0.72	0.88	0.95	0.96
The Bund, Shanghai	0.25	0.55	0.82	0.82	0.83
Eiffel Tower, Paris	1.00	1.00	1.00	1.00	1.00
Big Ben, London	0.82	0.95	0.98	0.99	0.99
Sydney Opera House, Sydney	0.95	0.98	1.00	1.00	1.00

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

We may find that Hollywood Walk of Fame, Sagrada Familia, and The Bund are relatively more difficult for the pursuers, especially under small observation ranges. Based on the statistics of the test graphs in Table 1 (left), here we provide a rough analysis of this phenomenon. In planar graphs, a large average degree generally implies the existence of small cycles. For example, in Grid Map, all minimal cycles’ length is only 4. Since successful evasions benefit more from large cycles, graphs like Grid Map, Scotland-Yard Map, and Downtown Map are easier for pursuit. Besides, Eiffel Tower, Big Ben, and Sydney Opera House all have large diameters, which implies the existence of long “links” that have poor connectivity with other nodes (see the last three graphs in Figure 5). Therefore, these graphs also benefit pursuit rather than evasion. As Hollywood Walk of Fame, Sagrada Familia, and The Bund do not have the mentioned characteristics, these graphs are harder for the pursuers.

Figure 6 provides the scaling plots of the computation (inference) time of DP and RL policies under an NVIDIA GeForce RTX 2080 Ti GPU, with the log-log plots on the right. Clearly, the time of DP computations significantly increases with the graph sizes. In comparison, the inference time of our GNN-based RL policy is only slightly longer in large graphs than in small graphs.

Figure 6: Scaling Plots of RL and DP Inference Time

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 D.3 RL PERFORMANCE UNDER MORE PURSUERS
1243
12441245 Table 8: Success Rates of RL Policy under Different Pursuer Numbers
1246

Pursuer Number	$m = 2$	$m = 4$	$m = 6$
Grid Map	1.00	1.00	1.00
Scotland-Yard Map	0.76	0.99	1.00
Downtown Map	0.99	1.00	1.00
Times Square, New York	0.95	0.97	1.00
Hollywood Walk of Fame, LA	0.38	0.82	0.93
Sagrada Familia, Barcelona	0.20	0.74	0.94
The Bund, Shanghai	0.25	0.99	1.00
Eiffel Tower, Paris	1.00	1.00	1.00
Big Ben, London	0.82	1.00	1.00
Sydney Opera House, Sydney	0.95	0.99	1.00

1258 As our R2PS training is established upon the framework of EPG (Lu et al., 2025a), we can also
1259 employ the grouping mechanism proposed by Lu et al. (2025a) to derive pursuer and evader policies
1260 when the pursuer number m is large. Table 8 compares the pursuit success rates of the multi-agent
1261 RL policies against the asynchronous-move DP evader under different pursuer numbers m . Clearly,
1262 the 4-pursuer policy can significantly increase the original success rates for $m = 2$. When $m = 6$,
1263 the success rates are close to 1 even under the fixed observation range of 2. Figure 7 further illustrates
1264 the FLOPs of our RL inference under different graph sizes and pursuer numbers.

1286 Figure 7: Scaling Plots of Floating-Point Operations under Different RL Pursuer Numbers
1287

1296 **E RELATED WORK**

1297

1298 **Finding optimal strategies in PEGs.** Graph-based pursuit-evasion games (PEGs) can be categorized
 1299 into no-exit PEGs and multi-exit PEGs. The former is the primary form of pursuit-evasion and also
 1300 the focus of this paper, while the latter is sometimes referred to as network security games. For no-exit
 1301 PEGs, the early theoretical work (Goldstein & Reingold, 1995) proves that it requires exponential
 1302 time to determine whether m pursuers are sufficient to capture one evader on a given graph under
 1303 perfect information. Vieira et al. (2008) provide the provably optimal method for solving sequential
 1304 PEGs, and Chung et al. (2011) show that the basic idea behind PEG solving can be represented by a
 1305 marking algorithm featuring state expansion. Horák & Bošanský (2017) consider the case where the
 1306 pursuers only have partial observation and provides a dynamic programming algorithm in the form of
 1307 value iteration for finding Nash equilibrium. Lu et al. (2025a) show that an expansion-based dynamic
 1308 programming algorithm can solve Markov PEGs under a near-optimal time complexity. Recent works
 1309 (Xue et al., 2021; 2022) combine neural networks with fictitious self-play and Monte-Carlo tree
 1310 search to construct scalable deep reinforcement learning (RL) algorithms for finding robust pursuit
 1311 strategies in network security games.

1312 **Policy generalization in PEGs.** Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017) is
 1313 a standard game RL paradigm extended from the game-theoretic approach of double oracle (DO)
 1314 (McMahan et al., 2003) for robust policy learning. While the approach itself is general, it can only
 1315 solve PEGs on a designated graph structure, just like the methods above. As we have mentioned,
 1316 policy generalization is crucial to real-time applications under real-world PEGs, becoming a focus
 1317 of recent research. MT-PSRO (Li et al., 2023) combines multi-task policy pre-training with PSRO
 1318 fine-tuning to enable few-shot generalization to unseen real-world opponents. Grasper (Li et al.,
 1319 2024) proposes a two-stage pre-training method to facilitate few-shot generalization to unseen initial
 1320 conditions of the game. Equilibrium Policy Generalization (EPG) (Lu et al., 2025a) provides a
 1321 fundamentally novel paradigm to learn generalized policies across the underlying structures of PEGs
 1322 through the construction of equilibrium oracles, guaranteeing robust zero-shot generalization to
 1323 unseen graph structures in Markov PEGs. As EPG does not require the time-consuming PSRO tuning,
 1324 the pursuit strategies are real-time applicable under full observability. However, as is mentioned
 1325 in Lu et al. (2025a), whether such a kind of generalization can be applied to the case of imperfect
 1326 information remains unclear. Since partial observability leads to the inherent PSPACE-hardness (see
 1327 Papadimitriou & Tsitsiklis (1987)) and exponentially many information sets (see Lu et al. (2025b)),
 1328 constructing equilibrium oracles directly under partial observability can be intractable.

1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349