
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

R2PS: WORST-CASE ROBUST REAL-TIME PURSUIT
STRATEGIES UNDER PARTIAL OBSERVABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Computing worst-case robust strategies in pursuit-evasion games (PEGs) is time-
consuming, especially when real-world factors like partial observability are consid-
ered. While important for general security purposes, real-time applicable pursuit
strategies for graph-based PEGs are currently missing when the pursuers only
have imperfect information about the evader’s position. Although state-of-the-art
reinforcement learning (RL) methods like Equilibrium Policy Generalization (EPG)
and Grasper provide guidelines for learning graph neural network (GNN) policies
robust to different game dynamics, they are restricted to the scenario of perfect
information and do not take into account the possible case where the evader can
predict the pursuers’ actions. This paper introduces the first approach to worst-case
robust real-time pursuit strategies (R2PS) under partial observability. We first
prove that a traditional dynamic programming (DP) algorithm for solving Markov
PEGs maintains optimality under the asynchronous moves by the evader. Then,
we propose a belief preservation mechanism about the evader’s possible positions,
extending the DP pursuit strategies to a partially observable setting. Finally, we
embed the belief preservation into the state-of-the-art EPG framework to finish our
R2PS learning scheme, which leads to a real-time pursuer policy through cross-
graph reinforcement learning against the asynchronous-move DP evasion strategies.
After reinforcement learning, our policy achieves robust zero-shot generalization to
unseen real-world graph structures and consistently outperforms the policy directly
trained on the test graphs by the existing game RL approach.

1 INTRODUCTION

Pursuit-evasion game (PEG) is an important topic long examined in the fields of robotics and security
(Vidal et al., 2001; 2002; Chung et al., 2011). Many real-world tasks can benefit from the solution to
an abstracted PEG, e.g., guiding a team of cops to capture a robber and aligning a team of guards to
defend against an intruder. In comparison with traditional differential games (Margellos & Lygeros,
2011; Zhou et al., 2012), graph-based PEGs are convenient for describing complicated scenarios,
possibly with a large scale. When we use graphs as a common structural representation, the actions
of the pursuers and the evader can be abstracted as moving from a vertex to an adjacent one at each
discrete timestep. The edges between the vertices can possibly represent urban streets in reality.

However, exactly solving graph-based PEGs is computationally expensive (see Goldstein & Reingold
(1995)). Even under a slight structural change, the worst-case robust pursuit strategies can be different
and thus require a large amount of time to be recomputed. For example, when a traffic jam happens
in the city, the related edges in the PEG graph can be frequently removed and added. This severely
limits the real-time applicability of the existing methods featuring mathematical programming (Vieira
et al., 2008; Horák & Bošanskỳ, 2017). Besides, real-world factors like partial observability, which
leads to PSPACE-hardness even under a fixed opponent (see Papadimitriou & Tsitsiklis (1987)),
further increase the difficulty of deriving a well-performing pursuit strategy within a time limit.

Reinforcement learning (RL), which has demonstrated strong generalization capabilities in domains
like large language models (see Chu et al. (2025)), provides an alternative solution to this problem.
We may train a parameterized policy represented by a suitable neural network, e.g., a graph neural
network (GNN) (Wu et al., 2020), on a diverse set of graphs and then generalize it to the unseen
graph structures. Unfortunately, while RL has been applied to solving large-scale PEGs (Xue et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2022; 2021), existing research focuses more on its scalability rather than generalization capability.
The methods like MT-PSRO (Li et al., 2023) and Grasper (Li et al., 2024) are limited to few-shot
generalization to unseen opponent strategies and initial conditions. As is pointed out by Zhuang
et al. (2025), they still have difficulty adapting to rapid changes of graph structures. The state-of-the-
art method, Equilibrium Policy Generalization (EPG) (Lu et al., 2025a), first examines zero-shot
generalization at the level of graphs. However, whether the paradigm of EPG works under partial
observability remains underexplored. Besides, all of the mentioned works do not consider the possible
case that the evader may have stronger observation capabilities than the pursuers. This makes the
strength of the learned pursuit strategies less convincing for real-world security purposes.

In this paper, we present an approach to finding pursuit strategies that are both worst-case robust
and real-time applicable under partial observability. We start by analyzing a dynamic programming
(DP) algorithm for efficiently solving Markov PEGs and proving that it also finds optimal strategies
when the evader can predict the pursuer’s action and move asynchronously. With a belief update
mechanism, we further extend the DP policies to a partially observable setting. The belief preservation
serves to avoid the complexity of recording all observation histories through abstracting opponent
information for effective decision-making. Finally, we embed the belief preservation mechanism into
the reinforcement learning framework of EPG and train a generalized GNN pursuer policy under
partial observability. Following the principle of EPG, the training proceeds in a diverse set of graphs
against the provably optimal DP evader. We then evaluate the worst-case robustness of our real-time
RL pursuer policy under unseen real-world graph structures.

Specifically, the contributions of this paper are three threefold:

• We theoretically analyze a dynamic programming (DP) algorithm and extend the optimal
strategies induced by this algorithm to asynchronous-move and partially observable scenarios.
We prove that the DP algorithm induces strictly optimal pursuit and evasion strategies when
the evader moves asynchronously and design a belief preservation mechanism against the
possibly unobserved evaders. Under belief preservation, we verify that the extended pursuer
policy remains strong against the provably optimal perfect-information evader.

• We practically train an observation-based pursuer policy across different graph structures,
deriving the first worst-case robust real-time pursuit strategies (R2PS) applicable to dy-
namically changing PEGs with partial observations. We combine our belief preservation
mechanism with the state-of-the-art robust policy generalization paradigm, EPG, and provide
an inference time complexity bound for our GNN-represented RL pursuer policy.

• Through extensive experiments, we verify that under partial observability, our RL training
against the asynchronous-move DP evaders under a diverse set of graphs leads to robust zero-
shot performance in unseen real-world graphs. Comparative results reveal the superiority of
our approach over the standard game RL approach, PSRO (Lanctot et al., 2017), even against
a best-responding evader. Additionally, we confirm that our RL policy scales effectively
with more complex real-world graphs and that the pursuit performance can benefit from our
belief updates and be enhanced by increased observation ranges.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Adversarial games with partial observability can be generally represented by partially observable
stochastic games (POSGs), where equilibrium learning has been rigorously examined in existing
game-theoretic research (e.g., Lu et al. (2025b)). However, this formulation considers all possible
observation histories and leads to a large set of decision points whose size is possibly exponential
in the time horizon of the game. For the worst scenario of pursuit-evasion, while the pursuers have
limited observation capabilities, the evader could still obtain the global information of the game.
Since at least one side of the players possesses perfect information, it is less efficient to formulate
PEGs as complete POSGs. Therefore, in order to avoid the inherent PSPACE-hardness from the
problem formulation, we consider first expressing PEGs as two-player zero-sum Markov games and
then extending the definitions to incorporate practical adversarial factors like partial observability and
asynchronous moves of the evader. The ultimate goal is to adjust the efficient algorithms for solving
Markov PEGs to the imperfect-information setting with little sacrifice of robustness.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Two-player zero-sum Markov game. An infinite-horizon two-player zero-sum Markov game is
represented by a tuple (S,A,B,P, r, γ), where S is the state space, A is the action space of the
max-player (who aims to maximize the cumulative reward), B is the action space of the min-player
(who aims to minimize the cumulative reward), P ∈ [0, 1]

|S||A||B|×|S| is the transition probability
matrix, r ∈ [0, 1]

|S||A||B| is the reward vector, and γ ∈ (0, 1) is the discount factor. In PEGs, the
max-player is the team of m pursuers, and the min-player is the evader. We use a termination function
f : S → {0, 1} to mark the states where the pursuit is successful. When f(s) = 1, the game is
terminated, and a reward of +1 is received. Otherwise, a reward of 0 is received. The discount factor
γ < 1 encourages the pursuers to capture the evader as soon as possible.

Graph-based pursuit-evasion game. Considering the requirements of formulating large-scale
real-world scenarios, we describe states and actions on a graph structure G = ⟨V, E⟩: V is the
set of vertices v. The global state s = (sp, se) in a game is an element of Vm × V , where sp =
(v1p, v

2
p, · · · , vmp) ∈ Vm, and se = ve ∈ V . An edge e = (v, v′) ∈ E defines the adjacency between

two vertices v, v′ ∈ V . For example, when we represent an urban scenario by a graph G, an edge e
can be used to describe a unit length of streets. The valid actions of the m+1 agents in a graph-based
PEG are either moving to an adjacent vertex via an edge or staying at the current node.

Policy and value function. Following common notations, we denote by (µ, ν) the joint policy
of the two players, where µ is the policy of the max-player (pursuers) and ν is the policy of the
min-player (evader): µ(s) ∈ ∆(A) (resp., ν(s) ∈ ∆(B)) is the max-player’s (resp., min-player’s)
action distribution at state s ∈ S. Since ∆(A) is the probability simplex over A, µ(s, a) corresponds
to the probability of selecting action a ∈ A at state s. Given the joint policy, we further define the
value function V µ,ν(s) = E [

∑∞
t=0 γ

tr(st, at, bt) |s0 = s;µ, ν] as in Markov decision processes.

Solution concept. A Nash equilibrium (NE) in a game is a joint policy where each individual player
cannot benefit from unilaterally deviating from his/her own policy (Roughgarden, 2016). Specifically,
in a two-player zero-sum MG, an NE (µ∗, ν∗) satisfies V µ,ν∗ ≤ V µ∗,ν∗ ≤ V µ∗,ν for any µ and ν at
all states. As is well known, every MG with finite states and actions has at least one NE, and all NEs
in a two-player zero-sum MG share the same value V ∗(s) = V µ∗,ν∗

(s) = maxµminνV
µ,ν(s) =

minνmaxµV
µ,ν(s) (Shapley, 1953). In two-player zero-sum Markov games, Nash equilibrium can

be viewed as a globally optimal joint policy since both players cannot be exploited by their worst-case
opponents when the players move synchronously (simultaneously).

Game extension. Since Markov games only take into account synchronous moves and full observa-
tions, we further allow for two variations concerning asynchronous moves and partial observability.
In reality, the worst evader (from the pursuers’ perspective) may have good predictions of the pursuit
actions. Therefore, we allow it to decide after the pursuers’ move a at each timestep. In this case,
the evader policy ν(s) is transformed into an asynchronous one ν(s, a), and we say that a strategy is
optimal for the pursuer/evader side at state s if the worst-case termination timesteps of all possible
trajectories starting from s are maximized/minimized. Besides, the availability of sensors may not
allow the pursuers to observe an agent that is far away (while the worst evader can). In this case, the
pursuer policy µ(s) is transformed into µ(o), where o is the history of the pursuers’ local observations.

2.2 DYNAMIC PROGRAMMING FOR MARKOV PEGS

The traditional marking algorithm (Chung et al., 2011) provides a general idea of recursively finding
optimal strategies in perfect-information PEGs. If all possible evading actions lead to the states that
have been marked, then we can also mark the current state, which means the pursuers can capture the
evader starting from this state. However, a direct implementation of the marking algorithm incurs
a time complexity much higher than the theoretical lower bound Ω(|S|). In view of this gap, Lu
et al. (2025a) introduce a dynamic programming (DP) algorithm (see Algorithm 1) that guarantees
near-optimal time complexity for solving Markov PEGs.

Algorithm 1 computes a distance table D through preserving a queue Q. Intuitively, the distance
value D(s) indicates the worst-case timestep for the pursuer side to capture the evader starting from
the global state s = (sp, se), which is guaranteed through the use of a minimax policy

µ∗(sp, se) = argmin
neighbor np of sp

{
max

neighbor ne of se
D(np, ne)

}
. (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: Dynamic Programming for Markov PEGs
Input: Graph G = ⟨V, E⟩, Pursuer Number m, and Termination Function f : Vm ×V → {0, 1}

1 Initialize an empty queue Q and the distance table D =∞
2 for pursuer state (positions) sp ∈ Vm do
3 for evader state se ∈ V do
4 if f(sp, se) = 1 then
5 D(sp, se)← 0
6 Push (sp, se) into Q
7 end
8 end
9 end

10 while Q is not empty do
11 Pop the first element (sp, se) from Q
12 for evader neighbor ne ∈ Neighbor(se),∄n′

e ∈ V, (ne, n
′
e) ∈ E,D(sp, n

′
e) > D(sp, se) do

13 for pursuer neighbor np ∈ Neighbor(sp) ⊂ Vm, D(np, ne) =∞ do
14 D(np, ne)← D(sp, se) + 1
15 Push (np, ne) into Q
16 end
17 end
18 end

Output: Distance Table D

Under synchronous moves, the evader’s policy is symmetrically defined as

ν∗(sp, se) = argmax
neighbor ne of se

{
min

neighbor np of sp
D(np, ne)

}
. (2)

Using mathematical induction, Lu et al. (2025a) prove that the joint policy (µ∗, ν∗) is a near-optimal
pure strategy (the proof can be found in Appendix A.1):
Theorem 1. If there exists a pure-strategy Nash equilibrium in the Markov PEG, then the joint policy
(µ∗, ν∗) defined by (1) and (2) is a Nash equilibrium.

3 EXTENDING DYNAMIC PROGRAMMING POLICIES TO ASYNCHRONOUS
MOVES AND PARTIAL OBSERVABILITY

In this section, we further show that the distance table D generated by the DP algorithm (Algorithm
1) can also be used to construct the optimal evader policy under asynchronous moves, as well as the
observation-based pursuer policies under partial observability.

3.1 ASYNCHRONOUS-MOVE SETTING

When the evader moves asynchronously, we define the DP policy for the evader as

ν∗(sp, se, np) = argmax
neighbor ne of se

{D(np, ne)} , (3)

where np is the neighbor of sp that the pursuers choose to move to in the current decision step, which
is perceived or predicted by the evader in advance. With this information as an additional input, the
evader can decide based on the pursuers’ positions after their decision rather than before. As a result,
the policy (3) no longer requires the inner enumeration in (2).

In this case, we can show that the pursuer policy (1) and evader policy (3) induced by the distance
table D are strictly optimal at all states. We start our analysis by proving Lemma 1, which reveals the
minimax essence of the distance table D. The detailed proof can be found in Appendix A.2.
Lemma 1. When D(np, ne) > 0, Algorithm 1 guarantees that

D(np, ne) = min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
+ 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Using Lemma 1, we can further prove that D(s) implies the best possible worst-case timesteps
starting from state s for both pursuer and evader sides under the asynchronous-move setting. The
main results are shown as follows, and the omitted proofs can be found in Appendix A.3-A.5.
Theorem 2. Starting from any state s = (sp, se) satisfying D(s) = d <∞, µ∗ guarantees pursuit
within d steps against any evasion strategy, and ν∗ avoids being captured in less than d steps by any
pursuit strategy.

Based on the definition of optimal strategies in the asynchronous-move setting (see Section 2.1),
Theorem 2 directly implies the following corollary:
Corollary 1. For any state s = (sp, se) with D(s) <∞, both µ∗ and ν∗ are optimal strategies.

Furthermore, we use Theorem 3 to show that whether m perfect-information pursuers are sufficient
to capture the evader starting from state s can be determined by whether D(s) <∞:
Theorem 3. Starting from any state s = (sp, se) with D(s) =∞, ν∗ can never be captured by any
pursuit strategy.

3.2 PARTIALLY OBSERVABLE SETTING

Since the DP algorithm provably generates optimal strategies when both pursuer and evader sides
have full observations, it is appealing to reuse the distance table D to construct a pursuit strategy
under partial observability for real-world security purposes. We expect that the observation-based
pursuer policy, which is extended from the DP policy under perfect information, should effectively
extract history information and align with the original policy when the observation range is infinity.

We consider the following partially observable setting for the pursuers, who may serve as guards in a
large area. The PEG begins because an intruder is observed, whose initial position is revealed to the
pursuers. Once the game starts, the position of the evader (intruder) can no longer be detected unless
it is in the observation range of at least one pursuer. For example, setting the observation range to be
2 means that the evader can be detected only when its distance to one pursuer is less than 3.

Under the partially observable setting, the observation history o induces the possible positions of the
evader, which we denote by a set Pos. This set is initialized as {se}, where se is the initial position of
the evader. As the game proceeds, it is updated based on the pursuers’ observations at each timestep:

Posnew =

{
{se} evader is observed at se,

Remove(Neighbor(Posold)) evader is not observed. (4)

where the operator Remove(·) excludes all currently observed positions (since the evader is currently
unobserved) from the possible evader positions represented by Neighbor(Posold), which corresponds
to the set of one-step neighbors of the nodes in Posold.

Given Pos, we can express µ(o) as µ(sp,Pos) and construct a minimax policy that bounds the
worst-case pursuit timesteps if we assume that the pursuers resume full observability after this step:

µ(sp,Pos) = argmin
neighbor np of sp

{
max
se∈Pos

max
neighbor ne of se

D(np, ne)

}
= argmin

neighbor np of sp

{
max

ne∈Neighbor(Pos)
D(np, ne)

}
.

(5)

While this policy is applicable to the case of partial observability, it is based on an assumption that the
observation limitation is not continual. Under continual partial observability, we find that averaging
the timesteps through preserving a belief about the evader’s position can further encourage effective
pursuit, especially when the set Pos is large. The belief-averaged pursuer policy is expressed as

µ(sp,belief) = argmin
neighbor np of sp


∑
se

belief(se) max
neighbor ne of se

D(np,ne)∑
se

belief(se)

 , (6)

where the belief function is initialized to be 0 except for the initial evader position and updated by

beliefnew(se)←

{
0 se /∈ Pos,∑

neighbor v of se
ν(v, se)beliefold(v) se ∈ Pos. (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Since the pursuer side cannot obtain the evader’s policy ν when no prior knowledge is available, ν(v)
is set to be a uniform distribution over Neighbor(v) by default.

As the original DP policy µ∗(s) is provably optimal, Lemma 2 guarantees that both the position-
extended policy µ(sp,Pos) and the belief-averaged policy µ(sp,belief) maintain the pursuit optimal-
ity when there is unlimited observation capability. The proof can be found in Appendix A.6.
Lemma 2. When Pos is always a singleton, both pursuer policies (5) and (6) will be reduced to their
perfect-information counterpart (1).

Note that the time complexity of preserving Pos and belief is only Õ(|V|) at each timestep, where Õ
hides the additional factor of enumerating the neighbors. Since the average degree in the real-world
graphs can be small (see Table 1 in Section 5), the computation is practically efficient. In Appendix
B, we provide the illustrations of the belief preservation process for a more intuitive understanding.

4 FINDING ROBUST REAL-TIME PURSUIT STRATEGIES (R2PS) VIA
ADVERSARIAL REINFORCEMENT LEARNING ACROSS GRAPHS

4.1 ADVERSARIAL REINFORCEMENT LEARNING

Since the DP algorithm has a lower-bound time complexity exponential in the agent number, it
can be impractical to directly apply the DP policies in real time when the graph structure of the
game dynamically changes. In view of this problem, we further combine our belief preservation
mechanism with the idea of Equilibrium Policy Generalization (EPG) (Lu et al., 2025a) to construct
a reinforcement learning method, which makes use of some preprocessed D tables and the induced
policies to train a generalized pursuer policy across a diverse set of graphs. We use the cross-graph
RL policy for zero-shot generalization under unseen graph structures, aiming to derive worst-case
robust real-time pursuit strategies (R2PS) under partial observability.

Training Set

 Reference Policy

Opponent Policy

Policy Model

Policy Loss

Figure 1: Cross-Graph Reinforcement Learning of Generalized Pursuer Policy

Figure 1 illustrates the cross-graph reinforcement learning pipeline, which features unexploitable
evader policies as adversaries. The training set contains graphs with various topologies Gi and the
DP policies (µ∗

i , ν
∗
i) induced by the preprocessed D tables. In each iteration, a graph Gi along with

the policy (µ∗
i , ν

∗
i) is sampled. Under graph G = Gi, we use µ∗ = µ∗

i as the reference policy to
guide policy training and use ν∗ = ν∗i as the adversarial policy. Following the principle of EPG, we
train a cross-graph pursuer policy through reinforcement learning against ν∗ with the guidance of µ∗.

Specifically, for a transition (s, a, b, r, s′) in the replay buffer: s is a randomly generated global state
in the sampled graph; a is the pursuers’ joint action sampled from the current policy model πθ, which
is ideally a graph neural network (Wu et al., 2020) with parameter θ that enables real-time inference;
b is the evader’s action generated from the asynchronous-move opponent policy ν∗ (3); the instant
reward r and the next state s′ are generated by the PEG dynamics under graph structure G = ⟨V, E⟩.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Given state s, the reference policy µ∗ generates a deterministic reference action a∗ = µ∗(s) and
serves to construct the policy loss

L (θ |s) = Jπ(θ |s) + βDKL (µ
∗(s), π(s)) = Jπ(θ |s)− β log πθ(s, a

∗), (8)

where Jπ(θ |s) is the original policy loss of any backbone (multi-agent) reinforcement learning
algorithm (e.g., MAPPO (Yu et al., 2022)), and β is a hyperparameter that balances policy guidance
(for efficient exploration) and reinforcement learning loss (for policy optimization).

When training pursuers under partial observability, we transform the input of the policy model πθ by

s← (sp,Pos,belief)

and use the observation-based policy µ(sp,Pos) (5) or µ(sp,belief) (6) to replace µ∗(s) (1), where
Pos and belief are the preserved evader information under partial observability.

For dynamic games like PEGs, the policy space has certain transitivity structures. Czarnecki et al.
(2020) show that the strategies in real-world games have different levels of transitive strength, with
Nash equilibrium being the strongest. In a single-graph PEG, reinforcement learning against the
optimal evader policy ν∗ helps to exclude the pursuer policies that are transitively weaker. Cross-
graph training is similar to finding the joint part of the remaining strategies and abstracting them
to a worst-case robust policy under a diverse set of graph structures, where the divisions on the
policy space through adversarial RL can be different. Imagine that a half space is excluded after each
single-graph division and that the division criteria of different graphs are independent due to structural
distinctions. In this ideal case, the cross-graph policy will be improved at an exponential level across
a diverse training corpus, leading to robust pursuit strategies even under partial observability.

4.2 IMPLEMENTATION AND COMPLEXITY ANALYSIS

Technically, we use soft-actor critic (SAC) (Haarnoja et al., 2018; Christodoulou, 2019) as the
backbone RL algorithm and employ a decentralized architecture with a parameter-sharing graph
neural network (GNN) (Cao et al., 2023; Lu et al., 2025a) to represent the graph-based policy of
the homogeneous pursuers. The SAC algorithm features a self-adaptive entropy regularization that
balances exploration and exploitation, with double Q-learning (Hasselt, 2010) employed to avoid
overestimation. The GNN architecture combines multi-head self-attention (Vaswani et al., 2017) with
adjacent-matrix masks to encode graph-based states. The state embedding is then sent into a decoder
followed by a pointer network (Vinyals et al., 2015) for graph-based policy output.

The implementation details and hyperparameter setting are reserved in Appendix C to save space.
According to the corresponding analysis, the overall time complexity of computing the graph-based
state feature is O(n2m), where n = |V| is the number of vertices in the graph, and m is the number
of pursuers. Since the complexity of GNN queries is also O(n2m), and the complexity of preserving
Pos and belief is Õ(n), the overall inference time complexity of the RL pursuer policy at each
timestep is only O(n2m) +O(n2m) + Õ(n) = O(n2m). In comparison, the time complexity of
recomputing DP policies is Õ(nm+1) under dynamically changing graph structures (see Lu et al.
(2025a)), as Algorithm 1 needs to be repeatedly executed. Here we briefly show the inference time
gap arising from this complexity distinction. When n = 1000 and m = 2, it takes over 2 minutes to
run Algorithm 1 at each timestep using an Intel Core i9-13900HX CPU. The inference time of our
GNN-represented RL policy, however, is less than 1 second under the same condition. Our subsequent
tests further show this inference can be reduced to below 0.01 seconds under GPU accelerations.

5 EVALUATIONS

Here we provide our experimental evaluations of single-graph DP pursuers and cross-graph RL
pursuers under partial observability. We assume that there are two pursuers (m = 2) against the
single evader. This is a reasonable setting in view of the graph-theoretic result that 3 pursuers with
full observations can always capture the evader in any planar graph (Fromme & Aigner, 1984). The
initial position is randomly generated under the restriction that the distance between the evader and
the pursuers is larger than the observation range of 2. Besides, no observation sensors except for the
pursuers themselves are allowed. The test graphs include Grid Map (a 10× 10 grid), Scotland-Yard
Map (from the board game Scotland-Yard), Downtown Map (a real-world location from Google

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Maps), and 7 famous real-world spots (from Times Square to Sydney Opera House). The graph
details are shown in Appendix D.1, and the statistics of these graphs are shown in Table 1 (left).

Table 1: Graph Data (Total Node Number, Average Degree, Diameter) and Success Rate Comparison

Node Degree Diameter Shortest Path DPPos DPbelief

Grid Map 100 3.60 18 0.00 0.59 0.78
Scotland-Yard Map 200 3.91 19 0.00 0.44 0.63

Downtown Map 206 2.98 19 0.02 0.73 0.90
Times Square 171 2.58 22 0.01 0.41 0.69

Hollywood Walk of Fame 201 2.42 31 0.01 0.25 0.48
Sagrada Familia 231 2.60 25 0.00 0.24 0.36

The Bund 200 2.53 29 0.03 0.30 0.57
Eiffel Tower 202 2.34 38 0.29 0.69 0.94

Big Ben 192 2.48 34 0.08 0.54 0.74
Sydney Opera House 183 2.33 37 0.05 0.47 0.87

5.1 EVALUATIONS OF EXTENDED DP PURSUERS

We first evaluate the strength of the extended DP pursuers under partial observability (Section 3.2).
We denote by DPPos the position-extended pursuer (5) and by DPbelief the belief-averaged pursuer
(6). The pursuers succeed (f(s) = 1) when at least one of them is adjacent to the evader on the graph
within 128 timesteps, and the success rates are averaged over 500 tests. To simulate the difficult
case for security purposes, the evader is set to be the provably optimal DP evader (3) with global
observations and asynchronous moves. For an intuitive comparison, we also include the result of
directly following the shortest path to the evader under full observability.

As is shown in Table 1 (right), the shortest-path strategy can hardly capture the optimal DP evader. In
comparison, though under a limited observation range of 2, the extended DP pursuers demonstrate
significantly higher success rates. Besides, DPbelief consistently outperforms DPPos. This result
verifies that the direct minimax policy (5) can be improved through belief averaging. Actually, since
equation (5) treats all possible positions as equal, the result of the inner max can be very large when
the size of Pos is large, leading to pessimistic pursuit behaviors like staying at certain “rest points.”

We further take a look at how observation capabilities could affect success rates. We increase the
observation range and evaluate the performance of DPbelief (6). As is shown in Table 6 (Appendix
D.2), the success rates monotonically increase with the observation range and reach 100% when the
range exceeds 5. While D(·) is an accurate estimator of the worst-case pursuit distance in Markov
PEGs, it becomes an optimistic one under partial observability. Nevertheless, the experimental results
show that combining this optimistic estimator with belief information can maintain the strength of
the DP-based pursuit strategies, even under very limited observation capabilities.

5.2 EVALUATIONS OF GENERALIZED RL PURSUERS

Now, we implement and evaluate our cross-graph reinforcement learning method aimed at R2PS
(Section 4). We discretize the maps from the Dungeon environment (Chen et al., 2019) to construct a
synthetic training set containing 150 graphs and further include 150 random urban locations from
Google Maps to create a large training set with a total of 300 graphs, where the maximum node
number is no more than 500. We apply the R2PS learning scheme to the synthetic training set and the
large training set. Appendix C.4 provides the learning curves of the pursuer policies under partial
observability. As is shown in Figure 4, using the extended DP pursuers as guidance (β = 0.1) helps
to improve the training efficiency over pure reinforcement learning (β = 0) under either training set.

Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017) is a general reinforcement learning
method extended from the game-theoretic approach of double oracle (DO) (McMahan et al., 2003)
for equilibrium finding. Here we compare the zero-shot performance of our generalized pursuer
policy with a PSRO policy that is directly trained on the 10 test graphs using 10 iterations (10000
episodes per iteration). Our RL policy aimed at R2PS, however, is pretrained under the synthetic
training set with 150 graphs for 30000 episodes (β = 0.1) and then trained under the 150 random

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Success Rate Comparison across Different Graphs and Strategies

Evader Policy Stay DPsync DPasync BRasync

Pursuer Policy Ours PSRO Ours PSRO Ours PSRO Ours
Grid Map 1.00 1.00 1.00 0.94 1.00 0.88 1.00

Scotland-Yard Map 1.00 1.00 1.00 0.47 0.76 0.00 0.73
Downtown Map 1.00 0.99 1.00 0.88 0.99 0.03 0.92
Times Square 1.00 0.93 1.00 0.16 0.95 0.04 0.27

Hollywood Walk of Fame 1.00 0.95 0.90 0.00 0.38 0.00 0.10
Sagrada Familia 0.99 0.93 0.96 0.07 0.20 0.00 0.20

The Bund 1.00 0.95 0.92 0.31 0.25 0.04 0.23
Eiffel Tower 1.00 0.99 1.00 0.97 1.00 0.52 0.55

Big Ben 1.00 0.99 1.00 0.29 0.82 0.24 0.65
Sydney Opera House 1.00 0.98 1.00 0.07 0.95 0.11 0.31

urban graphs for 70000 episodes. Since our training process never comes across the test graphs, our
RL policy has to zero-shot generalize to these unseen graph structures during evaluations.

As is shown in Table 2, our pursuer policy consistently outperforms the PSRO pursuer policy in the
real-world graphs against a variety of opponents, where:

• Stay corresponds to an evader that stays at the initial position. Since the initial distance
between the pursuers and the evader is larger than the observation range, and the pursuers
have no prior knowledge about the evader’s policy, staying still is a reasonable strategy and
leads to the occasional failure of these RL pursuers.

• DPsync corresponds to the DP evader policy (2) under synchronous moves, and DPasync

corresponds to the strictly optimal policy (3) under asynchronous moves. It is clear that
the asynchronous-move evaders are much stronger than the synchronous-move ones due to
the advantage of forecasting the pursuers’ decisions. Against DPasync, the PSRO pursuers
struggle under most of the test graphs in comparison with ours.

• BRasync corresponds to the best-responding asynchronous-move evader directly trained
against our RL pursuers in the test graphs for 30000 episodes (converged). Even under this
worst case, the success rates of our generalized pursuers are over 50% in half of the graphs.

Since our worst-case zero-shot performance is clearly better than the PSRO policy directly trained
on the test graphs, we can say that our real-time strategies are worst-case robust even under varying
graph structures, which implies that our approach achieves R2PS under partial observability.

5.3 SCALABILITY TESTS AND ABLATION STUDIES

Table 3: RL Success Rate (against DPasync) and Comparison of Inference Time in Large Graphs

Node Number Sucess Rate RL Time (s) DP Time (s)
Times Square 1805 0.56 0.009837 101

Hollywood Walk of Fame 1251 0.46 0.007917 33
Sagrada Familia 2065 0.33 0.009895 139

The Bund 1723 0.46 0.008117 83
Eiffel Tower 1825 0.41 0.009616 96

Big Ben 1681 0.49 0.007752 79
Sydney Opera House 744 0.76 0.007648 6

Now we further verify the real-time pursuit capability under the graphs with higher complexity.
We create another set of test graphs based on the seven famous locations in Table 1 (from Times
Square to Sydney Opera House). Compared to the original graphs, the new graphs double both
the map range and the discretization accuracy, leading to significantly larger node numbers. The
success rates of our RL pursuer policy against the optimal evader DPasync and the inference time

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

comparisons under an NVIDIA GeForce RTX 2080 Ti GPU are shown in Table 3. Clearly, our RL
policy requires significantly smaller inference time in comparison with DP and maintains desirable
overall performance under large graphs in comparison with the results in Table 2. Figure 6 (Appendix
D.2) provides the scaling plots of our GNN-based RL policy inference and DP computation time.

We are also curious about whether our RL policy trained under the limited observation range of 2 can
demonstrate better performance when the observation range is larger during inference time. As is
shown in Table 7 (Appendix D.2), the success rates of our RL pursuers monotonically increase with
the observation range. This additional result implies that our RL policy trained with the minimum
observability can be directly applied to the cases with better sensing capabilities.

Finally, we examine how the belief updates affect pursuit performance. As we have mentioned,
our belief preservation (7) always employs a uniform evader policy ν since we could not access
prior information about the true opponent. However, if we manage to obtain such information in
reality, we can instantly improve the pursuit performance by replacing ν with the actual evader policy.
As is shown in Table 4, utilizing known opponent information improves success rates against the
best-responding evader BRasync. On the other hand, if we reduce the belief update frequency from
every single step (original) to every 2 or 3 steps, then the pursuit success rates will instantly decline.
This result further demonstrates the benefits of our belief update mechanism.

Table 4: RL Success Rate (against BRasync) Comparison under Different Belief Update Conditions

Belief Update Condition Known Opponent Original Every 2 Steps Every 3 Steps
Grid Map 1.00 1.00 0.60 0.42

Scotland-Yard Map 0.99 0.73 0.34 0.28
Downtown Map 1.00 0.92 0.61 0.39
Times Square 0.42 0.27 0.18 0.17

Hollywood Walk of Fame 0.13 0.10 0.04 0.03
Sagrada Familia 0.28 0.20 0.12 0.05

The Bund 0.54 0.23 0.13 0.12
Eiffel Tower 0.81 0.55 0.32 0.29

Big Ben 0.82 0.65 0.40 0.25
Sydney Opera House 0.54 0.31 0.22 0.15

6 CONCLUSION

This paper presents a novel approach to worst-case robust real-time pursuit strategies under partial
observability and varying graph structures. We first theoretically examine a dynamic programming
(DP) algorithm and prove that it can unify the solutions to Markov PEGs with either synchronous
moves or asynchronous moves. Then, we propose a belief preservation mechanism to efficiently
abstract evader information from the observation histories of the pursuers under partial observability.
The belief information is combined with the distance table computed by the DP algorithm to derive
observation-based pursuer policies, which demonstrates strong empirical performance against the
perfect-information DP evader. Finally, we embed the belief preservation mechanism into the
framework of EPG (Lu et al., 2025a) to find robust real-time pursuit strategies, fulfilling cross-
graph reinforcement learning against the asynchronous-move DP evader under partial observability.
Experiments show that our observation-based DP pursuers can be used as guidance to facilitate
efficient policy exploration during RL training. Under unseen real-world graph structures, our cross-
graph policy manages to generate real-time pursuit strategies with worst-case robustness, consistently
outperforming the PSRO policy directly trained under the test graphs. Comparative results also reveal
that the pursuers can benefit from belief updates, while the evader benefits from asynchronous moves.

In this work, the belief preservation mechanism provides an efficient way to handle partial observabil-
ity. We show that this mechanism can be effectively combined with the existing PEG methods like
DP and EPG. After adversarial reinforcement learning across graphs, a generalized pursuer policy
under belief preservation is eventually derived, leading to the first worst-case robust real-time pursuit
strategies under partial observability. Hopefully, the current research on PEGs could encourage
subsequent works on the broader research topics concerning real-world security.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Yuhong Cao, Tianxiang Hou, Yizhuo Wang, Xian Yi, and Guillaume Sartoretti. Ariadne: A rein-
forcement learning approach using attention-based deep networks for exploration. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 10219–10225. IEEE, 2023.

Fanfei Chen, Shi Bai, Tixiao Shan, and Brendan Englot. Self-learning exploration and mapping for
mobile robots via deep reinforcement learning. In Aiaa scitech 2019 forum, pp. 0396, 2019.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. In Forty-second International Conference on Machine Learning, 2025.

Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. Search and pursuit-evasion in mobile
robotics: A survey. Autonomous robots, 31:299–316, 2011.

Wojciech M Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David
Balduzzi, and Max Jaderberg. Real world games look like spinning tops. Advances in Neural
Information Processing Systems, 33:17443–17454, 2020.

M Fromme and M Aigner. A game of cops and robbers. Discrete Appl. Math, 8:1–12, 1984.

Arthur S Goldstein and Edward M Reingold. The complexity of pursuit on a graph. Theoretical
computer science, 143(1):93–112, 1995.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Hado Hasselt. Double Q-learning. Advances in Neural Information Processing Systems, 23, 2010.

Karel Horák and Branislav Bošanskỳ. Dynamic programming for one-sided partially observable
pursuit-evasion games. In International Conference on Agents and Artificial Intelligence, volume 2,
pp. 503–510. SCITEPRESS, 2017.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. Advances in Neural Information Processing Systems, 30, 2017.

Pengdeng Li, Shuxin Li, Xinrun Wang, Jakub Cernỳ, Youzhi Zhang, Stephen McAleer, Hau Chan,
and Bo An. Grasper: A generalist pursuer for pursuit-evasion problems. In Proceedings of the 23rd
International Conference on Autonomous Agents and Multiagent Systems, pp. 1147–1155, 2024.

Shuxin Li, Xinrun Wang, Youzhi Zhang, Wanqi Xue, Jakub Černỳ, and Bo An. Solving large-scale
pursuit-evasion games using pre-trained strategies. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11586–11594, 2023.

Runyu Lu, Peng Zhang, Ruochuan Shi, Yuanheng Zhu, Dongbin Zhao, Yang Liu, Dong Wang, and
Cesare Alippi. Equilibrium policy generalization: A reinforcement learning framework for cross-
graph zero-shot generalization in pursuit-evasion games. In The Thirty-ninth Annual Conference
on Neural Information Processing Systems, 2025a.

Runyu Lu, Yuanheng Zhu, and Dongbin Zhao. Divergence-regularized discounted aggregation:
Equilibrium finding in multiplayer partially observable stochastic games. In The Thirteenth
International Conference on Learning Representations, 2025b.

Kostas Margellos and John Lygeros. Hamilton-Jacobi formulation for reach-avoid differential games.
IEEE Transactions on Automatic Control, 56(8):1849–1861, 2011.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christos H Papadimitriou and John N Tsitsiklis. The complexity of Markov decision processes.
Mathematics of operations research, 12(3):441–450, 1987.

Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press, 2016.

Lloyd S Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):
1095–1100, 1953.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Rene Vidal, Shahid Rashid, Cory Sharp, Omid Shakernia, Jin Kim, and Shankar Sastry. Pursuit-
evasion games with unmanned ground and aerial vehicles. In Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No. 01CH37164), volume 3, pp.
2948–2955. IEEE, 2001.

Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar Sastry. Probabilistic
pursuit-evasion games: Theory, implementation, and experimental evaluation. IEEE Transactions
on Robotics and Automation, 18(5):662–669, 2002.

Marcos AM Vieira, Ramesh Govindan, and Gaurav S Sukhatme. Optimal policy in discrete pursuit-
evasion games. Department of Computer Science, University of Southern California, Tech. Rep,
2008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural Informa-
tion Processing Systems, 28, 2015.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

Wanqi Xue, Youzhi Zhang, Shuxin Li, Xinrun Wang, Bo An, and Chai Kiat Yeo. Solving large-scale
extensive-form network security games via neural fictitious self-play. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, 2021.

Wanqi Xue, Bo An, and Chai Kiat Yeo. NSGZero: Efficiently learning non-exploitable policy in
large-scale network security games with neural Monte Carlo tree search. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 4646–4653, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Zhengyuan Zhou, Ryo Takei, Haomiao Huang, and Claire J Tomlin. A general, open-loop formulation
for reach-avoid games. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp.
6501–6506. IEEE, 2012.

Shuxin Zhuang, Shuxin Li, Tianji Yang, Muheng Li, Xianjie Shi, Bo An, and Youzhi Zhang. Solving
urban network security games: Learning platform, benchmark, and challenge for AI research.
arXiv preprint arXiv:2501.17559, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A OMITTED PROOFS

A.1 PROOF OF THEOREM 1

Proof. For no-exit PEGs, the Nash value satisfies the following Bellman minimax equation:

V ∗(s) =

 max
µ(s)∈∆(A)

min
b∈B

∑
a∈A

µ(s, a)

(
r(s, a, b) + γ

∑
s′∈S

P(s, a, b, s′)V ∗(s′)

)
f(s) = 0,

1 f(s) = 1.

Since the transition is deterministic and a non-zero reward is received only when a termination state
is reached, we can simplify the Bellman equation as follows:

V ∗(s) =

{
max

µ(s)∈∆(A)
min
b∈B

∑
a∈A

µ(s, a)γV ∗(s′ = P(s, a, b)) f(s) = 0,

1 f(s) = 1.

The equilibrium policy for the max-player satisfies:

µ∗(s) ∈ argmax
µ(s)∈∆(A)

{
min
b∈B

∑
a∈A

µ(s, a)V ∗(s′ = P(s, a, b))

}
.

When there is a pure-strategy Nash equilibrium in the game, the argmax has a pure-strategy solution,
and the Bellman equation can be further simplified:

V ∗(s) = γ max
a∈A

min
b∈B

V ∗(s′ = P(s, a, b)). (9)

Note that the Nash value has the form of V ∗(s) = γd(d ∈ N). Therefore, we consider using
mathematical induction. We assume that V ∗(s) = γD(s) holds for all states s that satisfies either
V ∗(s) = γd or D(s) = d when d < k (γd > γk). We want to prove that V ∗(s) = γD(s) holds for
all states s that satisfies either V ∗(s) = γk or D(s) = k. Clearly, our initialization guarantees that
the proposition holds for k = 0. Our update condition D(np, ne) =∞ guarantees that every state
s ∈ S is pushed into and popped from Q at most once. Note that the following proof reverses the
notations of s and s′ in (9) to better align with s = (sp, se) in Algorithm 1.

Now, we prove the first half of the proposition. For an arbitrary state s′ = (np, ne) that satisfies
V ∗(s′) = γk, the simplified Bellman equation (9) guarantees that there exists a = sp ∈ A(np) and
b = se ∈ B(ne) such that V ∗(s′) = γV ∗(s = P(s′, a, b)). Therefore, there exists s = (sp, se)
such that V ∗(s) = γk−1. According to the first half of the induction hypothesis, we have that
D(s) = k − 1 <∞, which implies that the algorithm once pushed s′ into Q. Besides, the Bellman
equation guarantees that ∀b′ ∈ B(ne), V

∗(P(s′, a, b′)) ≥ V ∗(P(s′, a, b)) = V ∗(s) = γk−1 > γk.
By induction hypothesis, D(sp, n

′
e) ≤ D(sp, se) holds for any neighbor n′

e of ne. Therefore, the
algorithm must enumerate ne when popping s = (sp, se). If we have D(np, ne) =∞ at the moment,
then np will be enumerated in the inner loop, and we will have D(np, ne) = D(sp, se) + 1 = k.
Now we complete the proof by showing that D(np, ne) <∞ implies D(np, ne) = k. Actually, if
k < D(np, ne) <∞, then D(s′) must be computed by adding 1 to some D(s′′) ≥ k. Since s′′ must
be popped from Q no later than s, it is contradictory to the fact that D(s′′) > D(s) = k − 1. If
D(np, ne) < k, then the second half of the induction hypothesis implies that V ∗(s′) = γD(np,ne),
which is contradictory to the fact that V ∗(s′) = γk.

Then, we prove the second half of the proposition. For an arbitrary state s′ = (np, ne) that satisfies
D(s′) = k, the D(s) must be computed by adding 1 to some D(s) = k − 1, where s = (sp, se).
According to the first half of the induction hypothesis, we have V ∗(s) = γk. The algorithm guarantees
that D(sp, n

′
e) ≤ D(sp, se) = k−1 holds for any neighbor n′

e of ne. By induction hypothesis, it holds
that ∀b′ ∈ B(ne), V

∗(P(s′, a, b′)) ≥ V ∗(P(s′, a, b)) when a = sp ∈ A(np) and b = se ∈ B(ne).
Therefore, min

b∈B(ne)
V ∗(P(s′, a, b)) = γk−1 when a = sp ∈ A(np). If there exists a† = s†p ∈ A(np)

such that min
b∈B(ne)

V ∗(P(s′, a′, b)) > γk−1, then we let b† = argmin
b∈B(ne)

V ∗(P(s′, a†, b)) > γk−1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

and let s† = (s†p, s
†
e = b†). According to the first half of the induction hypothesis, D(s†p, n

′
e) ≤

D(s†p, s
†
e) < k−1 holds for any neighbor n′

e of ne. Since D(s†p, s
†
e) < D(sp, se), s† must be popped

from Q earlier than s, which means that D(s) = ∞ when s† is popped. Therefore, s′ = (np, ne)
must be enumerated when s† is popped, which is contradictory to the fact that D(s′) =∞ when s is
popped. Therefore, V ∗(s′) = γ max

a∈A
min
b∈B

V ∗(P(s′, a, b)) = γk.

For now, we have proved that V ∗(s) = γD(s). Therefore:

µ∗(sp, se) = argmin
neighbor np of sp

{
max

neighbor ne of se
D(np, ne)

}
⇒ µ∗(s) = argmax

a∈A
min
b∈B

V ∗(P(s, a, b)),

ν∗(sp, se) = argmax
neighbor ne of se

{
min

neighbor np of sp
D(np, ne)

}
⇒ ν∗(s) = argmin

b∈B
max
a∈A

V ∗(P(s, a, b)).

As there exists a pure-strategy Nash equilibrium, it is directly guaranteed that (µ∗, ν∗) is a Nash
equilibrium.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 PROOF OF LEMMA 1

Proof. We consider the cases of D(np, ne) =∞ and 0 < D(np, ne) <∞, separately.

The first case is D(np, ne) =∞, which implies that (np, ne) is never enqueued:

Suppose that min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
<∞. Then, we let

sp = argmin
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
, se = argmax

neighbor se of ne

D(sp, se).

Since D(sp, se) = min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
<∞, (sp, se) is once enqueued.

Since se = argmax
neighbor se of ne

D(sp, se), we have that ∄n′
e ∈ V, (ne, n

′
e) ∈ E,D(sp, n

′
e) > D(sp, se).

Since D(np, ne) =∞, state (np, ne) will be enumerated when (sp, se) is dequeued. Then, D(np, ne)
is enqueued, which leads to a contradition.

Therefore, we have min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
=∞, which means the equation holds

in the first case.

The second case is 0 < D(np, ne) < ∞, which implies that (np, ne) is once enumerated when
a state (sp, se) ∈ Neighbor(np, ne) is dequeued. According to the enumeration rule, we have
∄n′

e ∈ V, (ne, n
′
e) ∈ E,D(sp, n

′
e) > D(sp, se), which implies se = argmax

neighbor se of ne

D(sp, se). Since

D(np, ne) = D(sp, se) + 1, we have:

D(np, ne) ≥ min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
+ 1.

Now redefine sp = argmin
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
, se = argmax

neighbor se of ne

D(sp, se).

Then, we have D(sp, se) = min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
and ∄n′

e ∈ V, (ne, n
′
e) ∈

E,D(sp, n
′
e) > D(sp, se). Since the D values in Q do not decrease, we have D(np, ne) ≤

D(sp, se) + 1 = min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
+ 1.

Therefore, D(np, ne) = min
neighbor sp of np

{
max

neighbor se of ne

D(sp, se)

}
+ 1 holds in the second case.

To conclude, the equation always holds when D(np, ne) > 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 2

Proof. First, we prove that for any state s = (sp, se) satisfying D(s) = d < ∞, µ∗ guarantees
pursuit within d steps against any evasion strategy:

Clearly, the proposition holds true when d = 0. Assume that the proposition holds for all d < k.

When d = k, we let np = argmin
neighbor np of sp

{
max

neighbor ne of se
D(np, ne)

}
, ne = argmax

neighbor ne of se
D(np, ne).

By Lemma 1, we have D(np, n
′
e) ≤ D(np, ne) = D(sp, se)− 1 ≤ k− 1 < k, ∀n′

e ∈ Neighbor(se).
By induction hypothesis, µ∗ guarantees pursuit within k− 1 steps for the states (np, n

′
e) that satisfies

n′
e ∈ Neighbor(se). Therefore, µ∗(s) = np guarantees pursuit within k steps. By induction, the

proposition holds true for all d <∞.

Second, we prove that for any state s = (sp, se) satisfying D(s) = d <∞, ν∗ avoids being captured
in less than d steps by any pursuit strategy:

Suppose there exists a pursuit movement sequence
{
n0
p, n

1
p, · · · , nT−1

p

}
that captures the evader

within T < d steps under policy ν∗. Then, we denote by
{
s0, s1, s2, · · · , sT

}
the corresponding state

sequence, where s0 = s and D(sT) = 0. By Lemma 1, D(sp, se) = min
neighbor np of sp

{ν∗(sp, se, np)}+

1, which implies that D(sp, se) ≥ D(np, ν
∗(sp, se, np)) + 1,∀np. Therefore, D(st) = D(stp, s

t
e) ≥

D(nt
p, ν

∗(stp, s
t
e, n

t
p)) + 1 = D(st+1

p , st+1
e) + 1 = D(st+1) + 1. This leads to a contradiction:

D(s) = D(s0) ≥ D(s1) + 1 ≥ D(s2) + 2 ≥ D(sT) + T = T < d = D(s). Therefore, ν∗ always
avoids being captured in less than d steps when D(s) = d <∞.

A.4 PROOF OF COROLLARY 1

Proof. By Theorem 2:

For s = (sp, se) with D(s) = d <∞, since µ∗ guarantees pursuit within d steps against any evasion
strategy, no evader can guarantee evasion for d steps against a worst-case pursuit strategy. Since ν∗

avoids being captured in less than d steps by any pursuit strategy, ν∗ is the optimal evasion strategy.

For s = (sp, se) with D(s) = d < ∞, since ν∗ avoids being captured in less than d steps by any
pursuit strategy, no pursuer can guarantee pursuit in less than d steps against a worst-case evasion
strategy. Since µ∗ guarantees pursuit within d steps against any evasion strategy, µ∗ is the optimal
pursuit strategy.

A.5 PROOF OF THEOREM 3

Proof. Suppose that there exists a pursuit strategy that captures ν∗ within T steps.

In this case, we denote by
{
s0, s1, s2, · · · , sT

}
the state sequence of a successful pursuit, where

s0 = s and D(sT) = 0. By Lemma 1, D(sp, se) = min
neighbor np of sp

{D(np, ν
∗(np))} + 1, which

implies D(np, ν
∗(np)) =∞,∀np ∈ Neighbor(sp). Then, we have D(s0) =∞⇒ D(s1) =∞⇒

· · · ⇒ D(sT) =∞, which leads to a contradiction.

Therefore, for s = (sp, se) with D(s) =∞, ν∗ can never be captured by any pursuit strategy.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.6 PROOF OF LEMMA 2

Proof. When Pos is a singleton, we have Pos = {se}. Therefore,

µ(sp,Pos) = argmin
neighbor np of sp

{
max

ne∈Neighbor(Pos)
D(np, ne)

}
= argmin

neighbor np of sp

{
max

neighbor ne of se
D(np, ne)

}
= µ∗(sp, se).

Besides, we have

belief(s) =

{
0 s /∈ Pos∑

neighbor v of s
ν(v, s)beliefold(v) s ∈ Pos

= I [s = se] beliefnew(se).

Therefore, it holds that

µ(sp,belief) = argmin
neighbor np of sp


beliefnew(se) max

neighbor ne of se
D(np,ne)

beliefnew(se)


= argmin

neighbor np of sp

{
max

neighbor ne of se
D(np, ne)

}
= µ∗(sp, se).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B ILLUSTRATION OF BELIEF PRESERVATION

Figure 2: Pursuit Initialization under Limited Observation Range (Nodes with Blue Outlines)

Figure 2 illustrates the initial state of one pursuit episode. Two green pursuers with an observation
range of 2 are going to capture the red evader that stays still within a total of 13 steps. The purple
nodes are some auxiliary sensors that provide additional information for the pursuers (also with an
observation range of 2). Therefore, all of the nodes with dark blue outlines can be observed by the
pursuers, while the other nodes cannot. At the first step, only the red node has non-zero belief and is
marked as high probability (represented by the yellow star).

Figure 3 illustrates the pursuit process under belief preservation, where the black or shadowed area
around the evader corresponds to belief and the darkness of the nodes indicates the current belief
distribution. Following (7), the belief is spread as the game proceeds (see timesteps 2, 4, 6, 8, 10) and
used to generate the pursuit strategy (6) under partial observability. At timestep 12, the evader is
eventually observed. Since Pos becomes a singleton by (4), the shadowed area disappears, and the
observed evader node is marked as high probability again.

Note that when the observed area covers all nodes, the game will be reduced to its perfect-information
counterpart, where the DP pursuer policy is provably optimal.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 3: Pursuit Illustration under Belief Preservation (Shadowed Area around Evader)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

C.1 SOFT ACTOR-CRITIC (SAC)

To fulfill R2PS training, we use discrete-action soft-actor critic (SAC) (Christodoulou, 2019) as the
backbone RL algorithm, where:

The value function is defined as

V (s) = Ea∼π(s) [Q(s, a)− α log π(s, a)] .

The loss of the value network Qϕ is computed as

JQ(ϕ) = Es,a

[
1

2
(Qϕ(s, a)− (r + γEs′ [V (s′)]))

2
]
.

The loss of the policy network πθ is computed as

Jπ(θ) = Es,a∼πθ(s) [α log πθ(s, a)−Q(s, a)] .

The temperature α under target entropy H is adaptively updated under loss

J(α) = Es,a

[
−α

(
log π(s, a) +H

)]
.

C.2 GRAPH NEURAL NETWORK (GNN)

We employ a sequence model with a parameter-sharing graph neural network (GNN) architecture (Lu
et al., 2025a) to represent the graph-based policy of the homogeneous pursuers:

Under the principle of sequential decision-making, a joint policy can be decomposed as

π(a1, a2, · · · , am|s) =
∏m

l=1
π(al|s, a1, · · · , al−1),

where (s, a1, · · · , al−1) indicates the global state after the first l− 1 pursuers take actions (ai)i∈[l−1].

For a team of pursuers with m agents, the sequence model queries the policy network m times under
a fixed adjacent matrix M ∈ {0, 1}n×n (n = |V|) for the current graph. The input is composed of
a state feature sf and the information of node index c for the current acting agent. Note that under
partial observability, the global state s is replaced by (sp,Pos,belief). We use the shortest path
distances to the m pursuers as the initial feature of each node v ∈ V . The normalized features of
all n nodes are concatenated with (Pos,belief) to construct the state feature sf . Also note that the
distances between one node and all other nodes can be computed using the O(n2) Dijkstra algorithm.

Given the state feature input sf , we embed it into Rd×n and send the result into an encoder composed
of 6 self-attention layers, where d is the embedding dimension. Each layer takes the output h of the
last layer as the input and outputs h′ using a masked attention, whose time complexity is also O(n2):

qi = WQhi, ki = WKhi, vi = WV hi, uij =
qTi kj√

d
,wij =

euij∑n
t=1 e

uit
, h′

i =

n∑
j=1

min {wij ,Mij} vj ,

where WQ,WK ,WV ∈ Rd×d are the weights to be learned.

Given the output of the encoder ĥ, we employ a decoder without masks to gather global information.
The decoder uses ĥc to query in the output features ĥ of all nodes, with the keys equal to the values:

q = WQĥc, ki = WK ĥi, vi = WV ĥi, uj =
qT kj√

d
,wj =

euj∑n
t=1 e

ut
, h̃c =

∑n

j=1
wjvj .

The decoder output h̃c is further concatenated with ĥc and projected into Rd. Then, it is used as a
query for a pointer network, which takes the features of the neighbor nodes ĥne for the current agent
as the keys and values. The pointer network directly outputs the attention vector w as the current
policy π(·|s) since the number of the neighbors aligns with the number of the valid actions. After the
first query through the policy network, an action a1 for the first agent is sampled from π(·|s), and the
state is updated as s′ = (s, a1). The subsequent m− 1 queries follow the same process as above.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 HYPERPARAMETER SETTING

Table 5 shows the detailed hyperparameter setting used in the training of our RL pursuer policy.

Table 5: Hyperparameter Setting of R2PS Training

Discount factor γ 0.99
SAC target entropy coefficient 0.05
GNN embedding dimension d 128

GNN attention heads 8
Batch size 128

Learning rate 10−5

Update epoch 8

C.4 LEARNING CURVES OF RL PURSUERS

0.0 0.2 0.4 0.6 0.8 1.0
Episode ×10

5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

0.0 0.2 0.4 0.6 0.8 1.0
Episode ×10

5

40

60

80

100

120
Te

rm
in

at
io

n
Ti

m
es

te
p

Synthetic Training Set (= 0.1)
Synthetic Training Set (= 0)

Large Training Set (= 0.1)
Large Training Set (= 0)

Figure 4: Cross-Graph Learning Curves of Generalized Pursuer Policies

During the cross-graph R2PS training, we consider the use of β = 0.1 and β = 0 in the policy loss
L(θ) (8). For the former, we employ the belief-averaged DP policy (6) as the reference policy. For
the latter, it means that the training process is without policy guidance. Figure 4 shows the learning
curves of our RL pursuer policies. Clearly, training with policy guidance is more efficient than pure
reinforcement learning under SAC loss. This comparison verifies that the DP pursuer policy can serve
as guidance to facilitate efficient exploration of the cross-graph RL policy. Besides, training under
the synthetic training set is relatively easier than under the large one that contains more real-world
graph structures. Nevertheless, our R2PS learning scheme gradually improves the quality of the RL
pursuer policies under all of the four settings, using a very limited observation range of 2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS

D.1 DETAILS OF TEST GRAPHS

Figure 5: Illustration of Test Graphs (Starting from Scotland-Yard Map)

The test graphs for both DP and RL pursuers include Grid Map (a 10× 10 grid), Scotland-Yard Map
(from the board game Scotland-Yard), Downtown Map (a real-world location from Google Maps),
and 7 famous real-world spots (from Times Square to Sydney Opera House). The graph structures
are illustrated in Figure 5, following the order in Table 1.

The real-world graphs are generated through a program designed for discretizing the regions around
the location centers in Google Maps. The map range is set to be 600 by default (corresponding to
a radius of 600 meters). Nodes correspond to actual road intersections, endpoints, and geometry-
defined shape points along roadways. Edges represent the physical road segments connecting these
nodes, typically encoded as polylines that capture the true geometry of each street. To ensure a
topologically coherent intersection structure, closely spaced intersection points (within 20 meters of
one another) are abstracted into single representative nodes. After establishing the intersection-level
skeleton, the program further adjusts the spatial resolution by subdividing any road segment whose
length exceeds 100 (discretization granularity) meters. For such long segments, the program inserts
additional intermediate points at regular intervals along the original road geometry. These newly
added points are treated as supplementary nodes, and the original long segment is replaced by several
shorter segments. The resulting graph therefore adopts a hybrid granularity: true intersections are
preserved as primary nodes, while long road segments are discretized into shorter units of no more
than 100 (discretization granularity) meters.

D.2 ADDITIONAL RESULTS

Table 6: Success Rates of Belief-Averaged DP Pursuers under Different Observation Ranges

Observation Range 2 3 4 5 6
Grid Map 0.78 0.92 0.99 1.00 1.00

Scotland-Yard Map 0.63 0.95 1.00 1.00 1.00
Downtown Map 0.90 1.00 1.00 1.00 1.00
Times Square 0.69 0.88 1.00 1.00 1.00

Hollywood Walk of Fame 0.48 0.79 0.94 0.98 1.00
Sagrada Familia 0.36 0.70 0.92 0.96 1.00

The Bund 0.57 0.87 0.97 0.99 1.00
Eiffel Tower 0.94 0.98 0.99 1.00 1.00

Big Ben 0.74 0.94 1.00 1.00 1.00
Sydney Opera House 0.87 0.96 0.99 0.99 1.00

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: Success Rates of RL Pursuers under Different Observation Ranges

Observation Range 2 3 4 5 6
Grid Map 1.00 1.00 1.00 1.00 1.00

Scotland-Yard Map 0.76 0.98 0.99 0.99 1.00
Downtown Map 0.99 0.99 1.00 1.00 1.00

Times Square, New York 0.95 0.98 1.00 1.00 1.00
Hollywood Walk of Fame, LA 0.38 0.59 0.96 1.00 1.00

Sagrada Familia, Barcelona 0.20 0.72 0.88 0.95 0.96
The Bund, Shanghai 0.25 0.55 0.82 0.82 0.83
Eiffel Tower, Paris 1.00 1.00 1.00 1.00 1.00
Big Ben, London 0.82 0.95 0.98 0.99 0.99

Sydney Opera House, Sydney 0.95 0.98 1.00 1.00 1.00

We may find that Hollywood Walk of Fame, Sagrada Familia, and The Bund are relatively more
difficult for the pursuers, especially under small observation ranges. Based on the statistics of the test
graphs in Table 1 (left), here we provide a rough analysis of this phenomenon. In planar graphs, a
large average degree generally implies the existence of small cycles. For example, in Grid Map, all
minimal cycles’ length is only 4. Since successful evasions benefit more from large cycles, graphs
like Grid Map, Scotland-Yard Map, and Downtown Map are easier for pursuit. Besides, Eiffel Tower,
Big Ben, and Sydney Opera House all have large diameters, which implies the existence of long
“links” that have poor connectivity with other nodes (see the last three graphs in Figure 5). Therefore,
these graphs also benefit pursuit rather than evasion. As Hollywood Walk of Fame, Sagrada Familia,
and The Bund do not have the mentioned characteristics, these graphs are harder for the pursuers.

Figure 6 provides the scaling plots of the computation (inference) time of DP and RL policies under
an NVIDIA GeForce RTX 2080 Ti GPU, with the log-log plots on the right. Clearly, the time of DP
computations significantly increases with the graph sizes. In comparison, the inference time of our
GNN-based RL policy is only slightly longer in large graphs than in small graphs.

250 500 750 1000 1250 1500 1750 2000
Node Number

0

20

40

60

80

100

120

140

Ti
m

e
(s

ec
on

ds
)

RL Inference Time
DP Inference Time

102 103

Node Number

10 2

10 1

100

101

102

Ti
m

e
(s

ec
on

ds
)

RL Inference Time
DP Inference Time

Figure 6: Scaling Plots of RL and DP Inference Time

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.3 RL PERFORMANCE UNDER MORE PURSUERS

Table 8: Success Rates of RL Policy under Different Pursuer Numbers

Pursuer Number m = 2 m = 4 m = 6
Grid Map 1.00 1.00 1.00

Scotland-Yard Map 0.76 0.99 1.00
Downtown Map 0.99 1.00 1.00

Times Square, New York 0.95 0.97 1.00
Hollywood Walk of Fame, LA 0.38 0.82 0.93

Sagrada Familia, Barcelona 0.20 0.74 0.94
The Bund, Shanghai 0.25 0.99 1.00
Eiffel Tower, Paris 1.00 1.00 1.00
Big Ben, London 0.82 1.00 1.00

Sydney Opera House, Sydney 0.95 0.99 1.00

As our R2PS training is established upon the framework of EPG (Lu et al., 2025a), we can also
employ the grouping mechanism proposed by Lu et al. (2025a) to derive pursuer and evader policies
when the pursuer number m is large. Table 8 compares the pursuit success rates of the multi-agent
RL policies against the asynchronous-move DP evader under different pursuer numbers m. Clearly,
the 4-pursuer policy can significantly increase the original success rates for m = 2. When m = 6,
the success rates are close to 1 even under the fixed observation range of 2. Figure 7 further illustrates
the FLOPs of our RL inference under different graph sizes and pursuer numbers.

250 500 750 1000 1250 1500 1750 2000
Node Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

GF
LO

Ps

m=2
m=4
m=6

Figure 7: Scaling Plots of Floating-Point Operations under Different RL Pursuer Numbers

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E RELATED WORK

Finding optimal strategies in PEGs. Graph-based pursuit-evasion games (PEGs) can be categorized
into no-exit PEGs and multi-exit PEGs. The former is the primary form of pursuit-evasion and also
the focus of this paper, while the latter is sometimes referred to as network security games. For no-exit
PEGs, the early theoretical work (Goldstein & Reingold, 1995) proves that it requires exponential
time to determine whether m pursuers are sufficient to capture one evader on a given graph under
perfect information. Vieira et al. (2008) provide the provably optimal method for solving sequential
PEGs, and Chung et al. (2011) show that the basic idea behind PEG solving can be represented by a
marking algorithm featuring state expansion. Horák & Bošanskỳ (2017) consider the case where the
pursuers only have partial observation and provides a dynamic programming algorithm in the form of
value iteration for finding Nash equilibrium. Lu et al. (2025a) show that an expansion-based dynamic
programming algorithm can solve Markov PEGs under a near-optimal time complexity. Recent works
(Xue et al., 2021; 2022) combine neural networks with fictitious self-play and Monte-Carlo tree
search to construct scalable deep reinforcement learning (RL) algorithms for finding robust pursuit
strategies in network security games.

Policy generalization in PEGs. Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017) is
a standard game RL paradigm extended from the game-theoretic approach of double oracle (DO)
(McMahan et al., 2003) for robust policy learning. While the approach itself is general, it can only
solve PEGs on a designated graph structure, just like the methods above. As we have mentioned,
policy generalization is crucial to real-time applications under real-world PEGs, becoming a focus
of recent research. MT-PSRO (Li et al., 2023) combines multi-task policy pre-training with PSRO
fine-tuning to enable few-shot generalization to unseen real-world opponents. Grasper (Li et al.,
2024) proposes a two-stage pre-training method to facilitate few-shot generalization to unseen initial
conditions of the game. Equilibrium Policy Generalization (EPG) (Lu et al., 2025a) provides a
fundamentally novel paradigm to learn generalized policies across the underlying structures of PEGs
through the construction of equilibrium oracles, guaranteeing robust zero-shot generalization to
unseen graph structures in Markov PEGs. As EPG does not require the time-consuming PSRO tuning,
the pursuit strategies are real-time applicable under full observability. However, as is mentioned
in Lu et al. (2025a), whether such a kind of generalization can be applied to the case of imperfect
information remains unclear. Since partial observability leads to the inherent PSPACE-hardness (see
Papadimitriou & Tsitsiklis (1987)) and exponentially many information sets (see Lu et al. (2025b)),
constructing equilibrium oracles directly under partial observability can be intractable.

25

	Introduction
	Preliminaries
	Problem Formulation
	Dynamic Programming for Markov PEGs

	Extending Dynamic Programming Policies to Asynchronous Moves and Partial Observability
	Asynchronous-Move Setting
	Partially Observable Setting

	Finding Robust Real-Time Pursuit Strategies (R2PS) via Adversarial Reinforcement Learning across Graphs
	Adversarial Reinforcement Learning
	Implementation and Complexity Analysis

	Evaluations
	Evaluations of Extended DP Pursuers
	Evaluations of Generalized RL Pursuers
	Scalability Tests and Ablation Studies

	Conclusion
	Omitted Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Theorem 3
	Proof of Lemma 2

	Illustration of Belief Preservation
	Implementation Details
	Soft Actor-Critic (SAC)
	Graph Neural Network (GNN)
	Hyperparameter Setting
	Learning Curves of RL Pursuers

	Experimental Details
	Details of Test Graphs
	Additional Results
	RL Performance under More Pursuers

	Related Work

