Under review as a conference paper at ICLR 2026

R2PS: WORST-CASE ROBUST REAL-TIME PURSUIT
STRATEGIES UNDER PARTIAL OBSERVABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Computing worst-case robust strategies in pursuit-evasion games (PEGs) is time-
consuming, especially when real-world factors like partial observability are consid-
ered. While important for general security purposes, real-time applicable pursuit
strategies for graph-based PEGs are currently missing when the pursuers only
have imperfect information about the evader’s position. Although state-of-the-art
reinforcement learning (RL) methods like Equilibrium Policy Generalization (EPG)
and Grasper provide guidelines for learning graph neural network (GNN) policies
robust to different game dynamics, they are restricted to the scenario of perfect
information and do not take into account the possible case where the evader can
predict the pursuers’ actions. This paper introduces the first approach to worst-case
robust real-time pursuit strategies (R2PS) under partial observability. We first prove
that a traditional dynamic programming (DP) algorithm for solving Markov PEGs
maintains optimality under the asynchronous moves by the evader. Then, we extend
the DP pursuit strategies to a partially observable setting through preserving beliefs
about the evader’s possible positions. Finally, we embed the belief preservation
mechanism into the state-of-the-art EPG framework to finish our R2PS learning
scheme, which leads to a real-time pursuer policy through cross-graph reinforce-
ment learning against the asynchronous-move DP evasion strategies. Experiments
under different training sets reveal that using the extended DP pursuers as guidance
improves the training efficiency under partial observability. After reinforcement
learning, our policy achieves robust zero-shot generalization to unseen real-world
graph structures and consistently outperforms the policy directly trained on the test
graphs by the existing game RL approach, even against a best-responding evader.

1 INTRODUCTION

Pursuit-evasion game (PEG) is an important topic long examined in the fields of robotics and security
(Vidal et al.l 2001} [2002; |Chung et al., 2011). Many real-world tasks can benefit from the solution to
an abstracted PEG, e.g., guiding a team of cops to capture a robber and aligning a team of guards to
defend against an intruder. In comparison with traditional differential games (Margellos & Lygeros,
2011;[Zhou et al.l 2012), graph-based PEGs are convenient for describing complicated scenarios,
possibly with a large scale. When we use graphs as a common structural representation, the actions
of the pursuers and the evader can be abstracted as moving from a vertex to an adjacent one at each
discrete timestep. The edges between the vertices can possibly represent urban streets in reality.

However, exactly solving graph-based PEGs is computationally expensive (see|Goldstein & Reingold
(1995)). Even under a slight structural change, the worst-case robust pursuit strategies can be different
and thus require a large amount of time to be recomputed. For example, when a traffic jam happens
in the city, the related edges in the PEG graph can be frequently removed and added. This severely
limits the real-time applicability of the existing methods featuring mathematical programming (Vieira
et al., [2008}; [Horak & Bosansky,2017). Besides, real-world factors like partial observability, which
leads to PSPACE-hardness even under a fixed opponent (see |[Papadimitriou & Tsitsiklis| (1987)),
further increase the difficulty of deriving a well-performing pursuit strategy within a time limit.

Reinforcement learning (RL), which has demonstrated strong generalization capabilities in domains
like large language models (see|Chu et al.| (2025)), provides an alternative solution to this problem.
We may train a parameterized policy represented by a suitable neural network, e.g., a graph neural

Under review as a conference paper at ICLR 2026

network (GNN) (Wu et al.|, 2020), on a diverse set of graphs and then generalize it to the unseen
graph structures. Unfortunately, while RL has been applied to solving large-scale PEGs (Xue et al.,
2022;2021), existing research focuses more on its scalability rather than generalization capability.
The methods like MT-PSRO (Li et al.l[2023) and Grasper (Li et al.| [2024) are limited to few-shot
generalization to unseen opponent strategies and initial conditions. As is pointed out by Zhuang
et al.|(2025), they still have difficulty adapting to rapid changes of graph structures. The state-of-the-
art method, Equilibrium Policy Generalization (EPG) (Lu et al., [2025a)), first examines zero-shot
generalization at the level of graphs. However, whether the paradigm of EPG works under partial
observability remains underexplored. Besides, all of the mentioned works do not consider the possible
case that the evader may have stronger observation capabilities than the pursuers. This makes the
strength of the learned pursuit strategies less convincing for real-world security purposes.

In this paper, we present an approach to finding pursuit strategies that are both worst-case robust
and real-time applicable under partial observability. We start by analyzing a dynamic programming
(DP) algorithm for efficiently solving Markov PEGs and proving that it also finds optimal strategies
when the evader can predict the pursuer’s action and move asynchronously. Then, we extend the
DP policies to a partially observable setting through preserving beliefs about the evader’s positions.
The belief preservation serves to avoid the complexity of recording all observation histories through
abstracting a high-level representation for effective decision-making. Finally, we embed the belief
preservation mechanism into the reinforcement learning framework of EPG and train a generalized
GNN pursuer policy under partial observability. Following the principle of EPG, the training proceeds
in a diverse set of graphs against the provably optimal DP evader. We then evaluate the worst-case
robustness of our real-time RL pursuer policy under unseen real-world graph structures.

Specifically, the contributions of this paper are twofold:

* We theoretically analyze a dynamic programming (DP) algorithm and extend the optimal
strategies induced by this algorithm to asynchronous-move and partially observable scenarios.
We prove that the DP algorithm induces strictly optimal pursuit and evasion strategies when
the evader moves asynchronously and design a belief preservation mechanism against the
possibly unobserved evaders. We verify that the extended pursuer policy, which is fast to
compute based on the existing results of DP, remains strong against the provably optimal
perfect-information evader. In comparison, heuristics like following the shortest path to the
evader can hardly succeed, even if the strategy makes use of global information.

* We practically generalize an observation-based pursuer policy across different graph struc-
tures, deriving the first worst-case robust real-time pursuit strategies (R2PS) applicable to
dynamically changing PEGs with partial observations. We combine our belief preservation
mechanism with the state-of-the-art policy generalization paradigm. We verify that training
against the asynchronous-move DP evaders under a diverse set of graphs can lead to robust
zero-shot performance in unseen real-world graphs, even under partial observability. Exist-
ing game RL approaches like PSRO (Lanctot et al., [2017), however, struggle to achieve a
comparable performance, even if the training directly proceeds on the test graphs.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Adversarial games with partial observability can be generally represented by partially observable
stochastic games (POSGs), where equilibrium learning has been rigorously examined in existing
game-theoretic research (e.g.,|Lu et al.| (2025b)). However, this formulation considers all possible
observation histories and leads to a large set of decision points whose size is possibly exponential
in the time horizon of the game. For the worst scenario of pursuit-evasion, while the pursuers have
limited observation capabilities, the evader could still obtain the global information of the game.
Since at least one side of the players possesses perfect information, it is less efficient to formulate
PEGs as complete POSGs. Therefore, in order to avoid the inherent PSPACE-hardness from the
problem formulation, we consider first expressing PEGs as two-player zero-sum Markov games and
then extending the definitions to incorporate practical adversarial factors like partial observability and
asynchronous moves of the evader. The ultimate goal is to adjust the efficient algorithms for solving
Markov PEGs to the imperfect-information setting with little sacrifice of robustness.

Under review as a conference paper at ICLR 2026

Two-player zero-sum Markov game. An infinite-horizon two-player zero-sum Markov game is
represented by a tuple (S, A, B, P,r,v), where S is the state space, A is the action space of the
max-player (who aims to maximize the cumulative reward), BB is the action space of the min-player

(who aims to minimize the cumulative reward), P € [0, 1] ISIIAIIBIx|S|

matrix, r € [0, 1]|SHA”B‘ is the reward vector, and v € (0, 1) is the discount factor. In PEGs, the
max-player is the team of m pursuers, and the min-player is the evader. We use a termination function
f S — {0,1} to mark the states where the pursuit is successful. When f(s) = 1, the game is
terminated, and a reward of +1 is received. Otherwise, a reward of 0 is received. The discount factor
~ < 1 encourages the pursuers to capture the evader as soon as possible.

is the transition probability

Graph-based pursuit-evasion game. Considering the requirements of formulating large-scale
real-world scenarios, we describe states and actions on a graph structure G = (V, E): V is the
set of vertices v. The global state s = (sp, s.) in a game is an element of V™ x V), where s, =
(vp,v2,---,v") € V™, and s, = v, € V. Anedge e = (v,v) € E defines the adjacency between
two vertices v, v’ € V. For example, when we represent an urban scenario by a graph G, an edge e
can be used to describe a unit length of streets. The valid actions of the m + 1 agents in a graph-based

PEG are either moving to an adjacent vertex via an edge or staying at the current node.

Policy and value function. Following common notations, we denote by (1, v) the joint policy
of the two players, where p is the policy of the max-player (pursuers) and v is the policy of the
min-player (evader): u(s) € A(A) (resp., v(s) € A(B)) is the max-player’s (resp., min-player’s)
action distribution at state s € S. Since A(.A) is the probability simplex over A, x(s, a) corresponds
to the probability of selecting action a € A at state s. Given the joint policy, we further define the
value function V*¥(s) = E [72 7'r(se, ar, by) |so = s; p, v] as in Markov decision processes.

Solution concept. A Nash equilibrium (NE) in a game is a joint policy where each individual player
cannot benefit from unilaterally deviating from his/her own policy (Roughgarden, 2016)). Specifically,
in a two-player zero-sum MG, an NE (u*, v*) satisfies Vvt < YVRSYT VRSV for any pand v at
all states. As is well known, every MG with finite states and actions has at least one NE, and all NEs
in a two-player zero-sum MG share the same value V*(s) = V*"*" (s) = max,min, V" (s) =
min, max, V" (s) (Shapley, |1953). In two-player zero-sum Markov games, Nash equilibrium can
be viewed as a globally optimal joint policy since both players cannot be exploited by their worst-case
opponents when the players move synchronously (simultaneously).

Game extension. Since Markov games only take into account synchronous moves and full observa-
tions, we further allow for two variations concerning asynchronous moves and partial observability.
In reality, the worst evader (from the pursuers’ perspective) may have good predictions of the pursuit
actions. Therefore, we allow it to decide after the pursuers’ move a at each timestep. In this case,
the evader policy v(s) is transformed into an asynchronous one v(s, a), and we say that a strategy is
optimal for the pursuer/evader side at state s if the worst-case termination timesteps of all possible
trajectories starting from s are maximized/minimized. Besides, the availability of sensors may not
allow the pursuers to observe an agent that is far away (while the worst evader can). In this case, the
pursuer policy 1(s) is transformed into (o), where o is the history of the pursuers’ local observations.

2.2 DYNAMIC PROGRAMMING FOR MARKOV PEGS

The traditional marking algorithm (Chung et al., 2011} provides a general idea of recursively finding
optimal strategies in perfect-information PEGs. If all possible evading actions lead to the states that
have been marked, then we can also mark the current state, which means the pursuers can capture the
evader starting from this state. However, a direct implementation of the marking algorithm incurs
a time complexity that is the square of the theoretical lower bound Q(|S]). In view of this gap, Lu
et al[(2025a) introduce a dynamic programming (DP) algorithm (see Algorithm [I]) that guarantees
near-optimal time complexity for solving Markov PEGs.

Algorithm [T] computes a distance table D through preserving a queue Q. Intuitively, the distance
value D(s) indicates the worst-case timestep for the pursuer side to capture the evader starting from
the global state s = (sy, s¢), which is guaranteed through the use of a minimax policy

1 (sp,se) = argmin { max D(np,ne)} . (1

neighbor n,, of s, | neighbor ne of s

1
2

L - N

17
18

Under review as a conference paper at ICLR 2026

Algorithm 1: Dynamic Programming for Markov PEGs

Input: Graph G = (V, E), Pursuer Number m, and Termination Function f : V™ x V — {0,1}
Initialize an empty queue Q and the distance table D = oo
for pursuer state (positions) s, € V'™ do
for evader state s, € V do
if f(sp, se) =1 then
D(sp,8e) < 0
Push (s, s¢) into Q
end
end
end
while Q is not empty do
Pop the first element (s, s.) from Q
for evader neighbor n. € Neighbor(s.), #n. € V, (ne,n) € E, D(sp,n.) > D(sp, s¢) do
for pursuer neighbor n,, € Neighbor(s,) C V™, D(n,,n.) = oo do
D(np,ne) < D(sp, se) +1
Push (n,,n.) into Q
end
end

end
Output: Distance Table D

Under synchronous moves, the evader’s policy is symmetrically defined as

D).

v*(sp, Se) = argmax { ~ min
neighbor n, of s, neighbor ny, of sp,

@

Using mathematical induction, [Lu et al.| (2025a) prove that the joint policy (u*, v*) is a near-optimal

pure strategy (detailed proof reserved in Appendix [A.1)):

Theorem 1. If there exists a pure-strategy Nash equilibrium in the Markov PEG, then the joint policy

(u*,v*) defined by (1)) and (2)) is a Nash equilibrium.

3 EXTENDING DYNAMIC PROGRAMMING POLICIES TO ASYNCHRONOUS
MOVES AND PARTIAL OBSERVABILITY

In this section, we further show that the distance table D generated by the DP algorithm (Algorithm
[I) can also be used to construct the optimal evader policy under asynchronous moves, as well as the

observation-based pursuer policies under partial observability.

3.1 ASYNCHRONOUS-MOVE SETTING

When the evader moves asynchronously, we define the DP policy for the evader as

v*(sp, Se,np) = argmax {D(ny,ne)},
neighbor n. of se

3

where n,, is the neighbor of s, that the pursuers choose to move to through a joint action a, which is

perceived or predicted by the evader in advance.

In this case, we can show that the pursuer policy (I)) and evader policy (3) induced by the distance
table D are strictly optimal at all states. We start our analysis by proving Lemma 1, which reveals the

minimax essence of the distance table D. The detailed proof can be found in Appendix [A.2]
Lemma 1. When D(np,ne) > 0, Algorithm guarantees that

D(ny,ne) = min { max D(sp7se)} + 1.

neighbor s, of n, | neighbor s. of n.

4

Under review as a conference paper at ICLR 2026

Using Lemma |1} we can further prove that D(s) implies the best possible worst-case timesteps
starting from state s for both pursuer and evader sides under the asynchronous-move setting. The
main results are shown as follows, and the omitted proofs can be found in Appendix

Theorem 2. Starting from any state s = (s, s.) satisfying D(s) = d < oo, u* guarantees pursuit
within d steps against any evasion strategy, and v* avoids being captured in less than d steps by any
pursuit strategy.

Based on the definition of optimal strategies in the asynchronous-move setting (see Section 2.1),
Theorem [2] directly implies the following corollary:

Corollary 1. For any state s = (sp, s.) with D(s) < oo, both p* and v* are optimal strategies.

Furthermore, we use Theorem [3]to show that whether m perfect-information pursuers are sufficient
to capture the evader starting from state s can be determined by whether D(s) < oo:

Theorem 3. Starting from any state s = (s, s.) with D(s) = oo, v* can never be captured by any
pursuit strategy.

3.2 PARTIALLY OBSERVABLE SETTING

Since the DP algorithm provably generates optimal strategies when both pursuer and evader sides
have full observations, it is appealing to reuse the distance table D to construct a pursuit strategy
under partial observability for real-world security purposes. We expect that the observation-based
pursuer policy, which is extended from the DP policy under perfect information, should effectively
extract history information and align with the original policy when the observation range is infinity.

We consider the following partially observable setting for the pursuers, who may serve as guards in a
large area. The PEG begins because an intruder is observed, whose initial position is revealed to the
pursuers. Once the game starts, the position of the evader (intruder) can no longer be detected unless
it is in the observation range of at least one pursuer. For example, setting the observation range to be
2 means that the evader can be detected only when its distance to one pursuer is less than 3.

Under the partially observable setting, the observation history o induces the possible positions of the
evader, which we denote by a set Pos. This set is initialized as {s. }, where s, is the initial position of
the evader. As the game proceeds, it is updated based on the pursuers’ observations at each timestep:

P _ {se} evader is observed at s,
O8new =\ Remove(Neighbor(Pos,q)) evader is not observed.

where the operator Remove(+) excludes all currently observed positions (since the evader is currently
unobserved) from the possible evader positions Neighbor(Pos,4) (since the evader may move).

Given Pos, we can express (o) as f(s,, Pos) and construct a minimax policy that considers the
worst position that an evader with perfect information may prefer:

w(sp, Pos) = argmin { max max D(np,ne)}

neighbor 7, of s, | Se €05 neighbor ne of se

“
= argmin { max D(ny, ne)} .

neighbor 7, of s, | 7ve ENeighbor(Pos)

While this policy is applicable to the case of partial observability, we find that averaging the timesteps
through preserving a belief about the evader’s position can further encourage effective pursuit when
the set Pos is large. The belief-averaged pursuer policy is expressed as

>belief(se) max D(np,ne)

Se neighbor n. of s,

w(sp,belief) = argmin (%)

neighbor n, of s, Z belief(se) ’
Se

where the belief function is initialized to be 0 except for the initial evader position and updated by

0 Se & Pos,
belie frew(se) > v(v, se)beliefora(v) se € Pos.

neighbor v of s¢

Under review as a conference paper at ICLR 2026

Since the pursuer side cannot obtain the evader’s policy ¥ when no prior knowledge is available, v(v)
is set to be a uniform distribution over Neighbor(v) by default.

As the original DP policy p*(s) is provably optimal, Lemma [2] guarantees that both the position-
extended policy (s, Pos) and the belief-averaged policy (s, belief) maintain the pursuit opti-
mality when there is unlimited observation capability. The proof can be found in Appendix

Lemma 2. When Pos is always a singleton, both pursuer policies () and (3) will be reduced to
their perfect-information counterpart ({I).

Note that the time complexity of preserving Pos and belief is only O(|V]) at each timestep, where
O hides the additional factor of enumerating the neighbors. Since the average degree in the real-world
graphs can be small (see Table[T)in Section 5), the computation is practically efficient. In Appendix
we provide an illustration of the belief preservation process for a more intuitive understanding.

4 FINDING ROBUST REAL-TIME PURSUIT STRATEGIES (R2PS) ViA
ADVERSARIAL REINFORCEMENT LEARNING ACROSS GRAPHS

Since the DP algorithm has a lower-bound time complexity exponential in the agent number, it
can be impractical to directly apply the DP policies in real time when the graph structure of the
game dynamically changes. In view of this problem, we further combine our belief preservation
mechanism with the idea of Equilibrium Policy Generalization (EPG) (Lu et al.| |2025a) to construct
a reinforcement learning method, which makes use of some preprocessed D tables and the induced
policies to train a generalized pursuer policy across a diverse set of graphs. We use the cross-graph
RL policy for zero-shot generalization under unseen graph structures, aiming to derive worst-case
robust real-time pursuit strategies (R2PS) under partial observability.

Training Set

G1|(ML Vik)

L£(0]s)
Policy Loss

G2|(/J';7 V;)

G;

(1, vi)

Figure 1: Cross-Graph Reinforcement Learning of Generalized Pursuer Policy

Figure [I)illustrates the cross-graph reinforcement learning pipeline, which features unexploitable
evader policies as adversaries. The training set contains graphs with various topologies GG; and the
DP policies (pf, v}) induced by the preprocessed D tables. In each iteration, a graph G; along with

the policy (p],v;) is sampled. Under graph G = G, we use u* = u} as the reference policy to

guide policy training and use v* = v} as the adversarial policy. Following the principle of EPG, we
train a cross-graph pursuer policy through reinforcement learning against »* with the guidance of p*.

Specifically, for a transition (s, a, b, 7, s') in the replay buffer: s is a randomly generated global state
in the sampled graph; a is the pursuers’ joint action sampled from the current policy model my, which
is ideally a graph neural network (Wu et al, 2020) with parameter 0 that enables real-time inference;
b is the evader’s action generated from the asynchronous-move opponent policy v* (3)); the instant
reward r and the next state s’ are generated by the PEG dynamics under graph structure G = (V, E).

Under review as a conference paper at ICLR 2026

Given state s, the reference policy p* generates a deterministic reference action a* = p*(s) and
serves to construct the policy loss

L(Os) = Jx(0]s) + BDxL (1" (s),7(s)) = Jx(0]s) — Blogmy(s, a”), (6)

where J(0]s) is the original policy loss of any backbone (multi-agent) reinforcement learning
algorithm (e.g., MAPPO (Yu et al.|[2022)), and f3 is a hyperparameter that balances policy guidance
(for efficient exploration) and reinforcement learning loss (for policy optimization).

When training pursuers under partial observability, we transform the input of the policy model 7y by
s < (sp, Pos, belief)

and use the observation-based policies 1i(s;,, Pos) (4) or u(s,, belief) (5) to replace 1*(s) (1), where
Pos and belief are the preserved evader information under partial observability.

For dynamic games like PEGs, the policy space has certain transitivity structures. |Czarnecki et al.
(2020) show that the strategies in real-world games have different levels of transitive strength, with
Nash equilibrium being the strongest. In a single-graph PEG, reinforcement learning against the
optimal evader policy v* helps to exclude the pursuer policies that are transitively weaker. Cross-
graph training is similar to finding the joint part of the remaining strategies and abstracting them
to a worst-case robust policy under a diverse set of graph structures, where the divisions on the
policy space through adversarial RL can be different. Imagine that a half space is excluded after
each single-graph division and that the remaining policy spaces from different graphs are mutually
orthogonal. In this ideal case, the cross-graph policy will be improved at an exponential level across a
diverse training corpus, leading to robust real-time pursuit strategies even under partial observability.

5 EVALUATIONS

Here we provide our experimental evaluations of single-graph DP pursuers and cross-graph RL
pursuers under partial observability. We assume that there are two pursuers (m = 2) against the
single evader. This is a reasonable setting in view of the graph-theoretic result that 3 pursuers with
full observations can always capture the evader in any planar graph (Fromme & Aigner, |1984)). The
initial position is randomly generated under the restriction that the distance between the evader and
the pursuers is larger than the observation range of 2. Besides, no observation sensors except for the
pursuers themselves are allowed. The test graphs include Grid Map (a 10 x 10 grid), Scotland-Yard
Map (from the board game Scotland-Yard), Downtown Map (a real-world location from Google
Maps), and 7 famous real-world spots (from Times Square to Sydney Opera House). The graph
structures are illustrated in Figure[3] and the detailed statistics are shown in Table I] (left).

Table 1: Graph Data (Total Node Number, Average Degree, Diameter) and Success Rate Comparison

Node Degree Diameter | Shortest Path DPpos DPpesey
Grid Map 100 3.60 18 0.00 0.59 0.78
Scotland-Yard Map 200 391 19 0.00 0.44 0.63
Downtown Map 206 2.98 19 0.02 0.73 0.90
Times Square 171 2.58 22 0.01 0.41 0.69
Hollywood Walk of Fame | 201 242 31 0.01 0.25 0.48
Sagrada Familia 231 2.60 25 0.00 0.24 0.36
The Bund 200 2.53 29 0.03 0.30 0.57
Eiffel Tower 202 2.34 38 0.29 0.69 0.94
Big Ben 192 2.48 34 0.08 0.54 0.74
Sydney Opera House 183 2.33 37 0.05 0.47 0.87

5.1 EVALUATIONS OF EXTENDED DP PURSUERS

We first evaluate the strength of the extended DP pursuers under partial observability (Section 3.2).
We denote by DPp,,s the position-extended pursuer @) and by DPy;;c ¢ the belief-averaged pursuer
. The pursuers succeed (f(s) = 1) when at least one of them is adjacent to the evader on the graph

Under review as a conference paper at ICLR 2026

within 128 timesteps, and the success rates are averaged over 500 tests. To simulate the difficult
case for security purposes, the evader is set to be the provably optimal DP evader (3) with global
observations and asynchronous moves. For an intuitive comparison, we also include the result of
directly following the shortest path to the evader under full observability.

As is shown in Table] (right), the shortest-path strategy can hardly capture the optimal DP evader. In
comparison, though under a limited observation range of 2, the extended DP pursuers demonstrate
significantly higher success rates. Besides, DPy¢;;. ¢ consistently outperforms DPp,s. This result
verifies that the direct minimax policy (@) can be improved through belief averaging. Actually, since
equation () treats all possible positions as equal, the result of the inner max can be very large when
the size of Pos is large, leading to pessimistic pursuit behaviors like staying at certain “rest points”.

We further take a look at how observation capabilities could affect success rates. We increase the
observation range and evaluate the performance of DPpey;c s (@) As is shown in TableE], the success
rates monotonically increase with the observation range and reach 100% when the range exceeds 5.
While D(-) is an accurate estimator of the worst-case pursuit distance in Markov PEGs, it becomes an
optimistic one under partial observability. Nevertheless, the experimental results show that combining
this optimistic estimator with belief information can maintain the strength of the DP-based pursuit
strategies, even under very limited observation capabilities.

5.2 EVALUATIONS OF GENERALIZED RL PURSUERS

Now, we implement and evaluate our cross-graph reinforcement learning method aimed at R2PS
(Section 4). We discretize the maps from the Dungeon environment (Chen et al.l 2019) to construct a
synthetic training set containing 150 graphs and further include 150 random urban locations from
Google Maps to create a large training set with a total of 300 graphs, where the maximum node
number is no more than 500. We apply the R2PS learning scheme to the synthetic training set and the
large training set. Appendix [C.3|provides the learning curves of the pursuer policies under partial
observability. As is shown in Figure] using the extended DP pursuers as guidance (5 = 0.1) helps
to improve the training efficiency over pure reinforcement learning (8 = 0) under either training set.

Technically, we use soft-actor critic (SAC) (Haarnoja et al., 2018}, |Christodouloul 2019) as the
backbone RL algorithm and employ a decentralized architecture with a parameter-sharing graph
neural network (GNN) (Cao et al., 2023} [Lu et al.| [2025a) to represent the graph-based policy of
the homogeneous pursuers. The SAC algorithm features a self-adaptive entropy regularization that
balances exploration and exploitation, with double Q-learning (Hasselt, 2010) employed to avoid
overestimation. The GNN architecture combines multi-head self-attention (Vaswani et al.| [2017) with
adjacent-matrix masks to encode graph-based states. The state embedding is then sent into a decoder
followed by a pointer network (Vinyals et al.,[2015) for graph-based policy output.

The implementation details and hyperparameter setting are reserved in Appendix|D| According to
the corresponding analysis, the overall time complexity of computing the graph-based state feature
is O(n?m), where n = |V is the number of vertices in the graph, and the complexity of GNN
queries is also O(n?m). Adding the O(n) complexity of preserving Pos and belie f under partial
observability, the overall inference time complexity of the RL pursuer policy at each timestep is only
O(n?m) + O(n?m) + O(n) = O(n*m), even when the graph dynamically changes. In comparison,
the time complexity of recomputing DP policies under varying graph structures is @(nm+1) (see|Lu
et al. (2025a)). We also practically test this distinction. When n = 1000 and m = 2, it takes over 2
minutes to run Algorithm[I]at each timestep using an Intel Core i9-13900HX CPU. The inference
time of the GNN policy, however, is less than 1 second under the same condition (only 0.02s under
an RTX A6000 GPU). Therefore, it is safe to say that our RL pursuer policy is real-time applicable.

Policy-Space Response Oracles (PSRO) (Lanctot et al.,[2017) is a general reinforcement learning
method extended from the game-theoretic approach of double oracle (DO) (McMahan et al .| [2003)
for equilibrium finding. Here we compare the zero-shot performance of our generalized pursuer
policy with a PSRO policy that is directly trained on the 10 test graphs using 10 iterations (10000
episodes per iteration). Our RL policy aimed at R2PS, however, is pretrained under the synthetic
training set with 150 graphs for 30000 episodes (8 = 0.1) and then trained under the 150 random
urban graphs for 70000 episodes. Since our training process never comes across the test graphs, our
RL policy has to zero-shot generalize to these unseen graph structures during evaluations.

Under review as a conference paper at ICLR 2026

Table 2: Success Rate Comparison across Different Graphs and Strategies

Evader Policy Stay DPync DPysync BRysyne
Pursuer Policy Ours PSRO | Ours PSRO | Ours PSRO Ours
Grid Map 1.00 1.00 | 1.00 094 | 1.00 0.88 1.00
Scotland-Yard Map 1.00 1.00 | 1.00 047 | 0.76 0.00 0.73
Downtown Map 1.00 099 | 1.00 088 | 099 0.03 0.92
Times Square 1.00 093 | 1.00 0.16 | 095 0.04 0.27
Hollywood Walk of Fame | 1.00 095 | 090 0.00 | 0.38 0.00 0.10
Sagrada Familia 099 093 | 096 0.07 | 0.20 0.00 0.20
The Bund 1.00 095 | 092 031 | 025 0.04 0.23
Eiffel Tower 1.00 099 | 1.00 097 | 1.00 0.52 0.55
Big Ben 1.00 099 | 1.00 029 | 082 0.24 0.65
Sydney Opera House 1.00 098 | 1.00 0.07 | 095 0.11 0.31

As is shown in Table 2] our pursuer policy consistently outperforms the PSRO pursuer policy in the
real-world graphs against a variety of opponents, where:

» Stay corresponds to an evader that stays at the initial position. Since the initial distance
between the pursuers and the evader is larger than the observation range, and the pursuers
have no prior knowledge about the evader’s policy, staying still is a reasonable strategy and
leads to the occasional failure of these RL pursuers.

* DP,, . corresponds to the DP evader policy (2) under synchronous moves, and DP, .
corresponds to the strictly optimal policy under asynchronous moves. It is clear that
the asynchronous-move evaders are much stronger than the synchronous-move ones due to
the advantage of forecasting the pursuers’ decisions. Against DP gy, the PSRO pursuers
struggle under most of the test graphs in comparison with ours.

* BRysync corresponds to the best-responding asynchronous-move evader directly trained
against our RL pursuers in the test graphs for 30000 episodes (converged). Even under this
worst case, the success rates of our generalized pursuers are over 50% in half of the graphs.

Since our worst-case zero-shot performance is clearly better than the PSRO policy directly trained on
the test graphs, we conclude that our real-time strategies are worst-case robust even under varying
graph structures, which means that our approach achieves R2PS under partial observability.

6 CONCLUSION

This paper presents a novel approach to worst-case robust real-time pursuit strategies under partial
observability and varying graph structures. We first theoretically examine a dynamic programming
algorithm and prove that it can unify the solutions to Markov PEGs with either synchronous moves
or asynchronous moves. Then, we make use of the distance table computed by the DP algorithm
through a belief preservation mechanism to derive extended DP pursuers under partial observability.
The belief-averaged pursuer policy is computationally efficient and demonstrates strong empirical
performance against the perfect-information DP evader. Finally, we embed the belief preservation
mechanism into the framework of EPG (Lu et al.,|2025a)) to find robust real-time pursuit strategies.
We fulfill cross-graph reinforcement learning against the asynchronous-move DP evader under partial
observability. Experiments show that our extended DP pursuers can be used as reference policies to
facilitate efficient policy exploration during RL training. Under unseen real-world graph structures,
our cross-graph policy manages to generate real-time pursuit strategies with worst-case robustness,
consistently outperforming the PSRO policy directly trained under the test graphs.

In this work, the belief preservation mechanism provides an efficient way to handle partial observabil-
ity and is effectively combined with the results of DP, which is robust to the case where the opponent
can predict subsequent moves. After adversarial reinforcement learning across graphs, a generalized
pursuer policy under belief preservation is eventually derived, leading to the first worst-case robust
real-time pursuit strategies under partial observability. Hopefully, the current research on PEGs could
encourage subsequent works on the broader research topics concerning real-world security.

Under review as a conference paper at ICLR 2026

REFERENCES

Yuhong Cao, Tianxiang Hou, Yizhuo Wang, Xian Yi, and Guillaume Sartoretti. Ariadne: A rein-
forcement learning approach using attention-based deep networks for exploration. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 10219-10225. 1EEE, 2023.

Fanfei Chen, Shi Bai, Tixiao Shan, and Brendan Englot. Self-learning exploration and mapping for
mobile robots via deep reinforcement learning. In Aiaa scitech 2019 forum, pp. 0396, 2019.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. In Forty-second International Conference on Machine Learning, 2025.

Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. Search and pursuit-evasion in mobile
robotics: A survey. Autonomous robots, 31:299-316, 2011.

Wojciech M Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David
Balduzzi, and Max Jaderberg. Real world games look like spinning tops. Advances in Neural
Information Processing Systems, 33:17443-17454, 2020.

M Fromme and M Aigner. A game of cops and robbers. Discrete Appl. Math, 8:1-12, 1984.

Arthur S Goldstein and Edward M Reingold. The complexity of pursuit on a graph. Theoretical
computer science, 143(1):93-112, 1995.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Hado Hasselt. Double Q-learning. Advances in Neural Information Processing Systems, 23, 2010.

Karel Hordk and Branislav BoSansky. Dynamic programming for one-sided partially observable
pursuit-evasion games. In International Conference on Agents and Artificial Intelligence, volume 2,
pp. 503-510. SCITEPRESS, 2017.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. Advances in Neural Information Processing Systems, 30, 2017.

Pengdeng Li, Shuxin Li, Xinrun Wang, Jakub Cerny, Youzhi Zhang, Stephen McAleer, Hau Chan,
and Bo An. Grasper: A generalist pursuer for pursuit-evasion problems. In Proceedings of the 23rd
International Conference on Autonomous Agents and Multiagent Systems, pp. 1147-1155, 2024.

Shuxin Li, Xinrun Wang, Youzhi Zhang, Wanqi Xue, Jakub Cernjf, and Bo An. Solving large-scale
pursuit-evasion games using pre-trained strategies. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11586-11594, 2023.

Runyu Lu, Peng Zhang, Ruochuan Shi, Yuanheng Zhu, Dongbin Zhao, Yang Liu, Dong Wang, and
Cesare Alippi. Equilibrium policy generalization: A reinforcement learning framework for cross-
graph zero-shot generalization in pursuit-evasion games. In The Thirty-ninth Annual Conference
on Neural Information Processing Systems, 2025a.

Runyu Lu, Yuanheng Zhu, and Dongbin Zhao. Divergence-regularized discounted aggregation:
Equilibrium finding in multiplayer partially observable stochastic games. In The Thirteenth
International Conference on Learning Representations, 2025b.

Kostas Margellos and John Lygeros. Hamilton-Jacobi formulation for reach-avoid differential games.
IEEE Transactions on Automatic Control, 56(8):1849-1861, 2011.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536-543, 2003.

10

Under review as a conference paper at ICLR 2026

Christos H Papadimitriou and John N Tsitsiklis. The complexity of Markov decision processes.
Mathematics of operations research, 12(3):441-450, 1987.

Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press, 2016.

Lloyd S Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):
1095-1100, 1953.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Rene Vidal, Shahid Rashid, Cory Sharp, Omid Shakernia, Jin Kim, and Shankar Sastry. Pursuit-
evasion games with unmanned ground and aerial vehicles. In Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No. 01CH37164), volume 3, pp.
2948-2955. IEEE, 2001.

Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar Sastry. Probabilistic
pursuit-evasion games: Theory, implementation, and experimental evaluation. IEEE Transactions
on Robotics and Automation, 18(5):662-669, 2002.

Marcos AM Vieira, Ramesh Govindan, and Gaurav S Sukhatme. Optimal policy in discrete pursuit-
evasion games. Department of Computer Science, University of Southern California, Tech. Rep,
2008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural Informa-
tion Processing Systems, 28, 2015.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4-24, 2020.

Wangqi Xue, Youzhi Zhang, Shuxin Li, Xinrun Wang, Bo An, and Chai Kiat Yeo. Solving large-scale
extensive-form network security games via neural fictitious self-play. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, 2021.

Wangqi Xue, Bo An, and Chai Kiat Yeo. NSGZero: Efficiently learning non-exploitable policy in
large-scale network security games with neural Monte Carlo tree search. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 4646—4653, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611-24624, 2022.

Zhengyuan Zhou, Ryo Takei, Haomiao Huang, and Claire J Tomlin. A general, open-loop formulation
for reach-avoid games. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp.
6501-6506. IEEE, 2012.

Shuxin Zhuang, Shuxin Li, Tianji Yang, Muheng Li, Xianjie Shi, Bo An, and Youzhi Zhang. Solving
urban network security games: Learning platform, benchmark, and challenge for Al research.
arXiv preprint arXiv:2501.17559, 2025.

11

Under review as a conference paper at ICLR 2026

A OMITTED PROOFS

A.1 PROOF OF THEOREM[I]

Proof. For no-exit PEGs, the Nash value satisfies the following Bellman minimax equation:

. max min s,a) | r(s,a,b)+ P(s,a,b,s"\V* s’), s)=0
v = | i 5 >(<)49 E Pleab V) 16 =0.

1, f(s)=1

Since the transition is deterministic and a non-zero reward is received only when a termination state
is reached, we can simplify the Bellman equation as follows:

V*(s) = {msrfé%’(m) min 3 u(s,a V(e =Plsab), f(5)=0

The equilibrium policy for the max-player satisfies:

pw(s) € argmax {min w(s,a)V*(s' = P(s,a, b))} .

u(s)eaa) (€8 7=

When there is a pure-strategy Nash equilibrium in the game, the arg max has a pure-strategy solution,
and the Bellman equation can be further simplified:

* _ : s _
V*(s) —vraneaj(rbrélgv (s" =P(s,a,b)). 7

Note that the Nash value has the form of V*(s) = v%(d € N). Therefore, we consider using
mathematical induction. We assume that V*(s) = v2(*) holds for all states s that satisfies either
V*(s) =~% or D(s) = d when d < k (y¢ > ~v*). We want to prove that V*(s) = v”(*) holds for
all states s that satisfies either V*(s) = 7 or D(s) = k. Clearly, our initialization guarantees that
the proposition holds for k£ = 0. Our update condition D(n,,n.) = co guarantees that every state
s € S is pushed into and popped from Q at most once. Note that the following proof reverses the
notations of s and s’ in (7) to better align with s = (s,, sc) in Algorithm][1]

Now, we prove the first half of the proposition. For an arbitrary state s’ = (n,,n.) that satisfies
V*(s') = ¥, the simplified Bellman equation (7)) guarantees that there exists a = s, € A(n,) and
b = s. € B(n.) such that V*(s') = 7V*(s = P(s',a,b)). Therefore, there exists s = (sp, s¢)
such that V*(s) = v¥~1. According to the first half of the induction hypothesis, we have that
D(s) =k — 1 < oo, which implies that the algorithm once pushed s’ into Q. Besides, the Bellman
equation guarantees that Vo' € B(n.), V*(P(s',a,b')) > V*(P(s',a,b)) = V*(s) = vF71 >~
By induction hypothesis, D(sp, n,) < D(sp, s.) holds for any neighbor n/, of n.. Therefore, the
algorithm must enumerate n. when popping s = (sp, s¢). If we have D(n,, n.) = oo at the moment,
then n, will be enumerated in the inner loop, and we will have D(n,,n.) = D(sp, s.) + 1 = k.
Now we complete the proof by showing that D(n,,, n.) < oo implies D(n,,n.) = k. Actually, if
k < D(np,n.) < oo, then D(s’) must be computed by adding 1 to some D(s”) > k. Since s” must
be popped from Q no later than s, it is contradictory to the fact that D(s”) > D(s) = k — 1. If
D(ny,n.) < k, then the second half of the induction hypothesis implies that V*(s') = yP(»:me)
which is contradictory to the fact that V*(s") = ~v*.

Then, we prove the second half of the proposition. For an arbitrary state s" = (n,, n.) that satisfies
D(s’) = k, the D(s) must be computed by adding 1 to some D(s) = k — 1, where s = (s,, Se).
According to the first half of the induction hypothesis, we have V*(s) = ~+*. The algorithm guarantees
that D(sp,n.) < D(sp, s.) = k—1holds for any neighbor n/, of n.. By induction hypothesis, it holds
that Vo' € B(ne), V¥(P(s',a,V')) > V*(P(s',a,b)) when a = s, € A(n,) and b = s. € B(ne).
Therefore, rg%n V*(P(s',a,b)) = v*~ when a = s, € A(n,). If there exists a’ = s € A(n,)

beB(ne
such that min V*(P(s’,a’,b)) > 4*~1, then we let bl = argmin V*(P(s’,af, b)) > !
beB(ne) beB(ne)

12

Under review as a conference paper at ICLR 2026

and let s = (s}, sl = b7). According to the first half of the induction hypothesis, D(s}, n.) <
D(s;{,7 s!) < k —1 holds for any neighbor n, of n.. Since D(s;, si) < D(sp, s¢), s" must be popped
from Q earlier than s, which means that D(s) = oo when s' is popped. Therefore, s’ = (n,, n.)
must be enumerated when s' is popped, which is contradictory to the fact that D(s’) = co when s is

d. Therefore, V*(s') = in V* 'La,b)) = ~k.
poppe erefore, V*(s') 7 max min (P(s'ya,b)) =~

For now, we have proved that V*(s) = y(%), Therefore:

W (sp,8e) = argmin { _ max D(np,ne)} = p*(s) = argmaxmin V*(P(s,a,b)),
neighbor n, of s, neighbor ne of s, acA bEB

v*(8p, Se) = argmax { ~ min D(np,ne)} = v*(s) = argminmax V*(P(s,a,b)).
neighbor n. of s, neighbor n;, of sp beB acA

As there exists a pure-strategy Nash equilibrium, it is directly guaranteed that (u*, »*) is a Nash
equilibrium. O

13

Under review as a conference paper at ICLR 2026

A.2 PROOF oF LEMMA[I]

Proof. We consider the cases of D(n,,,n.) = oo and 0 < D(n,,n.) < oo, separately.

The first case is D(ny, n.) = oo, which implies that (n,, n.) is never enqueued:

Suppose that min { max D(sp, s@)} < 00. Then, we let

neighbor s, of n, neighbor s of ne

sp = argmin { o max D(sp, se)} 8¢ = argmax D(sp, Se).
neighbor s, of n,, neighbor s of ne neighbor s of ne

Since D(sp, Se) = min { max D(sp, se)} < 00, (8p, Se) is once enqueued.
neighbor s, of ny, neighbor s of ne
Since s, = argmax D(sp,s.), we have that #n’, € V, (ne,n.) € E,D(sp,n.) > D(sp,).
neighbor s of ne
Since D(n,, n.) = oo, state (n,, n.) will be enumerated when (s, s.) is dequeued. Then, D(n,,, ne)
is enqueued, which leads to a contradition.

Therefore, we have min max D(sp,se) p = 0o, which means the equation holds
neighbor s, of n, | neighbor s, of n,

in the first case.

The second case is 0 < D(np,n.) < oo, which implies that (n,,n.) is once enumerated when

a state (sp,s.) € Neighbor(n,,n.) is dequeued. According to the enumeration rule, we have

nl €V, (ne,nl) € E,D(sp,n.) > D(sp, s¢), which implies s, = argmax D(s,, s.). Since
neighbor s of ne

D(ny,ne) = D(sp, se) + 1, we have:

D(ny,ne) > min { max D(sp,se)} + 1

" neighbor s, of ny, | neighbor s. of ne

Now redefine s, = argmin { o max D(sp, se)} ,Se = argmax D(sp, Se).
neighbor s, of n,, neighbor s of ne neighbor s of n,

neighbor s, of 1y, neighbor s, of ne

S
E,D(sp,n,) > D(sp,sc). Since the D values in Q do not decrease, we have D(np,n.) <

e

D(sp,s.)+1= min { max D(sp,se)} + 1

Then, we have D(sp,s.) = min { max D(sp, se)} and fn. € V, (n.,n’)

neighbor s, of ny, neighbor s of ne
Therefore, D(np, ne) = min { max D(sp, se)} + 1 holds in the second case.

neighbor s, of 1, neighbor s, of ne

To conclude, the equation always holds when D(n,,n.) > 0. O

14

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM[2]

Proof. First, we prove that for any state s = (s, s.) satisfying D(s) = d < oo, p* guar-
antees pursuit within d steps against any evasion strategy. Clearly, the proposition holds true
when d = 0. Assume that the proposition holds for all d < k. When d = k, we let

n, = argmin { ~ max D(np,ne)} ,Ne = argmax D(np,n.). By Lemmal|l| we
neighbor n, of s, neighbor ne of se neighbor n. of se

have D(ny,n.) < D(np,ne) = D(sp,8e) —1 < k—1 < k,¥n, € Neighbor(s.). By in-

duction hypothesis, /* guarantees pursuit within £ — 1 steps for the states (n,,n,) that satisfies

n., € Neighbor(s,). Therefore, u*(s) = n, guarantees pursuit within % steps. By induction, the

proposition holds true for all d < oo.

Second, we prove that for any state s = (s,, s.) satisfying D(s) = d < oo, v* avoids being
captured in less than d steps by any pursuit strategy. Suppose there exists a pursuit movement

sequence {nJ,ng,--- ,nl '} that captures the evader within T' < d steps under policy v*. Then,
we denote by {s%, s, 52, -+, sT'} the corresponding state sequence, where 5o = s and D(s™) = 0.
By Lemma , D(sp,8e) = neighb{)?%r; s, {v*(sp, Se,np)} + 1, which implies that D(s,, se) >
D(ny, v*(sp, Se;np)) + 1,Yn,. Therefore, D(s') = D(s;,sg) > D(n;,u*(s;,si,n;)) +1 =
D(shtt, st1) + 1 = D(s'™!) 4 1. This leads to a contradiction: D(s) = D(s°) > D(s') +1 >
D(s?)+2 > D(s)+T =T < d = D(s). Therefore, v* always avoids being captured in less than
d steps when D(s) = d < oc. O

A.4 PROOF OF COROLLARY[I]

Proof. By Theorem [}

For any state s = (s,, se) with D(s) = d < oo, since p* guarantees pursuit within d steps against
any evasion strategy, no evader can guarantee evasion for d steps against a worst-case pursuit strategy.
Since v* avoids being captured in less than d steps by any pursuit strategy, v* is the optimal evasion
strategy.

For any state s = (s, s.) with D(s) < oo, since v* avoids being captured in less than d steps by any
pursuit strategy, no pursuer can guarantee pursuit in less than d steps against a worst-case evasion
strategy. Since p* guarantees pursuit within d steps against any evasion strategy, p* is the optimal
pursuit strategy. O

A.5 PROOF OF THEOREM[3]

Proof. Suppose that there exists a pursuit strategy that captures v* within 7 steps. In this case, we
denote by {s°, s, %, -+, sT'} the state sequence of a successful pursuit, where sg = s and D(s”) =
0. By Lemma , D(sp, 8¢) = min {D(ny,v*(ny))} + 1, which implies D(n,, v*(n,)) =

neighbor ., of s,
o0, Vn, € Neighbor(s,). Then, we have D(s°) = co = D(s') = 0o = .-+ = D(sT) = oo, which
leads to a contradiction.

Therefore, for any state s = (s,, se) with D(s) = oo, v* can never be captured by any pursuit
strategy.

15

Under review as a conference paper at ICLR 2026

A.6 PROOF OF LEMMA [2]

Proof. When Pos is a singleton, we have Pos = {s, }. Therefore,

w(sp, Pos) = argmin { max D(ny, ne)}
neighbor n, of s, | 7ve ENeighbor(Pos)

arg min { ~ max D(np,ne)}u*(sp,se).

neighbor n, of s, | neighbor ne of s

Besides, since we have

0 s ¢ Pos
belief (s v(v, s)belieforq(v) s € Pos
nelghbor v of s

=]I 5 = Se¢ bellefnew(se)

It holds that

belie frew(se) = max D(ny,ne)
neighbor n of se

sp,belief) = argmin -
g b) neighbor n,, of s, belie frew(se)

= argmin { max D(np,ne)}—u*(sp,se).

neighbor n, of s, | neighbor ne of se

16

Under review as a conference paper at ICLR 2026

B ILLUSTRATION OF BELIEF PRESERVATION

Figure 2] provides an illustration of belief preservation during pursuit. Two green pursuers capture
the red evader that stays still within a total of 13 steps, and the darkness of the nodes reflects the
belief at the current timestep (6/13). At the first step, only the red node had non-zero belief and
would be marked as high probability (yellow star). The belief is spread as the game proceeds and
used to generate the pursuit strategy (5) under partial observability based on the distance table (e.g.,
D(s) = 27 for the current state s). When the evader is observed, the shadowed area will disappear,
and the observed evader node will be marked as high probability again. The purple nodes are some
observation sensors (also with a range of 2) that provide additional information for pursuers. When
the observed area covers all nodes, the game will be reduced to its perfect-information counterpart,
where the DP pursuer policy is provably optimal.

© Evader (Node 225)
201 © pursuers (155, 98)
© Obs Nodes
QO Observation Range
High Probability @)
O\Q\r

15 1 C X

~104

Time: 6/13
Observed nodes: 71
Max belief: 0.1418
_15 { | Distance: 27

15 -10 5 0 5 10 15

Figure 2: Illustration of Belief Preservation (Shadowed) under Limited Observation Range (Blue)

17

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 ILLUSTRATION OF TEST GRAPHS

The test graphs for both DP and RL pursuers include Grid Map (a 10 x 10 grid), Scotland-Yard Map
(from the board game Scotland-Yard), Downtown Map (a real-world location from Google Maps),
and 7 famous real-world spots (from Times Square to Sydney Opera House). The graph structures
are illustrated in FigureEL and the detailed statistics are shown in Table|I| (left).

Figure 3: Illustration of Test Graphs (Starting from Scotland-Yard Map in Table [T))
C.2 ADDITIONAL RESULTS OF DP PURSUERS

Table 3: Success Rates of Belief-Averaged DP Pursuers under Different Observation Ranges

Observation Range 2 3 4 5 6
Grid Map 0.78 1 092 | 0.99 | 1.00 | 1.00
Scotland-Yard Map 0.63 | 0.95 | 1.00 | 1.00 | 1.00
Downtown Map 0.90 | 1.00 | 1.00 | 1.00 | 1.00
Times Square 0.69 | 0.88 | 1.00 | 1.00 | 1.00
Hollywood Walk of Fame | 0.48 | 0.79 | 0.94 | 0.98 | 1.00
Sagrada Familia 0.36 | 0.70 | 0.92 | 0.96 | 1.00
The Bund 0.57 | 0.87 | 0.97 | 0.99 | 1.00
Eiffel Tower 094 |1 098 | 0.99 | 1.00 | 1.00
Big Ben 0.74 | 0.94 | 1.00 | 1.00 | 1.00
Sydney Opera House 0.87 | 0.96 | 0.99 | 0.99 | 1.00

We may find that Hollywood Walk of Fame, Sagrada Familia, and The Bund are relatively more
difficult for the pursuers. Based on the statistics of the test graphs in Table] (left), here we provide a
rough analysis of this phenomenon. In planar graphs, a large average degree generally implies the
existence of small cycles. For example, in Grid Map, all minimal cycles’ length is only 4. Since
successful evasions benefit more from large cycles, graphs like Grid Map, Scotland-Yard Map, and
Downtown Map are easier for pursuit. Besides, Eiffel Tower, Big Ben, and Sydney Opera House
all have large diameters, which implies the existence of long “links” that have poor connectivity
with other nodes (see the last three graphs in Figure[3). Therefore, these graphs also benefit pursuit
rather than evasion. As Hollywood Walk of Fame, Sagrada Familia, and The Bund do not have the
mentioned characteristics, these graphs are relatively hard for the pursuers.

C.3 LEARNING CURVES OF RL PURSUERS

During the cross-graph R2PS training, we consider the use of 5 = 0.1 and 5 = 0 in the policy loss
L(0) @ For the former, we employ the belief-averaged DP policy (S) as the reference policy. For

18

Under review as a conference paper at ICLR 2026

= Synthetic Training Set (3 =0.1) = Large Training Set (8 =0.1)
Synthetic Training Set (8 = 0) Large Training Set (B = 0)
1.0
120
a
0.8 3
2 3 100
< S
X 0.6 =
% .S 80
0.4 ©
5 -g 60
»n €
0.2 5}
= 40
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Episode x10° Episode x10°

Figure 4: Cross-Graph Learning Curves of Generalized Pursuer Policies

the latter, it means that the training process is without policy guidance. Figure @] shows the learning
curves of our RL pursuer policies. Clearly, training with policy guidance is more efficient than pure
reinforcement learning under SAC loss. This comparison verifies that the DP pursuer policy can serve
as guidance to facilitate efficient exploration of the cross-graph RL policy. Besides, training under
the synthetic training set is relatively easier than under the large one that contains more real-world
graph structures. Nevertheless, our R2PS learning scheme gradually improves the quality of the RL
pursuer policies under all of the four settings, using a very limited observation range of 2.

D IMPLEMENTATION DETAILS

D.1 SOFT ACTOR-CRITIC (SAC)

To fulfill R2PS training, we use discrete-action soft-actor critic (SAC) (Christodoulou, [2019)) as the
backbone RL algorithm, where:

The value function is defined as
V(s) = Equn(s) [Q(s,a) — alog (s, a)].

The loss of the value network () is computed as

Ta(6) = B | 5(Quls,0) — (+ 7 [V ()’

The loss of the policy network 7y is computed as
Jﬂ'(e) =]ES,aNT(g(S) [a lOg 7T9(5, a) - Q(57 CL)] .
The temperature o under target entropy H is adaptively updated under loss

J(a) =Eqq [~ (logn(s,a) + H)] .

D.2 GRAPH NEURAL NETWORK (GNN)

We employ a sequence model with a parameter-sharing graph neural network (GNN) architecture (Lu
et al.,[2025a)) to represent the graph-based policy of the homogeneous pursuers:

Under the principle of sequential decision-making, a joint policy can be decomposed as

m
71-(0’17 ag, - 7a’m|s) = Hl:l 7T(al|$7a17 e ,Cll_l),

19

Under review as a conference paper at ICLR 2026

where (s, a1, - ,a;—1) indicates the global state after the first / — 1 pursuers take actions (a;);e[i—1]-

For a team of pursuers with m agents, the sequence model queries the policy network m times under
a fixed adjacent matrix M € {0,1}"*™ (n = |V|) for the current graph. The input is composed of
a state feature sy and the information of node index c for the current acting agent. Note that under
partial observability, the global state s is replaced by (s,, Pos, belief). We use the shortest path
distances to the m pursuers as the initial feature of each node v € V. The normalized features of
all n nodes are concatenated with (Pos, belief) to construct the state feature s¢. Also note that the
distances between one node and all other nodes can be computed using the O(n?) Dijkstra algorithm.

Given the state feature input sy, we embed it into R¥*™ and send the result into an encoder composed
of 6 self-attention layers, where d is the embedding dimension. Each layer takes the output i of the
last layer as the input and outputs h’ using a masked attention, whose time complexity is also O(n?):

ql'k; elis
J— L —) J— g — 2t T =
qi = WQhu k'z - WKhz; U; = Wth;uU - \/g y Wij = Z;;l cuit

where Wg, Wi, Wy € R4 are the weights to be learned.

n
/ .
’hi: E mln{wij,Mij}vj,
j=1

Given the output of the encoder h, we employ a decoder without masks to gather global information.
The decoder uses h. to query in the output features & of all nodes, with the keys equal to the values:

Wohe ki = Wich Wi h < ks < b=

= 5 s = '71}»: ’,'U/': ’w': 5 = W;V;.

q Qlley g Kb, Us Vitg, Wy \/a J E;L:leu” c =1 3Yj

The decoder output h. is further concatenated with /. and projected into R%. Then, it is used as a

query for a pointer network, which takes the features of the neighbor nodes hine for the current agent
as the keys and values. The pointer network directly outputs the attention vector w as the current
policy 7(+|s) since the number of the neighbors aligns with the number of the valid actions. After the
first query through the policy network, an action a; for the first agent is sampled from 7(-|s), and the
state is updated as s’ = (s, a1). The subsequent m — 1 queries follow the same process as above.

D.3 HYPERPARAMETER SETTING

Table] shows the detailed hyperparameter setting used in the training of our RL pursuer policy.

Table 4: Hyperparameter Setting of R2PS Training

Discount factor ~y 0.99
SAC target entropy coefficient | 0.05
GNN embedding dimension d | 128

GNN attention heads 8
Batch size 128
Learning rate 103

Update epoch 8

20

	Introduction
	Preliminaries
	Problem Formulation
	Dynamic Programming for Markov PEGs

	Extending Dynamic Programming Policies to Asynchronous Moves and Partial Observability
	Asynchronous-Move Setting
	Partially Observable Setting

	Finding Robust Real-Time Pursuit Strategies (R2PS) via Adversarial Reinforcement Learning across Graphs
	Evaluations
	Evaluations of Extended DP Pursuers
	Evaluations of Generalized RL Pursuers

	Conclusion
	Omitted Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Theorem 3
	Proof of Lemma 2

	Illustration of Belief Preservation
	Experimental Details
	Illustration of Test Graphs
	Additional Results of DP Pursuers
	Learning Curves of RL Pursuers

	Implementation Details
	Soft Actor-Critic (SAC)
	Graph Neural Network (GNN)
	Hyperparameter Setting

