
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Det-CGD: Compressed Gradient Descent with Matrix Stepsizes for
Non-Convex Optimization

Hanmin Li HANMIN.LI@KAUST.EDU.SA

Avetik Karagulyan AVETIK.KARAGULYAN@KAUST.EDU.SA

Peter Richtárik PETER.RICHTARIK@KAUST.EDU.SA

King Abdullah University of Science and Technology, Saudi Arabia

Abstract
This paper introduces a new method for minimizing matrix-smooth non-convex objectives through
the use of novel Compressed Gradient Descent (CGD) algorithms enhanced with a matrix-valued
stepsize. The proposed algorithms are theoretically analyzed first in the single-node and subse-
quently in the distributed settings. Our theoretical results reveal that the matrix stepsize in CGD
can capture the objective’s structure and lead to faster convergence compared to a scalar stepsize.
As a byproduct of our general results, we emphasize the importance of selecting the compression
mechanism and the matrix stepsize in a layer-wise manner, taking advantage of model structure.
Moreover, we provide theoretical guarantees for free compression, by designing specific layer-wise
compressors for the non-convex matrix smooth objectives. Our findings are supported with empir-
ical evidence.

1. Introduction

The minimization of smooth and non-convex functions is a fundamental problem in various domains
of applied mathematics. Most machine learning algorithms rely on solving optimization problems
for training and inference, often with structural constraints or non-convex objectives. However, non-
convex problems are typically NP-hard to solve, leading to the popular approach of relaxing them
to convex problems and using traditional methods. Direct approaches to non-convex optimization
have shown success but their convergence and properties are not well understood, making them
challenging for large scale optimization.

In this paper, we consider the general minimization problem:

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable function. In order for this problem to have a finite solution we
will assume throughout the paper that f is bounded from below.

Assumption 1 There exists f inf ∈ R such that f(x) ≥ f inf for all x ∈ Rd.

Stochastic gradient descent (SGD) is a widely used algorithm for solving optimization problems
[5, 15, 37]. In its most general form, it can be written as,

xk+1 = xk − γg(xk), (2)

© H. Li, A. Karagulyan & P. Richtárik.

DET-CGD

where g(xk) is a stochastic gradient estimator of ∇f(xk) and γ > 0 is a positive scalar stepsize. A
specific variant of interest is compressed gradient descent (CGD) [27], where the gradient estimator
g(xk) is obtained by applying a compressor C to the initial gradient∇f(xk). Compressors, such as
sketches, aim to reduce communication overhead in distributed or federated settings.

The importance of compression in distributed optimization was highlighted by [28], as com-
munication complexity becomes a bottleneck. Compression objectives include compressing the
model broadcasted from server to clients and reducing the computational burden of local training.
Among these objectives, compressing gradients has the greatest practical impact due to slower up-
load speeds and the benefits of averaging [25].

A notable class of compressors is sketches, which are linear operators represented by random
matrices [41]. An example is the Rand-k compressor, which randomly selects k entries from the
input vector and scales them to ensure an unbiased estimator. By communicating only a subset of
size k instead of all d coordinates of the gradient, the number of communicated bits is reduced by a
factor of d/k.

Besides the assumption that function f is bounded from below, we also assume that it is L matrix
smooth, as we are trying to take advantage of the entire information contained in the smoothness
matrix L and the stepsize matrix D.

Assumption 2 (Matrix smoothness) There exists L ∈ Sd+ s.t. f(x) ≤ f(y) + 〈∇f(y), x− y〉 +
1
2 〈L(x− y), x− y〉, holds for all x, y ∈ Rd.

The assumption of matrix smoothness, which is a generalization of scalar smoothness, has been
shown to be a more powerful tool for improving supervised model training. In [40], the authors
proposed using smoothness matrices and suggested a novel communication sparsification strategy
to reduce communication complexity in distributed optimization for convex objectives. The tech-
nique was adapted to three distributed optimization algorithms in the convex setting, resulting in
significant communication complexity savings and consistently outperforming the baselines. The
results of this study demonstrate the efficacy of the matrix smoothness assumption in improving
distributed optimization algorithms.

The case of block-diagonal smoothness matrices is particularly relevant in various applications,
such as neural networks (NN). In this setting, each block corresponds to a layer of the network, and
we characterize the smoothness with respect to nodes in the i-th layer by a corresponding matrix Li.
Unlike in the scalar setting, we favor the similarity of certain entries of the argument over the others.
This is because the information carried by the layers becomes more complex, while the nodes in the
same layers are similar. This phenomenon has been observed visually in various studies, such as
those by [46] and [50].

Another motivation for using a layer-dependent stepsize has its roots in physics. In nature, the
propagation speed of light in media of different densities varies due to frequency variations. Sim-
ilarly, different layers in neural networks carry different information, metric systems, and scaling.
Thus, the stepsizes need to be picked accordingly to achieve optimal convergence.

We study two matrix stepsized CGD-type algorithms and analyze their convergence properties
for non-convex matrix-smooth functions. As mentioned earlier, we put special emphasis on the
block-diagonal case. We design our sketches and stepsizes in a way that leverages this structure,
and we show that in certain cases, we can achieve compression without losing in the overall com-
munication complexity.

2

DET-CGD

1.1. Contributions

Our paper contributes in the following ways:

• We propose two novel matrix stepsize sketch CGD algorithms in Section 2, which, to the
best of our knowledge, are the first attempts to analyze a fixed matrix stepsize for non-convex
optimization. We present a unified theorem in Section 3 that guarantees stationarity for min-
imizing matrix-smooth non-convex functions. The results shows that taking our algorithms
improve on their scalar alternatives. The complexities are summarized in Table 1 for some
particular cases.

• Assuming the that the server-to-client communication is less expensive [25, 28], we propose
distributed versions of our algorithms in Appendix E, following the standard FL scheme, and
prove weighted stationarity guarantees. Our theorem recovers the result for DCGD in the
scalar case and improves it in general.

• We design our algorithms’ sketches and stepsize to take advantage of the layer-wise structure
of neural networks, assuming that the smoothness matrix is block-diagonal. In Appendix D,
we prove that our algorithms achieve better convergence than classical methods.

• We validate our theoretical results with experiments. The plots and framework are provided
in the Appendix.

2. The algorithms

We refer the reader to Appendix A for the mathematical notation and basic definitions. Below we
define our two main algorithms:

xk+1 = xk −DSk∇f(xk), (det-CGD1)

and
xk+1 = xk − T kD∇f(xk). (det-CGD2)

Here, D ∈ Sd++ is the fixed stepsize matrix. The sequences of random matrices Sk and T k satisfy
the next assumption.

Assumption 3 We will assume that the random sketches that appear in our algorithms are i.i.d.,
unbiased, symmetric and positive semi-definite for each algorithm. That is

Sk,T k ∈ Sd+, Sk
iid∼ S and T k iid∼ T

E
[
Sk
]

= E
[
T k
]

= Id, for every k ∈ N.

A simple instance of det-CGD1 and det-CGD2 is the vanilla GD. Indeed, if Sk = T k =
Id and D = γId, then xk+1 = xk − γ∇f(xk). In general, one may view these algorithms as
Newton-type methods. In particular, our setting includes the Newton Star (NS) algorithm by [22]:
xk+1 = xk −

(
∇2f(xinf)

)−1∇f(xk). Despite being impractical, this method converges locally
quadratically and, thus, hints that constant matrix stepsize can yield fast convergence guarantees.

3

DET-CGD

The difference between det-CGD1 and det-CGD2 is the update rule. When the sketch S
and the stepsize D are commutative w.r.t. matrix product, the algorithms become equivalent.
In general, a simple calculation shows that if we take T k = DSkD−1, then det-CGD1 and
det-CGD2 are the same. Defining T k according to above relation, we recover the unbiasedness
E
[
T k
]

= DE
[
Sk
]
D−1 = Id, but lose the symmetry. Thus, det-CGD1 and det-CGD2 are not

equivalent for our purposes.

3. Main results

Before we state the main result, we present a stepsize condition for det-CGD1 and det-CGD2,
respectively:

E
[
SkDLDSk

]
�D, (3)

and
E
[
DT kLT kD

]
�D. (4)

In the case of vanilla GD, (3) and (4) become γ < L−1, which is the standard condition for conver-
gence. Below is the main convergence theorem for both algorithms in the single-node regime.

Theorem 1 Suppose that Assumptions 1-3 are satisfied. Then, for each k ≥ 0

1

K

K−1∑
k=0

E

[∥∥∥∇f(xk)
∥∥∥2

D

det(D)1/d

]
≤ 2(f(x0)− f inf)

det(D)1/dK
. (5)

if one of the below conditions is true:

i) The vectors xk are the iterates of det-CGD1 and D satisfies (3);

ii) The vectors xk are the iterates of det-CGD2 and D satisfies (4).

Adjusting the weight matrix to D
det(D)1/d allows its determinant to be 1, making the norm on the

left-hand side comparable to the standard Euclidean norm. It is important to note that the volume
of the normalized ellipsoid

{
x ∈ Rd : ‖x‖2D/det(D)1/d ≤ 1

}
does not depend on the choice of

D ∈ Sd++. Therefore, the results of (5) are comparable across different D in the sense that the
right-hand side of (5) measures the volume of the ellipsoid containing the gradient.

3.1. Optimal matrix stepsize

In this section, we describe how to choose the optimal stepsize that minimizes the iteration complex-
ity. The problem is easier for det-CGD2. We notice that (4) can be explicitly solved. Specifically, it
is equivalent to

D �
(
E
[
T kLT k

])−1
. (6)

We want to emphasize that the RHS matrix is invertible despite the sketches not being so. Indeed.
The map h : T → TLT is convex on Sd+. Therefore, Jensen’s inequality implies

E
[
T kLT k

]
� E

[
T k
]
LE

[
T k
]

= L � Od.

4

DET-CGD

This explicit condition on D can assist in determining the optimal stepsize. Since both D and
(T kLT k)−1 are positive definite, then the right-hand side of (5) is minimized exactly when

D =
(
E
[
T kLT k

])−1
. (7)

Note that the explicit solution of D needs to be calculated only once, at the beginning of the
algorithm. It is then fixed for all iterations. The situation is different for det-CGD1. According to
(5), the optimal D is defined as the solution of the following constrained optimization problem:

minimize log det(D−1)

subject to E
[
SkDLDSk

]
�D (8)

D ∈ Sd++.

Proposition 2 The optimization problem (8) with respect to stepsize matrix D ∈ Sd++, is a convex
optimization problem with a convex constraint.

The proof of this proposition can be found in the Appendix. One could consider using the CVXPY
[9] package to solve (8), provided that it is first transformed into a Disciplined Convex Programming
(DCP) form [17].

Benefits of the layer-wise structure. In the case, when L = Diag(L1, . . . ,L`), D = Diag(D1,
. . . ,D`) and Sk = Diag(Sk1 , . . . ,S

k
`), where Li,Di,S

k
i ∈ Sdi++ we propose a relaxation of (8).

In Appendix D we give a table that gives the communication complexity of each algorithm for
different sketches and stepsizes. Furthermore, we show that for certain compressors, we are able to
get compression for free.

Convergence in distributed setting. We also extend both det-CGD1 and det-CGD2 to the dis-
tributed case in Appendix E, where the objective is given as follows,

f(x) :=
1

n

n∑
i=1

fi(x),

Under the sum decomposable setting (25), we prove convergence of the two algorithms to a neigh-
borhood of stationarity given certain stepsize conditions are satisfied. Similar to the single-node
case, some additional efforts are needed to determine the optimal matrix stepsize.

4. Future work

Matrix stepsize gradient methods are still not well studied and require further analysis. Although
many important algorithms have been proposed using scalar stepsizes and are known to have good
performance, their matrix analogs have yet to be thoroughly examined. The distributed algorithms
proposed in Appendix E follow the structure of DCGD by [27]. However, other federated learning
mechanisms such as MARINA, which has variance reduction [13], or EF21 by [39], which has
powerful practical performance, should also be explored.

5

DET-CGD

References

[1] Mehiddin Al-Baali and H Khalfan. An overview of some practical quasi-newton methods for
unconstrained optimization. Sultan Qaboos University Journal for Science [SQUJS], 12(2):
199–209, 2007.

[2] Mehiddin Al-Baali, Emilio Spedicato, and Francesca Maggioni. Broyden’s quasi-Newton
methods for a nonlinear system of equations and unconstrained optimization: a review and
open problems. Optimization Methods and Software, 29(5):937–954, 2014.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Advances in neural
information processing systems, 30, 2017.

[4] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Math-
ematics of computation, 19(92):577–593, 1965.

[5] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[6] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[7] Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey Gumi-
nov, Dmitry Kamzolov, and Innokentiy Shibaev. Recent theoretical advances in non-convex
optimization. In High-Dimensional Optimization and Probability: With a View Towards Data
Science, pages 79–163. Springer, 2022.

[8] John E Dennis, Jr and Jorge J Moré. Quasi-Newton methods, motivation and theory. SIAM
review, 19(1):46–89, 1977.

[9] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. The Journal of Machine Learning Research, 17(1):2909–2913, 2016.

[10] Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho, Atal Narayan Sahu,
Marco Canini, and Panos Kalnis. On the discrepancy between the theoretical analysis and
practical implementations of compressed communication for distributed deep learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3817–3824,
2020.

[11] Darina Dvinskikh, Aleksandr Ogaltsov, Alexander Gasnikov, Pavel Dvurechensky, Alexan-
der Tyurin, and Vladimir Spokoiny. Adaptive gradient descent for convex and non-convex
stochastic optimization. arXiv preprint arXiv:1911.08380, 2019.

[12] Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin,
Ryan Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M Cohen. Stochastic gradi-
ent methods with layer-wise adaptive moments for training of deep networks. arXiv preprint
arXiv:1905.11286, 2019.

6

DET-CGD

[13] Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster
non-convex distributed learning with compression. In International Conference on Machine
Learning, pages 3788–3798. PMLR, 2021.

[14] Robert M Gower and Peter Richtárik. Randomized iterative methods for linear systems. SIAM
Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.

[15] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and
Peter Richtárik. Sgd: General analysis and improved rates. In International Conference on
Machine Learning, pages 5200–5209. PMLR, 2019.

[16] William B Gragg and Richard A Tapia. Optimal error bounds for the Newton–Kantorovich
theorem. SIAM Journal on Numerical Analysis, 11(1):10–13, 1974.

[17] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined convex programming. Global
optimization: From theory to implementation, pages 155–210, 2006.

[18] SV Guminov, Yu E Nesterov, PE Dvurechensky, and AV Gasnikov. Accelerated primal-dual
gradient descent with linesearch for convex, nonconvex, and nonsmooth optimization prob-
lems. In Doklady Mathematics, volume 99, pages 125–128. Springer, 2019.

[19] Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. SEGA: Variance reduction via
gradient sketching. Advances in Neural Information Processing Systems, 31, 2018.

[20] Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and
Peter Richtarik. Natural compression for distributed deep learning. arXiv preprint
arXiv:1905.10988, 2019.

[21] Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Peter Richtárik, and Sebastian
Stich. Stochastic distributed learning with gradient quantization and double-variance reduc-
tion. Optimization Methods and Software, 38(1):91–106, 2023.

[22] Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods with fast
rates and compressed communication. In International conference on machine learning, pages
4617–4628. PMLR, 2021.

[23] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic
methods for nonsmooth nonconvex finite-sum optimization. Advances in neural information
processing systems, 29, 2016.

[24] Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Founda-
tions and Trends® in Machine Learning, 10(3-4):142–363, 2017.

[25] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Ma-
chine Learning, 14(1–2):1–210, 2021.

[26] Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. arXiv
preprint arXiv:2002.03329, 2020.

7

DET-CGD

[27] Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
compressed gradients. arXiv preprint arXiv:1806.06573, 2018.

[28] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492, 2016.

[29] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current
matrix multiplication time. In Conference on Learning Theory, pages 2140–2157. PMLR,
2019.

[30] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradi-
ent descent in distributed and federated optimization. arXiv preprint arXiv:2002.11364, 2020.

[31] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International conference on
machine learning, pages 6286–6295. PMLR, 2021.

[32] Artavazd Maranjyan, Mher Safaryan, and Peter Richtárik. GradSkip: Communication-
Accelerated Local Gradient Methods with Better Computational Complexity. arXiv preprint
arXiv:2210.16402, 2022.

[33] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS),
2017. URL http://arxiv.org/abs/1602.05629.

[34] George J Miel. Majorizing sequences and error bounds for iterative methods. Mathematics of
Computation, 34(149):185–202, 1980.

[35] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed
learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[36] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik. ProxSkip:
Yes! Local gradient steps provably lead to communication acceleration! Finally! In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages 15750–15769. PMLR, 17–23 Jul 2022.
URL https://proceedings.mlr.press/v162/mishchenko22b.html.

[37] Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algo-
rithms for machine learning. Advances in neural information processing systems, 24, 2011.

[38] Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm
for projection matrix vector multiplication with application to empirical risk minimization.
In International Conference on Artificial Intelligence and Statistics, pages 101–156. PMLR,
2023.

8

http://arxiv.org/abs/1602.05629
https://proceedings.mlr.press/v162/mishchenko22b.html

DET-CGD

[39] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better,
and practically faster error feedback. Advances in Neural Information Processing Systems, 34:
4384–4396, 2021.

[40] Mher Safaryan, Filip Hanzely, and Peter Richtárik. Smoothness matrices beat smoothness con-
stants: Better communication compression techniques for distributed optimization. Advances
in Neural Information Processing Systems, 34:25688–25702, 2021.

[41] Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication
compression in distributed and federated learning and the search for an optimal compressor.
Information and Inference: A Journal of the IMA, 11(2):557–580, 2022.

[42] Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method:
Efficient algorithm for low-bandwidth channel and vulnerability. In International Conference
on Machine Learning, pages 32365–32417. PMLR, 2023.

[43] Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019.

[44] Bokun Wang, Mher Safaryan, and Peter Richtárik. Theoretically better and numerically faster
distributed optimization with smoothness-aware quantization techniques. Advances in Neural
Information Processing Systems, 35:9841–9852, 2022.

[45] Tetsuro Yamamoto. A convergence theorem for newton-like methods in banach spaces. Nu-
merische Mathematik, 51:545–557, 1987.

[46] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[47] Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Block-
normalized gradient method: An empirical study for training deep neural network. arXiv
preprint arXiv:1707.04822, 2017.

[48] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances
in Neural Information Processing Systems, 33:15383–15393, 2020.

[49] Qinghe Zheng, Xinyu Tian, Nan Jiang, and Mingqiang Yang. Layer-wise learning based
stochastic gradient descent method for the optimization of deep convolutional neural network.
Journal of Intelligent & Fuzzy Systems, 37(4):5641–5654, 2019.

[50] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural
network decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

9

DET-CGD

Contents

A Preliminaries 11

B Related work 11

C Single node case 12
C.1 Proof of Theorem 1 . 12
C.2 Proof of Proposition 2 . 13

D Leveraging the layer-wise structure 14
D.1 Proof of Theorem 4 . 16
D.2 Bernoulli-q sketch for det-CGD2 . 17
D.3 General cases for det-CGD1 . 19
D.4 General cases for det-CGD2 . 19
D.5 Interpretations of Table 1 . 19

D.5.1 Comparison of row 5 and 7 . 19
D.5.2 Comparison of row 6 and 7 . 20

E Distributed Case 21
E.1 Distributed det-CGD1 . 21
E.2 Proof of Theorem 7 . 23
E.3 Convexity of the constraints . 27

E.3.1 Proof of Corollary 8 . 28
E.4 Distributed det-CGD2 . 29

E.4.1 Analysis of distributed det-CGD2 . 29
E.4.2 Optimal stepsize . 32

E.5 DCGD with constant stepsize . 32

F Proofs of technical lemmas 32
F.1 Proof of Lemma 3 . 33
F.2 Proof of Lemma 9 . 34
F.3 Proof of Lemma 10 . 34
F.4 Proof of Lemma 11 . 34
F.5 Proof of Lemma 12 . 35
F.6 Proof of Lemma 13 . 35
F.7 Proof of Lemma 15 . 35

G Experiments 36
G.1 Single node case . 36

G.1.1 Comparison to CGD with scalar stepsize, scalar smoothness constant . . . 36
G.1.2 Comparison of the two algorithms under the same stepsize 39

G.2 Distributed case . 39
G.2.1 Comparison to standard DCGD in the distributed case 41

10

DET-CGD

Appendix A. Preliminaries

The usual Euclidean norm on Rd is defined as ‖·‖. We use bold capital letters to denote matrices.
By Id we denote the d × d identity matrix, and by Od we denote the d × d zero matrix. Let Sd++

(resp. Sd+) be the set of d × d symmetric positive definite (resp. semi-definite) matrices. Given
Q ∈ Sd++ and x ∈ Rd, we write ‖x‖Q :=

√
〈Qx, x〉, where 〈·, ·〉 is the standard Euclidean inner

product on Rd. For a matrix A ∈ Sd++, we define by λmax(A) (resp. λmin(A)) the largest (resp.
smallest) eigenvalue of the matrix A. Let Ai ∈ Rdi×di and d = d1 + . . . + d`. Then the matrix
A = Diag(A1, . . . ,A`) is defined as a block diagonal d× d matrix where the i-th block is equal to
Ai. We will use diag(A) ∈ Rd×d to denote the diagonal of any matrix A ∈ Rd×d. Given a function
f : Rd → R, its gradient and its Hessian at point x ∈ Rd are respectively denoted as ∇f(x) and
∇2f(x).

Appendix B. Related work

Many successful convex optimization techniques have been adapted for use in the non-convex set-
ting. Here is a non-exhaustive list: adaptivity [11, 48], variance reduction [23, 31], and acceleration
[18]. A paper of particular importance for our work is that of [26], which proposes a unified scheme
for analyzing stochastic gradient descent in the non-convex regime. A comprehensive overview of
non-convex optimization can be found in [7, 24].

A classical example of a matrix stepsized method is Newton’s method. This method has been
popular in the optimization community for a long time [16, 34, 45]. However, computing the step-
size as the inverse Hessian of the current iteration results in significant computational complexity.
Instead, quasi-Newton methods use an easily computable estimator to replace the inverse of the
Hessian [1, 2, 4, 8]. An example is the Newton-Star algorithm [22], which we discuss in Section 2.

[14] analyzed sketched gradient descent by making the compressors unbiased with a sketch-and-
project trick. They provided an analysis of the resulting algorithm for the linear feasibility problem.
Later, [19] proposed a variance-reduced version of this method. Sketches are also of independent
interest. In particular, [42] described a way of designing the distribution of sketch matrices, while
[29, 38] used sketches in solving empirical risk minimization problems.

Leveraging the layer-wise structure of neural networks has been widely studied for optimizing
the training loss function. For example, [49] propose SGD with different scalar stepsizes for each
layer, [12, 47] propose layer-wise normalization for Stochastic Normalized Gradient Descent, and
[10, 44] propose layer-wise compression in the distributed setting.

DCGD, proposed by [27], has since been improved in various ways, such as in [20, 30]. There
is also a large body of literature on other federated learning algorithms with unbiased compressors
[3, 13, 21, 32, 35, 36].

11

DET-CGD

Appendix C. Single node case

C.1. Proof of Theorem 1

i) Using Assumption 2 with x = xk+1 = xk −DSk∇f(xk) and y = xk, we get

E
[
f(xk+1) | xk

]
≤ E

[
f(xk) +

〈
∇f(xk),−DSk∇f(xk)

〉
+

1

2

〈
L(−DSk∇f(xk)),−DSk∇f(xk)

〉
| xk

]
= f(xk)−

〈
∇f(xk),DE

[
Sk
]
∇f(xk)

〉
+

1

2

〈
E
[
SkDLDSk

]
∇f(xk),∇f(xk)

〉
.

From the unbiasedness of the sketch Sk

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2

〈
E
[
SkDLDSk

]
∇f(xk),∇f(xk)

〉
(3)
≤ f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2

〈
D∇f(xk),∇f(xk)

〉
= f(xk)− 1

2

〈
∇f(xk),D∇f(xk)

〉
= f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D
. (9)

Next, by subtracting f inf from both sides of (9), taking expectation and applying the tower property,
we get

E
[
f(xk+1)

]
− f inf = E

[
E
[
f(xk+1) | xk

]]
− f inf

(9)
≤ E

[
f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D

]
− f inf

= E
[
f(xk)

]
− f inf − 1

2
E
[∥∥∥∇f(xk)

∥∥∥2

D

]
.

Letting ∆k := E
[
f(xk)

]
−f inf , the last inequality can be written as ∆k+1 ≤ ∆k−1

2E
[∥∥∇f(xk)

∥∥2

D

]
.

Summing these inequalities for k = 0, 1, . . . ,K − 1, we get a telescoping effect leading to

∆K ≤ ∆0 − 1

2

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2

D

]
.

It remains to rearrange the terms of this inequality, divide both sides by K det(D)1/d , and use the
inequality ∆K ≥ 0.

ii) Similar to the previous case, using matrix smoothness for x = xk+1 = xk −T kD∇f(xk) and
y = xk, we get

E
[
f(xk+1) | xk

]
≤ E

[
f(xk) +

〈
∇f(xk),−T kD∇f(xk)

〉
(10)

+
1

2

〈
L(−T kD∇f(xk)),−T kD∇f(xk)

〉
| xk

]
= f(xk)−

〈
∇f(xk),E

[
T k
]
D∇f(xk)

〉
(11)

+
1

2

〈
E
[
D(T k)>LT kD

]
∇f(xk),∇f(xk)

〉
.

12

DET-CGD

From Assumption 3 and condition (4) we deduce

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2

〈
D∇f(xk),∇f(xk)

〉
= f(xk)− 1

2

〈
∇f(xk),D∇f(xk)

〉
= f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D
. (12)

Thus, we obtain the same upper bound on E
[
f(xk+1) | xk

]
as in (9). Following the steps from the

first part, we conclude the proof.

C.2. Proof of Proposition 2

Let us rewrite (3) using quadratic forms. That is for every non-zero v ∈ Rd, the following inequality
must be true:

v>E
[
SkDLDSk

]
v ≤ v>Dv, ∀v 6= 0

Notice that both sides of this inequality are real numbers, thus can be written equivalently as

tr(v>E
[
SkDLDSk

]
v) ≤ tr(v>Dv), ∀v 6= 0

The LHS can be modified in the following way

tr(v>E
[
SkDLDSk

]
v)

I
= tr

(
E
[
v>SkDLDSkv

])
II
= E

[
tr(v>SkDLDSkv)

]
III
= E

[
tr(L

1
2DSkvv>SkDL

1
2)
]

IV
= tr

(
E
[
L

1
2DSkvv>SkDL

1
2

])
V
= tr

(
L

1
2DE

[
Skvv>Sk

]
DL

1
2

)
,

where I, V are due to the linearity of expectation, II, IV are due to the linearity of trace operator, III
is obtained using the cyclic property of trace. Therefore, we can write the condition (3) equivalently
as

tr
(
L

1
2DE

[
Skvv>Sk

]
DL

1
2

)
≤ tr(vv>D), ∀v 6= 0.

We then define function gv : Sd++ → R for some fixed v 6= 0 as

gv(D) := tr
(
L

1
2DE

[
Skvv>Sk

]
DL

1
2

)
− tr(vv>D). (13)

We want to show that for every fixed v 6= 0, g is a convex function w.r.t D, so that in this case, the
sub-level set {D ∈ Sd++ | gv(D) ≤ 0} is convex.

• Notice that vv> is a rank-1 matrix whose eigenvalues are all zero except one of them is
‖v‖2 > 0. We also have (vv>)> = (v>)>v> = vv>, so it is also a symmetric matrix. Thus
we conclude that vv> ∈ Sd+ for every choice of v, we use V = vv> to denote it.

13

DET-CGD

• If Sk = Od, then the first term is equal to Od and the function gv(D) is linear, thus, also
convex. Now, let us assume Sk is nonzero. Similarly Skvv>Sk = Skv(Skv)T is also a
symmetric positive semi-definite matrix whose eigenvalues are all 0 except one of them is
‖Skv‖2, this tells us that its expectation over Sk is still a symmetric positive semi-definite
matrix, we use R = E

[
Skvv>Sk

]
to denote it.

Now we can write function gv as

gv(D) = tr(L
1
2DRDL

1
2)− tr(V D).

We present the following lemma that guarantees the convexity of the first term.

Lemma 3 For every matrix R ∈ Sd+, we define

f(D) = tr(L
1
2DRDL

1
2), (14)

where L,D ∈ Sd++. Then function f : Sd++ → R is a convex function.

The proof can be found in Appendix F.1. According to Lemma 3, the first term of gv(D) is a convex
function, and we know that the second term is linear in D. As a result, gv(D) is a convex function
w.r.t. D for every v 6= 0, thus the sub-level set {D ∈ Sd++ | gv(D) ≤ 0} is a convex set for every
v 6= 0. The intersection of all those convex sets corresponding to every v 6= 0 is still a convex set,
which tells us the original condition (3) is convex. This concludes the proof of the proposition.

Appendix D. Leveraging the layer-wise structure

In this section we focus on the block-diagonal case of L for both det-CGD1 and det-CGD2. In
particular, we propose hyper-parameters of det-CGD1 designed specifically for training NNs. Let
us assume that L = Diag(L1, . . . ,L`), where Li ∈ Sdi++. This setting is a generalization of the
classical smoothness condition, as in the latter case Li = LIdi for all i = 1, . . . , `. Respectively,
we choose both the sketches and the stepsize to be block diagonal: D = Diag(D1, . . . ,D`) and
Sk = Diag(Sk1 , . . . ,S

k
`), where Di,S

k
i ∈ Sdi++.

Let us notice that the left hand side of the inequality constraint in (8) has quadratic dependence
on D, while the right hand side is linear. Thus, for every matrix W ∈ Sd++, there exists γ > 0 such
that

γ2λmax

(
E
[
SkWLWSk

])
≤ γλmin(W).

Therefore, for γW we deduce

E
[
Sk(γW)L(γW)Sk

]
� γ2λmax

(
E
[
SkWLWSk

])
Id � γλmin(W)Id � γW . (15)

The following theorem is based on this simple fact applied to the corresponding blocks of the ma-
trices D,L,Sk for det-CGD1.

Theorem 4 Let f : Rd → R satisfy Assumptions 1 and 2, with L admitting the layer-separable
structure L = Diag(L1, . . . ,L`), where L1, . . . ,L` ∈ Sdi++. Choose random matrices Sk1 , . . . ,S

k
` ∈

14

DET-CGD

Sd+ to satisfy Assumption 3 for all i ∈ [`], and let Sk := Diag(Sk1 , . . . ,S
k
`). Furthermore, choose

matrices W1, . . . ,W` ∈ Sd++ and scalars γ1, . . . , γ` > 0 such that

γi ≤ λ−1
max

(
E
[
W
−1/2
i Ski WiLiWiS

k
i W

−1/2
i

])
∀i ∈ [`]. (16)

Letting W := Diag(W1, . . . ,W`), Γ := Diag(γ1Id1 , . . . , γ`Id`) and D := ΓW , we get

1

K

K−1∑
k=0

E

[∥∥∥∇f(xk)
∥∥∥2

ΓW

det(ΓW)1/d

]
≤ 2(f(x0)− f inf)

det (ΓW)1/d K
. (17)

Table 1: Summary of communication complexities of det-CGD1 and det-CGD2 with different
sketches and stepsize matrices. The Di here for det-CGD1 is Wi with the optimal scaling
determined using Theorem 4, for det-CGD2 it is the optimal stepsize matrix defined in
(6). The constant 2(f(x0) − f inf)/ε2 is hidden, ` is the number of layers, ki is the mini-
batch size for the i-th layer if we use the rand-k sketch. The notation L̃i,k is defined as
d−k
d−1 diag(Li) + k−1

d−1Li.

No. The
method

(
Ski ,Di

)
l ≥ 1, di , ki ,

∑`
i=1 ki = k, layer structure l = 1, ki = k, general structure

1. det-CGD1
(
Id, γL

−1
i

)
d · det(L)1/d d · det(L)1/d

2. det-CGD1
(
Id, γ diag−1(Li)

)
d · det

(
diag(L)

)1/d d · det
(

diag(L)
)1/d

3. det-CGD1
(
Id, γIdi

)
d ·
(∏l

i=1 λ
di
max(Li)

)1/d
d · λmax(L)

4. det-CGD1
(

rand-1, γIdi

)
` ·
(∏l

i=1 d
di
i

(
maxj(Li)jj

)di)1/d d ·maxj(Ljj)

5. det-CGD1
(

rand-1, γL−1
i

)
` ·


∏l
i=1 d

di
i
λ
di
max

(
L

1
2
i

diag(L
−1
i

)L

1
2
i

)
∏l
i=1

det(L
−1
i

)


1/d

dλmax

(
L

1
2 diag

(
L−1

)
L

1
2

)
det

(
L−1

)1/d

6. det-CGD1
(

rand-1, γL−1/2
i

)
` ·
(∏l

i=1 d
di
i
λ
di
max(L

1/2
i

)∏l
i=1

det(L
−1/2
i

)

)1/d

d · λ1/2
max(L) det(L)1/(2d)

7. det-CGD1
(

rand-1, γ diag−1(Li)
)

` ·
(∏l

i=1 d
di
i∏d

j=1
(L

−1
jj

)

)1/d

d · det
(

diag(L)
)1/d

8. det-CGD1
(

rand-ki, γ diag−1(Li)
)

k ·
(∏l

i=1

(
di
ki

)di det
(

diag(L)
))1/d

d · det
(

diag(L)
)1/d

9. det-CGD2
(
Id,L

−1
i

)
d · det(L)1/d d · det(L)1/d

10. det-CGD2
(

rand-1, diag−1(Li)
di

)
` ·
(∏l

i=1 d
di
i

)1/d
det(diag L)1/d d · det(diag(L))1/d

11. det-CGD2
(

rand-k, ki
di

L̃−1
i,ki

)
k ·
(∏l

i=1

(
di
ki

) di
d

)(∏l
i=1 det(L̃i,ki

)
)1/d

d · det(L̃1,k)

12. det-CGD2
(

Bern-qi, qiL
−1
i

) (∑l
i=1 qidi

)
·
∏l
i=1

(
1
qi

) di
d det(L)1/d d · det(L)1/d

13. GD
(
Id, λ

−1
max(L)Id

)
N/A d · λmax(L)

In particular, if the scalars {γi} are chosen to be equal to their maximum allowed values from
(16), then the convergence factor of (17) is equal to

det (ΓW)−
1
d =

[∏̀
i=1

λdimax

(
E
[
W
− 1

2
i Ski WiLiWiS

k
i W

− 1
2

i

])] 1
d

det(W−1)
1
d .

15

DET-CGD

Table 1 contains the (expected) communication complexities of det-CGD1, det-CGD2 and GD
for several choices of W ,D and Sk. Here are a few comments about the table. We deduce that
taking a matrix stepsize without compression (row 1) we improve GD (row 13). A careful anal-
ysis reveals that the result in row 5 is always worse than row 7 in terms of both communication
and iteration complexity. However, the results in row 6 and row 7 are not comparable in general,
meaning that neither of them is universally better. More discussion on this table can be found in the
Appendix.

Compression for free. Now, let us focus on row 12, which corresponds to a sampling scheme
where the i-th layer is independently selected with probability qi. Mathematically, it goes as follows:

T k
i =

ηi
qi
Idi , where ηi ∼ Bernoulli(qi). (18)

Jensen’s inequality implies that (
l∑

i=1

qidi

)
·

l∏
i=1

(
1

qi

) di
d

≥ d. (19)

The equality is attained when qi = q for all i ∈ [`]. The expected bits transferred per iter-
ation of this algorithm is then equal to kexp = qd and the communication complexity equals
ddet(L)1/d. Comparing with the results for det-CGD2 with rand-kexp on row 11 and using the
fact that det(L) ≤ det (diag(L)), we deduce that the Bernoulli scheme is better than the uniform
sampling scheme. Notice also, the communication complexity matches the one for the uncom-
pressed det-CGD2 displayed on row 9. This, in particular means that using the Bern-q sketches we
can compress the gradients for free. The latter means that we reduce the number of bits broadcasted
at each iteration without losing in the total communication complexity. In particular, when all the
layers have the same width di, the number of broadcasted bits for each iteration is reduced by a
factor of q.

In the rest of the section, we provide interpretations about some of the results and conclusions
we had in Appendix D.

D.1. Proof of Theorem 4

Note that E
[
SkDLDSk

]
= Diag

(
Qk

1, . . . ,Q
k
`

)
, where Qk

i := γ2
i E
[
Ski WiLiDiS

k
i

]
. In other

words,

E
[
SkDLDSk

]
=


Qk

1 0 · · · 0
0 Qk

2 · · · 0
...

...
. . .

...
0 0 · · · Qk

`

 ,

which means that (3) holds if and only if Qk
i � γiWi for all i ∈ [`], which holds if and only if (16)

holds. Therefore, Theorem 1 applies, and we conclude that

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2

ΓW

]
≤ 2(f(x0)− f inf)

K
. (20)

To obtain (17), it remains to multiply both sides of (20) by 1
det(ΓW)1/d .

16

DET-CGD

D.2. Bernoulli-q sketch for det-CGD2

The following corollary of Theorem 4 computes the communication complexity of det-CGD2 in the
block diagonal setting with Bernoulli-q.

Corollary 5 Let T k
i for the i-th layer in det-CGD2 be the Bern-qi sketch which is defined as

T k
i =

ηi
qi
Idi , where ηi ∼ Bernoulli(qi). (21)

Then, the communication complexity of (det-CGD2) is given by,

2(f(x0)− f inf)

ε2

(∑̀
i=1

qidi

)∏̀
i=1

(
1

qi

) di
d

det(L)
1
d . (22)

Furthermore, the communication complexity is minimized if the probabilities when qi = q, ∀i ∈
[`] and the minimum value is equal to

2(f(x0)− f inf) · dx det(L)
1
d

ε2
. (23)

Proof For det-CGD2, its convergence requires (6). We are using Bernoulli sketch here, so we
deduce that

E
[
T kLT k

]
= E

[
Diag(T k

1 L1T
k
1 , ...,T

k
` L`T

k
`)
]

= Diag
(
E
[
T k

1 L1T
k
1

]
, ...,E

[
T k
` L`T

k
`

])
.

Using the fact that for each block, we have

E
[
T k
i LiT

k
i

]
= (1− qi)OdiLiOdi + qi ·

1

q2
i

IdiLiIdi =
Li
qi
,

we obtain

E
[
T kLT k

]
= Diag

(
L1

q1
, ...,

L`
q`

)
.

Recalling (6), the best stepsize possible is therefore given by

D =
(
E
[
T kLT k

])−1

= Diag−1

(
L1

q1
, ...,

L`
q`

)
= Diag

(
q1L

−1
1 , ..., q`L

−1
`

)
.

From (5), we know that in order for det-CGD2 to converge to ε2 error level, we need

2(f(x0)− f inf)

det(D)
1
d K

≤ ε2,

17

DET-CGD

which means that we need

K ≥ 2(f(x0)− f inf)

det(D)
1
d ε2

=
1

det(D)
1
d

· 2(f(x0)− f inf)

ε2
,

iterations. For each iteration, the number of bits sent in expectation is equal to
∑`

i=1 qidi. As a
result, the communication complexity is given by, if we leave out the constant factor 2(f(x0) −
f inf)/ε2, (∑̀

i=1

qidi

)
· 1

det(D)
1
d

=

(∑̀
i=1

qidi

)
· det(D−1)

1
d

=

(∑̀
i=1

qidi

)
·

(∏̀
i=1

det(
Li
qi

)

) 1
d

=

(∑̀
i=1

qidi

)
·
∏̀
i=1

(
1

qi

) di
d

(
l∏

i=1

det(Li)

) 1
d

=

(∑̀
i=1

qidi

)
·
∏̀
i=1

(
1

qi

) di
d

· det(L)
1
d .

To obtain the optimal probability qi, we can do the following transformation(∑̀
i=1

qidi

)
· 1

det(D)
1
d

=

(∑̀
i=1

qi
di
d

)
·
∏̀
i=1

(
1

qi

) di
d

· ddet(L)
1
d .

Therefore, it is equivalent to minimizing the coefficient(∑̀
i=1

qi
di
d

)
·
∏̀
i=1

(
1

qi

) di
d

.

If we denote αi = di
d , then we know that αi ∈ (0, 1] and

∑`
i=1 αi = 1, the above coefficient turns

into (∑̀
i=1

αiqi

)∏̀
i=1

(
1

qi

)αi
.

From the strict log-concavity of the log(·) function and Jensen’s inequality we have(∑̀
i=1

αiqi

)
≥
∏̀
i=1

qαii .

The identity is obtained if and only if qi = qj , for all i 6= j. Thus, we get(∑̀
i=1

αiqi

)∏̀
i=1

(
1

qi

)αi
≥ 1,

18

DET-CGD

which in its turn implies that the minimum of expected communication complexity is equal to
d · det(L)

1
d . The equality is achieved when the probabilities are equal. This concludes the proof.

By utilizing the block diagonal structure, we are able to design special sketches that allow us to
compress for free. This can be seen from row 12, where the communication complexity of using
Bernoulli compressor with equal probabilities for det-CGD2 in expectation is the same with GD,
but the number of bits sent per iteration is reduced.

D.3. General cases for det-CGD1

The first part (row 1 to row 8) of Table 1 records the communication complexities of det-CGD1
in the block diagonal setting and in the general setting. Depending on the types of sketches Ski
and matrices Wi we are using, we can calculate the optimal scaling factor γi using Theorem 4.
According to (5), in order to reach an error level of ε2, we need

K ≥ 1

det(D)
1
d

· 2(f(x0)− f inf)

ε2
, (24)

where K is the number of iterations in total. We can then obtain the communication complexity
taking into account the number of bits transferred in each iteration in the block diagonal case. The
same applies to the general case which can be viewed as a special case of the block diagonal setting
where there is only 1 block.

D.4. General cases for det-CGD2

The second part of Table 1 (row 9 to row 12) records the communication complexities of det-CGD2.
Unlike det-CGD1, we can always obtain the best stepsize matrix D here if the sketch Sk is given.
The communication complexity can then be obtained in the same way as in the previous case using
(24) combined with the number of bits sent per iteration.

D.5. Interpretations of Table 1

The communication complexity of the Gradient Descent algorithm (row 13) in the general non-
convex setting is equal to dλmax(L), where λmax(L) serves as the smoothness constant of the
function. Compared to the GD, det-CGD1 and det-CGD2 that use matrix stepsize without compres-
sion (row 1 and 9) are better in terms of both iteration and communication complexity. There are
some results in the table that need careful analysis and we them present below. In the remainder of
the section we will omit the constant multiplier 2(f(x0) − f inf)/ε2 in communication complexity,
as it appears for every setting in the table and thus is redundant for comparison purposes.

D.5.1 Comparison of row 5 and 7

Here we show that the communication complexity given in row 5 is always worse than that of row
7. This can be seen from the following proposition.

Proposition 6 For any matrix L ∈ Sd++, the following inequality holds

λmax

(
L

1
2 diag(L−1)L

1
2

)
· det(L)

1
d ≥ det(diag(L))

1
d .

19

DET-CGD

Proof The inequality given in Proposition 6 can be reformulated as

λmax(Ldiag(L−1)) ≥ det(L−1 diag(L))
1
d .

We use the notation

M1 = L diag(L−1), M2 = L−1 diag(L),

and notice that for any i ∈ [d], we have

(M1)ii = (L)ii · (L−1)ii = (M2)ii.

Here the notation (A)ij refers to the entry (i, j) of matrix A. As a result

λmax(M1) ≥

(
d∏
i=1

(M1)ii

) 1
d

=

(
d∏
i=1

(M2)ii

) 1
d

≥ det(M2)
1
d ,

where the first inequality is due to the fact that each diagonal element is upper-bounded by the
maximum eigenvalue value, while the second one is obtained using the fact that the product of the
diagonal elements is an upper bound of the determinant.

From Proposition 6, it immediately follows that the result in row 7 is better than row 5 in terms of
both communication and iteration complexity.

D.5.2 Comparison of row 6 and 7

In this section we bring an examples of matrices L which show that rows 6 and 7 are not comparable
in general. Let d = 2 and L ∈ S2

++. If we pick

L =

(
16 0
0 1

)
,

then

det(diag(L))
1
d = 4;

λ
1
2
max(L) det(L)

1
2d = 8.

However, if we pick

L =

(
16 3.9
3.9 1

)
,

then

det(diag(L))
1
d = 4;

λ
1
2
max(L) det(L)

1
2d ' 3.88.

From this example, we can see that the relation between the results in row 6 and 7 may vary de-
pending on the value of L.

20

DET-CGD

Appendix E. Distributed Case

E.1. Distributed det-CGD1

In this section we describe the distributed versions of our algorithms and present convergence guar-
antees for them. Let us consider an objective function that is sum decomposable:

f(x) :=
1

n

n∑
i=1

fi(x), (25)

where each fi : Rd → R is a differentiable function. We assume that f satisfies Assumption 1 and
the component functions satisfy the below condition.

Assumption 4 Each component function fi is Li-smooth and is bounded from below: fi(x) ≥ f inf
i

for all x ∈ Rd.

This assumption also implies that f is of matrix smoothness with L̄ ∈ Sd++, where L̄ = 1
n

∑n
i=1 Li.

Following the standard FL framework [27, 28, 33], we assume that the i-th component function fi
is stored on the i-th client. At each iteration, the clients in parallel compute and compress the local
gradient ∇fi and communicate it to the central server. The server, then aggregates the compressed
gradients, computes the next iterate, and in parallel broadcasts it to the clients. See the pseudo-codes
below for the details.

Algorithm 1 Distributed det-CGD1
1: Input: Starting point x0, stepsize matrix D,

number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample Ski ∼ S;
5: compute Ski ∇fi(xk);
6: broadcast Ski ∇fi(xk).
7: The server:
8: combines gk = D

n

∑n
i S

k
i ∇fi(xk);

9: computes xk+1 = xk − gk;
10: broadcasts xk+1.
11: end for
12: Return: xK

Algorithm 2 Distributed det-CGD2
1: Input: Starting point x0, stepsize matrix D,

number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample T k

i ∼ T ;
5: compute T k

i D∇fi(xk);
6: broadcast T k

i D∇fi(xk).
7: The server:
8: combines gk = 1

n

∑n
i T

k
i D∇fi(xk);

9: computes xk+1 = xk − gk;
10: broadcasts xk+1.
11: end for
12: Return: xK

Theorem 7 Let fi : Rd → R satisfy Assumption 4 and let f satisfy Assumption 1 and Assumption 2
with smoothness matrix L. If the stepsize satisfies

DLD �D, (26)

then the following convergence bound is true for the iterates of Algorithm 1:

1

K
E
[∥∥∥∇f(xk)

∥∥∥2

D/det(D)1/d

]
≤

2(1 + λD
n)K

(
f(x0)− f inf

)
det(D)1/dK

+
2λD∆inf

det(D)1/d n
,

21

DET-CGD

where ∆inf := f inf − 1
n

∑n
i=1 f

inf
i and

λD := max
i

{
λmax

(
E
[
L

1
2
i

(
Ski − Id

)
DLD

(
Ski − Id

)
L

1
2
i

])}
.

The same result is true for Algorithm 2 with a different constant λD, see Appendix E.4 for the
details. The analysis is largely inspired by Theorem 1 of [26]. Now, let us examine the right-
hand side of the bound from Theorem 7. We start by observing that the first term has exponential
dependence in K. However, the term inside the brackets, 1 + λD/n, depends on the stepsize D.
Furthermore, it has a second-order dependence on D, implying that λαD = α2λD, as opposed to
det(αD)1/d, which is linear in α. Therefore, we can choose a small enough coefficient α to ensure
that λD is of order n/K. This means that for a fixed number of iterations K, we choose the matrix
stepsize to be ”small enough” to guarantee that the denominator of the first term is bounded. The
following corollary summarizes these arguments.

Corollary 8 We reach an error level of ε2 in the bound from Theorem 7 if the following conditions
are satisfied:

DLD �D, λD ≤ min

{
n

K
,
nε2

4∆inf
det(D)1/d

}
,K ≥ 12(f(x0)− f inf)

det(D)1/d ε2
. (27)

Proposition 14 proves that these conditions with respect to D are convex. In order to minimize the
iteration complexity for getting ε2 error, one needs to solve the following optimization problem

minimize log det(D−1)

subject to D satisfies (27).

Choosing the optimal stepsize for Algorithm 1 is analogous to solving (8). One can formulate
the distributed counterpart of Theorem 4 and attempt to solve it for different sketches. Furthermore,
this leads to a convex matrix minimization problem involving D. Similar to the single-node case,
computational methods can be employed using the CVXPY package. However, some additional
effort is required to transform (27) into the disciplined convex programming (DCP) format.

The second term in the bound from Theorem 7 corresponds to the convergence neighborhood
of the algorithm. It does not depend on the number of iteration, thus it remains unchanged, after
we choose the stepsize. Nevertheless, it depends on the number of clients n. In general, the term
∆inf/n can be unbounded, when n→ +∞. However, per Corollary 8, we require λD to be upper-
bounded by n/K. Thus, the neighborhood term will indeed converge to zero when K → +∞, if
we choose the stepsize accordingly.

We compare our results with the existing results for DCGD. In particular we use the technique
from [26] for the scalar smooth DCGD with scalar stepsizes. This means that the parameters of
algorithms are Li = LiId,L = LId,D = γId, ω = λmax

(
E[(Ski)>Ski]

)
− 1. One may check

that (27) reduces to γ ≤ min
{

1
L ,
√

n
KLmaxLω

, nε2

4∆infLmaxLω

}
and Kγ ≥ 12(f(x0)−f inf)

ε2
. As ex-

pected, this coincides with the results from [26]. Finally, we back up our theoretical findings with
experiments which are deferred to Appendix G.

22

DET-CGD

E.2. Proof of Theorem 7

We first present some simple technical lemmas whose proofs are deferred to Appendix F. Let us
recall that D ∈ Sd++ is the stepsize matrix, L,Li ∈ Sd++ are the smoothness matrices for f and fi,
respectively.

Lemma 9 (Variance Decomposition) For any random vector x ∈ Rd, and any matrix M ∈ Sd+,
the following identity holds

E
[
‖x− E [x]‖2M

]
= E

[
‖x‖2M

]
− ‖E [x]‖2M . (28)

Lemma 10 Assume {ai}ni=1 is a set of independent random vectors in Rd, which satisfy

E [ai] = 0, ∀i ∈ [n].

Then, for any M ∈ Sd++, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

M

 =
1

n2

n∑
i=1

E
[
‖ai‖2M

]
. (29)

Lemma 11 For any vector x ∈ Rd, and sketch matrix S ∈ Sd+ taken from some distribution S over
Sd+, which satisfies

E [S] = Id.

Then for any matrix M ∈ Sd++, we have the following identity holds,

E
[
‖Sx− x‖2M

]
= ‖x‖2E[SMS]−M . (30)

Lemma 12 If we have a differentiable function f : Rd → R, that is L matrix smooth and lower
bounded by f inf , if we assume L ∈ Sd++, then the following inequality holds〈

∇f(x),L−1∇f(x)
〉
≤ 2(f(x)− f inf). (31)

Let the gradient estimator of our algorithm be defined as

g(x) :=
1

n

n∑
i=1

Ski ∇fi(x), (32)

as a result, det-CGD1 in the distributed case can then be written as

xk+1 = xk −Dg(xk).

Notice that we have

E
[
g(xk) | xk

]
=

1

n

n∑
i=1

E
[
Ski

]
∇fi(xk) = ∇f(xk). (33)

23

DET-CGD

We start with applying the L-matrix smoothness of f :

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
L(xk+1 − xk), xk+1 − xk

〉
= f(xk) +

〈
∇f(xk),−Dg(xk)

〉
+

1

2

〈
L
(
−Dg(xk)

)
,−Dg(xk)

〉
= f(xk)−

〈
∇f(xk),Dg(xk)

〉
+

1

2

〈
LDg(xk),Dg(xk)

〉
.

Taking expectation conditioned on xk, we get

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),DE

[
g(xk) | xk

]〉
+

1

2
E
[〈

LDg(xk),Dg(xk)
〉
| xk

]
(33)
= f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2
E
[〈

LDg(xk),Dg(xk)
〉
| xk

]
= f(xk)−

∥∥∥∇f(xk)
∥∥∥2

D
+

1

2
E
[〈

LDg(xk),Dg(xk)
〉
| xk

]
︸ ︷︷ ︸

:=T

. (34)

Applying Lemma 9 to the term T we obtain

T = E
[∥∥∥g(xk)

∥∥∥2

DLD
| xk

]
(28)
= E

[∥∥∥g(xk)− E
[
g(xk) | xk

]∥∥∥2

DLD
| xk

]
+
∥∥∥E [g(xk) | xk

]∥∥∥2

DLD
.

From the unbiasedness of the sketches, we have E
[
g(xk) | xk

]
= ∇f(xk), which yields

T = E
[∥∥∥g(xk)−∇f(xk)

∥∥∥2

DLD
| xk

]
+
∥∥∥∇f(xk)

∥∥∥2

DLD

= E

∥∥∥∥∥ 1

n

n∑
i=1

(
Ski ∇fi(xk)−∇fi(xk)

)∥∥∥∥∥
2

DLD

| xk
+

∥∥∥∇f(xk)
∥∥∥2

DLD
.

Using Lemma 10, we have

T =
1

n2

n∑
i=1

E
[∥∥∥Ski ∇fi(xk)−∇fi(xk)∥∥∥2

DLD
| xk

]
+
∥∥∥∇f(xk)

∥∥∥2

DLD

≤ 1

n2

n∑
i=1

E
[∥∥∥Ski ∇fi(xk)−∇fi(xk)∥∥∥2

DLD
| xk

]
+
∥∥∥∇f(xk)

∥∥∥2

D
, (35)

where the last inequality holds due to the inequality DLD �D.

Lemma 13 Let S be an unbiased (E [S] = Id) sketch drawn randomly from some distribution S
over Sd+. The following bound holds for any x ∈ Rd and any matrix A,

E
[
‖Sx− x‖2DLD

]
≤ λmax

(
A

1
2E [(S − Id)DLD (S − Id)]A

1
2

)
· ‖x‖2A−1 . (36)

24

DET-CGD

Plugging (35) into (34) and applying Lemmas 12 and 13 we deduce

E
[
f(xk+1) | xk

]
≤ f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D

+
1

2n2

n∑
i=1

E
[∥∥∥Ski ∇fi(xk)−∇fi(xk)∥∥∥2

DLD
| xk

]
.

(36)
≤ f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D

+
1

2n2

n∑
i=1

λmax

(
E
[
L

1
2
i

(
Ski − Id

)
DLD

(
Ski − Id

)
L

1
2
i

])∥∥∥∇fi(xk)∥∥∥2

L−1
i

(31)
≤ f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D

+
1

n2

n∑
i=1

λmax

(
E
[
L

1
2
i

(
Ski − Id

)
DLD

(
Ski − Id

)
L

1
2
i

])(
fi(x

k)− f inf
i

)
.

Recalling the definition of λD, we bound f(xk+1) by

E
[
f(xk+1) | xk

]
≤ f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D
+

1

n2

n∑
i=1

λD

(
fi(x

k)− f inf
i

)
= f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D
+
λD
n

(
1

n

n∑
i=1

fi(x
k)− 1

n

n∑
i=1

f inf
i

)

= f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D
+
λD
n

(f(xk)− f inf) +
λD
n

(
f inf − 1

n

n∑
i=1

f inf
i

)
.

Subtracting f inf from both sides, we get

E
[
f(xk+1)− f inf | xk

]
≤ f(xk)− f inf − 1

2

∥∥∥∇f(xk)
∥∥∥2

D
+
λD
n

(f(xk)− f inf)

+
λD
n

(
f inf − 1

n

n∑
i=1

f inf
i

)
.

Taking expectation, applying tower property and rearranging terms, we get

E
[
f(xk+1)− f inf

]
≤
(

1 +
λD
n

)
E
[
f(xk)− f inf

]
− 1

2
E
[∥∥∥∇f(xk)

∥∥∥2

D

]
+
λD
n

(
f inf − 1

n

n∑
i=1

f inf
i

)
. (37)

If we denote

δk = E
[
f(xk)− f inf

]
, rk = E

[∥∥∥∇f(xk)
∥∥∥2

D

]
, ∆inf = f inf − 1

n

n∑
i=1

f inf
i ,

25

DET-CGD

then (37) becomes
1

2
rk ≤

(
1 +

λD
n

)
δk − δk+1 +

λD∆inf

n
. (38)

In order to approach the final result, we now follow [43], [26] and define an exponentially decaying
weighting sequence {wk}Kk=−1, where K is the total number of iterations. We fix w−1 > 0 and
define

wk =
wk−1

1 + λD/n
, for all k ≥ 0.

By multiplying both sides of the recursion (38) by wk, we get

1

2
wkr

k ≤ wk−1δ
k − wkδk+1 +

λD∆inf

n
wk.

Summing up the inequalities from k = 0, ...,K − 1, we get

1

2

K−1∑
k=0

wkr
k ≤ w−1δ

0 − wK−1δ
K +

λD∆inf

n

K−1∑
k=0

wk.

Define WK =
∑K−1

k=0 wk, and divide both sides by WK , we get

1

2
min

0≤k≤K−1
rk ≤ 1

2

∑K−1
k=0 wkr

k

WK
rk ≤ w−1

WK
δ0 +

λD∆inf

n
.

Notice that from the definition of wk, we know that the following inequality holds,

w−1

WK
≤ w−1

KwK−1
=

(1 + λD
n)K

K
.

As a result, we have

min
0≤k≤K−1

rk ≤
2
(

1 + λD
n

)K
K

δ0 +
2λD∆inf

n
.

Recalling the definition for rk and δk, we get the following result,

min
0≤k≤K−1

E
[∥∥∥∇f(xk)

∥∥∥2

D

]
≤

2(1 + λD
n)K

(
f(x0)− f inf

)
K

+
2λD∆inf

n
.

Finally, we apply determinant normalization and get

min
0≤k≤K−1

E
[∥∥∥∇f(xk)

∥∥∥2

D/ det(D)1/d

]
≤

2(1 + λD
n)K

(
f(x0)− f inf

)
det(D)1/dK

+
2λD∆inf

det(D)1/dn
. (39)

This concludes the proof.

26

DET-CGD

E.3. Convexity of the constraints

Proposition 14 The set of matrices D that satisfy (27) is convex.

Proof The first inequality in (27) can be reformulated into

D � L−1,

which is linear in D and, therefore, is convex. For the second constraint in (27),

max
i

{
λmax

(
E
[
L

1
2
i

(
Ski − Id

)
DLD

(
Ski − Id

)
L

1
2
i

])}
≤ n

K
, (40)

we can reformulate it into n constraints, one for each client i:

λmax

(
E
[
L

1
2
i

(
Ski − Id

)
DLD

(
Ski − Id

)
L

1
2
i

])
≤ n

K
, ∀i ∈ [`]

⇔ E
[
L

1
2
i

(
Ski − Id

)
DLD

(
Ski − Id

)
L

1
2
i

]
� n

K
Id, ∀i ∈ [`]

⇔ L
1
2
i E
[(

Ski − Id

)
DLD

(
Ski − Id

)]
L

1
2
i �

n

K
Id, ∀i ∈ [`]

⇔ E
[(

Ski − Id

)
DLD

(
Ski − Id

)]
� n

K
L−1
i , ∀i ∈ [`].

We then look at the individual condition for one client i,

E
[(

Ski − Id

)
DLD

(
Ski − Id

)]
� n

K
L−1
i , (41)

that is for any vector u ∈ Rd, we require

u>E
[(

Ski − Id

)
DLD

(
Ski − Id

)]
u ≤ n

K
u>L−1

i u,

⇔ tr
(
u>E

[(
Ski − Id

)
DLD

(
Ski − Id

)]
u
)
≤ n

K
tr(u>L−1

i u),

⇔ E
[
tr(u>

(
Ski − Id

)
DLD

(
Ski − Id

)
u)
]
≤ tr(u>L−1

i u),

⇔ tr(L
1
2DE

[(
Ski − Id

)
uu>

(
Ski − Id

)]
DL

1
2) ≤ tr(u>L−1

i u).

We now define function gu : Sd++ → R for every fixed u 6= 0,

gu(D) = tr(L
1
2DE

[(
Ski − Id

)
uu>

(
Ski − Id

)]
DL

1
2), (42)

notice that uu> is a rank-1 matrix that is positive semi-definite, so for every y ∈ Rd,((
Ski − Id

)
y
)>

uu>
((

Ski − Id

)
y
)
≥ 0,

27

DET-CGD

which means that
(
Ski − Id

)
uu>

(
Ski − Id

)
∈ Sd+ , and thus R := E

[(
Ski − Id

)
uu>

(
Ski − Id

)]
∈

Sd+ as well. Using Lemma 3, we know that gu(D) is a convex function for every 0 6= u ∈ Rd, thus
its sub-level set {D ∈ Sd++ | gu(D) ≤ tr(u>L−1

i u)} is a convex set. The intersection of those con-
vex sets corresponding to the individual constraint (41) of client i is convex. Again the intersection
of those convex sets for each client i, which corresponds to (40), is still convex.

For the third constraint in (27), we can transform it using similar steps as we obtain (40) into

E
[(

Ski − Id

)
DLD

(
Ski − Id

)]
� nε2

4∆inf
det(D)1/dL−1

i , ∀i. (43)

If we look at each individual constraint, we can write in quadratic forms for any 0 6= u ∈ Rd,

u>E
[(

Ski − Id

)
DLD

(
Ski − Id

)]
u ≤ nε2

4∆inf
det(D)1/d · u>L−1

i u, ∀u 6= 0.

Using the linearity of expectation and the trace operator with the trace trick, we can transform the
above condition into,

tr(L
1
2DE

[(
Ski − Id

)
uu>

(
Ski − Id

)]
DL

1
2) ≤ nε2

4∆inf
det(D)

1
d tr(u>L−1

i u) ∀u 6= 0.

notice that we have already shown that R = E
[(
Ski − Id

)
uu>

(
Ski − Id

)]
∈ Sd+. Thus if we

apply Lemma 3, we know that the left-hand side of the previous inequality is convex w.r.t. D. On
the other hand we know that det(D)

1
d is a concave function for symmetric positive definite matrices

D. So the set of D satisfying the constraint here for every u ∈ Rd is convex, thus their intersection
is convex as well. Which means that the set of D satisfying the constraint for each client i is convex.
Thus the intersection of those convex sets corresponding to different clients, which corresponds to
(43), is still convex. Now we know that the set of D satisfying each of the three constraints in (27)
is convex, thus the intersection of them is convex as well. This concludes the proof.

E.3.1 Proof of Corollary 8

For the first term in the RHS of the convergence bound from Theorem 7 under condition (27), we
know that

2

(
1 +

λD
n

)K
≤ 2 · exp

(
λD ·

K

n

)
≤ 2 · exp(1) ≤ 6,

thus

2(1 + λD
n)K

(
f(x0)− f inf

)
det(D)1/dK

≤
6
(
f(x0)− f inf

)
det(D)1/dK

≤
6
(
f(x0)− f inf

)
det(D)1/d

· ε2 det(D)
1
d

12 (f(x0)− f inf)

=
ε2

2
.

28

DET-CGD

While for the second term of RHS in the bound from Theorem 7, we have

2λD∆inf

det(D)1/d n
≤ 2∆inf

det(D)1/d n
· ε

2(det(D))1/d n

4∆inf
≤ ε2

2
.

Thus we know that the left hand side of the bound from Theorem 7 is upper bounded by

min
0≤k≤K−1

E

[∥∥∥∇f(xk)
∥∥∥2

D

det(D)1/d

]
≤ ε2

2
+
ε2

2
= ε2.

This concludes the proof.

E.4. Distributed det-CGD2

We also extend det-CGD2 to the distributed case. Consider the method

xk+1 = xk − 1

n

n∑
i=1

T k
i D∇fi(xk), (44)

where D ∈ Sd++ is the stepsize matrix, and each T k
i is a sequence of sketch matrices drawn ran-

domly from some distribution T over Sd+ independent of each other, satisfying

E
[
T k
i

]
= Id. (45)

E.4.1 Analysis of distributed det-CGD2

In this section, we present the theory for Algorithm 2, which is an analogous to what we have seen
for Algorithm 1. We first present the following lemma which is necessary for our analysis.

Lemma 15 For any sketch T k
i of client i drawn randomly from some distribution T over Sd+ which

satisfies
E
[
T k
i

]
= Id,

the following inequality holds for any x ∈ Rd for each client i,

E
[∥∥∥T k

i Dx−Dx
∥∥∥2

L

]
≤ λmax

(
L

1
2
i DE

[(
T k
i − Id

)
L
(
T k
i − Id

)]
DL

1
2
i

)
· ‖x‖2

L−1
i
. (46)

Theorem 16 Let fi : Rd → R satisfy Assumption 4 and let f satisfy Assumptions 1 and 2 with a
smoothness matrix L. If the stepsize satisfies,

DLD �D, (47)

then the following convergence bound is true for the iteration of Algorithm 2

min
0≤k≤K−1

E

[∥∥∥∇f(xk)
∥∥∥2

D

det(D)1/d

]
≤

2(1 +
λ′D
n)K

(
f(x0)− f inf

)
det(D)1/dK

+
2λ′D∆inf

det(D)1/d n
, (48)

where ∆inf := f inf − 1
n

∑n
i=1 f

inf
i and

λ′D := max
i

{
λmax

(
E
[
L

1
2
i D

(
T k
i − Id

)
L
(
T k
i − Id

)
DL

1
2
i

])}
.

29

DET-CGD

Proof We first define function g(x) as follows,

g(x) =
1

n

n∑
i=1

T k
i D∇fi(xk).

As a result, Algorithm 2 can be written as

xk+1 = xk − g(xk).

Notice that

E [g(x)] =
1

n

n∑
i=1

E
[
T k
i

]
D∇fi(x) = D∇f(x). (49)

We then start with the L matrix smoothness of function f ,

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
L(xk+1 − xk), xk+1 − xk

〉
= f(xk) +

〈
∇f(xk),−g(xk)

〉
+

1

2

〈
L
(
−g(xk)

)
,−g(xk)

〉
= f(xk)−

〈
∇f(xk), g(xk)

〉
+

1

2

〈
Lg(xk), g(xk)

〉
.

We then take expectation conditioned on xk,

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),E

[
g(xk) | xk

]〉
+

1

2
E
[〈

Lg(xk), g(xk)
〉
| xk

]
= f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2
E
[〈

Lg(xk), g(xk)
〉
| xk

]
︸ ︷︷ ︸

:=T

. (50)

Lemma 9 yields

T = E
[∥∥∥g(xk)

∥∥∥2

L
| xk

]
(28)
= E

[∥∥∥∥g(xk)− E
[
g(xk) | xk

]2

L

∥∥∥∥ | xk]+
∥∥∥E [g(x) | xk

]∥∥∥2

L
.

From (49) we deduce

T = E
[∥∥∥g(xk)−D∇f(xk)

∥∥∥2

L
| xk

]
+
∥∥∥D∇f(xk)

∥∥∥2

L

= E

∥∥∥∥∥ 1

n

n∑
i=1

T k
i D∇fi(xk)−

D

n

n∑
i=1

∇fi(xk)

∥∥∥∥∥
2

L

| xk
+

∥∥∥∇f(xk)
∥∥∥2

DLD

= E

∥∥∥∥∥ 1

n

∑
i=1

(
T k
i D −D

)
∇fi(xk)

∥∥∥∥∥
2

L

| xk
+

∥∥∥∇f(xk)
∥∥∥2

DLD
.

30

DET-CGD

Recalling Lemma 10 we obtain

T
(29)
=

1

n2

n∑
i=1

E
[∥∥∥T k

i D∇fi(xk)−D∇fi(xk)
∥∥∥2

L
| xk

]
+
∥∥∥∇f(xk)

∥∥∥2

DLD

(47)
≤ 1

n2

n∑
i=1

E
[∥∥∥T k

i D∇fi(xk)−D∇fi(xk)
∥∥∥2

L
| xk

]
+
∥∥∥∇f(xk)

∥∥∥2

D
.

By applying Lemma 15, we get

T ≤ 1

n2

n∑
i=1

λmax

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)∥∥∥∇fi(xk)∥∥∥2

L−1
i

+
∥∥∥∇f(xk)

∥∥∥2

D

(31)
≤ λ′D ·

2

n

(
f(xk)− 1

n

n∑
i=1

f inf
i

)
+
∥∥∥∇f(xk)

∥∥∥2

D
.

Then we plug the upper bound of T back into (50), we get

E
[
f(xk+1) | xk

]
≤ f(xk)− 1

2

∥∥∥∇f(xk)
∥∥∥2

D
+
λ′D
n

(
f(xk)− f inf

)
+
λ′D
n

(f inf − 1

n

n∑
i=1

f inf
i).

Taking expectation, subtracting f inf from both sides, and using tower property, we get

E
[
f(xk+1)− f inf

]
≤ E

[
f(xk)− f inf

]
− 1

2
E
[∥∥∥∇f(xk)

∥∥∥2

D

]
+
λ′D
n

E
[
f(xk)− f inf

]
+
λ′D
n

∆inf .

Then following similar steps as in the proof of Theorem 7, we are able to get

min
0≤k≤K−1

E

[∥∥∥∇f(xk)
∥∥∥2

D

det(D)1/d

]
≤

2(1 +
λ′D
n)K

(
f(x0)− f inf

)
det(D)1/dK

+
2λ′D∆inf

det(D)1/d n
.

This concludes the proof.

Similar to Algorithm 1, we can choose the parameters of the algorithm to avoid the exponential
blow-up in convergence bound (48). The following corollary sums up the convergence conditions
for Algorithm 2.

Corollary 17 We reach an error level of ε2 in (48) if the following conditions are satisfied:

DLD �D, λ′D ≤ min

{
n

K
,
nε2

4∆inf
det(D)1/d

}
, K ≥ 12(f(x0)− f inf)

det(D)1/dε2
. (51)

The proof of this corollary is exactly the same as for Corollary 8.

31

DET-CGD

E.4.2 Optimal stepsize

In order to minimize the iteration complexity for Algorithm 2, the following optimization problem
needs to be solved

min log det(D−1)

subject to D satisfies (51)

Following similar techniques in the proof of Proposition 14, we are able to prove that the above op-
timization problem is still a convex optimization problem. One simple way to find stepsize matrices
is to follow the scheme suggested for solving (8). That is we first fix W ∈ Sd++ and we find the
optimal 0 < γ ∈ R, such that D = γW satisfies (51).

E.5. DCGD with constant stepsize

In this section we describe the convergence result for DCGD from [26]. We assume that the com-
ponent functions fi satisfy Assumption 4 with Li = LiId and f satisfies Assumption 1 and 2 with
L = LId. [26] proposed a unified analysis for non-convex optimization algorithms based on a
generic upper bound on the second moment of the gradient estimator g(xk):

E
[∥∥∥g(xk)

∥∥∥2
]
≤ 2A

(
f(xk)− f inf

)
+B

∥∥∥∇f(xk)
∥∥∥2

+ C, (52)

In our case the gradient estimator is defined as follows

gDCGD(xk) =
1

n

n∑
i=1

Ski ∇fi(xk). (53)

Here each Ski is the sketch matrix on the i-th client at the k-th iteration. One may check that gDCGD

satisfies (52) with the following constants:

A =
ωLmax

n
, B = 1, C =

2ωLmax

n
∆inf . (54)

The constant Lmax is defined as the maximum of all Li and ω = λmax

(
E
[(
Ski
)>

Ski

])
− 1.

Applying Corollary 1 from [26], we deduce the following. If

γ ≤ min

{
1

L
,

√
n√

ωLLmaxK
,

nε2

4LLmaxω∆inf

}
and γK ≥

12
(
f(x0)− f inf

)
ε2

, (55)

then

min
k=0,...,K−1

E
[∥∥∥∇f(xk)

∥∥∥2
]
≤ ε2. (56)

Appendix F. Proofs of technical lemmas

32

DET-CGD

F.1. Proof of Lemma 3

Let us pick any two matrices D1,D2 ∈ Sd++, scalar α satisfying 0 ≤ α ≤ 1 and show that the
following inequality holds regardless of the choice of R,

f(αD1 + (1− α)D2) ≤ αf(D1) + (1− α)f(D2). (57)

For the LHS, we have

f(αD1 + (1− α)D2)

= tr(L
1
2 (αD1 + (1− α)D2)R(αD1 + (1− α)D2)L

1
2)

= α2 tr(L
1
2D1RD1L

1
2) + (1− α)2 tr(L

1
2D2RD2L

1
2)

+ α(1− α) tr(L
1
2D1RD2L

1
2) + α(1− α) tr(L

1
2D2RD1L

1
2).

and for the RHS, we have

αf(D1) + (1− α)f(D2) = α tr(L
1
2D1RD1L

1
2) + (1− α) tr(L

1
2D2RD2L

1
2).

Thus (57) can be simplified to the following inequality after rearranging terms

α(1− α) tr(L
1
2D1RD2L

1
2) + α(1− α) tr(L

1
2D2RD1L

1
2)

≤ α(1− α) tr(L
1
2D1RD1L

1
2) + α(1− α) tr(L

1
2D2RD2L

1
2).

This is equivalent to

tr(L
1
2D1RD1L

1
2) + tr(L

1
2D2RD2L

1
2)− tr(L

1
2D1RD2L

1
2)− tr(L

1
2D2RD1L

1
2) ≥ 0.

To show that the above inequality holds, we do the following transformation for the LHS

tr(L
1
2D1RD1L

1
2) + tr(L

1
2D2RD2L

1
2)− tr(L

1
2D1RD2L

1
2)− tr(L

1
2D2RD1L

1
2)

= tr(L
1
2D1R(D1 −D2)L

1
2) + tr(L

1
2D2R(D2 −D1)L

1
2)

= tr(L
1
2 (D1 −D2)R(D1 −D2)L

1
2).

Since R ∈ Sd+ and D1 −D2,L are symmetric, for any vector u ∈ Rd

u>L
1
2 (D1 −D2)R(D1 −D2)L

1
2u =

(
(D1 −D2)L

1
2u
)>

R
(

(D1 −D2)L
1
2u
)
≥ 0. (58)

Thus, L
1
2 (D1−D2)R(D1−D2)L

1
2 ∈ Sd+, which yields the positivity of its trace. Therefore, (57)

holds, thus f(D) is a convex function. This concludes the proof.

33

DET-CGD

F.2. Proof of Lemma 9

We have

E
[
‖x− E [x]‖2M

]
= E [〈x− E [x] ,M (x− E [x])〉]

= E
[
(x− E [x])>M (x− E [x])

]
= E

[
x>Mx− E [x]>Mx− x>ME [x] + E [x]>ME [x]

]
= E

[
x>Mx

]
− 2E [x]>ME [x] + E [x]>ME [x]

= E
[
x>Mx

]
− E [x]>ME [x]

= E
[
‖x‖2M

]
− ‖E [x]‖2M ,

which concludes the proof.

F.3. Proof of Lemma 10

Proof We have

E

∥∥∥∥∥ 1

n

n∑
i=1

ai

∥∥∥∥∥
2

M

 =
1

n2

n∑
i=1

E [〈ai,Mai〉] +
1

n2

∑
i 6=j

E [〈ai,Maj〉]

=
1

n2

n∑
i=1

E
[
‖ai‖2M

]
+

1

n

∑
i 6=j
〈E [ai] ,ME [aj]〉

=
1

n2

n∑
i=1

E
[
‖ai‖2M

]
.

This concludes the proof.

F.4. Proof of Lemma 11

Notice that
E [Sx] = E [S]x = x.

We start with variance decomposition in the matrix norm,

E
[
‖Sx− x‖2M

]
(28)
= E

[
‖Sx‖2M

]
− ‖x‖2M

= E [〈Sx,MSx〉]− 〈x,Mx〉
= 〈x,E [SMS]x〉 − 〈x,Mx〉
= 〈x, (E [SMS]−M)x〉
= ‖x‖2E[SMS]−M .

This concludes the proof.

34

DET-CGD

F.5. Proof of Lemma 12

We follow the definition of L matrix smoothness of function f , that for any x+, x ∈ Rd, we have

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+

1

2

〈
x+ − x,L(x+ − x)

〉
.

We plug in x+ = x−L−1∇f(x), and get

f inf ≤ f(x+) ≤ f(x)−
〈
∇f(x),L−1∇f(x)

〉
+

1

2

〈
∇f(x),L−1∇f(x)

〉
.

Rearranging terms we get
‖∇f(x)‖2L−1 ≤ 2

(
f(x)− f inf

)
, (59)

which completes the proof.

F.6. Proof of Lemma 13

E
[
‖S − x‖2DLD

]
= E [〈(S − Id)x,DLD(S − Id)x〉]

= E
[
x>(S − Id)DLD(S − Id)x

]
= x>E [(S − Id)DLD(S − Id)]x

= x>A−
1
2

(
A

1
2E [(S − Id)DLD(S − Id)]A

1
2

)
A−

1
2x

≤ λmax

(
A

1
2E [(S − Id)DLD(S − Id)]A

1
2

)∥∥∥A− 1
2x
∥∥∥2

= λmax

(
A

1
2E [(S − Id)DLD(S − Id)]A

1
2

)
‖x‖2A−1 .

This completes the proof.

F.7. Proof of Lemma 15

E
[∥∥∥T k

i Dx−Dx
∥∥∥2

L

]
= E

[〈
(T k

i − Id)Dx,L(T k
i − Id)Dx

〉]
= E

[
x>D(T k

i − Id)L(T k
i − Id)Dx

]
= x>DE

[
(T k

i − Id)L(T k
i − Id)

]
Dx

= x>L
− 1

2
i

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)
L
− 1

2
i x

≤ λmax

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)∥∥∥∥L− 1
2

i x

∥∥∥∥2

= λmax

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)
‖x‖2

L−1
i
.

This completes the proof.

35

DET-CGD

Appendix G. Experiments

In this section, we describe the settings and results of numerical experiments to demonstrate the
effectiveness of our method. We perform several experiments under single node case and dis-
tributed case. The code is available at https://anonymous.4open.science/r/detCGD_
Code-A87D/.

G.1. Single node case

For the single node case, we study the logistic regression problem with a non-convex regularizer.
The objective is given as

f(x) =
1

n

n∑
i=1

log
(

1 + e−bi·〈ai,x〉
)

+ λ ·
d∑
j=1

x2
j

1 + x2
j

,

where x ∈ Rd is the model, (ai, bi) ∈ Rd × {−1,+1} is one data point in the dataset whose size
is n. The constant λ > 0 is a tunable hyperparameter associated with the regularizer. We conduct
numerical experiments using several datasets from the LibSVM repository [6]. We estimate the
smoothness matrix of function f here as

L =
1

n

n∑
i=1

aia
>
i

4
+ 2λ · Id.

G.1.1 Comparison to CGD with scalar stepsize, scalar smoothness constant

The purpose of the first experiment is to show that by using matrix stepsize, det-CGD1 and det-
CGD2 will have better iteration and communication complexities compared to standard CGD. We
run a CGD with scalar stepsize γ and a scalar smoothness constant L = λmax(L) and CGD with
scalar stepsize γ · Id and smoothness matrix L. We use standard CGD to refer to the CGD with
scalar stepsize, scalar smoothness constant, and CGD-mat to refer to CGD with scalar stepsize,
smoothness matrix in Figure 1, 2 and 3. The notation GK,D appears in the label of y axis is defined
as

GK,D :=
1

K

(
K−1∑
k=0

∥∥∥∇f(xk)
∥∥∥2

D

det(D)1/d

)
, (60)

it is the average matrix norm of the gradient of f over the first K − 1 iterations in log scale. The
weight matrix here has determinant 1, and thus it is comparable to the standard Euclidean norm.
The result is meaningful in this sense.

The result presented in Figure 1 and Figure 2 suggest that compared to the standard CGD [27],
CGD-mat performs better in terms of both iteration complexity and communication complexity.
Furthermore, det-CGD1 and det-CGD2 with the best diagonal matrix stepsizes outperform both
CGD and CGD-mat which confirms our theory. The scaling factors γ1, γ2, γ3 here for det-CGD1
are determined using Theorem 4 with ` = 1. The matrix stepsize for det-CGD2 is determined
through (7). det-CGD1 and det-CGD2 with diagonal matrix stepsizes perform very similarly in the
experiment, this is expected since we are using rand-1 sketch, which means that the stepsize matrix
and the sketch matrix are commutable since they are both diagonal. We also notice that det-CGD1

36

https://anonymous.4open.science/r/detCGD_Code-A87D/
https://anonymous.4open.science/r/detCGD_Code-A87D/

DET-CGD

0 1000 2000 3000 4000 5000

Iterations

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−2

10−1

G
K
,D

mushrooms, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

(a)

0 1000 2000 3000 4000 5000

Iterations

10−1

100

G
K
,D

a1a, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−1

100

G
K
,D

a8a, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−1

100

G
K
,D

mushrooms, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

(b)

Figure 1: Comparison, in terms of iteration complexity, of standard CGD, CGD-mat, det-CGD1
with D1 = γ1 · diag−1(L), det-CGD1 with D2 = γ2 · L−1, det-CGD1 with D3 =
γ3 · L−1/2 and det-CGD2 with D4 = γ4 · diag−1(L), where γ1, γ2, γ3 are the optimal
scaling factors for det-CGD1 in that case, D4 is the optimal matrix stepsize for det-
CGD2. Rand-1 sketch is used in all the methods through out the experiments. The x-axis
is the number of iterations performed. The notation GK,D in the y-axis is defined in (60).

37

DET-CGD

102 103 104 105

Transmitted Bits

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

102 103 104 105

Transmitted Bits

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

102 103 104 105

Transmitted Bits

10−2

10−1

G
K
,D

mushrooms, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

(a)

102 103 104 105

Transmitted Bits

10−1

100

G
K
,D

a1a, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

102 103 104 105

Transmitted Bits

10−1

100

G
K
,D

a8a, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

102 103 104 105

Transmitted Bits

10−1

100

G
K
,D

mushrooms, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

(b)

Figure 2: Comparison, in terms of communication complexity, of standard CGD, CGD-mat, det-
CGD1 with D1 = γ1 · diag−1(L), det-CGD1 with D2 = γ2 · L−1, det-CGD1 with
D3 = γ3 · L−1/2 and det-CGD2 with D4 = γ4 · diag−1(L), where γ1, γ2, γ3 are the
optimal scaling factors for det-CGD1 in that case, D4 is the optimal matrix stepsize for
det-CGD2. Rand-1 sketch is used in all the methods through out the experiments. The
x-axis is the number of bits transmitted. The notation GK,D in the y-axis is defined in
(60).

38

DET-CGD

with D2 = γ2 · L−1 is always worse than D4 = γ4 · diag−1(L), this is also expected since we
mentioned in Appendix D.5.1 that the result row 5 (corresponding to D2) in Table 1 is always worse
than row 7 (corresponding to D4).

G.1.2 Comparison of the two algorithms under the same stepsize

The purpose of the second experiment is to compare the performance of det-CGD1 and det-CGD2
in terms of iteration complexity and communication complexity. We know the conditions for det-
CGD1 and det-CGD2 to converge are given by (3) and (4) respectively. As a result, we are able to
obtain the optimal matrix stepsize for det-CGD2 if we are using rand-τ sparsification. It is given by

D∗2 =
τ

d

(
d− τ
d− 1

diag(L) +
τ − 1

d− 1
L

)−1

,

according to (6). The definition ofGK,D is given in (60). Parameter τ here for random sparsification
is set to be an the integer part {d4 ,

d
2 ,

3d
4 }, where d is the dimension of the model.

It can be observed from the result presented in Figure 3, that in almost all cases in this exper-
iment, 2 with D = D∗2 outperforms the other methods. Compared to standard CGD and CGD
with matrix stepsize, det-CGD1 and det-CGD2 are always better. This provides numerical evidence
in support of our theory. In this case, the stepsize matrix is not diagonal for det-CGD1 and det-
CGD2, so we do not expect them to perform similarly. Notice that in dataset phishing, the four
algorithms behave very similarly, this is because the smoothness matrix L here has a concentrated
spectrum.

G.2. Distributed case

For the distributed case, we again use the logistic regression problem with a non-convex regularizer
as our experiment setting. The objective is given similarly as

f(x) =
1

n

n∑
i=1

fi(x); fi(x) =
1

mi

mi∑
j=1

log
(

1 + e−bi,j ·〈ai,j ,x〉
)

+ λ ·
d∑
t=1

x2
t

1 + x2
t

,

where x ∈ Rd is the model, (ai,j , bi,j) ∈ Rd × {−1,+1} is one data point in the dataset of client i
whose size is mi. λ > 0 is a constant associated with the regularizer. For each dataset used in the
distributed setting, we randomly reshuffled the dataset before splitting it equally to each client. We
estimate the smoothness matrices of function f and each individual function fi here as

Li =
1

mi

mi∑
i=1

aia
>
i

4
+ 2λ · Id;

L =
1

n

n∑
i=1

Li.

The value of ∆inf here is determined in the following way, we first perform gradient descent on f
and record the minimum value in the entire run, f inf , as the estimate of its global minimum, then
we do the same procedure for each fi to obtain the estimate of its global minimum f inf

i . After that
we estimate ∆inf using its definition.

39

DET-CGD

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-30 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a1a, rand-60 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a1a, rand-90 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

(a)

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-31 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-62 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-93 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

(b)

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

phishing, rand-18 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

phishing, rand-35 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1
G
K
,D

phishing, rand-52 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

(c)

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

100

G
K
,D

mushrooms, rand-29 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

100

G
K
,D

mushrooms, rand-57 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

100

G
K
,D

mushrooms, rand-85 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

(d)

Figure 3: Comparison of standard CGD, CGD-mat det-CGD1 with stepsize D = D∗2 and det-
CGD2 with stepsize D = D∗2 , where D∗2 is the optimal stepsize matrix for det-CGD2
and the optimal diagonal stepsize matrix for det-CGD1. Rand-τ sketch is used in all the
algorithms throughout the experiments. The notation GK,D in the y-axis is defined in
(60).

40

DET-CGD

G.2.1 Comparison to standard DCGD in the distributed case

To ease the reading of this section we use D-det-CGD1 (resp. D-det-CGD2) to refer to Algorithm 1
(resp. Algorithm 2). This experiment is designed to show that D-det-CGD1 and D-det-CGD2 will
have better iteration and communication complexity compared to standard DCGD [27] and DCGD
with scalar stepsize, smoothness matrix. We will use the standard DCGD here to refer to DCGD
with a scalar stepsize and a scalar smoothness constant, and DCGD-mat to refer to the DCGD with
a scalar stepsize with smoothness. The Rand-1 sparsifier is used in all the algorithms throughout
the experiment. The error level is fixed as ε2 = 0.0001, the conditions for the standard DCGD to
converge can be deduced using Proposition 4 in [26], we use the largest possible scalar stepsize here
for standard DCGD. The optimal scalar stepsize for DCGD-mat, optimal diagonal matrix stepsize
D1 for D-det-CGD1 and D2 for D-det-CGD2 can be determined using Corollary 8.

From the result of Figure 4 and Figure 5, we are able to see that both D-det-CGD1 and D-det-
CGD2 outperform standard DCGD and DCGD-mat in terms of iteration complexity and communi-
cation complexity, which confirms our theory. Notice that D-det-CGD1, D-det-CGD2 are expected
to perform very similarly because the stepsize matrix and sketches are diagonal which means that
they are commutable. We also plot the corresponding standard Euclidean norm of iterates of D-det-
CGD1 and D-det-CGD2 in Figure 6, the EK here appears in the y-axis is defined as,

EK :=
1

K

K−1∑
k=0

∥∥∥∇f(xk)
∥∥∥2
. (61)

41

DET-CGD

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 40

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 80

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 160

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(a)

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(b)

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

G
K
,D

phishing, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

G
K
,D

phishing, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

G
K
,D

phishing, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(c)

Figure 4: Comparison, in terms of iteration complexity, of standard DCGD, DCGD-mat, D-det-
CGD1 with matrix stepsize D1 and D-det-CGD2 with matrix stepsize D2, where D1,D2

are the optimal diagonal matrix stepsizes for D-det-CGD1 and D-det-CGD2 respectively.
Rand-1 sketch is used in all the algorithms throughout the experiment. The x-axis is the
number of iterations performed. The notation GK,D in the y-axis is defined in (60).

42

DET-CGD

103 104 105 106 107

Transmitted Bits

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 40

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

104 105 106 107

Transmitted Bits

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 80

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

104 105 106 107

Transmitted Bits

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 160

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(a)

104 105 106 107 108

Transmitted Bits

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

104 105 106 107 108

Transmitted Bits

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

105 106 107 108

Transmitted Bits

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(b)

Figure 5: Comparison, in terms of communication complexity, of standard DCGD, DCGD-mat,
D-det-CGD1 with matrix stepsize D1 and D-det-CGD2 with matrix stepsize D2, where
D1,D2 are the optimal diagonal matrix stepsizes for D-det-CGD1 and D-det-CGD2 re-
spectively. Rand-1 sketch is used in all the algorithms throughout the experiment. The
x-axis is the number of bits transmitted. The notation GK,D in the y-axis is defined in
(60).

43

DET-CGD

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

E
K

a1a, rand-1 sketch, λ = 0.1, n = 40

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

E
K

a1a, rand-1 sketch, λ = 0.1, n = 80

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

E
K

a1a, rand-1 sketch, λ = 0.1, n = 160

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(a)

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

E
K

a8a, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

E
K

a8a, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

E
K

a8a, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(b)

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

E
K

phishing, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

E
K

phishing, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

E
K

phishing, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

(c)

Figure 6: Comparison, in terms of iteration complexity, of standard DCGD, DCGD-mat, D-det-
CGD1 with matrix stepsize D1 and D-det-CGD2 with matrix stepsize D2, where D1,D2

are the optimal diagonal matrix stepsizes for D-det-CGD1 and D-det-CGD2 respectively.
Rand-1 sketch is used in all the algorithms throughout the experiment. The x-axis is the
number of iterations. The y-axis is now standard Euclidean norm defined in (61).

44

	Introduction
	Contributions

	The algorithms
	Main results
	Optimal matrix stepsize

	Future work
	Preliminaries
	Related work
	Single node case
	Proof of thm:main-D
	Proof of thm:opt-D

	Leveraging the layer-wise structure
	Proof of thm:blockdiag
	Bernoulli-q sketch for det-CGD2
	General cases for det-CGD1
	General cases for det-CGD2
	Interpretations of Table:comm-complex-single-node
	Comparison of row 5 and 7
	Comparison of row 6 and 7

	Distributed Case
	Distributed det-CGD1
	Proof of thm:dist-alg1
	Convexity of the constraints
	Proof of cor:dist-cond-conv

	Distributed det-CGD2
	Analysis of distributed det-CGD2
	Optimal stepsize

	DCGD with constant stepsize

	Proofs of technical lemmas
	Proof of lemma:convexity-func
	Proof of lemma:var-decomp
	Proof of lemma:var-sep
	Proof of lemma:property-of-sketch
	Proof of lemma:imp-smt-upd
	Proof of lemma:5
	Proof of lemma:7

	Experiments
	Single node case
	Comparison to CGD with scalar stepsize, scalar smoothness constant
	Comparison of the two algorithms under the same stepsize

	Distributed case
	Comparison to standard DCGD in the distributed case

