
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MODELPIRATE: SECURITY ANALYSIS OF PARTIAL
MERGING AGAINST MODEL STEALING ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging is a promising technique to enhance the capabilities of neural
networks (NNs) by integrating multiple downstream fine-tuned models without
requiring access to clients’ raw data or substantial computation resources. However,
conventional model merging typically requires collecting the full set of fine-tuned
parameters from multiple clients, which may expose them to model-privacy risks.
An emerging approach, known as partial model merging (PMM), mitigates this
risk by splitting the model into private and shared parts, where only the shared part
is merged while the private part remains local to each client. Despite its stricter
parameter fusion, PMM can still achieve competitive performance compared to full-
parameter sharing. However, the privacy properties of PMM remain underexplored.
In this paper, we propose a novel model stealing attack and assess the risk of
reconstructing the unshared private part of a partially merged model under eight
attack scenarios with varying prior knowledge (i.e., partial training data, model
parameters and/or model structure). Our comprehensive experiments reveal that
merging NNs without adequate protection is highly vulnerable. Even when only a
small fraction of the training data, model parameters, or model structure is exposed,
adversaries can still recover significant portions of the private model’s performance.

1 INTRODUCTION

Model merging (aka model fusion) (Yang et al., 2024b; Yadav et al., 2023; Xu et al., 2024) in-
tegrates multiple downstream fine-tuned neural network (NN) models with diverse capabilities
into a single model without retraining or additional fine-tuning. It enables effective reuse, fusion,
and transfer of users’ knowledge. Hence, users without relevant domain-specific data can mu-
tually benefit from other users who have the data without exchanging their raw data. A widely
adopted approach of multi-task model merging is the Task Arithmetic method introduced by Il-
harco et al. (2023), where multiple vectorised models (i.e., task vectors) are summed to pro-
duce a single merged model. This group of approaches requires collecting the complete set
of fine-tuned parameters from multiple entities and then merging these parameters to construct
a universal merged model. It is known as full model merging (FMM), as depicted in Fig. 1a.

Client 1

…

Merge

Client 2 Client N

Fully
Merged
Model

Client 1

…

Client 2 Client k

Task kTask 2Task 1

Merged model

Final model

…

Client 1 Client 2 … Client N

Merge

(a) Full model merging

Client 1

…

Merge

Client 2 Client k

Merged/Final model

Task kTask 2Task 1

Client 1

…

Client 2 Client k

Task kTask 2Task 1

Merged
shared model

Final model

…

…

Merge

(b) Partial model merging

Figure 1: Full model merging versus Partial
model merging. (a) A merged model for N
tasks. (b) Assemble N partitioned models with
a merged model part (shared part) for N tasks.

However, the domain-specific fine-tuned models are
increasingly proprietary and closed-source due to
the high costs of data collection and training, mak-
ing the distribution of full parameter sets impracti-
cal in many real-world FMM deployments. More-
over, FMM compromises model privacy. An ad-
versary can perform Model stealing attacks by con-
structing an alternative NN model (i.e., a surrogate
model) that closely mimics behaviours of the victim
model (Papernot et al., 2017; Orekondy et al., 2019;
Roberts et al., 2019), thereby obtaining a local copy
that substitutes for the original victim model without
incurring additional cost.

In response, partial model merging (PMM) (Stoica
et al., 2024) has emerged as a viable alternative,
wherein the full model is partitioned into private and shared parts, as illustrated in Fig. 1b. PMM

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Merged Layer

25

50

75

100

M
er
ge
d
Ac
c.
 (%

) MNIST

2 4 6 8 10
Merged Layer

DTD

2 4 6 8 10
Merged Layer

EuroSAT

2 4 6 8 10
Merged Layer

GTSRB

2 4 6 8 10
Merged Layer

SVHN

FMM PMM Pre-Trained

Figure 2: Merged ViT-B/32 model accuracy for the partially merged model with different numbers of
merged layers. The merging is performed between models fine-tuned on five different downstream
tasks (i.e., MNIST, DTD, EuroSAT, GTSRB, and SVHN).

enforces a stricter parameter fusion and only merges the shared parts of the model, while the private
parts remain with local clients. This design reduces the number of model parameters shared and
therefore reduces both overheads and the potential for model-privacy leakage.

Empirically, we observed that PMM can achieve higher model performance than the pre-trained model
and closer to FMM when a larger portion of the model is merged. To illustrate this phenomenon, we
use the widely adopted ViT-B/32 model (Radford et al., 2021) and evaluate across five benchmark
datasets (i.e., MNIST, DTD, EuroSAT, GTSRB, and SVHN). Specifically, we analyse the accuracy
of both partially and fully merged models across multiple tasks by varying the number of merged
transformer layers. As shown in Fig. 2, the red dashed lines indicate the FMM performance, serving as
empirical upper bounds, while the light blue dashed lines indicate the pre-trained model performance
before fine-tuning, serving as lower bounds. The solid blue curves trace PMM accuracy as the number
of merged transformer layers increases. We observe that the accuracy of the merged model generally
increases as more layers are merged across all five datasets. For ViT-B/32, merging 75% of layers
from downstream fine-tuned models yields PMM that retains at least 85.89% of the accuracy of
FMM, while reducing communication and computation costs to about 75% of FMM’s costs. Similar
trends can be observed for ViT-B/16 and ViT-L/14, with detailed results provided in Appendix A.

Although PMM limits model exposure by sharing only a subset of layers, the potential model privacy
risks associated with this approach remain unexplored. In particular, it is unclear to what extent
sharing parameters incurs model privacy leakage. To the best of our knowledge, no existing work
has examined potential model privacy vulnerabilities under PMM, nor the privacy-utility trade-off
induced by varying the number of shared parameters. These gaps motivate our central question:

How would model privacy be affected by sharing a subset of model parameters for merging?

To make this question concrete, we quantify model privacy risk in terms of how successfully an
adversary can extract private model behaviour under PMM. We identify a two-sided information
asymmetry: On the adversary side, the victim’s training samples, model structure and parameters
are largely hidden, which constrains attack design and makes evaluation difficult under realistic
assumptions; On the victim side, the adversary’s objectives and capabilities are often unknown, which
prevents direct measurement of leakage risk and decide the number of layers shared in PMM to
balance generalisation and privacy exposure. With this framing, we assess model-privacy risks from
the adversary’s perspective under different knowledge constraints. The detailed contributions of this
paper are as follows:

• We perform the first-of-its-kind systematic privacy analysis of PMM.

• We introduce ModelPirate, a model-stealing attack tailored to PMM. The proposed ModelPirate
aims to recover the behaviour of the private part of the model given limited prior knowledge.

• We evaluate ModelPirate in eight attack scenarios with prior knowledge across diverse models and
datasets. Our results offer empirical guidance for attack defence and client layer-sharing decisions.

2 PRELIMINARIES

In this section, we formally define PMM. It is commonly known that in an NN model, the layers
closer to the outputs contain information that is more specific to the model’s tasks (Nasr et al., 2019;
Vandenhende et al., 2022). Therefore, we consider PMM clients sharing layers closer to the inputs,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

while keeping the rest of the layers closer to the outputs private to improve the merged model’s
generalisation while keeping the task-specific information private. Let a pre-trained base model
be fθ : X →Y with L layers and parameters θ =

(
θ1, θ2, . . . , θL

)
. Each client separates its full

individual model into two parts at layer l: the private part P (θ) := θl+1:L remains private at the
client, whereas the shared part S(θ) := θ1:l is sent to the a merging entity or uploaded to a platform
such as Hugging Face 1 for partial open-source. We assume all clients share the same l for merging
feasibility.

Model Merging

...
 ...

Fine-Tuning1

2

Inference3...

...

Pre-Trained
Model

Merged
Shared Part

D1 Dn DN

Figure 3: Partial model merging. Client Cn fine-tunes the pre-trained model and partitions its
fine-tuned model into private part Pn and shared part Sn. The merged shared part Sm is connected to
the private part Pn at client Cn for inference. Dashed arrows indicate model distributions where the
pre-trained/merged model is distributed to all clients C = {Cn|n = 1, · · · , N}.

Let the total number of participating clients be N . As illustrated in Fig. 3, each client Cn ∈ C
fine-tunes a common pre-trained model Spt + Ppt on their own task Tn with data Dn, obtaining θn
and thus shared part Sn := S(θn), private part Pn := P (θn) (Step 1). Then, the shared parts from all
clients {Sn}Nn=1 are merged as Sm = M (S1, . . . , SN), the merged shared part 2, using the merging
algorithm M (Step 2). Finally, client Cn uses the obtained partially-merged model Sm + Pn for
inference (Step 3).

3 OUR ATTACK: ModelPirate

3.1 PROBLEM DEFINITION

 ...

Model Merging

Stealing

......

Figure 4: Adversarial model. The adversary
Ca trains a clone model P ∗

v to simulate the
behaviour of the victim’s Cv private part Pv .

We study a benchmark adversarial setting under
PMM with a single adversary-victim pair. As il-
lustrated in Fig. 4, client Ca is the adversary and
client Cv is the victim, where a ̸= v. The two clients
are fine-tuned on different downstream tasks, i.e.,
Ta ̸= Tv. The adversary is honest but curious. It
follows the PMM protocol as an ordinary participant
while attempting to reconstruct the victim’s private
model. Following the notation in Sec. 2, victim Cv

holds a fine-tuned model split at layer l into (Sv, Pv).
We define the target model as

fv(x) := f
(
x; Sv, Pv

)
. (1)

Specifically, we adopt a partially homogeneous PMM setting where all shared parts to be merged
{Sn}Nn=1 are structurally compatible, whereas private parts {Pn}Nn=1 may be heterogeneous. The
adversary’s goal is to construct a clone private model part P ∗

v such that the composed model

f̃⋆
v (x) := f

(
x; Sv, P

∗
v

)
(2)

1https://huggingface.co
2In this paper, we consider a general PMM scenario, where the Sn from each client n is sent to a merging

entity. The merging entity can be one of the participating clients or a third party (e.g, a cloud server). Then,
model merging will be performed at the merging entity after it receives Sn from all clients.

3

https://huggingface.co

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

mimics the behaviour of fv(x). In particular, for a query distribution Q (e.g., induced by accessible

data), we aim for a behavioural discrepancy Ex∼Q

[
d
(
fv (x) , f̃

⋆
v (x)

)]
to be minimal, where d(·, ·)

denotes a task-appropriate distance.

3.2 THREAT MODEL

3.2.1 ADVERSARY’S PRIOR KNOWLEDGE

We distinguish three types of prior knowledge (i.e., Self-knowledge Kself, Shared knowledge Kshared
and Auxiliary knowledge Kaux) available to Ca:

• Kself: information inherently possessed by Ca, including it’s full source model Sa+Pa, its training
data Da for task Ta, and access to the pre-trained model Spt+Ppt before fine-tunning.

• Kshared: artefacts made visible by the PMM protocol. In particular, the merged shared part,
Sm = M(S1, . . . , SN), is available to participating clients as a white box. Additionally, Ca can
query the victim’s full model, Sv + Pv, as a black box without knowing its model structure and
parameters. 3 4.

• Kaux: optional side information beyond the above. We regard it as being structured along three aux-
iliary axes, each of which directly determines the composed clone function: f̃⋆

v (x) = f(x;Sv, P
∗
v).

(i) white-box access to Sv (e.g., available if Ca is a merging entity, or released via partial open-
source); (ii) a structural prior MPv about Pv where the model parameters are unknown, and (iii) a
subset D̂v⊂Dv of victim data, where |D̂v| = pd × |Dv| and pd is the proportion of Cv’s training
data available to Ca.

The first two categories, Kself and Kshared, are protocol-compliant and typically available to any honest
PMM participant. Our analysis therefore centres on Kaux, systematically varying the availability of
(Sv, MPv

, D̂v) because these three components directly parameterise the clone f̃v. For clarity, we
encode the presence of these auxiliary axes via indicators:

Is =
{

0 Sv is unknown
1 Sv is known , Ip =

{
0 MPv is unknown
1 MPv is known , Id =

{
0 Dv is unknown
1 Dv is known (3)

We identify eight attack scenarios based on the varying levels of Kaux available to the adversary to
examine how different degrees of information exposure influence the feasibility and effectiveness of
potential attacks. For simplicity, we denote the attack scenarios as AS[Is · Ip · Id] for the rest of this
paper. For example, AS[000] means that none of Sv , MPv

, or Dv is known to the adversary.

3.2.2 ADVERSARY’S OBJECTIVE

We define the model accuracy as the performance achieved on task Tv using the validation set.

• Local accuracy is the model accuracy of Cv’s local pre-merged fine-tuned Sv + Pv (i.e., target
model). It serves as the upper bound accuracy of the clone model as it reflects the performance of
the model fine-tuned solely on Tv .

• Merged accuracy is the model accuracy of the partially-merged model Sm + Pa. This accuracy
serves as the lower bound accuracy of the clone model. Note that the merged model is a multi-task
model, which is expected to yield lower performance than the fine-tuned single-task models on Tv

due to interference between different tasks.
• Clone accuracy is the model accuracy of the full clone model Sv +P ∗

v . It is the realised accuracy
that directly measures the effectiveness of the model stealing attack. The clone model is a single-
task model dedicated to Tv . Therefore, the clone accuracy is expected to be higher than the merged
accuracy.

3A practical example of this black-box attack is that the adversary queries a commercially available model
and uses the responses to reconstruct the proprietary model parameters (Krishna et al., 2020). In this case, after
a limited number of queries and a model extraction process, the adversary can maintain their own copy of the
model and use it without incurring any further costs to the original model owner.

4Note that, different from the conventional black-box attacks, the adversary in the ModelPirate attack has
additional prior knowledge and can therefore construct a clone model with a better performance depending on
the PMM setup, which we will discuss in the following sections of this paper.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Ca’s objective is to construct a clone private part P ∗
v such that the clone accuracy is as high as

possible. This would improve the model accuracy that Ca can achieve on Tv using the full clone
model Sv + P ∗

v or Sm + P ∗
v , compared to the cases where Ca performs task Tv using Sv + Pa or

Sm + Pa. 5

3.3 TRAINING THE CLONE MODEL

Loss

Figure 5: Clone model training. Pv+Sv

is a black box, ks ∈ {Sv, Sm} is a
frozen white box, and only the cloned
private part P ∗

v is trained during the at-
tack using kd ∈ {D̂v, D̂a}.

We present the overall training procedure of the clone
model in Fig. 5. The adversary Ca composes a clone
model by freezing a shared part ks and optimising only the
private part P ∗

v on data kd, thus:

f̃⋆
v (kd) := f

(
kd; ks, P

∗
v

)
,

kd ∈ {D̂v, D̂a}, ks ∈ {Sv, Sm}.
(4)

For shared part ks of clone model. We treat ks as a
frozen module, i.e., ∇θ1:lf(kd; ks, ·) = 0. The choice of
ks depends on whether the victim’s shared part is available (Is ∈ {0, 1}). Specifically,

• Is = 0: Ca has no direct knowledge of the victim’s shared model part. In this case, the merged
shared model Sm is the only model part that embeds task-specific knowledge for Tv , and thus we
set ks = Sm.

• Is = 1: under fully distributed merging, Ca can obtain the victim’s shared model part Sv . Since Sv

encodes Tv without task-interference from other clients, it is prioritised over Sm, and thus we set
ks = Sv .

For private part P ∗
v of clone model. P ∗

v is regarded as the trainable module, i.e.,
∇θ1:lf(kd; ks, P

∗
v) ̸= 0. The structure of P ∗

v depends on whether the victim’s private-structure
is known (Ip ∈ {0, 1}):

• Ip = 1: Ca knows MPv
and Pv is architecturally homogeneous with Pa and Ppt. We initialise P ∗

v
from the pre-trained parameters Ppt to accelerate convergence and better preserve the inductive
bias of Pv .

• Ip = 0 : Ca lacks knowledge of MPv
. To mitigate overfitting under limited training data while

retaining sufficient expressivity, we adopt a deep–shallow design described below.

Deep
Sub-Model

α β
Shallow

Sub-Model

Dense Layer

Figure 6: Internal structure of
P ∗
v for Ip = 0. α and β are

the weight of models M1 and
M2, respectively.

For Ip = 0, we assume that Pv’s model structure is relatively com-
plex, and a model with a structure similar to Pv can be trained to
capture the behaviour of Pv. Therefore, we construct a deep sub-
model M1 to ensure that the clone model has sufficient complexity
to simulate the behaviour of Pv. In parallel, a shallow sub-model
M2 bypasses M1 to avoid overfitting and improve the clone model’s
generalisability, as some Cv’s private training data is unseen by Ca.
As shown in Fig. 6, the inputs of P ∗

v are also the inputs of both
M1 and M2, and a dense layer M3 connects the concatenated M1

and M2 outputs to the outputs of P ∗
v . Depending on Ca’s prior

knowledge of Cv’s model, the deep sub-model M1 can leverage any
deep model structure that behaves similarly to Pv (e.g., LSTMs to
simulate transformers) with a similar number of layers and neurons. For the worst-case scenario that
Ca has zero knowledge about Cv’s model structure, M1 should follow a similar structure to Pa.

To evaluate the cloned model’s task-specific performance, we connect the classification head for task
Tv to the output of P ∗

v . Note that the classification head cannot be merged, and it remains unchanged
during the model stealing process.

For training data kd on clone model. Inputs kd are fed to both ks+P ∗
v and the black-box of

Sv+Pv. We denote their outputs as f̃∗
v and fv, respectively. The choice of kd is determined by the

data-availability indicator Id ∈ {0, 1}:
5Note that the validation set and the training set have no overlapping data samples. The validation set is

unknown to Ca, and the clone model P ∗
v is unknown to Cv . Therefore, we measure the clone accuracy to

evaluate the attack success rate, which cannot be assessed by either Ca or Cv .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

kd =

{
Da, if Id = 0 (no victim samples available),

D̂v, if Id = 1 (use victim subset D̂v ⊂ Dv with |D̂v| = pd × |Dv|).
(5)

When Id = 1, D̂v is prioritised as it is directly aligned with Tv .

Optimisation of P ∗
v . The adversary’s objective is to align behaviours of ks+P ∗

v and Sv+Pv on
the same inputs. We optimise only P ∗

v , keeping ks frozen, by minimising a pointwise discrepancy
between outputs. We adopt MAE in this paper for its simplicity and effectiveness, while other metrics,
such as CE and KL, can also be applied.

Latk =

∑
i∈kd

∣∣∣f̃∗
v (i; ks, P

∗
v)− fv(i, Sv, Pv)

∣∣∣∣∣∣f̃∗
v (i; ks, P

∗
v)
∣∣∣ . (6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Unless otherwise specified, we use the default hyperparameters listed in Appendix B for the exper-
iments. For consistency, we consider the layer-wise Task Arithmetic (Ilharco et al., 2023) as the
default PMM algorithm in this paper and use the corresponding datasets and models for evaluation.
Table 2 in Appendix A shows that when 75% of the layers are merged, the difference between FMM
and PMM is less than 10%. Therefore, we set the default proportion of the PMM merged layer to be
75%. In addition to the default image classification datasets and vision transformer models used in
model merging (Ilharco et al., 2023), we extend our experiments to Natural Language Processing
(NLP) tasks using the IMDB (Maas et al., 2011) and QASC (Khot et al., 2019) datasets with T5 model
to show the generalisation of the ModelPirate attack beyond the previously considered computer
vision models and datasets. The setup for the extended experiments will be detailed in Appendix C.

Dataset. Table 3 in Appendix D lists the datasets we consider for model merging. While the models
fine-tuned for different datasets are used for merging, we will focus on the DTD and EuroSAT datasets
as their input features have similar properties (i.e., patterns of different textures and landscapes) while
the classification tasks and difficulties differ. We repeat the attack simulations with MNIST and
SVHN datasets and present the results in Appendix E. We note that there are different numbers of
data samples available for each dataset. Therefore, for a fair comparison, we ensure that the number
of data samples per class (i.e., see Avg. values in Table 3, Appendix D) is similar across all datasets
by randomly selecting a subset of data samples in the “Original” dataset as the “Adjusted” dataset.

Model. We consider the Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021)
model with a Vision Transformer (ViT) as the image encoder and a Transformer-based text encoder,
following the same model structures in previous model merging literature (Radford et al., 2021;
Ilharco et al., 2023), namely ViT-B/32, ViT-B/16 and ViT-L/14. The three pre-trained models are
fine-tuned on the five datasets listed in Table 3, using the default setups in (Ilharco et al., 2023).

4.2 EXPERIMENTAL RESULTS

We present the results evaluated on the DTD and EuroSAT datasets. Unless otherwise specified, we
denote the clone models as Da → Dv, where Da and Dv are the datasets for fine-tuning the source
and target models, respectively. To reduce the impact of outliers while ensuring reproducibility, we
repeat the experiments with five different random seeds and present the average values as the results.

4.3 OVERALL PERFORMANCE EVALUATION OF ModelPirate

For benchmark comparison, we consider existing state-of-the-art query-based model stealing attacks
that match our attack scenarios, namely Knockoff (Orekondy et al., 2019), JBDA (Papernot et al.,
2017) and Random (Roberts et al., 2019). The three existing model stealing attacks were designed for
attack scenarios similar to that described in AS[100], AS[101] and AS[110], respectively. Table 1
lists the accuracies of clone models derived using ModelPirate under different attack scenarios

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Model accuracies of the clone models generated by our proposed ModelPirate attacks with
the default hyper-parameters with benchmark comparison with Knockoff, JBDA and Random model
stealing techniques. Note that the target model ViT-L/14 is more complex than ViT-B/16, which is
more complex than ViT-B/32. Bolded numbers indicate success model stealing attacks where the
clone accuracy surpasses the merged accuracy.

EuroSAT→DTD DTD→EuroSAT
Attack Method ViT-B/32 ViT-B/16 ViT-L/14 ViT-B/32 ViT-B/16 ViT-L/14
Merged Acc. 52.77% 54.84% 72.50% 67.67% 79.11% 95.04%
Knockoff 7.18% 7.18% 2.13% 52.22% 57.22% 16.70%
JBDA 3.88% 3.56% 3.19% 23.48% 29.33% 18.63%
Random 2.93% 2.13% 35.37% 10.44% 12.67% 38.70%
AS[000] 2.39% 2.45% 1.91% 15.74% 17.89% 14.74%
AS[100] 37.27% 8.54% 2.44% 53.74% 31.07% 23.61%
AS[010] 2.66% 2.45% 65.37% 48.52% 54.70% 93.81%
AS[001] 18.88% 26.22% 20.53% 60.07% 60.04% 59.67%
AS[101] 68.35% 60.79% 31.23% 96.83% 95.81% 79.37%
AS[011] 49.89% 56.81% 82.82% 65.52% 68.22% 73.37%
AS[110] 85.15% 78.40% 97.87% 98.38% 98.93% 52.54%
AS[111] 62.89% 65.42% 98.19% 96.34% 96.52% 63.22%

AS[XXX] and target model structures. Note that the default setting requires only about 100 queries
to perform attacks.

From the results, we see that in most of the cases where there are at least two of Is, Ip, or Id present,
the clone accuracy for ModelPirate surpasses or is close to the merged model accuracy. Generally, a
simpler target task (i.e., EuroSAT) yields higher clone accuracy, whereas a more complex target task
with more classification classes (i.e., DTD) yields lower clone accuracy. From these observations, we
conclude that our proposed ModelPirate attack substantially outperforms the existing baselines under
the same attack scenarios, target model structures and tasks. Generally, ModelPirate attack is more
effective for a less complex target task.

Interestingly, for ViT-B/32 and ViT-L/14 models, AS[110], where the victim’s exact model structure
is unknown to the adversary, outperforms AS[111], with the adversary having the same target model
structure as the victim and full prior knowledge on the victim’s shared model parameters and partial
training data. This shows the advantage of P ∗

v we constructed in Fig. 6 compared to the original
model structure of the private part when the target model structure is relatively simple. We further
explore this observation in the following experiments.

The increase in clone accuracy from AS[X01] to AS[X10] shows that knowing part of the victim’s
training samples would help the adversary to gain more in its attack performance than knowing the
exact model structure of the victim’s private part. Therefore, under the default settings, it is more
important for a client to protect its training data than its private model structure.

The significant increase in clone accuracy from AS[01X] to AS[10X] shows that knowing the
victim’s shared model part would help the adversary to gain more in its attack performance than
knowing the victim’s private model structure. Therefore, under the default settings, it is more
important for a client to protect its shared model part than its private model structure. It is
suggested that a client should send its shared model part to a trusted merging entity to protect its
model privacy.

We also observe that for a more complex model, the clone accuracy increases from AS[1X0] to
AS[0X1]. The results show that knowing the victim’s shared model part would help the adversary
gain more in its attack performance than knowing the victim’s training data, because of a large volume
of information embedded in the complex model. Therefore, for a more complex model, it is more
important for a client to protect its shared model part than its training data. For these cases, we
suggest that a client should send its shared model part to a trusted merging entity to protect its model
privacy. On the other hand, if the victim’s model is simpler, an adversary can clone a model with
better performance using a subset of the victim’s dataset, even without any knowledge of the victim’s

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

public model. Therefore, protecting the training data is more important for a client to reduce
model privacy leakage.

4.4 PRIVACY-UTILITY TRADEOFF: IMPACT OF THE NUMBER OF MERGED LAYERS

Fig. 2 in Sec. 1 shows that in a partially-merged setup, the merged model accuracy for each individual
task increases as the number of layers merged increases (i.e., a larger l). However, this comes at the
cost of reducing privacy in terms of the difficulties of reconstructing the behaviour of the model part
that is intended to remain private, as a larger volume of information can be obtained by the adversary.
In this experiment, we change the separation layer l and set the rest of the parameters as defaults to
demonstrate this hypothesis qualitatively and quantitatively. We repeat the experiment for AS[101]
and AS[111] and present the results as “Known Model” and “Unknown Model” correspondingly.

1 2 3 4 5 6 7 8 9 10 11
l

0

25

50

75

100

Cl
on

e
Ac

c.
 (%

)

1 2 3 4 5 6 7 8 9 10 11
l

0

25

50

75

100

Original Local Model Merged Model Clone Known Model Clone Unknown Model

Figure 7: Clone accuracy for different numbers of merged layers l in EuroSAT→DTD (left) and
DTD→EuroSAT (right) scenarios.

The experimental results in Fig. 7 show that the general trends of clone model accuracies under
the assumptions of known or unknown target model structure increase as the number of merged
layers (i.e., a larger l) increases. We also see that the increase in the clone model accuracy is more
significant in the EuroSAT→DTD scenario, where the target model performs a more difficult task
than the source model.

As shown in Fig. 7 (left), the clone accuracy is less than the merged model accuracy when l < 7.
The target model’s clone accuracy surpasses the merged model accuracy at l = 7. Similarly, Fig. 7
(right) shows the DTD→EuroSAT scenario where the source model performs a more difficult task
than the target model. The clone accuracy under this scenario is always higher than the merged model
accuracy at the same separation layer, with the exception of layer one, where the known model clone
accuracy is slightly lower than that of the merged model accuracy. Interestingly, we see that the
clone accuracies for the last few layers (i.e., l > 7) are close to or even greater than the original local
model’s accuracy. This shows that merging more than seven layers would create a significant privacy
vulnerability in the private part’s model behaviour. We also conclude that the model stealing attack
would be more successful if cloning a target model for a less difficult task.

4.5 IMPACT OF THE PROPORTIONS OF KNOWN DATA SAMPLES

Next, we focus on how the proportion of data samples the adversary can obtain from the victim affects
the clone accuracy. We use subsets of the data samples from the “Adjusted” dataset (see Table 3) to
ensure that the total number of data samples from each class is similar.

Fig. 8 shows that from when pd is between 20% and 100%, the increase in pd results in an increase in
the clone model accuracy for both known and unknown models. The clone model accuracy surpasses
the merged model accuracy for all cases at pd = 10%. Note that in this experiment, the cases with
pd = 0% belong to AS[100] and AS[110] for unknown and known model scenarios, respectively.
For those cases, the adversary trains the clone model using its own dataset. Therefore, we observe
that the clone model accuracy under the known model scenario (i.e., AS[110]) is higher than that
under the unknown model scenario (i.e., AS[100]). This is because the model is randomly initialised
in AS[100], whereas the initial model in AS[110] is the pre-trained model with higher accuracy on
the target task. The merged model accuracy remains consistent for all pd, as it only depends on the
number of layers merged, given the same fine-tuned models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
pd

0

25

50

75

100

Cl
on

e
Ac

c.
 (%

)
0 20 40 60 80 100

pd

0

25

50

75

100

Clone Known Model Clone Unknown Model Merged Model Original Local Model

Figure 8: Clone accuracy for different proportions of data samples (pd) in EuroSAT→DTD (left) and
DTD→EuroSAT (right) scenarios.

5 RELATED WORK

Model merging (aka model fusion) is a technique that combines the parameters of models with
different capabilities to build a single multi-task model (Yang et al., 2024a). A typical approach to
construct a multi-task model using the model merging technique is to use a common pre-trained
model as a backbone and merge the fine-tuned models for different downstream tasks (Matena &
Raffel, 2022; Ilharco et al., 2023). To reduce the resource consumption in the conventional FMM,
PMM (Stoica et al., 2024) was proposed to merge only a subset of the layers in a model. However,
despite the fact that one of the main purposes of PMM is to reduce model-privacy risks, previous
empirical studies on PMM mainly focused on resource reduction and performance optimisation, and
the privacy protection perspective of PMM remains unexplored.

Model stealing is a group of privacy attacks targeted at NN models where the adversary aims to
construct an alternative NN model that behaves similarly to the victim model. Papernot et al. (2017)
proposed a model stealing attack based on the assumption that the adversary can access a subset of
training data, but the model structure is unknown to the adversary. The adversary trains an alternative
model with similar decision boundaries as the victim’s model using a synthetic dataset (Papernot et al.,
2017). The dataset is generated based on the accessible subset of the data using a technique named
Jacobian-based Dataset Augmentation (JBDA) (Papernot et al., 2017). Alternatively, Orekondy et al.
(2019) proposed a model stealing attack model where the adversary aims to steal the functionalities
of the victim model. Their technique, named “Knockoff” (Orekondy et al., 2019), is based on a
black-box assumption similar to (Papernot et al., 2017). However, the adversary in (Orekondy et al.,
2019) cannot access any of the training data samples, and an alternative set of data is used to train the
“Knockoff” model. Roberts et al. (2019) showed that it is also possible to perform model stealing
attacks using only randomly generated data samples, given that the adversary has knowledge of the
victim model’s structure. However, none of the existing model stealing attacks is targeted at stealing
the partial model’s behaviour, given only a part of the victim model.

6 CONCLUSION

In this paper, we proposed and analysed a model stealing attack in PMM. The adversary can perform
the attack with different prior knowledge, including the victim’s shared model parameters, private
model structure and training data samples. We performed attack simulations to compare our proposed
attacks with existing model stealing attacks, with the same assumption about the adversary’s prior
knowledge. We showed that our attack is more successful than the baseline attacks in most of the
scenarios we considered. We also explored our proposed attack with various numbers of private
layers and data leakage and formalised a layer selection process in Appendix H. Results show that
keeping fewer layers private can improve the merged model’s performance at the cost of a higher
attack success rate. Only a small fraction of data leakage can help the adversary achieve a better attack
performance. Furthermore, we showed that the adversary can leverage a deep-shallow model structure
to simulate the behaviour of an unknown model with similar or higher performance compared to the
original model.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (ChatGPT, Gemini, etc.) as the general-purpose assistive tool during
the preparation of this paper. Its contributions were limited to improving grammar, polishing wording,
and suggesting alternative phrasings for clarity and conciseness. The research ideas, methodological
design, experimental implementation, analysis, and final interpretations were entirely conceived and
executed by the authors.

LLMs were not used for generating novel research content, fabricating facts, or conducting scientific
reasoning. All technical descriptions, results, and conclusions presented in the paper are the sole
responsibility of the authors.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The details of the model
architecture, training objectives, and hyperparameters are provided in Appendix B of the main
paper. A complete description of the experimental setup, including datasets, preprocessing steps, and
evaluation metrics, is included in Appendix D and Section 4.1.

REFERENCES

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and
deep learning benchmark for land use and land cover classification, 2019.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Conference
on Learning Representations (ICLR), 2023.

Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. QASC: A dataset
for question answering via sentence composition. CoRR, abs/1910.11473, 2019. URL http:
//arxiv.org/abs/1910.11473.

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves
on sesame street! model extraction of bert-based apis. In International Conference on Learning
Representations (ICLR), 2020.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea
(eds.), Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics. URL https://aclanthology.org/P11-1015/.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems (NeurIPS), volume 35, pp. 17703–17716. Curran Associates, Inc., 2022.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 739–753, 2019. doi: 10.1109/SP.2019.00065.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

10

http://arxiv.org/abs/1910.11473
http://arxiv.org/abs/1910.11473
https://aclanthology.org/P11-1015/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, ASIA CCS ’17, pp. 506–519,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349444. doi:
10.1145/3052973.3053009.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning (ICML),
volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), January 2020. ISSN 1532-4435.

Nicholas Roberts, Vinay Uday Prabhu, and Matthew McAteer. Model weight theft with just noise
inputs: The curious case of the petulant attacker, 2019.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neural Networks, (0):–, 2012. ISSN 0893-6080.
doi: 10.1016/j.neunet.2012.02.016.

George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoff-
man. Zipit! merging models from different tasks without training. In The Twelfth International
Conference on Learning Representations, 2024.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3614–3633, 2022. doi: 10.1109/TPAMI.2021.
3054719.

Zhengqi Xu, Ke Yuan, Huiqiong Wang, Yong Wang, Mingli Song, and Jie Song. Training-free
pretrained model merging. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5915–5925, June 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS), 2023.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities,
2024a.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In The Twelfth International
Conference on Learning Representations, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A MODEL ACCURACIES FOR VIT-B/32, VIT-B/16 AND VIT-L/14 MODELS

Table 2: Model accuracies of the fine-tuned models, fully-merged model (FMM), and partially-merged
model with 75% merged layers (PMM).

DTD EuroSAT

Model ViT-B/32 ViT-B/16 ViT-L/14 ViT-B/32 ViT-B/16 ViT-L/14
Parameters per Layer 7087872 7087872 12596224 7087872 7087872 12596224
Fine-tuned (DTD) 97.55% 98.14% 98.24% 35.00% 34.07% 56.30%
Fine-tuned (EuroSAT) 34.52% 35.53% 47.61% 99.85% 99.89% 99.93%
FMM 61.44% 64.04% 77.87% 76.41% 79.67% 95.89%
PMM 52.77% 54.84% 72.50% 67.67% 79.11% 95.04%
PMM/FMM 85.89% 85.63% 93.10% 88.56% 99.30% 99.11%

2 4 6 8 10
Merged Layer

25

50

75

100

M
er
ge
d
Ac
c.
 (%

) MNIST

2 4 6 8 10
Merged Layer

DTD

2 4 6 8 10
Merged Layer

EuroSAT

2 4 6 8 10
Merged Layer

GTSRB

2 4 6 8 10
Merged Layer

SVHN

FMM PMM Pre-Trained

(a) ViT-B/16

2 4 6 8 10
Merged Layer

25

50

75

100

M
er
ge
d
Ac
c.
 (%

) MNIST

2 4 6 8 10
Merged Layer

DTD

2 4 6 8 10
Merged Layer

EuroSAT

2 4 6 8 10
Merged Layer

GTSRB

2 4 6 8 10
Merged Layer

SVHN

FMM PMM Pre-Trained

(b) ViT-L/14

Figure 9: Merged model accuracy for the partially merged model with different numbers of merged
layers.

B DEFAULT EXPERIMENTAL SETTINGS

We use a workstation equipped with an Intel Xeon Gold 6248R CPU and two NVIDIA RTX A5000
GPUs. The memory size is 128 GB. The NN model training and merging are based on the PyTorch
Python library. We set the number of training rounds to be 1500 after performing some trial runs to
ensure that the model has converged by round 1500.

Unless otherwise stated in the experimental results, we use the following default hyperparameters:

• Target model structure: ViT-B/32
• The victim’s shared model part is known: Is = 1
• Known data (i.e., Id = 1): 10% of the data samples in the adjusted dataset (i.e., pd = 10%);
• Sub-model weights for Ip = 0: α = β = 0.5;
• Deep sub-model (i.e., M1) for Ip = 0: multilayer LSTM;
• Learning rate for the clone model: 1e-5 for Ip = 0 (deep-shallow model), 0.001 for Ip = 1 (original

model structure);

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C RESULTS ON THE T5 MODEL

To assess the generalisation, we extend our evaluation for the ModelPirate attack beyond vision
transformers and classification tasks using the T5-based encoder–decoder large language model
(LLM) architecture (Raffel et al., 2020), which differs substantially in structure and complexity
from the previously evaluated vision transformers and image classification tasks. Specifically, we
conducted experiments on two NLP tasks – sentiment analysis on the IMDB dataset (Maas et al.,
2011) and question answering on the QASC dataset (Khot et al., 2019). The fine-tuned models are
publicly available at Hugging Face 6 7.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212021
L

0

25

50

75

100

Cl
on

e
Ac

c.
 (%

)

encoder decoder

Local Model Clone Known Model Clone Unknown Model

Figure 10: Clone accuracy for different layers in T5 model.

In Fig. 10, we present the results using IMDB sentiment analysis as the source task and QASC
question answering as the target task. The results demonstrate that ModelPirate can effectively
replicate the target model’s behaviour and construct a clone model with similar model accuracy to the
target model, especially for l between 12 and 16 within the decoder module of the T5 model.

D DATASETS USED FOR THE EXPERIMENTS

The datasets used for the main experiments are listed below in Table 3.

Table 3: Datasets used for the main experiments.

Original Adjusted

Dataset Classification Task Classes Samples Avg. Samples Avg.
MNIST (Lecun et al., 1998) Handwritten digits 10 60000 6000 2000 200
DTD (Cimpoi et al., 2014) Textural image 47 5640 120 5640 120
EuroSAT (Helber et al., 2019) Land use and cover 10 27000 2700 2700 270
GTSRB (Stallkamp et al., 2012) Traffic light 43 51840 1206 5184 121
SVHN (Netzer et al., 2011) House number digits 10 99289 9929 3310 331

E EXPERIMENTAL RESULTS FOR MNIST AND SVHN DATASETS

E.1 COMPARISON FOR MODEL STEALING ATTACKS AT DIFFERENT LAYERS

6https://huggingface.co/mrm8488/t5-base-finetuned-imdb-sentiment
7https://huggingface.co/mrm8488/t5-base-finetuned-qasc

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11
l

0

25

50

75

100

Cl
on

e
Ac

c.
 (%

)
1 2 3 4 5 6 7 8 9 10 11

l

0

25

50

75

100

Original Local Model Merged Model Clone Known Model Clone Unknown Model

Figure 11: Clone accuracy for different numbers of merged layers l in MNIST→SVHN (left) and
SVHN→MNIST (right) scenarios.

E.2 COMPARISON FOR MODEL STEALING ATTACKS WITH DIFFERENT PROPORTIONS OF
KNOWN DATA SAMPLES

0 20 40 60 80 100
pd

0

25

50

75

100

Cl
on

e
Ac

c.
 (%

)

0 20 40 60 80 100
pd

0

25

50

75

100

Clone Known Model Clone Unknown Model Merged Model Original Local Model

Figure 12: Clone accuracy for different proportions of data samples (pd) in MNIST→SVHN (left)
and SVHN→MNIST (right) scenarios.

F EXPERIMENTAL RESULTS FOR Ip = 0 WITH DIFFERENT P ∗
v SUB-MODEL

STRUCTURES

In previous experiments, we only considered a pair of source and target tasks (i.e., DTD and EuroSAT).
We repeat those experiments for an alternative pair of source and target tasks and show a similar
trend to the results in the previous sections. Then, we further expand the experiments for Ip = 0
for all source and target tasks with the rest of the parameters set as defaults. To analyse the impact
on the clone model accuracy by the deep and shallow sub-models (i.e., M1 and M2 in Fig. 6), we
remove M1 or M2 and repeat the simulation subsequently. From Table 4, we see that the clone model
P ∗
v with all sub-models M1 +M2 +M3 yields higher clone accuracy than M1 +M3, and similar

clone accuracy as M2 +M3. Based on this observation, we conclude that the shallow model M2

contributes more to the clone model’s accuracy than the deep model M1.

G FINE-GRAINED LAYERS IN A VIT RESIDUAL BLOCK

In previous experiments, we only considered separating the model after a residual block in the ViT
model. We conduct experiments to investigate how merging different components within a ViT
residual block affects the effectiveness of ModelPirate. We repeat the experiments for separating
after the attention block, feed-forward block, and the entire residual block at l = 7. As shown in
Fig. 13, the attack remains effective across all configurations for two benchmark tasks, with nuanced
variations in clone accuracy depending on which sub-component is shared.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Clone Accuracy for different P ∗
v model structures and target tasks.

(a) AS[100]
MNIST DTD EuroSAT GTSRB SVHN

M1 +M2 +M3 99.20% 67.93% 97.37% 90.87% 94.66%
M2 +M3 99.21% 67.18% 97.41% 91.09% 94.85%
M1 +M3 97.99% 55.32% 87.67% 76.29% 85.91%

(b) AS[101]
MNIST DTD EuroSAT GTSRB SVHN

M1 +M2 +M3 42.57% 5.11% 33.31% 11.67% 49.25%
M2 +M3 42.19% 5.32% 34.14% 13.40% 49.78%
M1 +M3 30.36% 3.66% 24.09% 5.15% 29.94%

AS1 AS2 AS3 AS4
Attack Scenario

0

25

50

75

100

Cl
on
e
M
A
%

E roSAT→DTD

AS1 AS2 AS3 AS4
Attack Scenario

0

25

50

75

100

Cl
on
e
M
A
%

DTD→E roSAT

attn+ln1 FC+Proj+ln2 f ll

Figure 13: Clone accuracy for different fine-grained layers in ViT residual block eight.

H LAYER SELECTION GUIDELINE

We formalise the layer selection process as an optimisation problem that balances privacy leakage
and performance gain. Specifically, a client can determine the optimal number of private layers by
minimising a composite objective that incorporates (i) layer-wise information exposure, measured
via auxiliary loss on neuron activations, and (ii) performance improvement, quantified by incremental
gains across layers. The trade-off is controlled by a user-defined scaling factor. Let the optimal
number of private layers be l∗. Then, we have

argmin
L∗

1

L

L∑
l=1

(
(1 + l ∗ ϵ)× ϕl − λ∆pl

)
(7)

Where:

• ϵ represents the incremental privacy leakage per layer. Theoretically, the cumulative privacy
exposure increases non-linearly as the increase in the number of layers shared due to the additional
information embedded in the combined layers compared to individual layers;

• ϕl is the information carried by all neurons in layer l, estimated via an auxiliary loss on the neuron
activations. A higher auxiliary loss implies that the activations contain more informative (and
potentially sensitive) content;

• ∆pl is the performance gain by the layer. It can be computed as the difference in the model
performance by re-training a partial model, up to layers l and l − 1; and

• λ is the scaling factor determined by the clients to balance the privacy loss and performance loss
measurements.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

I COMPUTATIONAL AND COMMUNICATION OVERHEADS

We measure the change in computational and communication overheads with different numbers of
layers merged. Let the time consumption for merging l out of L layers be tl. The average increase in
computational and communication costs when an additional layer is merged is calculated as:

100%×
∑L

l=2
tl−tl−1

tl−1

L− 1
. (8)

We summarise the results in Table 5. The results indicate that each additional layer shared increases
the computational and communication costs by approximately 3.83% to 7.23%, depending on the
model structure. The results in Table 5, together with Fig. 2, demonstrate a trade-off between privacy
preservation and model utility.

Table 5: Computational and communication costs when an additional layer is merged.

Model ViT-L/14 ViT-B/16 ViT-B/32
Overhead 3.83% 7.23% 6.41%

16

	Introduction
	Preliminaries
	Our attack: ModelPirate
	Problem definition
	Threat Model
	Adversary's prior knowledge
	Adversary's objective

	Training the clone model

	Experiments
	Experimental setup
	Experimental results
	Overall performance evaluation of ModelPirate
	Privacy-utility tradeoff: impact of the number of merged layers
	Impact of the proportions of known data samples

	Related work
	Conclusion
	Model accuracies for ViT-B/32, ViT-B/16 and ViT-L/14 models
	Default experimental settings
	Results on the T5 model
	Datasets used for the experiments
	Experimental results for MNIST and SVHN datasets
	Comparison for model stealing attacks at different layers
	Comparison for model stealing attacks with different proportions of known data samples

	Experimental results for Ip=0 with different Pv* sub-model structures
	Fine-grained layers in a ViT residual block
	Layer selection guideline
	Computational and communication overheads

