

000 PROMPT CURRICULUM LEARNING 001 FOR EFFICIENT LLM POST-TRAINING 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006

007 008 ABSTRACT 009

010 Reinforcement learning (RL) is widely used to post-train large language models
011 for tasks such as mathematical reasoning and coding. However, the convergence
012 of RL training remains sensitive to batching and prompt selection strategies. We
013 investigate the factors that affect convergence, including batch size and prompt
014 difficulty. Through large-scale experiments across multiple models and datasets,
015 we show that there exists an optimal batch size that balances generation time and
016 gradient quality, and that prompts of intermediate difficulty (where the model has
017 roughly a 50% chance of success) are the most sample-efficient for model conver-
018 gence. Motivated by these findings, we propose **Prompt Curriculum Learning**
019 (PCL), a lightweight algorithm that selects intermediate-difficulty prompts using a
020 learned value model. PCL avoids costly rollouts and efficiently guides training by
021 focusing on the most informative samples. Empirically, PCL either achieves the
022 highest performance or requires significantly less training time to reach comparable
023 performance across a suite of benchmarks. Compared to using rollouts to filter,
024 PCL is 12.1 \times and 16.9 \times faster on identifying intermediate-difficulty prompts when
025 training on MATH and DeepScaleR respectively.

027 1 INTRODUCTION

029 Recent large language models (LLMs), such as OpenAI-01 (OpenAI, 2024b) and DeepSeek-
030 R1 (DeepSeek-AI, 2025), have demonstrated strong performance by producing long chain-of-thought
031 (CoT) solutions (Wei et al., 2023; DeepSeek-AI, 2025; Zeng et al., 2025). A key driver of these
032 improvements is reinforcement learning (RL) with rule-based rewards, using algorithms such as
033 PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). By generating responses online from the
034 current model, RL enables LLMs to self-explore and iteratively improve based on their own outputs.

035 Substantial effort has been devoted to improving both the performance and efficiency of RL training
036 for LLMs (Brantley et al., 2025; Xu et al., 2025; An et al., 2025; Sun et al., 2025). A recurring
037 insight across recent works (Yu et al., 2025; Zhang et al., 2025; Zheng et al., 2025) is that training on
038 prompts of intermediate difficulty (i.e., neither too easy nor too hard for the current policy) yields
039 significantly better data efficiency. However, existing approaches on identifying intermediate prompts
040 typically rely on either rollouts from the current model or a dictionary that tracks average rewards
041 from previous epochs. The former introduces substantial training overhead due to the high cost of
042 online generation, while the latter suffers from off-policyness especially when the dataset is large. In
043 addition, while these works primarily focus on prompt difficulty, many hyperparameters (e.g., batch
044 size) can significantly affect convergence but remain underexplored in prior work.

045 In this paper, we systematically study how **batch configuration** and **prompt selection** jointly
046 affect the convergence of RL training, and we use these insights to design a new, compute-efficient
047 curriculum algorithm. We uncover two key findings. First, **there exists an optimal batch size that**
048 **achieves the best trade-off between faster generation time and smaller gradient noise**. While
049 larger batches reduce gradient noise and allow for higher learning rates, they also increase generation
050 time, limiting update frequency. We identify a sweet spot at the transition point between sublinear
051 and linear generation time growth, where convergence speed is maximized. Second, **prompts of**
052 **intermediate difficulty are the most effective for learning**. When a prompt is too easy or too
053 hard, gradient signals tend to vanish, leading to wasted compute. In contrast, prompts for which
the model has a ~50% success rate yield the highest gradient norms and require fewer samples to

Figure 1: We conduct a systematic investigation of the trade-offs on generation time vs. batch size and number of prompts vs. generations per prompt. We identify an optimal batch size that achieves the best trade-off and discover that the prompts of intermediate difficulty are the most effective for learning. Building on these insights, we introduce **Prompt Curriculum Learning** (PCL), which trains a value model online for prompt filtering. Compared to the rollout-based filter method, PCL is 12.1 \times and 16.9 \times faster during prompt filtering when training on MATH and DeepScaleR respectively.

obtain informative updates. We validate this finding empirically across models, datasets, and batch configurations.

Building on these insights, we introduce **Prompt Curriculum Learning** (PCL), an efficient algorithm that dynamically selects prompts of intermediate difficulty using a value model. At each step, PCL samples a large pool of candidate prompts, predicts their expected reward with a single forward pass, and greedily selects those closest to a target threshold (e.g., 0.5). This approach avoids the overhead of rollout-based prompt filtering while also being much more on-policy than dictionary-based methods. We benchmark PCL across a wide range of models and datasets, including Qwen3-Base (1.7B, 4B, 8B) and Llama3.2-it (3B) on MATH, Olympiad-Bench, Minerva MATH, AMC, and AIME. Empirically, PCL either achieves the highest performance or requires substantially less training time to reach comparable performance.

2 PROBLEM SETUP

Let x denote a prompt (e.g., a math question), and let y denote a sampled solution of length $|y|$ generated autoregressively from a policy π , i.e., $y \sim \pi(\cdot | x)$. We assume a binary reward function $r(x, y) \in \{0, 1\}$, where $r(x, y) = 1$ if the final answer in y is correct and 0 otherwise. Since the reward is binary, we denote $p_\pi(x) := \mathbb{E}_{y \sim \pi(\cdot | x)}[r(x, y)]$ as the probability of generating a correct answer from policy π on prompt x , and $A(x, y) := r(x, y) - p_\pi(x)$ as the advantage. To optimize π , we adopt the purely on-policy variant of GRPO (Shao et al., 2024; DeepSeek-AI, 2025), without KL regularization to a fixed reference policy π_{ref} (Yu et al., 2025) and without standard deviation-based advantage regularization (Liu et al., 2025), by maximizing:

$$\mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_t(\cdot | x)} \left[\frac{1}{|y|} \sum_{l=1}^{|y|} \frac{\pi(y_l | x, y_{<l})}{\pi_t(y_l | x, y_{<l})} A(x, y) \right], \quad (1)$$

where y_l denotes the l -th token in the generated sequence y . We adopt this formulation to eliminate the off-policiness during updates, clipping heuristics, and additional hyperparameters, which would complicate our analysis in the following section. We note that this is a **clean** RL objective that has the same gradient as policy gradient and can be directly derived from the original RL objective of maximizing expected reward: $\mathbb{E}_{x \sim \mathcal{D}, y \sim \pi(\cdot | x)}[r(x, y)]$. The derivation is provided in Appendix A.

3 PRELIMINARY INVESTIGATIONS

In this section, we present a set of preliminary experiments that investigate the interplay between convergence, batch size, the number of prompts per batch, and the number of generations per prompt. We first define them in detail.

Batch size, denoted by b , refers to the total number of prompt-response pairs in a batch. In our purely on-policy setting, this number also corresponds to the total number of pairs used in a single update. The batch size is given by the product of the number of prompts and generations per prompt. Batch size directly affects the **generation time**, as larger batches require longer to generate.

Figure 2: (Left / Middle) Training reward as a function of training steps and wall-clock time for Qwen3-4B-Base on MATH and DeepScaleR. The legend indicates the batch configuration in terms of (number of prompts m , generations per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The dashed line represents the linear increase that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale. For key takeaways, refer to the paragraph headers in Section 3.1.

Number of prompts, denoted by m , refers to the number of unique prompts in a batch. This quantity is closely related to the **prompt diversity**. Increasing the number of prompts improves the diversity of the batch, which in turn reduces gradient noise and stabilizes learning.

Generations per prompt, denoted by n , refers to the number of responses generated for each prompt. These responses are used to estimate the expected reward, which is used to compute the advantage. The number of generations per prompt is related to the **effective ratio**, defined as the proportion of samples in the batch with non-zero advantages, i.e., the proportion of samples that contribute meaningful gradient signals. Increasing n improves the effective ratio. For example, for a particularly challenging prompt, if $n = 2$, both responses may be incorrect, leading to zero advantage and zero gradient under the objective in Eq. 1. In contrast, for $n = 16$ or 32 , it is much more likely that at least one response is correct, resulting in a non-zero advantage and thus useful gradient updates. Therefore, increasing n would result in a more accurate advantage estimation and a higher effective ratio.

Convergence is defined as the final training or validation reward achieved under a fixed compute and time budget (e.g., number of GPUs and wall-clock time). A method exhibits faster convergence if, under the same computational resources, it reaches a higher reward. Convergence is influenced by generation time, prompt diversity, and effective ratio. Reducing generation time enables more frequent updates, while increasing prompt diversity and effective ratio reduces noise in the gradient and leads to more stable and efficient training.

Overall, these quantities exhibit a natural trade-off. On the one hand, reducing generation time enables more frequent updates within a fixed time budget, allowing the model to train on new rollouts from improved policies. On the other hand, increasing the number of prompts and generations per prompt reduces gradient noise with a higher signal-to-noise ratio. In the following experiments, we perform comprehensive ablations with around 100K A100 GPU hours to identify the optimal balance between these competing factors.

3.1 OPTIMAL BATCH SIZE

Experiment Setup. We conduct experiments on both MATH (Hendrycks et al., 2021) and DeepScaleR (Luo et al., 2025) datasets. For MATH, we evaluate on the standard MATH500 split. For DeepScaleR, we include evaluations on MATH500, Minerva Math (Lewkowycz et al., 2022), Olympiad-

Figure 3: Generation time per step and test accuracy across different batch size combinations (number of prompts m , generations per prompt n) for Qwen3-4B-Base on MATH and DeepScaleR.

Bench (He et al., 2024), as well as competition-level benchmarks including AMC 23, AIME 24, and AIME 25. We report results across four models, Qwen3-1.7B-base, Qwen3-4B-base, Qwen3-8B-base, and Llama3.2-3B-it, covering two model families and a range of sizes. All models are trained with a context length of 4,096 tokens. We use a rule-based reward function based on math-verify (Hugging Face, 2024), which assigns a reward of +1 for correct ones and 0 for incorrect ones or generations that exceed the context limit. All experiments are implemented using the VERL (Sheng et al., 2025), a synchronous training setup that alternates between generation and optimization phases. For each batch size, we ablate to find the optimal learning rate with a total of 23 runs. Additional implementation and training details, including learning rate ablations, are provided in Appendix B.

The results for Qwen3-4B-Base are presented in Fig. 2 and 3, including training reward as a function of both training steps and wall-clock time (in hours), generation time per step using vLLM (Kwon et al., 2023), and test accuracy. For DeepScaleR runs, test accuracy is reported as the average across all six benchmarks. Full results are provided in Appendix C.

Larger batch sizes converge faster in terms of steps. As shown in Fig. 2 (Left), increasing the batch size consistently leads to faster convergence when measured in training steps. This is primarily because larger batches reduce gradient noise, allowing the use of higher learning rates without destabilizing training. The learning rates used in each configuration are listed in Tables 4 and 5.

Generation time grows sublinearly at first, then linearly. In Fig. 2 and 3, we plot generation time per step against batch size, alongside a dashed reference line representing linear growth (intersecting the origin). We observe that generation time initially increases sublinearly with batch size, and transitions to linear growth as batch size continues to increase. This behavior is expected: When the batch size is small, the generation time is dominated by the longest response in the batch. As batch size increases, compute utilization becomes the bottleneck, and generation time scales more linearly.

Optimal batch size occurs at the transition point from sublinear to linear scaling. From Fig. 2 (Middle / Right) and Fig. 3, there exists a sweet spot in batch size that yields the best convergence speed. Extremely small or large batch sizes lead to suboptimal performance. The optimal point for the fastest convergence tends to lie at the end of the sublinear regime and the beginning of the linear regime in generation time. Specifically, the optimal batch size in our setting is around 8K, achieved with combinations $(m, n) = (512, 16), (256, 32)$, or $(128, 64)$. In other words, the optimal batch size remains fixed, regardless of how it is factorized into m and n . We hypothesize that this sweet spot achieves a favorable balance: compared to smaller batch sizes, it can have linearly more generations with sublinear time growth; compared to larger batch sizes, it allows more frequent updates in the same amount of time. To ensure robustness, we validate this phenomenon across different model architectures and sizes, datasets, context lengths, hardware configurations, rollout engines (vLLM vs. SGLang), and batch configurations. Full results are provided in Appendix C. Having established an optimal batch size, the natural question is: *How should we determine the optimal decomposition into the number of prompts and generations per prompt?*

3.2 OPTIMAL NUMBER OF PROMPTS AND GENERATIONS PER PROMPT

We hypothesize that the optimal decomposition of the batch size is closely tied to the difficulty of the prompts. Specifically, for extremely easy or difficult prompts, a larger number of generations (n) may be necessary to achieve a high effective ratio. In contrast, for prompts of intermediate difficulty ($p(x) \approx 0.5$), fewer generations may be sufficient.

Figure 4: (Left) Training reward before downsampling in terms of step with number of prompts $m = 512$ and generations per prompt $n = 8$. (Middle) Training reward after downsampling. (Right) Average effective ratio and gradient norm over training steps, and average test accuracy of six benchmarks across different thresholds. For key takeaways, refer to Section 3.2.

Experiment Setup. We use DeepScaleR dataset and Qwen3-4B-Base, and train under different decompositions. To control prompt difficulty, for each batch we first sample $4m$ prompts and generate 4 responses for each prompt to estimate $p(x)$, similar to [Zhang et al. \(2025\)](#). We then perform greedy downsampling to select m prompts that are closest to a specific difficulty threshold $p(x) \in \{0, 0.25, 0.5, 0.75, 1\}$, and sample n generations per selected prompt for training. We are not reusing the 4 responses to train to avoid selection-induced bias, which keeps the ablation on n comparable. We keep the total batch size fixed at $m \times n = 4096$ and ablate n from 2 to 128. All other experimental configurations remain the same. Full results are shown in Appendix C.

Downsampling successfully retains target-difficulty prompts. As shown in Fig. 4 (Left / Middle), our downsampling procedure effectively retains prompts around the specified threshold. This validates the experimental design and ensures that training focuses on prompts of controlled difficulty.

Higher n improves effective ratio and $p(x) = 0.5$ has the highest effective ratio. As shown in Fig. 4 (Right) and 5, increasing n consistently improves the effective ratio, and prompts with $p(x) = 0.5$ achieve high effective ratios even with relatively small n . For example, the effective ratio for $n = 16$ at $p(x) = 0.5$ is already higher than any other thresholds even with $n = 128$.

$p(x) = 0.5$ has the highest gradient norm and test accuracy. As shown in Fig. 4 (Right) and 5, training on prompts with $p(x) = 0.5$ yields the highest gradient norms and test accuracy. Interestingly, while increasing n benefits test accuracy for other difficulty levels, we find that for $p(x) = 0.5$, accuracy actually degrades beyond $n = 32$. We suspect this is due to reduced prompt diversity (i.e., smaller m), which increases gradient noise despite higher per-prompt sampling. Conversely, based on the previous section, since there exists an optimal batch size, focusing on $p(x) = 0.5$ allows us to use a smaller n and a higher m which improves prompt diversity and also maintains a high effective ratio. In other words, we could have the best of both worlds (effective ratio and prompt diversity) with $p(x) = 0.5$. Full results, including ablations across all configurations, are provided in Appendix C, and a theoretical connection of the gradient norm and $p(x)$ is provided in Appendix D.

4 PCL: PROMPT CURRICULUM LEARNING

The previous section demonstrates that prompts of intermediate difficulty ($p(x) \approx 0.5$) are the most sample-efficient for RL training. However, estimating the difficulty of each prompt using actual generations from the policy can be computationally expensive, as the generations for the filtered-out

270 **Algorithm 1** PCL

271 **Require:** Number of prompts m , generations per prompt n , threshold τ , sampling parameter k
272 1: Initialize policy π_0 , value network $V^{\pi_{-1}}$
273 2: **for** $t = 0$ to $T - 1$ **do**
274 3: Sample a batch with km prompts: $\mathcal{D}_{km} = \{x^i\}_{i=1}^{km} \subset \mathcal{D}$.
275 4: Select a batch of m prompts using value model: $\mathcal{D}_m = \arg \min_{S \subseteq \mathcal{D}_{km}, |S|=m} \sum_{x \in S} |V^{\pi_{t-1}}(x) - \tau|$.
276 5: Generate for the batch: $\mathcal{D}_m = \{(x^i, \{y^{i,j}\}_{j=1}^n)\}_{i=1}^m$ where $y^{i,j} \stackrel{\text{iid}}{\sim} \pi_t(\cdot | x^i)$
277 6: Update π_t to π_{t+1} using \mathcal{D}_m .
278 7: Update $V^{\pi_{t-1}}$ to V^{π_t} with loss in Eq. 2.
279 8: **end for**

283 prompts are wasted. To address this issue, we propose a lightweight and efficient alternative: Prompt
284 Curriculum Learning (**PCL**), which leverages a learned value model during online RL to estimate
285 prompt difficulty using a single forward pass, significantly reducing computational overhead.

286 At training iteration t , we begin by sampling a pool of km candidate prompts from the dataset where
287 k is a hyperparameter. For each prompt x , we use a value model to predict its expected reward $V(x)$,
288 which approximates $p_\pi(x) = \mathbb{E}_{y \sim \pi(\cdot | x)} [r(x, y)]$. We then greedily select a subset of m prompts
289 whose predicted values are closest to a target difficulty threshold τ (defaulting to 0.5), ensuring that
290 the batch is focused on prompts of intermediate difficulty. For each selected prompt, we generate n
291 responses using the current policy and perform standard policy gradient updates. To update the value
292 model, we only use the generated responses and minimize the prediction error between the estimated
293 value $V(x)$ and the empirical average reward across the n generations:

$$294 \sum_{i=1}^m \left(V(x^i) - \frac{1}{n} \sum_{j=1}^n r(x^i, y^{i,j}) \right)^2. \quad (2)$$

297 This allows us to improve the value model online, without requiring any additional rollouts. Since the
298 value model only takes in the prompt as input which is typically less than 1K tokens in length for
299 math, we find that both training and inference of the value model incur negligible cost (see Appendix I
300 for a detailed breakdown). The full algorithm is summarized in Algorithm 1. Note that the value
301 model V in our algorithm is one step behind the policy π , which is acceptable since each update is
302 small with $\pi_{t+1} \approx \pi_t$. We further discuss the alternatives in Section 7.

303 **5 EXPERIMENTS**

306 **Models & Datasets.** We use the same sets of models and datasets for experiments as Section 3. We
307 use the same-sized model as the policy for the value model when running PCL. All runs use a 2-day
308 time budget, except for Qwen3-8B-Base on DeepScaleR, which is trained for 3 days. We focus on
309 $m = 512$ and $n = 16$ as it is one of the best combinations we found in terms of convergence. Unless
310 otherwise noted, PCL uses $\tau = 0.5$ and $k = 4$. Similar to Wang et al. (2025c) and Zheng et al. (2025),
311 we evaluate the model after training on every 4K prompts (8 steps), and report the performance of the
312 checkpoint that obtains the best average performance.

313 **Baselines.** We compare PCL against five baselines. We include original **GRPO**, which performs no
314 prompt filtering and uniformly samples prompts from the dataset. This serves as a standard baseline
315 to assess the impact of filtering strategies. **Pre-filter** is a heuristic approach that leverages a fixed
316 reference policy π_{ref} to estimate prompt difficulty and filters out easy or hard prompts. **Dynamic-**
317 **sampling (DS)** (Yu et al., 2025) uses n rollouts per prompt to estimate p_π for km prompts and filters
318 out prompts with $\hat{p}_\pi = 0$ or 1. **SPEED** (Zhang et al., 2025) improves upon DS by first using n_{init}
319 rollouts to estimate where $n \geq n_{\text{init}}$. It then performs filtering and generates the remaining $n - n_{\text{init}}$
320 rollouts. **GRESO** (Zheng et al., 2025) keeps a dictionary of historical rewards based on generations
321 from previous epochs and skips uninformative prompts using the dictionary. We tested GRESO on
322 MATH but not on DeepScaleR, as DeepScaleR is large and limits the training to around 1 epoch
323 under the compute budget which prevents the use of dictionary-based methods. DS, SPEED, and
324 GRESO all keep sampling and generating until there is a full batch. Additional experiment details,
325 including pseudo-codes and hyperparameters, are in Appendix E.

324
 325 **Table 1: Results on MATH and DeepScaleR.** For each metric, the best-performing method is
 326 highlighted in **bold**, and the second-best is underlined. Time is the sum of training and generation time
 327 of the checkpoint that achieves the best average performance (excluding validation/checkpointing) in
 328 hours. For full DeepScaleR results across model sizes and families, refer to Appendix F.

MATH	Qwen3-8B-Base MATH500	Time	Qwen3-4B-Base MATH500	Time	Qwen3-1.7B-Base MATH500	Time	Llama3.2-3B-it MATH500	Time
π_{ref}	72.4	/	65.6	/	55.4	/	42.6	/
GRPO	86.4	28.3	<u>83.0</u>	29.2	73.6	22.0	56.2	5.80
Pre-filter	84.8	<u>17.1</u>	81.6	27.1	73.4	<u>13.5</u>	55.4	7.47
DS	<u>87.8</u>	37.8	82.6	37.1	73.8	27.6	<u>56.8</u>	19.3
SPEED	81.2	4.25	78.8	6.75	70.2	1.93	42.6	/
GRESO	87.2	29.1	<u>83.0</u>	33.1	73.4	17.6	56.6	<u>7.37</u>
PCL	88.2	37.2	83.4	<u>14.0</u>	73.8	24.8	57.8	14.3

DeepScaleR	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.	Time
π_{ref}	70.2	34.3	29.8	49.1	15.8	8.8	34.7	/
GRPO	87.2	57.9	45.3	70.1	25.3	22.7	51.4	43.0
Pre-filter	86.4	54.6	44.2	69.8	26.9	22.6	50.7	67.4
DS	87.2	55.3	45.7	71.5	24.9	24.2	<u>51.5</u>	69.5
SPEED	82.4	46.4	40.3	66.6	21.1	15.7	<u>45.5</u>	19.3
PCL	88.4	56.2	46.8	71.2	25.2	23.9	52.0	41.8

345 5.1 CONVERGENCE COMPARISON

346
 347 **PCL either achieves the highest performance or requires significantly less training time to**
 348 **reach comparable performance.** The main results are summarized in Tables 1 (for full DeepScaleR
 349 results, refer to Appendix F). Compared to prior baselines, PCL consistently achieves the highest
 350 performance across all four models on the MATH dataset, and faster convergence at a similar or
 351 better accuracy on DeepScaleR. **When training Qwen3-8B-Base on DeepScaleR, PCL converges**
 352 **39.8% faster than DS, the second-best method in terms of average accuracy.** DS requires significantly
 353 more time to converge, as it performs generation for all km prompts at each step with n generations
 354 per prompt. SPEED’s efficient implementation pre-generates n_{init} rollouts at an earlier step with
 355 an old policy and uses them at the current step, treating them as if sampled from the current policy.
 356 While this approach reduces generation cost for estimating \hat{p}_{π} , it introduces severe off-policyness.
 357 We observe that most of the SPEED runs crashed within a few hours, leading to lower convergence
 358 time as it would crash afterward. On the other hand, GRESO also suffers from a high degree of
 359 off-policyness where the historical estimates are based on outdated policies from the last epoch and
 360 may not reflect the current model’s performance, especially when the dataset is large.

370 Figure 6: Experiment on DeepScaleR with Qwen3-8B-Base. (Left) Effective ratio w.r.t. training
 371 time across five methods. Refer to the middle plot for legend. (Middle) Average generation time per
 372 step throughout the training. (Right) Training reward after downsampling. PCL either has a higher
 373 effective ratio or a lower generation time, and is consistently training on $p(x) = 0.5$ prompts.

375 5.2 ANALYSIS & ABLATION

376 **PCL consistently achieves either a higher effective ratio or a lower generation time, while**
 377 **maintaining a focus on $p(x) = 0.5$ prompts.** To better understand the training dynamics of each

Figure 7: Explained variance of PCL’s value model using 16 generations as the ground-truth difficulty ($p(x)$), and the explained variance using 1 to 16 generations to predict the difficulty ($\hat{p}(x)$) on MATH and DeepScaleR with two Qwen3-1.7B-Base models as policy and value model. The accuracy of the value model is similar to using around 3 generations to estimate.

Figure 8: Explained variance on MATH with Qwen3-1.7B-Base for PCL’s value model with filtering on different thresholds (τ) and without filtering.

method, we visualize the effective ratio, generation time per step, and training reward after filtering in Fig. 6 when training Qwen3-8B-Base on DeepScaleR. PCL consistently maintains a higher effective ratio compared to GRPO and Pre-filter. While DS and SPEED achieve an effective ratio of 1 due to resampling, they require significantly higher generation time, with relative increase of 105% and 81.8% for DS and SPEED respectively. The slightly higher generation time of PCL compared to GRPO and Pre-filter is that harder prompts require longer generations, and, when the average accuracy of the model on the training set is higher than 0.5, PCL focuses on harder prompts than those two methods. Interestingly, the effective ratio for Pre-filter starts higher than GRPO but quickly drops below. This behavior comes from how Pre-filter selects prompts: it excludes very difficult ones based on π_{ref} . As the policy improves during training, many previously difficult prompts transition into the intermediate-difficulty range (e.g., $p(x) \approx 0.5$) for the current model. However, because these prompts were previously filtered out, they are never revisited, causing Pre-filter to keep training on easy prompts from the perspective of the current policy. In addition, as shown in Fig. 6 (Right), PCL consistently focuses on intermediate-difficulty prompts throughout training (the training reward of PCL after filtering stays closely to 0.5), whereas other methods gradually shift toward easier prompts as the policy improves which is suboptimal based on the findings in Section 3.

The accuracy of the value model is similar to using 3 generations to estimate. To investigate the prediction accuracy of the value model, we compute the explained variance using the average reward of 16 generations as the ground-truth difficulty $p(x)$. The explained variance is calculated as:

$$1 - \frac{\text{Var}(\{p(x^i) - V(x^i)\}_{i=1}^m)}{\text{Var}(\{p(x^i)\}_{i=1}^m)} \quad (3)$$

where Var denotes the variance. In addition, we also use the average reward of 1 to 16 generations as the predicted difficulty $\hat{p}(x)$ and compute their explained variance. The explained variances are computed on prompts randomly sampled from the dataset before filtering. The results on MATH and DeepScaleR with two Qwen3-1.7B-Base models as policy and value models are shown in Fig. 7. Since the prediction head of the value model is randomly initialized, the initial explained variance is very low. As training progresses, the value model improves steadily and achieves an explained variance comparable to using three rollouts per prompt for value estimation. Specifically, with $km = 2048$, generating $n = 3$ rollouts per prompt takes 288 seconds on MATH and 396 seconds on DeepScaleR per step. In contrast, training and inference with the value model require only 23.9 and 23.5 seconds respectively, achieving a $12.1 \times$ speedup on MATH and a $16.9 \times$ speedup on DeepScaleR. Results are visualized in Figure 1.

The accuracy of the value model with filtering at $\tau = 0.5$ matches that of training without filtering. One might expect the value model to suffer from filtering, as the training data is biased toward prompts with estimated difficulty near the threshold τ , potentially limiting generalization. To investigate how the choice of threshold τ affects the accuracy of the value model, we ablate over $\tau \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$. In addition, we train a baseline value model without any prompt filtering (i.e., GRPO but with a value model trained alongside the policy) using Qwen3-1.7B-Base for both the

432 policy and value model on the MATH dataset. Results are presented in Fig. 8. We observe that the
 433 value model achieves the highest prediction accuracy when $\tau = 0.5$, with performance degrading as
 434 the threshold deviates further from 0.5 in either direction. Notably, the accuracy of the value model
 435 at $\tau = 0.5$ is comparable to the no-filtering baseline, despite training on a filtered subset of prompts.
 436 We hypothesize that filtering at $\tau = 0.5$ still captures a diverse set of reward outcomes, as it is the
 437 midpoint of the binary rewards. Moreover, if the average reward of the policy over the training data
 438 is not 0.5 (i.e., there is label imbalance), filtering around $\tau = 0.5$ may implicitly rebalance the data,
 439 thus improving generalization. In contrast, filtering with extreme τ values (e.g., $\tau = 0.1$ or $\tau = 0.9$)
 440 selects only very easy or very hard prompts, leading to severe label imbalance and reduced predictive
 441 accuracy. A deeper theoretical understanding of why $\tau = 0.5$ leads to such effective value model
 442 training is an interesting direction for future work.

443 **PCL progressively focuses on harder prompts during training, despite a fixed threshold of $\tau = 0.5$.** To better understand
 444 the training dynamics of PCL, we analyze how the difficulty
 445 of selected prompts evolves over time. Specifically, we use the
 446 initial reference policy π_{ref} to generate 16 responses for each
 447 prompt in DeepScaleR and compute the average reward, which
 448 serves as a proxy for prompt difficulty (i.e., lower average
 449 rewards indicate harder prompts). During training on Qwen3-
 450 8B-Base with PCL, we log the average π_{ref} -based reward for
 451 the filtered prompts at each training step. The results are shown
 452 in Fig. 9. For methods that do not perform prompt filtering
 453 (GRPO and Pre-filter), this average remains nearly constant, as
 454 these methods uniformly sample from the dataset. In contrast,
 455 for methods that apply filtering (DS, SPEED, and PCL), we
 456 observe a consistent downward trend in the π_{ref} -based reward
 457 of selected prompts. This indicates that these methods focus on
 458 increasingly harder prompts as training progresses. Although
 459 PCL maintains a fixed difficulty threshold of $\tau = 0.5$, as the
 460 policy improves, previously hard prompts would now appear
 461 intermediate (i.e., $\tau \approx 0.5$), allowing PCL to continually shift toward more challenging examples.

462 6 RELATED WORK

463 **LLM Post-training.** Reinforcement learning (RL) has become a standard for post-training LLMs,
 464 including Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Christiano
 465 et al., 2023; OpenAI, 2024a; Team, 2025a), enabling the LLMs to generate faithful and harmless
 466 responses that closely follow the instruction, and Reinforcement Learning with Verifiable Rewards
 467 (RLVR) (OpenAI, 2024b; Yang et al., 2024; DeepSeek-AI, 2025; Qwen, 2025; Lambert et al., 2025;
 468 Team, 2025b), improving model reasoning capabilities using verifiable rewards. These methods
 469 typically use algorithms include PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), DR-
 470 GRPO (Liu et al., 2025), OREO (Wang et al., 2024), DQO (Ji et al., 2024), and VinePPO (Kazemnejad
 471 et al., 2025).

472 **Efficient RL for LLM Post-training.** Given the huge parameter size for LLMs, there is a large
 473 body of work recently focusing on developing more efficient algorithms and data selection methods
 474 to enable more efficient RL training for LLMs. Algorithmically, DPO (Rafailov et al., 2024),
 475 RAFT (Dong et al., 2023), REBEL (Gao et al., 2024), REFUEL (Gao et al., 2025), A^* -PO (Brantley
 476 et al., 2025), RAFT++ (Xiong et al., 2025), RLOO (Ahmadian et al., 2024), and REINFORCE++ (Hu
 477 et al., 2025) are all trying to construct new objective functions that either reduces the number of
 478 models used (e.g. value model, reference model, reward model) or reduces the number of generations
 479 required for online RL. Another line of works (Xia et al., 2024; Muennighoff et al., 2025; Ye et al.,
 480 2025a; Muldrew et al., 2024; Das et al., 2025; Wang et al., 2025c; Sun et al., 2025; Wang et al.,
 481 2025a; Lin et al., 2025) focuses on improving data selections by reducing the amount of training
 482 data to be more sample efficient. DAPO (Yu et al., 2025) and VAPO (Yue et al., 2025) resample and
 483 keep generating until the effective ratio of the batch is 1 during each step of RL training. However,
 484 the generations for a prompt that are either all correct or incorrect are wasted. SPEED (Zhang et al.,
 485 2025) improves on top of these methods by using a smaller number of generations to estimate the

486 Figure 9: Training reward of PCL after filtering based on π_{ref} w.r.t. training time with DeepScaleR and
 487 Qwen3-8B-Base. PCL progressively focuses on harder prompts during training, despite a fixed
 488 threshold of $\tau = 0.5$.

486 effective ratio and only generate the rest of the generations if the existing ones are not all correct
 487 or incorrect. GRESO (Zheng et al., 2025) and MoPPS (Qu et al., 2025), on the other hand, avoids
 488 rollouts by using a dictionary or a Beta posterior and samples based on the historical rewards from the
 489 previous epoch. However, they would suffer from off-policyness especially when the dataset is large.
 490

491 Our method is the combination of the best of both worlds where PCL directly avoids costly rollouts
 492 and also is on-policy. Our method is closely related to a classic class of machine learning techniques,
 493 Curriculum Learning (Bengio et al., 2009). Previous works have explored curriculum learning
 494 for LLM post-training (Lee et al., 2024; Wen et al., 2025; Shi et al., 2025) by either training on
 495 progressively harder prompts ordered before training or focusing on certain difficulty range on the fly
 496 during RL. Our work falls in this group by always focusing on intermediate difficulty prompts for the
 497 current policy.

498 **Curriculum and Active Learning.** More broadly, our approach connects to curriculum and active
 499 learning methods that adapt the training distribution over examples. In supervised learning, Minder
 500 et al. (2022) prioritize examples based on loss on a held-out set, while Ash et al. (2020)
 501 selects diverse and uncertain examples using gradient embeddings. Kawaguchi & Lu (2020) analyzes
 502 how sample ordering affects convergence under Ordered SGD. These methods assume access to
 503 per-example gradients or labels on a static dataset, whereas we operate in an online RLVR setting
 504 where each example is a long response that cannot be determined before generating. In RL, Parker
 505 Holder et al. (2022) and Ye et al. (2025b) study environment curricula by evolving tasks through
 506 regret-based environment design or asymmetric self-play. Under their minimax-regret formulations,
 507 the optimal teacher concentrates on the hardest solvable tasks, in contrast to our empirical finding
 508 that convergence is fastest when training on prompts of intermediate difficulty. PCL adapts and
 509 extends ideas from curriculum and active learning to the specific constraints of large-scale, on-policy
 510 RLVR-style LLM post-training.

510 7 DISCUSSIONS & CONCLUSION

511 PCL accelerates RL post-training by targeting two findings from our study: (1) there exists an optimal
 512 total batch size at the transition between sublinear and linear generation-time scaling, and (2) prompts
 513 of intermediate difficulty ($p(x) \approx 0.5$) yield the highest gradient signal and sample efficiency. It
 514 trains a value model online to identify such prompts, avoiding the wasted rollouts of generation-based
 515 filtering (DS, SPEED) and the off-policyness of dictionary-based methods (GRESO). PCL either
 516 achieves the highest performance or requires significantly less training time to reach comparable
 517 performance. We include a discussion on limitations in Appendix J.

518 While our experiments focus on binary correctness rewards, PCL naturally extends to non-binary
 519 scalar rewards. Since the value model $V(x)$ estimates $\mathbb{E}_{y \sim \pi(\cdot|x)}[r(x, y)]$, non-binary $r(x, y)$ only
 520 changes its range and the meaning of the target threshold τ . In addition, we note that PCL alternates
 521 updates between the policy and the value model, meaning that V^{π_t} is always one step behind the
 522 current policy π_{t+1} . In practice, this lag does not hinder performance, as the per-step policy updates
 523 are small with $\pi_t \approx \pi_{t+1}$. Theoretically, Wang et al. (2025b) provably shows that the ranking of
 524 prompt difficulties is stable under small perturbations between π_t and π_{t+1} . We also experimented
 525 with using importance sampling to correct for this lag by reweighting based on $\pi_{t+1}(y|x)/\pi_t(y|x)$,
 526 but it does not improve the accuracy of the value model and computing $\pi_{t+1}(y|x)$ is computationally
 527 expensive as y is thousands of tokens long.

528 We additionally experimented with stochastic batch selection (Kirsch et al., 2023) in place of greedy
 529 selection around the threshold τ . The results are reported in Appendix H. This variant does not
 530 improve and even degrades performance when the distribution is too wide. We therefore adopt
 531 greedy top- m selection, which is simple, robust to implement in large-scale RL pipelines, and already
 532 delivers strong performance.

533 We highlight that prompt filtering methods rely on an implicit assumption of prompt-level generalization:
 534 training on a selected subset of prompts will improve performance on the filtered-out ones. For
 535 example, PCL assumes that training on intermediate-difficulty prompts leads to improvements on
 536 both easier and harder prompts, while DS and SPEED assume that gradually solving not-too-hard
 537 prompts enables the model to eventually handle harder ones. While this assumption holds in domains
 538 like math where problems often share structural similarities, it may not generalize to other domains.
 539

540 REFERENCES
541

542 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
543 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
544 from human feedback in llms, 2024. URL <https://arxiv.org/abs/2402.14740>.

545 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
546 Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for
547 scaling reinforcement learning on advanced reasoning models, 2025. URL <https://hkunlp.github.io/blog/2025/Polaris>.

548

549 Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
550 batch active learning by diverse, uncertain gradient lower bounds, 2020. URL <https://arxiv.org/abs/1906.03671>.

551

552

553 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
554 *Proceedings of the 26th Annual International Conference on Machine Learning*, ICML '09, pp.
555 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161.
556 doi: 10.1145/1553374.1553380. URL <https://doi.org/10.1145/1553374.1553380>.

557

558 Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, and Xuezhou
559 Zhang. Accelerating rl for llm reasoning with optimal advantage regression, 2025. URL <https://arxiv.org/abs/2505.20686>.

560

561 Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
562 Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An empirical
563 study on eliciting and improving r1-like reasoning models, 2025. URL <https://arxiv.org/abs/2503.04548>.

564

565 Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
566 reinforcement learning from human preferences, 2023. URL <https://arxiv.org/abs/1706.03741>.

567

568 Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Active preference
569 optimization for sample efficient rlhf, 2025. URL <https://arxiv.org/abs/2402.10500>.

570

571 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
572 2025. URL <https://arxiv.org/abs/2501.12948>.

573

574 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
575 Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
576 foundation model alignment, 2023. URL <https://arxiv.org/abs/2304.06767>.

577

578 Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
579 Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
580 reinforcement learning system for language reasoning, 2025. URL <https://arxiv.org/abs/2505.24298>.

581

582 Zhaolin Gao, Jonathan Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley, Thorsten
583 Joachims, Drew Bagnell, Jason D Lee, and Wen Sun. Rebel: Reinforcement learning via regressing
584 relative rewards. *Advances in Neural Information Processing Systems*, 37:52354–52400, 2024.

585

586 Zhaolin Gao, Wenhao Zhan, Jonathan D. Chang, Gokul Swamy, Kianté Brantley, Jason D. Lee, and
587 Wen Sun. Regressing the relative future: Efficient policy optimization for multi-turn rlhf, 2025.
588 URL <https://arxiv.org/abs/2410.04612>.

589

590 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
591 Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
592 bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
593 scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.

594

595 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
596 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
597 <https://arxiv.org/abs/2103.03874>.

594 Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
 595 robustness to both prompt and reward models, 2025. URL <https://arxiv.org/abs/2501.03262>.

597 Hugging Face. Math-verify. <https://github.com/huggingface/Math-Verify>, 2024.

599 Kaixuan Ji, Guanlin Liu, Ning Dai, Qingping Yang, Renjie Zheng, Zheng Wu, Chen Dun, Quanquan
 600 Gu, and Lin Yan. Enhancing multi-step reasoning abilities of language models through direct
 601 q-function optimization. *arXiv preprint arXiv:2410.09302*, 2024.

602 Kenji Kawaguchi and Haihao Lu. Ordered sgd: A new stochastic optimization framework for
 603 empirical risk minimization, 2020. URL <https://arxiv.org/abs/1907.04371>.

605 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 606 Aaron Courville, and Nicolas Le Roux. VinePPO: Refining credit assignment in rl training of llms,
 607 2025. URL <https://arxiv.org/abs/2410.01679>.

608 Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frederic Branchaud-
 609 Charron, and Yarin Gal. Stochastic batch acquisition: A simple baseline for deep active learning,
 610 2023. URL <https://arxiv.org/abs/2106.12059>.

612 Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for
 613 free! In *DeepRLStructPred@ICLR*, 2019. URL <https://api.semanticscholar.org/CorpusID:198489118>.

615 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 616 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 617 serving with pagedattention, 2023. URL <https://arxiv.org/abs/2309.06180>.

618 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 619 Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
 620 Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
 621 Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
 622 Pushing frontiers in open language model post-training, 2025. URL <https://arxiv.org/abs/2411.15124>.

624 Bruce W. Lee, Hyunsoo Cho, and Kang Min Yoo. Instruction tuning with human curriculum, 2024.
 625 URL <https://arxiv.org/abs/2310.09518>.

627 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
 628 Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 629 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
 630 models, 2022. URL <https://arxiv.org/abs/2206.14858>.

631 Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. CPPO: Accelerating the training of group
 632 relative policy optimization-based reasoning models, 2025. URL <https://arxiv.org/abs/2503.22342>.

635 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
 636 Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL <https://arxiv.org/abs/2503.20783>.

638 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
 639 Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
 640 o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

641 Sören Mindermann, Jan Brauner, Muhammed Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
 642 Xu, Benedikt Höltgen, Aidan N. Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin Gal.
 643 Prioritized training on points that are learnable, worth learning, and not yet learnt, 2022. URL
 644 <https://arxiv.org/abs/2206.07137>.

646 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 647 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

648 William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active preference learning for
 649 large language models, 2024. URL <https://arxiv.org/abs/2402.08114>.

650

651 OpenAI. GPT-4 technical report, 2024a. URL <https://arxiv.org/abs/2303.08774>.

652

653 OpenAI. Learning to reason with llms. *OpenAI Blog Post*, 2024b.

654

655 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 656 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 657 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
 658 Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
<https://arxiv.org/abs/2203.02155>.

659

660 Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
 661 Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
 662 Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
 663 (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 664 *Proceedings of Machine Learning Research*, pp. 17473–17498. PMLR, 17–23 Jul 2022. URL
<https://proceedings.mlr.press/v162/parker-holder22a.html>.

665

666 Yun Qu, Qi Wang, Yixiu Mao, Vincent Tao Hu, Björn Ommer, and Xiangyang Ji. Can prompt
 667 difficulty be online predicted for accelerating rl finetuning of reasoning models?, 2025. URL
<https://arxiv.org/abs/2507.04632>.

668

669 Qwen. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

670

671 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
 672 Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
<https://arxiv.org/abs/2305.18290>.

673

674 Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco Ruiz, and Omer Deniz Akyildiz. Vargrad:
 675 a low-variance gradient estimator for variational inference. *Advances in Neural Information
 676 Processing Systems*, 33:13481–13492, 2020.

677

678 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 679 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

680

681 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 682 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 683 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

684

685 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 686 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceed-
 687 ings of the Twentieth European Conference on Computer Systems*, EuroSys ’25, pp. 1279–1297.
 688 ACM, March 2025. doi: 10.1145/3689031.3696075. URL <http://dx.doi.org/10.1145/3689031.3696075>.

689

690 Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
 691 via adaptive curriculum learning, 2025. URL <https://arxiv.org/abs/2504.05520>.

692

693 Yifan Sun, Jingyan Shen, Yibin Wang, Tianyu Chen, Zhendong Wang, Mingyuan Zhou, and Huan
 694 Zhang. Improving data efficiency for llm reinforcement fine-tuning through difficulty-targeted on-
 695 line data selection and rollout replay, 2025. URL <https://arxiv.org/abs/2506.05316>.

696

697 Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025a. URL <https://arxiv.org/abs/2501.12599>.

698

699 Kimi Team. Kimi k2: Open agentic intelligence, 2025b. URL <https://arxiv.org/abs/2507.20534>.

700

701 Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang, Yilin Bao, Ziran Yang, and Yi Wu. Offline
 702 reinforcement learning for llm multi-step reasoning. *arXiv preprint arXiv:2412.16145*, 2024.

702 Liangyu Wang, Huanyi Xie, Xinhai Wang, Tianjin Huang, Mengdi Li, and Di Wang. Infinite
 703 sampling: Efficient and stable grouped rl training for large language models, 2025a. URL
 704 <https://arxiv.org/abs/2506.22950>.

705 Qi Wang, Zehao Xiao, Yixiu Mao, Yun Qu, Jiayi Shen, Yiqin Lv, and Xiangyang Ji. Model predictive
 706 task sampling for efficient and robust adaptation, 2025b. URL <https://arxiv.org/abs/2501.11039>.

707 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 708 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 709 Shen. Reinforcement learning for reasoning in large language models with one training example,
 710 2025c. URL <https://arxiv.org/abs/2504.20571>.

711 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 712 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
 713 URL <https://arxiv.org/abs/2201.11903>.

714 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
 715 Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.
 716 Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond, 2025. URL <https://arxiv.org/abs/2503.10460>.

717 Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 718 learning. *Mach. Learn.*, 8(3–4):229–256, may 1992. ISSN 0885-6125. doi: 10.1007/BF00992696.
 719 URL <https://doi.org/10.1007/BF00992696>.

720 Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu, Tushar Gowda,
 721 Zhengxing Chen, Chen Zhu, Xiaocheng Tang, Yundi Qian, Beibei Zhu, and Rui Hou. Llamarl: A
 722 distributed asynchronous reinforcement learning framework for efficient large-scale llm training,
 723 2025. URL <https://arxiv.org/abs/2505.24034>.

724 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 725 Selecting influential data for targeted instruction tuning, 2024. URL <https://arxiv.org/abs/2402.04333>.

726 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
 727 Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to llm reasoning: from rejection
 728 sampling to reinforce, 2025. URL <https://arxiv.org/abs/2504.11343>.

729 Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-
 730 sampling rollouts in llm reinforcement learning, 2025. URL <https://arxiv.org/abs/2504.13818>.

731 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 732 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 733 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
 734 model via self-improvement, 2024. URL <https://arxiv.org/abs/2409.12122>.

735 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 736 reasoning, 2025a. URL <https://arxiv.org/abs/2502.03387>.

737 Ziyu Ye, Rishabh Agarwal, Tianqi Liu, Rishabh Joshi, Sarmishta Velury, Quoc V. Le, Qijun Tan, and
 738 Yuan Liu. Scalable reinforcement post-training beyond static human prompts: Evolving alignment
 739 via asymmetric self-play, 2025b. URL <https://arxiv.org/abs/2411.00062>.

740 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 741 Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
 742 Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
 743 Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 744 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
 745 open-source llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

756 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
757 Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
758 Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu,
759 Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and reliable
760 reinforcement learning for advanced reasoning tasks, 2025. URL <https://arxiv.org/abs/2504.05118>.
761

762 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
763 zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
764 URL <https://arxiv.org/abs/2503.18892>.
765

766 Ruiqi Zhang, Daman Arora, Song Mei, and Andrea Zanette. Speed-rl: Faster training of reason-
767 ing models via online curriculum learning, 2025. URL <https://arxiv.org/abs/2506.09016>.
768

769 Haizhong Zheng, Yang Zhou, Brian R. Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
770 Beidi Chen. Act only when it pays: Efficient reinforcement learning for lilm reasoning via selective
771 rollouts, 2025. URL <https://arxiv.org/abs/2506.02177>.
772

773 Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
774 feedback from pairwise or k-wise comparisons. In *International Conference on Machine Learning*,
775 pp. 43037–43067. PMLR, 2023.
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 811 Appendix

812 813 CONTENTS

816	A Problem Setup Details	17
818	B Preliminary Investigation Details	18
819	B.1 Dataset Details	18
820	B.2 Model Details	18
821	B.3 Reward Details	18
822	B.4 Evaluation Details	18
823	B.5 Complete List of Experiments	19
824		
825		
826		
827	C Preliminary Investigation Complete Results	22
828	C.1 Complete Results for Section 3.1	22
829	C.1.1 Results with varying m	22
830	C.1.2 Results with varying m and n	24
831	C.1.3 Results with a different context length	26
832	C.1.4 Results with a different hardware configuration	27
833	C.1.5 Results with a different inference engine	28
834	C.2 Complete Results for Section 3.2	29
835		
836		
837		
838		
839	D Connection between $p(x)$ and Gradient Magnitude	32
840		
841	E Experiment Details	33
842	E.1 Baselines Algorithms	33
843	E.2 Dataset, Model, Reward, Evaluation Details	35
844	E.3 Hyperparameters	35
845		
846		
847		
848	F Complete Experiment Results	36
849		
850	G Value Model Size Ablation	37
851		
852	H Stochastic Batch Selection	38
853		
854	I Training Time Breakdown	38
855		
856		
857	J Limitations	39
858		
859		
860		
861		
862		
863		

864 **A PROBLEM SETUP DETAILS**
865

866 Let x denote a prompt (e.g., a math question), and let y denote a sampled solution of length $|y|$
867 generated autoregressively from a policy π , i.e., $y \sim \pi(\cdot | x)$. We assume a binary reward function
868 $r(x, y) \in \{0, 1\}$, where $r(x, y) = 1$ if the final answer in y is correct and 0 otherwise. Our goal is to
869 learn a parameterized policy π_θ that maximizes the expected reward over a dataset \mathcal{D} of prompts:
870

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} [r(x, y)]. \quad (4)$$

872 Following the standard REINFORCE derivation (Williams, 1992), the gradient of this objective can
873 be written as $\nabla_\theta J(\theta) = \mathbb{E}_{x, y} [r(x, y) \nabla_\theta \log \pi_\theta(y | x)]$.
874

875 To reduce the variance of this estimator, it is common to subtract a baseline function that depends
876 only on the prompt x , which does not change the optimum of the policy gradient (Kool et al.,
877 2019; Richter et al., 2020; Zhu et al., 2023; Shao et al., 2024). In this work, we use the expected
878 reward under the current policy, $\mathbb{E}_{y' \sim \pi_\theta(\cdot | x)} [r(x, y')]$, as the baseline, which is standard in LLM
879 post-training (Shao et al., 2024; DeepSeek-AI, 2025; Yu et al., 2025; Liu et al., 2025). Since the
880 reward is binary, we define $p_{\pi_\theta}(x) := \mathbb{E}_{y \sim \pi_\theta(\cdot | x)} [r(x, y)]$ as the probability of generating a correct
881 answer, and $A(x, y) := r(x, y) - p_{\pi_\theta}(x)$ as the advantage. The policy gradient can be expressed as
882 $\nabla_\theta J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} [A(x, y) \nabla_\theta \log \pi_\theta(y | x)]$.
883

884 In practice, LLMs are trained with multiple updates on generations produced by some old policy
885 $\pi_{\theta_{\text{old}}}$ and the training is often stabilized using techniques such as PPO-style clipping (Schulman et al.,
886 2017; Shao et al., 2024; Xiong et al., 2025). However, we focus on a **purely on-policy** setting, where
887 each gradient step is followed by the collection of fresh rollouts. Specifically, at each iteration t , we
888 perform a single gradient step to maximize:
889

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} [A(x, y) \log \pi_\theta(y | x)]. \quad (5)$$

890 Note that the above objective has the same gradient as:
891

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta_t}(\cdot | x)} [A(x, y) \frac{\pi_\theta(y | x)}{\pi_{\theta_t}(y | x)}], \quad (6)$$

892 since we are purely on-policy and π_{θ_t} is the policy before the update and also serves as the sampling
893 distribution.
894

895 Given the autoregressive nature of LLMs, we further decompose the objective into a token-level form,
896 treating each token as an individual action:
897

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} \left[A(x, y) \log \left(\prod_{l=1}^{|y|} \pi_\theta(y_l | x, y_{<l}) \right) \right] \quad (7)$$

$$= \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} \left[A(x, y) \sum_{l=1}^{|y|} \log \pi_\theta(y_l | x, y_{<l}) \right], \quad (8)$$

900 where y_l denotes the l -th token in the generated sequence. Similarly, the above objective has the same
901 gradient as:
902

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta_t}(\cdot | x)} \left[A(x, y) \sum_{l=1}^{|y|} \frac{\pi_\theta(y_l | x, y_{<l})}{\pi_{\theta_t}(y_l | x, y_{<l})} \right]. \quad (9)$$

903 Normalize by the length of y , we arrive at
904

$$J(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta_t}(\cdot | x)} \left[\frac{1}{|y|} A(x, y) \sum_{l=1}^{|y|} \frac{\pi_\theta(y_l | x, y_{<l})}{\pi_{\theta_t}(y_l | x, y_{<l})} \right]. \quad (10)$$

911 This objective corresponds to a purely on-policy variant of GRPO (Shao et al., 2024; DeepSeek-AI,
912 2025), without KL regularization to a fixed reference policy π_{ref} (Yu et al., 2025) and without standard
913 deviation-based advantage regularization (Liu et al., 2025). We adopt this formulation to eliminate
914 the off-policyness during updates, clipping heuristics, and additional hyperparameters. This results in
915 a **clean** experimental setup that is directly derived from the original RL objective in Eq. 4.
916

918 **B PRELIMINARY INVESTIGATION DETAILS**919 **B.1 DATASET DETAILS**920 **Table 2: Dataset split, maximum prompt length, and maximum generation length**

921 Dataset	922 Huggingface Dataset Card	923 Train - Val	924 Prompt Length	925 Generation Length
926 MATH	927 DigitalLearningGmbH/MATH-lighteval	928 7.5k - 5k	929 1,024	930 4,096
931 DeepScaleR	932 agentica-org/DeepScaleR-Preview-Dataset	933 40.3k - /	934 1,024	935 4,096

936 **Table 3: Model prompt format**

937 Model Family	938 Prompt Format
939 Qwen (Base)	940 {prompt} Let's think step by step and output the final answer within \boxed{ }.
941 Llama (Instruct)	942 < begin_of_text >< start_header_id >system< end_header_id >Cutting Knowledge Date: December 943 2023 Today Date: 26 Jul 2024< eot.id >< start_header_id >user< end_header_id >{prompt} 944 Let's think step by step and output the final answer within \boxed{ } . < eot.id >< start_header_id > 945 >assistant< end_header_id >

946 **B.2 MODEL DETAILS**

947 We perform **full parameter** training on 8 A100 GPUs using Qwen3-1.7B-Base (model card:
948 Qwen/Qwen3-1.7B-Base), Qwen3-4B-Base (model card: Qwen/Qwen3-4B-Base), Qwen3-8B-Base
949 (model card: Qwen/Qwen3-8B-Base), and Llama3.2-3B-it (model card: meta-llama/Llama-3.2-3B-
950 Instruct).

951 **B.3 REWARD DETAILS**

952 We use a rule-based reward function based on the correctness of the response with math-verify,
953 assigning +1 for correct answers and 0 for incorrect ones or generations that exceed the context
954 length. Recent studies (Chen et al., 2025) have proposed incorporating format-based rules into reward
955 calculations to encourage models to follow specific output formats. However, in our experiments,
956 we observed no significant difference in performance with or without such format-based rewards.
957 Therefore, for simplicity, we exclude them from our implementation.

958 **B.4 EVALUATION DETAILS**

959 Following prior work (Zeng et al., 2025), we evaluate model performance on a suite of stan-
960 dard mathematical reasoning benchmarks, including MATH500 (Hendrycks et al., 2021), Minerva
961 Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024), as well as competition-level
962 benchmarks such as AMC 2023, AIME 2024, and AIME 2025.

963 For smaller-scale datasets, we report results using the average reward across multiple generations.
964 Specifically, for Minerva Math, we report Avg@4; for AMC 2023, AIME 2024, and AIME 2025, we
965 report Avg@32.

966 For MATH experiments, we use decoding parameters `top_k` = 20, `temperature` = 0.6, and
967 `top_p` = 0.95. For DeepScaleR experiments, we use `top_k` = -1 (i.e., disabled), `temperature` =
968 0.6, and `top_p` = 0.95.

972 B.5 COMPLETE LIST OF EXPERIMENTS
973

974 The learning rate for each batch size is tuned on a logarithmic scale using the Qwen3-8B-Base model.
975 For all other models, we adopt the corresponding optimal learning rate found for Qwen3-8B-Base.
976 The complete list of all the experiments is provided below with the chosen learning rate highlighted
977 in **bold**.

978

979

Table 4: Complete List of Experiments for Math

Model	#Prompts (m)	#Generations (n)	Context Length	Num Workers	Engine	Batch Size (b)	LR
Qwen3-8B-base	64	16	4096	8	VLLM	1024	1E-6/2E-6
	128	16	4096	8	VLLM	2048	1E-6/2E-6/5E-6/1E-5
	256	16	4096	8	VLLM	4096	2E-6/4E-6/8E-6
	512	16	4096	8	VLLM	8192	4E-6/8E-6/1.6E-5
	1024	16	4096	8	VLLM	16384	4E-6/8E-6/1.6E-5
	2048	16	4096	8	VLLM	32768	4E-6/8E-6/1.6E-5/3.2E-5
	4096	16	4096	8	VLLM	65536	8E-6/1.6E-5/3.2E-5/6.4E-5
Qwen3-4B-base	64	16	4096	8	VLLM	1024	2.00E-06
	128	16	4096	8	VLLM	2048	2.00E-06
	256	16	4096	8	VLLM	4096	4.00E-06
	512	16	4096	8	VLLM	8192	8.00E-06
	1024	16	4096	8	VLLM	16384	8.00E-06
	2048	16	4096	8	VLLM	32768	1.60E-05
	4096	16	4096	8	VLLM	65536	3.20E-05
Qwen3-1.7B-base	64	16	4096	8	VLLM	1024	2.00E-06
	128	16	4096	8	VLLM	2048	2.00E-06
	256	16	4096	8	VLLM	4096	4.00E-06
	512	16	4096	8	VLLM	8192	8.00E-06
	1024	16	4096	8	VLLM	16384	8.00E-06
	2048	16	4096	8	VLLM	32768	1.60E-05
	4096	16	4096	8	VLLM	65536	3.20E-05
Llama3.2-3B-it	64	16	4096	8	VLLM	1024	2.00E-06
	128	16	4096	8	VLLM	2048	2.00E-06
	256	16	4096	8	VLLM	4096	4.00E-06
	512	16	4096	8	VLLM	8192	8.00E-06
	1024	16	4096	8	VLLM	16384	8.00E-06
	2048	16	4096	8	VLLM	32768	8.00E-06
	4096	16	4096	8	VLLM	65536	1.20E-05
Qwen3-4B-base	32	32	4096	8	VLLM	1024	2.00E-06
	256	32	4096	8	VLLM	8192	8.00E-06
	2048	32	4096	8	VLLM	65536	3.20E-05
	16	64	4096	8	VLLM	1024	2.00E-06
	128	64	4096	8	VLLM	8192	8.00E-06
	1024	64	4096	8	VLLM	65536	3.20E-05

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

Table 5: Complete List of Experiments for DeepScaleR

Model	#Prompts (m)	#Generations (n)	Context Length	Num Workers	Engine	Batch Size	LR
Qwen3-8B-base	64	16	4096	8	VLLM	1024	1E-6/2E-6
	128	16	4096	8	VLLM	2048	1E-6/2E-6/5E-6/1E-5/2E-5
	256	16	4096	8	VLLM	4096	2E-6/4E-6/8E-6
	512	16	4096	8	VLLM	8192	2E-6/4E-6/6E-6
	1024	16	4096	8	VLLM	16384	4E-6/8E-6/1.2E-5/1.6E-5
	2048	16	4096	8	VLLM	32768	8E-6/1.2E-5/1.6E-5
Qwen3-4B-base	4096	16	4096	8	VLLM	65536	8E-6/1.2E-5/1.6E-5
	64	16	4096	8	VLLM	1024	2.00E-06
	128	16	4096	8	VLLM	2048	2.00E-06
	256	16	4096	8	VLLM	4096	4.00E-06
	512	16	4096	8	VLLM	8192	4.00E-06
	1024	16	4096	8	VLLM	16384	8.00E-06
Qwen3-1.7B-base	2048	16	4096	8	VLLM	32768	1.20E-05
	4096	16	4096	8	VLLM	65536	1.20E-05
	64	16	4096	8	VLLM	1024	2.00E-06
	128	16	4096	8	VLLM	2048	2.00E-06
	256	16	4096	8	VLLM	4096	4.00E-06
	512	16	4096	8	VLLM	8192	4.00E-06
Llama3.2-3B-it	1024	16	4096	8	VLLM	16384	8.00E-06
	2048	16	4096	8	VLLM	32768	1.20E-05
	4096	16	4096	8	VLLM	65536	1.20E-05
	32	32	4096	8	VLLM	1024	2.00E-06
	256	32	4096	8	VLLM	8192	4.00E-06
	512	16	4096	8	VLLM	65536	1.20E-05
Qwen3-4B-base	1024	16	4096	8	VLLM	1024	2.00E-06
	2048	16	4096	8	VLLM	8192	4.00E-06
	16	64	4096	8	VLLM	1024	2.00E-06
	128	64	4096	8	VLLM	8192	4.00E-06
	1024	64	4096	8	VLLM	65536	1.20E-05
	32	32	4096	8	VLLM	1024	2.00E-06
Qwen3-4B-base	256	32	4096	8	VLLM	8192	4.00E-06
	2048	32	4096	8	VLLM	65536	1.20E-05
	16	64	4096	8	VLLM	1024	2.00E-06
	128	64	4096	8	VLLM	8192	4.00E-06
	1024	64	4096	8	VLLM	65536	1.20E-05
	64	16	8192	8	VLLM	1024	2.00E-06
Qwen3-4B-base	128	16	8192	8	VLLM	2048	2.00E-06
	256	16	8192	8	VLLM	4096	4.00E-06
	512	16	8192	8	VLLM	8192	4.00E-06
	1024	16	8192	8	VLLM	16384	8.00E-06
	2048	16	8192	8	VLLM	32768	1.20E-05
	4096	16	8192	8	VLLM	65536	1.20E-05
Qwen3-4B-base	16	16	4096	1	VLLM	256	1.00E-06
	32	16	4096	1	VLLM	512	1.00E-06
	64	16	4096	1	VLLM	1024	2.00E-06
	128	16	4096	1	VLLM	2048	2.00E-06
	256	16	4096	1	VLLM	4096	4.00E-06
	512	16	4096	1	VLLM	8192	4.00E-06
Qwen3-4B-base	1024	16	4096	1	VLLM	16384	8.00E-06
	2048	16	4096	1	VLLM	32768	1.20E-05
	4096	16	4096	1	VLLM	65536	1.20E-05
	16	16	4096	8	SGLang	256	1.00E-06
	32	16	4096	8	SGLang	512	1.00E-06
	64	16	4096	8	SGLang	1024	2.00E-06
Qwen3-4B-base	128	16	4096	8	SGLang	2048	2.00E-06
	256	16	4096	8	SGLang	4096	4.00E-06
	512	16	4096	8	SGLang	8192	4.00E-06
	1024	16	4096	8	SGLang	16384	8.00E-06
	2048	16	4096	8	SGLang	32768	1.20E-05
	4096	16	4096	8	SGLang	65536	1.20E-05

1073

1074

1075

1076

1077

1078

1079

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094

1095 Table 6: Complete List of Experiments for DeepScaleR (cont.)

1096	Model	#Prompts (m)	#Generations (n)	Context Length	Num Workers	Engine	Batch Size	LR
1097	Qwen3-4B-Base & $p(x) = 0$	32	128	4096	8	VLLM	4096	4.00E-06
1098		64	64	4096	8	VLLM	4096	4.00E-06
1099		128	32	4096	8	VLLM	4096	4.00E-06
1100		256	16	4096	8	VLLM	4096	4.00E-06
1101		512	8	4096	8	VLLM	4096	4.00E-06
1102		1024	4	4096	8	VLLM	4096	4.00E-06
1103		2048	2	4096	8	VLLM	4096	4.00E-06
1104	Qwen3-4B-Base & $p(x) = 0.25$	32	128	4096	8	VLLM	4096	4.00E-06
1105		64	64	4096	8	VLLM	4096	4.00E-06
1106		128	32	4096	8	VLLM	4096	4.00E-06
1107		256	16	4096	8	VLLM	4096	4.00E-06
1108		512	8	4096	8	VLLM	4096	4.00E-06
1109		1024	4	4096	8	VLLM	4096	4.00E-06
1110		2048	2	4096	8	VLLM	4096	4.00E-06
1111	Qwen3-4B-Base & $p(x) = 0.5$	32	128	4096	8	VLLM	4096	4.00E-06
1112		64	64	4096	8	VLLM	4096	4.00E-06
1113		128	32	4096	8	VLLM	4096	4.00E-06
1114		256	16	4096	8	VLLM	4096	4.00E-06
1115		512	8	4096	8	VLLM	4096	4.00E-06
1116		1024	4	4096	8	VLLM	4096	4.00E-06
1117		2048	2	4096	8	VLLM	4096	4.00E-06
1118	Qwen3-4B-Base & $p(x) = 0.75$	32	128	4096	8	VLLM	4096	4.00E-06
1119		64	64	4096	8	VLLM	4096	4.00E-06
1120		128	32	4096	8	VLLM	4096	4.00E-06
1121		256	16	4096	8	VLLM	4096	4.00E-06
1122		512	8	4096	8	VLLM	4096	4.00E-06
1123		1024	4	4096	8	VLLM	4096	4.00E-06
1124		2048	2	4096	8	VLLM	4096	4.00E-06
1125								
1126								
1127								
1128								
1129								
1130								
1131								
1132								
1133								

C PRELIMINARY INVESTIGATION COMPLETE RESULTS

C.1 COMPLETE RESULTS FOR SECTION 3.1

C.1.1 RESULTS WITH VARYING m

Figure 10: Results for all four models on MATH with $n = 16$. (Left / Middle) Training reward as a function of training steps and wall-clock time. The legend indicates the batch configuration in terms of (number of prompts m , generations per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The dashed line represents the linear increase that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale.

Figure 11: Results for all four models on DeepScaleR with $n = 16$. (Left / Middle) Training reward as a function of training steps and wall-clock time. The legend indicates the batch configuration in terms of (number of prompts m , generations per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The dashed line represents the linear increase that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale.

1242

1243

1244

Table 7: Detailed Results for Fig. 11.

Model	m	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.
Qwen3-8B-Base	π_{ref}	70.2	34.3	29.8	49.1	15.8	8.8	34.7
	4096	85.8	52.2	43.0	70.9	21.5	21.1	49.1
	2048	85.2	53.4	43.9	66.6	26.4	21.5	49.5
	1024	85.6	54.9	45.9	70.5	22.8	19.3	49.8
	512	87.2	55.8	44.1	71.8	26.1	21.1	51.0
	256	85.0	57.4	40.4	66.3	24.9	22.9	49.5
	128	85.6	53.9	42.0	67.8	22.3	19.9	48.6
	64	85.2	54.7	42.1	70.6	21.4	17.3	48.6
Qwen3-4B-Base	π_{ref}	65.8	34.4	26.9	47.3	10.9	7.1	32.1
	4096	80.6	45.8	39.7	59.8	16.4	15.8	43.0
	2048	83.2	48.4	39.2	57.0	16.0	15.9	43.3
	1024	81.6	46.1	40.2	59.3	18.1	16.1	43.6
	512	84.0	49.7	38.8	62.9	17.1	17.9	45.1
	256	82.8	48.1	40.3	66.3	17.8	18.1	45.6
	128	83.8	46.0	42.6	59.5	18.2	15.6	44.3
	64	83.2	48.2	39.7	64.1	17.6	16.8	44.9
Qwen3-1.7B-Base	π_{ref}	57.0	23.9	21.8	29.0	3.8	1.1	22.8
	4096	69.8	35.2	29.0	40.7	9.1	8.0	32.0
	2048	70.2	34.3	31.2	42.0	12.2	6.2	32.7
	1024	72.2	36.2	29.7	41.8	12.4	7.0	33.2
	512	71.8	37.1	30.1	44.2	12.7	6.1	33.7
	256	72.6	35.6	31.5	46.9	10.1	7.2	34.0
	128	68.4	35.2	30.0	43.3	10.9	6.7	32.4
	64	70.2	36.5	30.0	40.8	11.2	7.5	32.7
Llama3.2-3B-it	π_{ref}	42.8	12.3	13.8	19.7	4.6	0.4	15.6
	4096	55.2	20.0	21.1	31.6	11.9	0.6	23.4
	2048	55.8	19.3	21.2	30.9	13.8	0.9	23.6
	1024	57.8	22.8	21.2	34.8	12.1	1.2	25.0
	512	58.0	22.3	22.7	30.0	15.8	1.6	25.1
	256	57.6	21.8	22.6	32.0	14.5	0.4	24.8
	128	55.6	22.7	22.2	34.8	13.9	0.1	24.9
	64	56.8	20.9	25.5	31.8	10.2	0.2	24.2

1275

1276

1277

C.1.2 RESULTS WITH VARYING m AND n

1278

1279

1280

Table 8: Detailed DeepScaleR Results for Fig. 12.

Model	m	n	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.
Qwen3-4B-Base	π_{ref}		65.8	34.4	26.9	47.3	10.9	7.1	32.1
	32	32	80.4	47.5	37.4	57.4	17.5	14.4	42.4
	256	32	83.2	49.1	38.6	63.4	17.3	16.0	44.6
	2048	32	81.4	46.3	39.8	57.6	17.6	15.5	43.0
	16	64	81.6	47.8	39.2	58.4	15.7	14.3	42.8
	128	64	83.4	44.4	41.5	60.0	17.0	13.1	43.2
	1024	64	80.8	48.7	39.2	57.0	16.4	13.8	42.6

1289

1290

1291

1292

1293

1294

1295

Figure 12: Results for Qwen3-4B on MATH and DeepScaleR with $n = 32$ and 64 . (Left / Middle) Training reward as a function of training steps and wall-clock time. The legend indicates the batch configuration in terms of (number of prompts m , generations per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The dashed line represents the linear increase that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale.

1350
1351

C.1.3 RESULTS WITH A DIFFERENT CONTEXT LENGTH

1352

1353

Figure 13: Results for Qwen3-4B on DeepScaleR with context length 8192 (other results are using 4096 context length). (Left / Middle) Training reward as a function of training steps and wall-clock time. The legend indicates the batch configuration in terms of (number of prompts m , generations per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The dashed line represents the linear increase that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale.

1363

1364

1365

1366

1367

1368

1369

1370

1371

Table 9: Detailed DeepScaleR Results for Fig. 13.

1372

Model	m	Context Len.	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.
Qwen3-4B-Base	π_{ref}		65.8	34.4	26.9	47.3	10.9	7.1	32.1
	64	8K	80.4	47.9	39.2	60.7	15.9	15.1	43.2
	128	8K	83.0	50.6	38.4	62.3	14.2	16.4	44.1
	256	8K	82.8	50.4	42.2	62.0	19.3	18.0	45.8
	512	8K	81.2	49.6	41.0	65.3	17.0	12.5	44.4
	1024	8K	80.8	46.6	39.7	63.7	16.6	18.9	44.4
	2048	8K	77.6	44.4	37.5	54.5	14.2	14.6	40.5
	4096	8K	79.8	45.3	38.9	58.4	14.7	13.8	41.8

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405

C.1.4 RESULTS WITH A DIFFERENT HARDWARE CONFIGURATION

1406
14071417
1418
1419
1420
1421
1422

Figure 14: Results for Qwen3-4B on DeepScaleR with only 1 rollout worker with 8 GPUs (other results are using 8 rollout workers, 1 per GPU). (Left / Middle) Training reward as a function of training steps and wall-clock time. The legend indicates the batch configuration in terms of (number of prompts m , generations per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The dashed line represents the linear increase that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale.

1423
1424

Table 10: Detailed DeepScaleR Results for Fig. 14.

1425
1426

Model	m	Num. Worker	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.
Qwen3-4B-Base	π_{ref}		65.8	34.4	26.9	47.3	10.9	7.1	32.1
	16	1	78.4	47.2	39.2	58.0	15.3	12.4	41.7
	32	1	81.8	47.0	39.0	61.3	17.1	14.9	43.5
	64	1	83.6	49.4	40.6	58.7	15.9	16.4	44.1
	128	1	82.4	48.7	39.2	62.7	17.2	15.7	44.3
	256	1	82.8	49.6	38.6	62.6	18.9	17.5	45.0
	512	1	81.6	47.6	40.7	62.1	17.7	15.5	44.2
	1024	1	80.4	47.8	40.4	60.1	18.9	16.9	44.1

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459

C.1.5 RESULTS WITH A DIFFERENT INFERENCE ENGINE

Figure 15: Results for Qwen3-4B on DeepScaleR with SGLang (other results are using VLLM). (Left / Middle) Training reward as a function of training steps and wall-clock time. The legend indicates the batch configuration in terms of (number of prompts m , generations per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The dashed line represents the linear increase that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale.

1471

1472

1473

1474

1475

1476

1477

1478

1479

Table 11: Detailed DeepScaleR Results for Fig. 15.

Model	m	Inference Eng.	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.
Qwen3-4B-Base	π_{ref}		65.8	34.4	26.9	47.3	10.9	7.1	32.1
	16	SGLang	81.8	48.5	37.3	58.0	17.1	17.4	43.4
	32	SGLang	81.2	49.9	40.0	60.9	17.0	14.9	44.0
	64	SGLang	81.6	50.9	39.8	60.2	15.3	15.4	43.9
	128	SGLang	84.0	48.8	39.7	62.9	15.2	17.1	44.6
	256	SGLang	81.8	49.4	40.0	60.4	16.6	17.7	44.3
	512	SGLang	82.2	50.3	40.9	63.2	17.0	15.2	44.8
	1024	SGLang	81.2	51.3	41.0	62.9	16.8	16.1	44.9
	2048	SGLang	81.2	46.0	40.6	61.0	17.3	14.4	43.4
	4096	SGLang	82.0	47.8	39.8	61.9	16.2	13.8	43.6

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512 C.2 COMPLETE RESULTS FOR SECTION 3.2
15131561 Figure 16: Results for Qwen3-4B on DeepScaleR with different $p(x)$ under different decompositions,
1562 grouped by number of prompts m and generations per prompt n . (Left) Training reward before
1563 downsampling in terms of step. (Middle) Training reward after downsampling. (Right) Average
1564 effective ratio, gradient norm, and test accuracy across different thresholds.
1565

Figure 17: Results for Qwen3-4B on DeepScaleR with different $p(x)$ under different decompositions (number of prompts m , generations per prompt n), grouped by $p(x)$. (Left) Training reward before downsampling in terms of step. (Middle) Training reward after downsampling. (Right) Average effective ratio, gradient norm, and test accuracy across different thresholds.

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629

Table 12: Detailed DeepScaleR Results for Fig. 16 and 17.

$p(x)$	m	n	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.
/	π_{ref}		65.8	34.4	26.9	47.3	10.9	7.1	32.1
0	2048	2	82.8	44.8	39.4	54.3	15.3	13.4	41.7
	1024	4	81.8	44.7	38.4	54.8	17.1	14.5	41.9
	512	8	82.6	48.1	40.0	57.5	14.7	14.4	42.9
	256	16	83.4	46.6	39.4	58.0	16.7	14.9	43.2
	128	32	79.8	45.1	38.1	59.4	18.2	16.9	42.9
	64	64	83.4	47.3	40.7	59.3	15.4	13.6	43.3
	32	128	81.0	49.1	38.5	54.8	17.7	16.2	42.9
0.25	2048	2	80.6	46.9	39.4	58.3	15.5	11.1	42.0
	1024	4	84.2	48.2	39.9	61.6	16.6	16.5	44.5
	512	8	81.8	49.3	40.1	61.2	20.7	15.5	44.8
	256	16	82.8	47.0	38.5	63.2	19.6	19.3	45.1
	128	32	81.0	50.1	40.1	63.0	21.6	14.4	45.0
	64	64	83.4	49.1	41.6	58.8	19.1	17.8	45.0
	32	128	84.0	49.1	40.0	61.9	19.5	19.0	45.6
0.5	2048	2	83.2	50.7	40.0	60.9	19.2	19.7	45.6
	1024	4	81.4	53.7	40.5	63.7	17.2	17.3	45.6
	512	8	84.2	50.1	40.3	64.6	21.5	16.1	46.1
	256	16	82.8	49.7	41.5	62.4	19.5	19.3	45.9
	128	32	84.4	51.8	39.8	64.4	20.1	15.7	46.0
	64	64	83.6	48.8	39.4	61.9	19.9	16.8	45.1
	32	128	81.6	45.7	40.8	62.0	20.1	16.9	44.5
0.75	2048	2	81.0	48.7	39.0	56.6	17.5	14.6	42.9
	1024	4	82.0	49.7	38.6	58.3	16.5	14.5	43.3
	512	8	81.6	47.6	40.6	60.9	16.6	18.2	44.3
	256	16	81.4	46.1	39.1	64.0	17.2	14.2	43.7
	128	32	81.6	50.0	40.3	63.6	15.0	15.9	44.4
	64	64	81.0	50.0	41.1	61.9	15.1	17.6	44.4
	32	128	82.0	49.3	40.6	62.0	17.7	17.1	44.8
1	2048	2	78.6	46.6	41.6	55.8	14.3	10.6	41.3
	1024	4	80.8	48.8	38.3	60.2	16.7	14.0	43.1
	512	8	82.4	45.7	39.9	59.0	18.8	16.7	43.7
	256	16	82.0	46.7	40.6	58.8	18.4	15.5	43.7
	128	32	81.4	48.2	39.3	57.6	17.0	15.2	43.1
	64	64	81.2	46.9	40.7	56.8	18.8	14.1	43.1
	32	128	82.4	45.5	39.7	62.9	16.6	18.6	44.3

1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 **D CONNECTION BETWEEN $p(x)$ AND GRADIENT MAGNITUDE**
 1675

1676 We now analyze the squared norm of the gradient in Eq. (6):
 1677

$$1678 \|\nabla_{\theta} J_x(\theta)\|_2 = \|\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[A(x, y)\nabla_{\theta} \log \pi_{\theta}(y|x)]\|_2. \quad (11)$$

1679 Using Jensen inequality, we have:
 1680

$$1681 \|\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[A(x, y)\nabla_{\theta} \log \pi_{\theta}(y|x)]\|_2 \leq \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\|A(x, y)\nabla_{\theta} \log \pi_{\theta}(y|x)\|_2] \quad (12)$$

$$1682 = \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\|A(x, y)\| \|\nabla_{\theta} \log \pi_{\theta}(y|x)\|_2]. \quad (13)$$

1683 Apply Cauchy-Schwarz:
 1684

$$1685 \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\|A(x, y)\| \|\nabla_{\theta} \log \pi_{\theta}(y|x)\|_2] \leq \sqrt{\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[A(x, y)^2]} \sqrt{\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\|\nabla_{\theta} \log \pi_{\theta}(y|x)\|_2^2]}. \quad (14)$$

1686 Now let's derive for $\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[A(x, y)^2]$:
 1687

$$1688 \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[A(x, y)^2] = \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[(r(x, y) - p_{\pi_{\theta}}(x))^2] \quad (15)$$

$$1689 = p_{\pi_{\theta}}(x)(1 - p_{\pi_{\theta}}(x))^2 + (1 - p_{\pi_{\theta}}(x))(0 - p_{\pi_{\theta}}(x))^2 \quad (16)$$

$$1690 = p_{\pi_{\theta}}(x)(1 - p_{\pi_{\theta}}(x)) \quad (17)$$

1691 which is maximized at $p_{\pi_{\theta}}(x) = \frac{1}{2}$. Therefore, intermediate-level prompts yield the largest expected
 1692 magnitude of advantage and upper bound on gradient updates. These observations motivate a prompt
 1693 curriculum strategy that prioritizes prompts with intermediate difficulty ($p_{\pi_{\theta}}(x) = \frac{1}{2}$) to enhance
 1694 training efficiency.
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728 E EXPERIMENT DETAILS
17291730 E.1 BASELINES ALGORITHMS
17311732 We list the pseudo-code for GRPO, Pre-filter, DS, and SPEED. For the pseudo-code of GRESO,
1733 please refer to [Zheng et al. \(2025\)](#).1734
1735 **Algorithm 2** GRPO

1736 **Require:** Number of prompts m , generations per prompt n
 1737 1: Initialize policy π_0
 1738 2: **for** $t = 0$ to $T - 1$ **do**
 1739 3: Sample a batch with m prompts: $\mathcal{D}_m = \{x^i\}_{i=1}^m \subset \mathcal{D}$.
 1740 4: Generate n responses: $\mathcal{D}_m = \{(x^i, \{y^{i,j}\}_{j=1}^n)\}_{i=1}^m$ where $y^{i,j} \stackrel{\text{iid}}{\sim} \pi_t(\cdot | x^i)$.
 1741 5: Update to π_{t+1} with GRPO objective using \mathcal{D}_m .
 1742 6: **end for**

1743
1744 **Algorithm 3** Pre-filter

1745 **Require:** Number of prompts m , generations per prompt n , pre-filter generations n_{pre} , thresholds
 1746 p_{low} and p_{high}
 1747 1: Initialize policy π_0
 1748 2: Generate n_{pre} responses for each prompt in the dataset: $\{y^j\}_{j=1}^{n_{\text{pre}}} \sim \pi_0(\cdot | x)$ for each $x \in \mathcal{D}$
 1749 3: Filter to keep prompts with accuracy between p_{low} and p_{high} :

$$\mathcal{D} \leftarrow \{x \in \mathcal{D} \mid p_{\text{low}} < \frac{1}{n_{\text{pre}}} \sum_{j=1}^{n_{\text{pre}}} r(x, y^j) < p_{\text{high}}\}$$

1750
1751
1752
1753
1754 4: **for** $t = 0$ to $T - 1$ **do**
 1755 5: Sample a batch with m prompts: $\mathcal{D}_m = \{x^i\}_{i=1}^m \subset \mathcal{D}$.
 1756 6: Generate n responses: $\mathcal{D}_m = \{(x^i, \{y^{i,j}\}_{j=1}^n)\}_{i=1}^m$ where $y^{i,j} \stackrel{\text{iid}}{\sim} \pi_t(\cdot | x^i)$.
 1757 7: Update to π_{t+1} with GRPO objective using \mathcal{D}_m .
 1758 8: **end for**

1759
1760 **Algorithm 4** Dynamic-sampling (DS)

1761 **Require:** Number of prompts m , generations per prompt n , sampling parameter k
 1762 1: Initialize policy π_0 , $\mathcal{D}_{\text{buffer}} \leftarrow \emptyset$
 1763 2: **for** $t = 0$ to $T - 1$ **do**
 1764 3: **while** $|\mathcal{D}_{\text{buffer}}| < m$ **do**
 1765 4: Sample a batch with km prompts: $\mathcal{D}_{km} = \{x^i\}_{i=1}^{km} \subset \mathcal{D}$.
 1766 5: Generate n responses: $\mathcal{D}_{km} = \{(x^i, \{y^{i,j}\}_{j=1}^n)\}_{i=1}^{km}$ where $y^{i,j} \stackrel{\text{iid}}{\sim} \pi_t(\cdot | x^i)$
 1767 6: Select prompts with mean reward between 0 and 1:

$$\mathcal{D}_{\text{buffer}} \leftarrow \mathcal{D}_{\text{buffer}} \cup \{(x, \{y^j\}_{j=1}^n) \in \mathcal{D}_{km} \mid 0 < \frac{1}{n} \sum_{j=1}^n r(x, y^j) < 1\}$$

1768
1769
1770
1771
1772 7: **end while**
 1773 8: Sample a batch with m prompts: $\mathcal{D}_m = \{(x^i, \{y^{i,j}\}_{j=1}^n)\}_{i=1}^m \subset \mathcal{D}_{\text{buffer}}$.
 1774 9: $\mathcal{D}_{\text{buffer}} \leftarrow \emptyset$
 1775 10: Update to π_{t+1} with GRPO objective using \mathcal{D}_m .
 1776 11: **end for**

1777
1778
1779
1780
1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798

Algorithm 5 SPEED

1800 **Require:** Number of prompts m , generations per prompt n , sampling parameter k , screening number
 1801 of responses n_{init} ($n \geq n_{\text{init}}$)

1802 1: Initialize policy π_0 , $\mathcal{D}_{\text{buffer}} \leftarrow \emptyset$, $\mathcal{D}_{\text{accepted}} \leftarrow \emptyset$
 1803 2: **for** $t = 0$ to $T - 1$ **do**
 1804 3: **while** $|\mathcal{D}_{\text{buffer}}| < m$ **do**
 1805 4: Sample a batch with km prompts: $\mathcal{D}_{km} = \{x^i\}_{i=1}^{km} \subset \mathcal{D}$.
 1806 5: Generate n_{init} times for \mathcal{D}_{km} and $n - n_{\text{init}}$ times for $\mathcal{D}_{\text{accepted}}$:
 1807 $\mathcal{D}_{km} = \{(x^i, \{y^{i,j}\}_{j=1}^{n_{\text{init}}})\}_{i=1}^{km}$ where $y^{i,j} \stackrel{\text{iid}}{\sim} \pi_t(\cdot | x^i)$
 1808 $\mathcal{D}_{\text{accepted}} \leftarrow \mathcal{D}_{\text{accepted}} \cup \{(x^i, \{y^{i,j}\}_{j=1}^{n-n_{\text{init}}})\}_{i=1}^{|\mathcal{D}_{\text{accepted}}|}$ where $y^{i,j} \stackrel{\text{iid}}{\sim} \pi_t(\cdot | x^i)$.
 1809 6: Add $\mathcal{D}_{\text{accepted}}$ to $\mathcal{D}_{\text{buffer}}$: $\mathcal{D}_{\text{buffer}} \leftarrow \mathcal{D}_{\text{buffer}} \cup \mathcal{D}_{\text{accepted}}$
 1810 7: Select prompts with mean reward between 0 and 1 and add to $\mathcal{D}_{\text{accepted}}$:
 1811
 1812
$$\mathcal{D}_{\text{accepted}} \leftarrow \{(x, \{y^j\}_{j=1}^{n_{\text{init}}}) \in \mathcal{D}_{km} \mid 0 < \frac{1}{n_{\text{init}}} \sum_{j=1}^{n_{\text{init}}} r(x, y^j) < 1\}$$

 1813
 1814 8: **end while**
 1815 9: Sample a batch with m prompts: $\mathcal{D}_m = \{(x^i, \{y^{i,j}\}_{j=1}^n)\}_{i=1}^m \subset \mathcal{D}_{\text{buffer}}$.
 1816 10: $\mathcal{D}_{\text{buffer}} \leftarrow \mathcal{D}_{\text{buffer}} \setminus \mathcal{D}_m$
 1817 11: Update to π_{t+1} with GRPO objective using \mathcal{D}_m .
 1818 12: **end for**

1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836
1837

E.2 DATASET, MODEL, REWARD, EVALUATION DETAILS

1838
1839

We adopt the exact same setting in our preliminary investigation. Refer to Appendix B for details on datasets, models, rewards, and evaluations.

1840

1841

E.3 HYPERPARAMETERS

1842

1843

We list the hyperparameters for each method below. We tune the sample batch size / sampling parameter for DS, SPEED, GRESO, and PCL with the **bolded** one as the best one. For PCL, we always use the same-sized model as the value model for the main results. The learning rate of the value model in PCL is tuned within $\{1e-6, 3e-6, 1e-5\}$. All learning rates make the value model converge to the same performance but larger learning rates are more unstable than the smaller one. Therefore, we pick $1e-6$ as the learning rate for the value model. We also tune the sampling parameter k from $\{2, 4, 8\}$ and observe that it has a minor effect on the accuracy of the value model. Larger values of k lead to higher effective ratios, as the filtering becomes more aggressive. However, increasing k beyond 4 yields only marginal improvements in the effective ratio. Therefore, we set $k = 4$ for all experiments on PCL. An ablation on the value model size is included in Appendix G.

1852

Dataset	Method	Parameters
MATH	GRPO	$m = 512$ $lr = 8e-6$ $n = 16$
DeepScaleR	GRPO	$m = 512$ $lr = 4e-6$ $n = 16$
MATH	Pre-filter	$m = 512$ $lr = 8e-6$ $n = 16$ $n_{\text{pre}} = 16$ $p_{\text{low}} = 0$ $p_{\text{high}} = 1$
DeepScaleR	Pre-filter	$m = 512$ $lr = 4e-6$ $n = 16$ $n_{\text{pre}} = 16$ $p_{\text{low}} = 0$ $p_{\text{high}} = 1$
MATH	DS	$m = 512$ $lr = 8e-6$ $n = 16$ $k = 1/2/4$
DeepScaleR	DS	$m = 512$ $lr = 4e-6$ $n = 16$ $k = 1/2/4$
MATH	SPEED	$m = 512$ $lr = 8e-6$ $n = 16$ $k = 1/2/4$ $n_{\text{init}} = 4/8$
DeepScaleR	SPEED	$m = 512$ $lr = 4e-6$ $n = 16$ $k = 1/2/4$ $n_{\text{init}} = 4/8$
MATH	GRESO	$m = 512$ $lr = 8e-6$ $n = 16$ $B_r^{\text{default}} = 768/1024$ $p_{\text{easy}} = 0.5$ $\alpha_{\text{easy}} = 0.083$ $\alpha_{\text{hard}} = 0.167$ $\Delta p = 0.01$
DeepScaleR	GRESO	$m = 512$ $lr = 4e-6$ $n = 16$ $B_r^{\text{default}} = 768/1024$ $p_{\text{easy}} = 0.5$ $\alpha_{\text{easy}} = 0.083$ $\alpha_{\text{hard}} = 0.167$ $\Delta p = 0.01$
MATH	PCL	$m = 512$ $lr = 8e-6$ $n = 16$ $lr_{\text{critic}} = 1e-6/3e-6/1e-5$ $\tau = 0.5$ $k = 2/4/8$
DeepScaleR	PCL	$m = 512$ $lr = 4e-6$ $n = 16$ $lr_{\text{critic}} = 1e-6/3e-6/1e-5$ $\tau = 0.5$ $k = 2/4/8$

1888

1889

1890 F COMPLETE EXPERIMENT RESULTS

1891
 1892 Table 13 shows the full results on DeepScaleR. PCL consistently achieves either the highest final
 1893 accuracy or substantially reduced wall-clock time at comparable accuracy. We summarizes the results
 1894 on DeepScaleR below, comparing PCL with the best or the second best method for each model in
 1895 terms of test accuracy:

- 1897 • Qwen3-8B-Base: PCL is the top-performing method and converges in 41.8 hours, compared
 1898 to 69.5 hours for DS, which also achieves lower average accuracy. PCL converges **39.8%**
 1899 faster.
- 1900 • Qwen3-4B-Base: PCL achieves 45.7 test accuracy and converges in 32.8 hours, compared
 1901 to 45.8 accuracy and 40.1 hours for DS. PCL therefore converges **18.2%** faster while
 1902 maintaining similar performance.
- 1903 • Qwen3-1.7B-Base: PCL is again the best-performing method and converges in 23.3 hours,
 1904 whereas Pre-filter requires 44.2 hours and yields lower average accuracy. PCL converges
 1905 **47.3%** faster.
- 1906 • Llama3.2-3B-it: PCL reaches 26.5 accuracy in 28.7 hours, compared to 26.7 accuracy in
 1907 40.6 hours for DS, achieving similar accuracy with **29.3%** faster convergence.

1909 The consistent 1.3 to 2 \times reductions in convergence time are practically impactful in real RL pipelines
 1910 where rollouts are the dominant cost.

1912 Table 13: **Full Results on DeepScaleR.** For each metric, the best-performing method is highlighted
 1913 in **bold**, and the second-best is underlined. Time is the sum of training and generation time of the
 1914 checkpoint that achieves the best average performance (excluding validation / checkpointing) in
 1915 hours.

1917 DeepScaleR	1918 Method	MATH500	Olymp.	Minerva Avg@4	AMC23 Avg@32	AIME24 Avg@32	AIME25 Avg@32	Avg.	1916 Time
1919 Qwen3-8B-Base	π_{ref}	70.2	34.3	29.8	49.1	15.8	8.8	34.7	/
	GRPO	87.2	57.9	45.3	70.1	25.3	22.7	51.4	43.0
	Pre-filter	86.4	54.6	44.2	69.8	26.9	22.6	50.7	67.4
	DS	87.2	55.3	45.7	71.5	24.9	24.2	<u>51.5</u>	69.5
	SPEED	82.4	46.4	40.3	66.6	21.1	15.7	45.5	19.3
	PCL	88.4	56.2	46.8	71.2	25.2	23.9	52.0	<u>41.8</u>
1924 Qwen3-4B-Base	π_{ref}	65.8	34.4	26.9	47.3	10.9	7.1	32.1	/
	GRPO	83.4	51.0	40.1	60.7	16.1	20.7	45.3	45.5
	Pre-filter	83.4	47.8	40.0	60.2	18.8	16.2	44.4	39.0
	DS	83.2	51.6	41.2	62.4	18.5	18.0	45.8	40.1
	SPEED	79.4	45.4	38.3	60.3	15.7	14.5	42.3	10.7
	PCL	83.0	50.6	40.9	60.8	19.4	19.4	<u>45.7</u>	<u>32.8</u>
1929 Qwen3-1.7B-Base	π_{ref}	57.0	23.9	21.8	29.0	3.8	1.1	22.8	/
	GRPO	72.4	37.7	31.2	44.9	11.2	6.7	34.0	46.2
	Pre-filter	74.0	36.5	32.6	45.6	11.7	7.8	<u>34.7</u>	44.2
	DS	73.2	36.9	31.9	42.7	10.8	7.7	<u>33.9</u>	41.7
	SPEED	73.0	34.4	30.2	37.2	9.2	7.1	31.8	22.7
	PCL	74.4	35.6	31.5	46.3	12.5	9.2	34.9	<u>23.3</u>
1934 Llama3.2-3B-it	π_{ref}	42.8	12.3	13.8	19.7	4.6	0.4	15.6	/
	GRPO	55.2	23.1	22.6	40.0	13.3	0.0	25.7	47.5
	Pre-filter	56.8	24.5	23.3	35.5	16.5	0.7	26.2	44.8
	DS	57.2	23.3	24.1	37.1	17.5	1.0	26.7	40.6
	SPEED	51.4	20.2	20.1	32.0	10.6	0.8	22.5	3.86
	PCL	58.8	23.9	24.0	35.2	15.0	2.1	<u>26.5</u>	<u>28.7</u>

1944 G VALUE MODEL SIZE ABLATION

1946 We ablate the value model used in PCL across three different model sizes, with results on explained
 1947 variance of the value prediction shown in Figure 18. Similar to Section 5, we use the average reward
 1948 of 16 generations for each prompt as the ground-truth $p(x)$. Overall, larger value models exhibit
 1949 faster convergence compared to smaller ones. On the MATH dataset, all three value models eventually
 1950 converge to similar performance levels. However, on the larger DeepScaleR dataset, we observe a
 1951 substantial gap after 100 training steps: the smaller value model significantly underperforms relative
 1952 to its larger counterparts.

1953 We hypothesize that the smaller value model may require more training steps to reach comparable
 1954 accuracy and that, given sufficient time, all models could eventually converge to a similar point.
 1955 Nonetheless, this result highlights the benefit of larger value models in the early stages of training,
 1956 especially on large-scale datasets. **In addition, 4B value model performs similarly to a 8B model.**
 1957 **This suggests that the size of the value model does not need to scale proportionally with the policy.**
 1958 **While we have not tested larger policies due to resource constraints, we expect diminishing returns**
 1959 **from larger value models.**

1983 Figure 18: Explained variance on MATH and DeepScaleR with different combinations of Qwen3
 1984 base models (1.7B / 4B / 8B) for policy (π) and the value model (V).

1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

1998 H STOCHASTIC BATCH SELECTION

2000 In this section, we provide an ablation on using stochastic batch selection instead of greedy selection
 2001 around threshold τ . Since the reward is binary, we sample from a Beta distribution whose support
 2002 naturally lies in $[0, 1]$. We set $\alpha = \beta$ for the Beta distribution and ablate α and β from 2 to 10, higher
 2003 values indicate more focus on 0.5 difficulty prompts. From our experiments, greedy sampling and
 2004 sampling based on Beta distribution perform similarly when α and β are large. However, using
 2005 smaller values of α and β , which spread the probability mass more broadly, actually degrades
 2006 convergence, likely because it focuses less on 0.5 difficulty prompts. The results are detailed below
 2007 for Llama3.2-3B-it on MATH dataset.

2008
 2009 Table 14: Results on MATH with Llama3.2-3B-it under different (α, β) settings. Time is the sum of
 2010 training and generation time of the checkpoint that achieves the best average performance (excluding
 2011 validation/checkpointing) in hours.

	α	β	MATH500	Time
2013	2	2	56.4	10.8
2014	5	5	56.2	15.9
2015	10	10	<u>57.2</u>	15.6
2016	greedy		57.8	<u>14.3</u>

2018 We therefore adopt greedy top- m selection based on threshold τ , which is simple without additional
 2019 hyperparameters, and already delivers strong performance.

2022 I TRAINING TIME BREAKDOWN

2025 Table 15: Breakdown of per-step policy and value training/inference time in seconds, averaged over
 2026 the full training run, when training Qwen3-8B-Base on MATH with three different sized value models
 2027 (Qwen3-8B-Base, Qwen3-4B-Base, Qwen3-1.7B-Base).

Value Model	Generation	Value Computation	Policy Update	Value Update
Qwen3-8B-Base	573	2.99	769	20.5
Qwen3-4B-Base	567	2.11	763	12.4
Qwen3-1.7B-Base	582	1.16	760	8.03

2034 For reasoning tasks, the prompt is typically much shorter than the response, which significantly
 2035 reduces value model compute and memory compared to policy updates. We include a detailed
 2036 breakdown of the time per step when training Qwen3-8B-Base on MATH with three different sized
 2037 value models (Qwen3-8B-Base, Qwen3-4B-Base, Qwen3-1.7B-Base). The results are shown in
 2038 Table 15. Value computation time takes less than 1% of the generation time, and value model update
 2039 time takes less than 3% of the time to update the policy.

2052 **J LIMITATIONS**

2053

2054 While PCL demonstrates strong empirical performance across a range of models and datasets, our
 2055 study has several limitations that open avenues for future work.

2056 **Purely on-policy setting.** Our experiments are conducted entirely in a purely on-policy RL setting,
 2057 where new generations are sampled after each policy update. While this simplifies the analysis and
 2058 avoids additional hyperparameters (e.g., clipping), it may reduce the generalization to more complex
 2059 training pipelines that leverage off-policy data or replay buffers.

2060 **Focus on synchronous setting.** Our preliminary investigation and PCL are evaluated in a syn-
 2061 chronous training setup where data generation and policy updates are alternated step-by-step. How-
 2062 ever, many large-scale RL pipelines for LLMs adopt asynchronous architectures for better through-
 2063 put (Wu et al., 2025; Fu et al., 2025). Extending our analysis and PCL to asynchronous settings may
 2064 require more sophisticated value model training and prompt selection strategies to handle stale or
 2065 partially updated policies.

2066 **Relatively short context lengths.** We limit our experiments to a maximum context length of 4,096
 2067 tokens due to compute constraints. While this setting is sufficient for the datasets used (e.g., MATH,
 2068 DeepScaleR), real-world LLM deployments often involve much longer contexts. From our analysis,
 2069 for longer context length, the batch size that transitions from sub-linear to linear generation time is
 2070 larger. Future work could explore the interplay between prompt difficulty, batch decomposition, and
 2071 context length in long-context regimes.

2072 **Limited training horizon.** Our experiments are constrained to relatively short training runs (e.g., 2–3
 2073 days), which may not fully capture long-term convergence behavior, especially for larger models and
 2074 datasets. Although we observe strong early-stage performance, it remains an open question whether
 2075 our analysis in Section 3 would generalize to much longer training runs.

2076 **Limited task diversity.** Our current evaluation is restricted to mathematical reasoning benchmarks,
 2077 which provide a clean and controlled environment for studying curriculum mechanisms but do not
 2078 capture the full breadth of real-world LLM applications. In particular, extending PCL to domains
 2079 such as code generation would require compiling and executing test cases during reward computation,
 2080 substantially increasing runtime and compute cost. Due to limited computational resources, we were
 2081 unable to include such experiments. We view applying PCL to a broader set of tasks, including
 2082 coding, multi-step tool use, and open-ended dialogue, as an important direction for future work that
 2083 would further validate and potentially refine the proposed curriculum framework.

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105