
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROMPT CURRICULUM LEARNING
FOR EFFICIENT LLM POST-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is widely used to post-train large language models
for tasks such as mathematical reasoning and coding. However, the convergence
of RL training remains sensitive to batching and prompt selection strategies. We
investigate the factors that affect convergence, including batch size and prompt
difficulty. Through large-scale experiments across multiple models and datasets,
we show that there exists an optimal batch size that balances generation time and
gradient quality, and that prompts of intermediate difficulty (where the model has
roughly a 50% chance of success) are the most sample-efficient for model conver-
gence. Motivated by these findings, we propose Prompt Curriculum Learning
(PCL), a lightweight algorithm that selects intermediate-difficulty prompts using a
learned value model. PCL avoids costly rollouts and efficiently guides training by
focusing on the most informative samples. Empirically, PCL either achieves the
highest performance or requires significantly less training time to reach comparable
performance across a suite of benchmarks. Compared to using rollouts to filter,
PCL is 12.1× and 16.9× faster on identifying intermediate-difficulty prompts when
training on MATH and DeepScaleR respectively.

1 INTRODUCTION

Recent large language models (LLMs), such as OpenAI-o1 (OpenAI, 2024b) and DeepSeek-
R1 (DeepSeek-AI, 2025), have demonstrated strong performance by producing long chain-of-thought
(CoT) solutions (Wei et al., 2023; DeepSeek-AI, 2025; Zeng et al., 2025). A key driver of these
improvements is reinforcement learning (RL) with rule-based rewards, using algorithms such as
PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). By generating responses online from the
current model, RL enables LLMs to self-explore and iteratively improve based on their own outputs.

Substantial effort has been devoted to improving both the performance and efficiency of RL training
for LLMs (Brantley et al., 2025; Xu et al., 2025; An et al., 2025; Sun et al., 2025). A recurring
insight across recent works (Yu et al., 2025; Zhang et al., 2025; Zheng et al., 2025) is that training on
prompts of intermediate difficulty (i.e., neither too easy nor too hard for the current policy) yields
significantly better data efficiency. However, existing approaches on identifying intermediate prompts
typically rely on either rollouts from the current model or a dictionary that tracks average rewards
from previous epochs. The former introduces substantial training overhead due to the high cost of
online generation, while the latter suffers from off-policyness especially when the dataset is large. In
addition, while these works primarily focus on prompt difficulty, many hyperparameters (e.g., batch
size) can significantly affect convergence but remain underexplored in prior work.

In this paper, we systematically study how batch configuration and prompt selection jointly
affect the convergence of RL training, and we use these insights to design a new, compute-efficient
curriculum algorithm. We uncover two key findings. First, there exists an optimal batch size that
achieves the best trade-off between faster generation time and smaller gradient noise. While
larger batches reduce gradient noise and allow for higher learning rates, they also increase generation
time, limiting update frequency. We identify a sweet spot at the transition point between sublinear
and linear generation time growth, where convergence speed is maximized. Second, prompts of
intermediate difficulty are the most effective for learning. When a prompt is too easy or too
hard, gradient signals tend to vanish, leading to wasted compute. In contrast, prompts for which
the model has a ∼50% success rate yield the highest gradient norms and require fewer samples to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Faster
Generation

Time

Larger
Batch
Size

More
Frequent

Updates

Less
Gradient
Noise

Number
Of

Prompts

Generations
Per

Prompt

Higher
Prompt

Diversity

Higher
Effective
Ratio

Rollouts

𝑦

…

𝑦
𝑦

PCL

𝑉(𝑥)

∼ 	𝜋!(⋅ |𝑥)

Figure 1: We conduct a systematic investigation of the trade-offs on generation time vs. batch size
and number of prompts vs. generations per prompt. We identify an optimal batch size that achieves
the best trade-off and discover that the prompts of intermediate difficulty are the most effective for
learning. Building on these insights, we introduce Prompt Curriculum Learning (PCL), which
trains a value model online for prompt filtering. Compared to the rollout-based filter method, PCL is
12.1× and 16.9× faster during prompt filtering when training on MATH and DeepScaleR respectively.

obtain informative updates. We validate this finding empirically across models, datasets, and batch
configurations.

Building on these insights, we introduce Prompt Curriculum Learning (PCL), an efficient algorithm
that dynamically selects prompts of intermediate difficulty using a value model. At each step, PCL
samples a large pool of candidate prompts, predicts their expected reward with a single forward pass,
and greedily selects those closest to a target threshold (e.g., 0.5). This approach avoids the overhead of
rollout-based prompt filtering while also being much more on-policy than dictionary-based methods.
We benchmark PCL across a wide range of models and datasets, including Qwen3-Base (1.7B,
4B, 8B) and Llama3.2-it (3B) on MATH, Olympiad-Bench, Minerva MATH, AMC, and AIME.
Empirically, PCL either achieves the highest performance or requires substantially less training time
to reach comparable performance.

2 PROBLEM SETUP

Let x denote a prompt (e.g., a math question), and let y denote a sampled solution of length ∣y∣
generated autoregressively from a policy π, i.e., y ∼ π(⋅ ∣ x). We assume a binary reward function
r(x, y) ∈ {0,1}, where r(x, y) = 1 if the final answer in y is correct and 0 otherwise. Since the
reward is binary, we denote pπ(x) ∶= Ey∼π(⋅∣x)[r(x, y)] as the probability of generating a correct
answer from policy π on prompt x, and A(x, y) ∶= r(x, y) − pπ(x) as the advantage. To optimize π,
we adopt the purely on-policy variant of GRPO (Shao et al., 2024; DeepSeek-AI, 2025), without KL
regularization to a fixed reference policy πref (Yu et al., 2025) and without standard deviation-based
advantage regularization (Liu et al., 2025), by maximizing:

Ex∼D, y∼πt(⋅∣x)

⎡
⎢
⎢
⎢
⎢
⎣

1

∣y∣

∣y∣

∑
l=1

π(yl ∣ x, y<l)

πt(yl ∣ x, y<l)
A(x, y)

⎤
⎥
⎥
⎥
⎥
⎦

, (1)

where yl denotes the l-th token in the generated sequence y. We adopt this formulation to eliminate
the off-policyness during updates, clipping heuristics, and additional hyperparameters, which would
complicate our analysis in the following section. We note that this is a clean RL objective that has
the same gradient as policy gradient and can be directly derived from the original RL objective of
maximizing expected reward: Ex∼D, y∼π(⋅∣x)[r(x, y)]. The derivation is provided in Appendix A.

3 PRELIMINARY INVESTIGATIONS

In this section, we present a set of preliminary experiments that investigate the interplay between
convergence, batch size, the number of prompts per batch, and the number of generations per prompt.
We first define them in detail.

Batch size, denoted by b, refers to the total number of prompt–response pairs in a batch. In our purely
on-policy setting, this number also corresponds to the total number of pairs used in a single update.
The batch size is given by the product of the number of prompts and generations per prompt. Batch
size directly affects the generation time, as larger batches require longer to generate.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

M
AT
H

D
ee
pS
ca
le
R

Figure 2: (Left / Middle) Training reward as a function of training steps and wall-clock time for
Qwen3-4B-Base on MATH and DeepScaleR. The legend indicates the batch configuration in terms of
(number of prompts m, generations per prompt n). (Right) Generation time per step and test accuracy
across different batch sizes. The dashed line represents the linear increase that intercepts the origin
and the generation time for the largest batch size. Both axes are in log scale. For key takeaways, refer
to the paragraph headers in Section 3.1.

Number of prompts, denoted by m, refers to the number of unique prompts in a batch. This quantity
is closely related to the prompt diversity. Increasing the number of prompts improves the diversity
of the batch, which in turn reduces gradient noise and stabilizes learning.

Generations per prompt, denoted by n, refers to the number of responses generated for each prompt.
These responses are used to estimate the expected reward, which is used to compute the advantage.
The number of generations per prompt is related to the effective ratio, defined as the proportion
of samples in the batch with non-zero advantages, i.e., the proportion of samples that contribute
meaningful gradient signals. Increasing n improves the effective ratio. For example, for a particularly
challenging prompt, if n = 2, both responses may be incorrect, leading to zero advantage and zero
gradient under the objective in Eq. 1. In contrast, for n = 16 or 32, it is much more likely that at least
one response is correct, resulting in a non-zero advantage and thus useful gradient updates. Therefore,
increasing n would result in a more accurate advantage estimation and a higher effective ratio.

Convergence is defined as the final training or validation reward achieved under a fixed compute
and time budget (e.g., number of GPUs and wall-clock time). A method exhibits faster convergence
if, under the same computational resources, it reaches a higher reward. Convergence is influenced
by generation time, prompt diversity, and effective ratio. Reducing generation time enables more
frequent updates, while increasing prompt diversity and effective ratio reduces noise in the gradient
and leads to more stable and efficient training.

Overall, these quantities exhibit a natural trade-off. On the one hand, reducing generation time
enables more frequent updates within a fixed time budget, allowing the model to train on new rollouts
from improved policies. On the other hand, increasing the number of prompts and generations per
prompt reduces gradient noise with a higher signal-to-noise ratio. In the following experiments, we
perform comprehensive ablations with around 100K A100 GPU hours to identify the optimal balance
between these competing factors.

3.1 OPTIMAL BATCH SIZE

Experiment Setup. We conduct experiments on both MATH (Hendrycks et al., 2021) and Deep-
ScaleR (Luo et al., 2025) datasets. For MATH, we evaluate on the standard MATH500 split. For Deep-
ScaleR, we include evaluations on MATH500, Minerva Math (Lewkowycz et al., 2022), Olympiad-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MATH DeepScaleR

Figure 3: Generation time per step and test accuracy across different batch size combinations (number
of prompts m, generations per prompt n) for Qwen3-4B-Base on MATH and DeepScaleR.

Bench (He et al., 2024), as well as competition-level benchmarks including AMC 23, AIME 24, and
AIME 25. We report results across four models, Qwen3-1.7B-base, Qwen3-4B-base, Qwen3-8B-base,
and Llama3.2-3B-it, covering two model families and a range of sizes. All models are trained with a
context length of 4,096 tokens. We use a rule-based reward function based on math-verify (Hug-
ging Face, 2024), which assigns a reward of +1 for correct ones and 0 for incorrect ones or generations
that exceed the context limit. All experiments are implemented using the VERL (Sheng et al., 2025), a
synchronous training setup that alternates between generation and optimization phases. For each batch
size, we ablate to find the optimal learning rate with a total of 23 runs. Additional implementation
and training details, including learning rate ablations, are provided in Appendix B.

The results for Qwen3-4B-Base are presented in Fig. 2 and 3, including training reward as a function
of both training steps and wall-clock time (in hours), generation time per step using vLLM (Kwon
et al., 2023), and test accuracy. For DeepScaleR runs, test accuracy is reported as the average across
all six benchmarks. Full results are provided in Appendix C.

Larger batch sizes converge faster in terms of steps. As shown in Fig. 2 (Left), increasing the
batch size consistently leads to faster convergence when measured in training steps. This is primarily
because larger batches reduce gradient noise, allowing the use of higher learning rates without
destabilizing training. The learning rates used in each configuration are listed in Tables 4 and 5.

Generation time grows sublinearly at first, then linearly. In Fig. 2 and 3, we plot generation time
per step against batch size, alongside a dashed reference line representing linear growth (intersecting
the origin). We observe that generation time initially increases sublinearly with batch size, and
transitions to linear growth as batch size continues to increase. This behavior is expected: When the
batch size is small, the generation time is dominated by the longest response in the batch. As batch
size increases, compute utilization becomes the bottleneck, and generation time scales more linearly.

Optimal batch size occurs at the transition point from sublinear to linear scaling. From Fig. 2
(Middle / Right) and Fig. 3, there exists a sweet spot in batch size that yields the best convergence
speed. Extremely small or large batch sizes lead to suboptimal performance. The optimal point for
the fastest convergence tends to lie at the end of the sublinear regime and the beginning of the linear
regime in generation time. Specifically, the optimal batch size in our setting is around 8K, achieved
with combinations (m,n) = (512,16), (256,32), or (128,64). In other words, the optimal batch
size remains fixed, regardless of how it is factorized into m and n. We hypothesize that this sweet spot
achieves a favorable balance: compared to smaller batch sizes, it can have linearly more generations
with sublinear time growth; compared to larger batch sizes, it allows more frequent updates in the
same amount of time. To ensure robustness, we validate this phenomenon across different model
architectures and sizes, datasets, context lengths, hardware configurations, rollout engines (vLLM
vs. SGLang), and batch configurations. Full results are provided in Appendix C. Having established
an optimal batch size, the natural question is: How should we determine the optimal decomposition
into the number of prompts and generations per prompt?

3.2 OPTIMAL NUMBER OF PROMPTS AND GENERATIONS PER PROMPT

We hypothesize that the optimal decomposition of the batch size is closely tied to the difficulty of
the prompts. Specifically, for extremely easy or difficult prompts, a larger number of generations (n)
may be necessary to achieve a high effective ratio. In contrast, for prompts of intermediate difficulty
(p(x) ≈ 0.5), fewer generations may be sufficient.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: (Left) Training reward before downsampling in terms of step with number of prompts
m = 512 and generations per prompt n = 8. (Middle) Training reward after downsampling. (Right)
Average effective ratio and gradient norm over training steps, and average test accuracy of six
benchmarks across different thresholds. For key takeaways, refer to Section 3.2.

Experiment Setup. We use DeepScaleR dataset and Qwen3-4B-Base, and train under different
decompositions. To control prompt difficulty, for each batch we first sample 4m prompts and
generate 4 responses for each prompt to estimate p(x), similar to Zhang et al. (2025). We then
perform greedy downsampling to select m prompts that are closest to a specific difficulty threshold
p(x) ∈ {0,0.25,0.5,0.75,1}, and sample n generations per selected prompt for training. We are
not reusing the 4 responses to train to avoid selection-induced bias, which keeps the ablation on n
comparable. We keep the total batch size fixed at m × n = 4096 and ablate n from 2 to 128. All other
experimental configurations remain the same. Full results are shown in Appendix C.

Downsampling successfully retains target-difficulty prompts. As shown in Fig. 4 (Left / Middle),
our downsampling procedure effectively retains prompts around the specified threshold. This validates
the experimental design and ensures that training focuses on prompts of controlled difficulty.

Figure 5: Average effective ratio over training steps and av-
erage test accuracy of six benchmarks under different thresh-
olds p(x) and generations per prompt n.

Higher n improves effective ratio
and p(x) = 0.5 has the highest effec-
tive ratio. As shown in Fig. 4 (Right)
and 5, increasing n consistently im-
proves the effective ratio, and prompts
with p(x) = 0.5 achieve high effec-
tive ratios even with relatively small
n. For example, the effective ratio for
n = 16 at p(x) = 0.5 is already higher
than any other thresholds even with
n = 128.

p(x) = 0.5 has the highest gradient
norm and test accuracy. As shown
in Fig. 4 (Right) and 5, training on
prompts with p(x) = 0.5 yields the highest gradient norms and test accuracy. Interestingly, while
increasing n benefits test accuracy for other difficulty levels, we find that for p(x) = 0.5, accuracy
actually degrades beyond n = 32. We suspect this is due to reduced prompt diversity (i.e., smaller
m), which increases gradient noise despite higher per-prompt sampling. Conversely, based on the
previous section, since there exists an optimal batch size, focusing on p(x) = 0.5 allows us to use a
smaller n and a higher m which improves prompt diversity and also maintains a high effective ratio.
In other words, we could have the best of both worlds (effective ratio and prompt diversity) with
p(x) = 0.5. Full results, including ablations across all configurations, are provided in Appendix C,
and a theoretical connection of the gradient norm and p(x) is provided in Appendix D.

4 PCL: PROMPT CURRICULUM LEARNING

The previous section demonstrates that prompts of intermediate difficulty (p(x) ≈ 0.5) are the most
sample-efficient for RL training. However, estimating the difficulty of each prompt using actual
generations from the policy can be computationally expensive, as the generations for the filtered-out

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 PCL
Require: Number of prompts m, generations per prompt n, threshold τ , sampling parameter k

1: Initialize policy π0, value network V π−1

2: for t = 0 to T − 1 do
3: Sample a batch with km prompts: Dkm = {x

i}kmi=1 ⊂ D.

4: Select a batch of m prompts using value model: Dm = argmin
S⊆Dkm, ∣S∣=m

∑x∈S ∣V
πt−1(x) − τ ∣.

5: Generate for the batch: Dm = {(x
i,{yi,j}nj=1)}

m

i=1 where yi,j
iid
∼ πt(⋅ ∣ x

i)

6: Update πt to πt+1 using Dm.
7: Update V πt−1 to V πt with loss in Eq. 2.
8: end for

prompts are wasted. To address this issue, we propose a lightweight and efficient alternative: Prompt
Curriculum Learning (PCL), which leverages a learned value model during online RL to estimate
prompt difficulty using a single forward pass, significantly reducing computational overhead.

At training iteration t, we begin by sampling a pool of km candidate prompts from the dataset where
k is a hyperparameter. For each prompt x, we use a value model to predict its expected reward V (x),
which approximates pπ(x) = Ey∼π(⋅∣x)[r(x, y)]. We then greedily select a subset of m prompts
whose predicted values are closest to a target difficulty threshold τ (defaulting to 0.5), ensuring that
the batch is focused on prompts of intermediate difficulty. For each selected prompt, we generate n
responses using the current policy and perform standard policy gradient updates. To update the value
model, we only use the generated responses and minimize the prediction error between the estimated
value V (x) and the empirical average reward across the n generations:

m

∑
i=1

⎛

⎝
V (xi

) −
1

n

n

∑
j=1

r(xi, yi,j)
⎞

⎠

2

. (2)

This allows us to improve the value model online, without requiring any additional rollouts. Since the
value model only takes in the prompt as input which is typically less than 1K tokens in length for
math, we find that both training and inference of the value model incur negligible cost (see Appendix I
for a detailed breakdown). The full algorithm is summarized in Algorithm 1. Note that the value
model V in our algorithm is one step behind the policy π, which is acceptable since each update is
small with πt+1 ≈ πt. We further discuss the alternatives in Section 7.

5 EXPERIMENTS

Models & Datasets. We use the same sets of models and datasets for experiments as Section 3. We
use the same-sized model as the policy for the value model when running PCL. All runs use a 2-day
time budget, except for Qwen3-8B-Base on DeepScaleR, which is trained for 3 days. We focus on
m = 512 and n = 16 as it is one of the best combinations we found in terms of convergence. Unless
otherwise noted, PCL uses τ = 0.5 and k = 4. Similar to Wang et al. (2025c) and Zheng et al. (2025),
we evaluate the model after training on every 4K prompts (8 steps), and report the performance of the
checkpoint that obtains the best average performance.

Baselines. We compare PCL against five baselines. We include original GRPO, which performs no
prompt filtering and uniformly samples prompts from the dataset. This serves as a standard baseline
to assess the impact of filtering strategies. Pre-filter is a heuristic approach that leverages a fixed
reference policy πref to estimate prompt difficulty and filters out easy or hard prompts. Dynamic-
sampling (DS) (Yu et al., 2025) uses n rollouts per prompt to estimate pπ for km prompts and filters
out prompts with p̂π = 0 or 1. SPEED (Zhang et al., 2025) improves upon DS by first using ninit

rollouts to estimate where n ≥ ninit. It then performs filtering and generates the remaining n − ninit

rollouts. GRESO (Zheng et al., 2025) keeps a dictionary of historical rewards based on generations
from previous epochs and skips uninformative prompts using the dictionary. We tested GRESO on
MATH but not on DeepScaleR, as DeepScaleR is large and limits the training to around 1 epoch
under the compute budget which prevents the use of dictionary-based methods. DS, SPEED, and
GRESO all keep sampling and generating until there is a full batch. Additional experiment details,
including pseudo-codes and hyperparameters, are in Appendix E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on MATH and DeepScaleR. For each metric, the best-performing method is
highlighted in bold, and the second-best is underlined. Time is the sum of training and generation time
of the checkpoint that achieves the best average performance (excluding validation/checkpointing) in
hours. For full DeepScaleR results across model sizes and families, refer to Appendix F.

MATH Qwen3-8B-Base Qwen3-4B-Base Qwen3-1.7B-Base Llama3.2-3B-it
MATH500 Time MATH500 Time MATH500 Time MATH500 Time

πref 72.4 / 65.6 / 55.4 / 42.6 /
GRPO 86.4 28.3 83.0 29.2 73.6 22.0 56.2 5.80

Pre-filter 84.8 17.1 81.6 27.1 73.4 13.5 55.4 7.47
DS 87.8 37.8 82.6 37.1 73.8 27.6 56.8 19.3

SPEED 81.2 4.25 78.8 6.75 70.2 1.93 42.6 /
GRESO 87.2 29.1 83.0 33.1 73.4 17.6 56.6 7.37

PCL 88.2 37.2 83.4 14.0 73.8 24.8 57.8 14.3

DeepScaleR MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg. TimeAvg@4 Avg@32 Avg@32 Avg@32

Q
w

en
3-

8B
-B

as
e πref 70.2 34.3 29.8 49.1 15.8 8.8 34.7 /

GRPO 87.2 57.9 45.3 70.1 25.3 22.7 51.4 43.0
Pre-filter 86.4 54.6 44.2 69.8 26.9 22.6 50.7 67.4

DS 87.2 55.3 45.7 71.5 24.9 24.2 51.5 69.5
SPEED 82.4 46.4 40.3 66.6 21.1 15.7 45.5 19.3

PCL 88.4 56.2 46.8 71.2 25.2 23.9 52.0 41.8

5.1 CONVERGENCE COMPARISON

PCL either achieves the highest performance or requires significantly less training time to
reach comparable performance. The main results are summarized in Tables 1 (for full DeepScaleR
results, refer to Appendix F). Compared to prior baselines, PCL consistently achieves the highest
performance across all four models on the MATH dataset, and faster convergence at a similar or
better accuracy on DeepScaleR. When training Qwen3-8B-Base on DeepScaleR, PCL converges
39.8% faster than DS, the second-best method in terms of average accuracy. DS requires significantly
more time to converge, as it performs generation for all km prompts at each step with n generations
per prompt. SPEED’s efficient implementation pre-generates ninit rollouts at an earlier step with
an old policy and uses them at the current step, treating them as if sampled from the current policy.
While this approach reduces generation cost for estimating p̂π, it introduces severe off-policyness.
We observe that most of the SPEED runs crashed within a few hours, leading to lower convergence
time as it would crash afterward. On the other hand, GRESO also suffers from a high degree of
off-policyness where the historical estimates are based on outdated policies from the last epoch and
may not reflect the current model’s performance, especially when the dataset is large.

0 20 40 60
Total Time (hours)

0.4

0.6

0.8

1.0

E
ff

ec
tiv

e
R

at
io

GRPO Pre-filter DS SPEED PCL
Methods

0.0

0.1

0.2

0.3

0.4

0.5

G
en

. T
im

e
/ S

te
p

(h
ou

rs
)

0.18
0.14

0.45
0.40

0.22

0 20 40 60
Total Time (hours)

0.4

0.6

0.8

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
)

Figure 6: Experiment on DeepScaleR with Qwen3-8B-Base. (Left) Effective ratio w.r.t. training
time across five methods. Refer to the middle plot for legend. (Middle) Average generation time per
step throughout the training. (Right) Training reward after downsampling. PCL either has a higher
effective ratio or a lower generation time, and is consistently training on p(x) = 0.5 prompts.

5.2 ANALYSIS & ABLATION

PCL consistently achieves either a higher effective ratio or a lower generation time, while
maintaining a focus on p(x) = 0.5 prompts. To better understand the training dynamics of each

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
 V

ar
ia

nc
e

MATH

Value

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0
DeepScaleR

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Figure 7: Explained variance of PCL’s value model using 16 gen-
erations as the ground-truth difficulty (p(x)), and the explained
variance using 1 to 16 generations to predict the difficulty (p̂(x))
on MATH and DeepScaleR with two Qwen3-1.7B-Base models
as policy and value model. The accuracy of the value model is
similar to using around 3 generations to estimate.

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
 V

ar
ia

nc
e

MATH

= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

No Filter

Figure 8: Explained variance on
MATH with Qwen3-1.7B-Base
for PCL’s value model with fil-
tering on different thresholds (τ)
and without filtering.

method, we visualize the effective ratio, generation time per step, and training reward after filtering in
Fig. 6 when training Qwen3-8B-Base on DeepScaleR. PCL consistently maintains a higher effective
ratio compared to GRPO and Pre-filter. While DS and SPEED achieve an effective ratio of 1 due
to resampling, they require significantly higher generation time, with relative increase of 105% and
81.8% for DS and SPEED respectively. The slightly higher generation time of PCL compared
to GRPO and Pre-filter is that harder prompts require longer generations, and, when the average
accuracy of the model on the training set is higher than 0.5, PCL focuses on harder prompts than
those two methods. Interestingly, the effective ratio for Pre-filter starts higher than GRPO but quickly
drops below. This behavior comes from how Pre-filter selects prompts: it excludes very difficult ones
based on πref . As the policy improves during training, many previously difficult prompts transition
into the intermediate-difficulty range (e.g., p(x) ≈ 0.5) for the current model. However, because these
prompts were previously filtered out, they are never revisited, causing Pre-filter to keep training on
easy prompts from the perspective of the current policy. In addition, as shown in Fig. 6 (Right), PCL
consistently focuses on intermediate-difficulty prompts throughout training (the training reward of
PCL after filtering stays closely to 0.5), whereas other methods gradually shift toward easier prompts
as the policy improves which is suboptimal based on the findings in Section 3.

The accuracy of the value model is similar to using 3 generations to estimate. To investigate the
prediction accuracy of the value model, we compute the explained variance using the average reward
of 16 generations as the ground-truth difficulty p(x). The explained variance is calculated as:

1 −
Var ({p(xi) − V (xi)}mi=1)

Var ({p(xi)}mi=1)
(3)

where Var denotes the variance. In addition, we also use the average reward of 1 to 16 generations
as the predicted difficulty p̂(x) and compute their explained variance. The explained variances are
computed on prompts randomly sampled from the dataset before filtering. The results on MATH and
DeepScaleR with two Qwen3-1.7B-Base models as policy and value models are shown in Fig. 7.
Since the prediction head of the value model is randomly initialized, the initial explained variance
is very low. As training progresses, the value model improves steadily and achieves an explained
variance comparable to using three rollouts per prompt for value estimation. Specifically, with
km = 2048, generating n = 3 rollouts per prompt takes 288 seconds on MATH and 396 seconds on
DeepScaleR per step. In contrast, training and inference with the value model require only 23.9 and
23.5 seconds respectively, achieving a 12.1× speedup on MATH and a 16.9× speedup on DeepScaleR.
Results are visualized in Figure 1.

The accuracy of the value model with filtering at τ = 0.5 matches that of training without
filtering. One might expect the value model to suffer from filtering, as the training data is biased
toward prompts with estimated difficulty near the threshold τ , potentially limiting generalization. To
investigate how the choice of threshold τ affects the accuracy of the value model, we ablate over
τ ∈ {0.1,0.3,0.5,0.7,0.9}. In addition, we train a baseline value model without any prompt filtering
(i.e., GRPO but with a value model trained alongside the policy) using Qwen3-1.7B-Base for both the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

policy and value model on the MATH dataset. Results are presented in Fig. 8. We observe that the
value model achieves the highest prediction accuracy when τ = 0.5, with performance degrading as
the threshold deviates further from 0.5 in either direction. Notably, the accuracy of the value model
at τ = 0.5 is comparable to the no-filtering baseline, despite training on a filtered subset of prompts.
We hypothesize that filtering at τ = 0.5 still captures a diverse set of reward outcomes, as it is the
midpoint of the binary rewards. Moreover, if the average reward of the policy over the training data
is not 0.5 (i.e., there is label imbalance), filtering around τ = 0.5 may implicitly rebalance the data,
thus improving generalization. In contrast, filtering with extreme τ values (e.g., τ = 0.1 or τ = 0.9)
selects only very easy or very hard prompts, leading to severe label imbalance and reduced predictive
accuracy. A deeper theoretical understanding of why τ = 0.5 leads to such effective value model
training is an interesting direction for future work.

0 20 40 60
Total Time (hours)

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
)

ba
se

d
on

re

f

GRPO
Pre-filter
DS
SPEED
PCL

Figure 9: Training reward of PCL
after filtering based on πref w.r.t.
training time with DeepScaleR and
Qwen3-8B-Base. PCL progres-
sively focuses on harder prompts
during training, despite a fixed
threshold of τ = 0.5.

PCL progressively focuses on harder prompts during train-
ing, despite a fixed threshold of τ = 0.5. To better understand
the training dynamics of PCL, we analyze how the difficulty
of selected prompts evolves over time. Specifically, we use the
initial reference policy πref to generate 16 responses for each
prompt in DeepScaleR and compute the average reward, which
serves as a proxy for prompt difficulty (i.e., lower average
rewards indicate harder prompts). During training on Qwen3-
8B-Base with PCL, we log the average πref -based reward for
the filtered prompts at each training step. The results are shown
in Fig. 9. For methods that do not perform prompt filtering
(GRPO and Pre-filter), this average remains nearly constant, as
these methods uniformly sample from the dataset. In contrast,
for methods that apply filtering (DS, SPEED, and PCL), we
observe a consistent downward trend in the πref -based reward
of selected prompts. This indicates that these methods focus on
increasingly harder prompts as training progresses. Although
PCL maintains a fixed difficulty threshold of τ = 0.5, as the
policy improves, previously hard prompts would now appear
intermediate (i.e., τ ≈ 0.5), allowing PCL to continually shift toward more challenging examples.

6 RELATED WORK

LLM Post-training. Reinforcement learning (RL) has become a standard for post-training LLMs,
including Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Christiano
et al., 2023; OpenAI, 2024a; Team, 2025a), enabling the LLMs to generate faithful and harmless
responses that closely follow the instruction, and Reinforcement Learning with Verifiable Rewards
(RLVR) (OpenAI, 2024b; Yang et al., 2024; DeepSeek-AI, 2025; Qwen, 2025; Lambert et al., 2025;
Team, 2025b), improving model reasoning capabilities using verifiable rewards. These methods
typically use algorithms include PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), DR-
GRPO (Liu et al., 2025), OREO (Wang et al., 2024), DQO (Ji et al., 2024), and VinePPO (Kazemnejad
et al., 2025).

Efficient RL for LLM Post-training. Given the huge parameter size for LLMs, there is a large
body of work recently focusing on developing more efficient algorithms and data selection methods
to enable more efficient RL training for LLMs. Algorithmically, DPO (Rafailov et al., 2024),
RAFT (Dong et al., 2023), REBEL (Gao et al., 2024), REFUEL (Gao et al., 2025), A⋆-PO (Brantley
et al., 2025), RAFT++ (Xiong et al., 2025), RLOO (Ahmadian et al., 2024), and REINFORCE++ (Hu
et al., 2025) are all trying to construct new objective functions that either reduces the number of
models used (e.g. value model, reference model, reward model) or reduces the number of generations
required for online RL. Another line of works (Xia et al., 2024; Muennighoff et al., 2025; Ye et al.,
2025a; Muldrew et al., 2024; Das et al., 2025; Wang et al., 2025c; Sun et al., 2025; Wang et al.,
2025a; Lin et al., 2025) focuses on improving data selections by reducing the amount of training
data to be more sample efficient. DAPO (Yu et al., 2025) and VAPO (Yue et al., 2025) resample and
keep generating until the effective ratio of the batch is 1 during each step of RL training. However,
the generations for a prompt that are either all correct or incorrect are wasted. SPEED (Zhang et al.,
2025) improves on top of these methods by using a smaller number of generations to estimate the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

effective ratio and only generate the rest of the generations if the existing ones are not all correct
or incorrect. GRESO (Zheng et al., 2025) and MoPPS (Qu et al., 2025), on the other hand, avoids
rollouts by using a dictionary or a Beta posterior and samples based on the historical rewards from the
previous epoch. However, they would suffer from off-policyness especially when the dataset is large.

Our method is the combination of the best of both worlds where PCL directly avoids costly rollouts
and also is on-policy. Our method is closely related to a classic class of machine learning techniques,
Curriculum Learning (Bengio et al., 2009). Previous works have explored curriculum learning
for LLM post-training (Lee et al., 2024; Wen et al., 2025; Shi et al., 2025) by either training on
progressively harder prompts ordered before training or focusing on certain difficulty range on the fly
during RL. Our work falls in this group by always focusing on intermediate difficulty prompts for the
current policy.

Curriculum and Active Learning. More broadly, our approach connects to curriculum and active
learning methods that adapt the training distribution over examples. In supervised learning, Min-
dermann et al. (2022) prioritize examples based on loss on a held-out set, while Ash et al. (2020)
selects diverse and uncertain examples using gradient embeddings. Kawaguchi & Lu (2020) analyzes
how sample ordering affects convergence under Ordered SGD. These methods assume access to
per-example gradients or labels on a static dataset, whereas we operate in an online RLVR setting
where each example is a long response that cannot be determined before generating. In RL, Parker-
Holder et al. (2022) and Ye et al. (2025b) study environment curricula by evolving tasks through
regret-based environment design or asymmetric self-play. Under their minimax-regret formulations,
the optimal teacher concentrates on the hardest solvable tasks, in contrast to our empirical finding
that convergence is fastest when training on prompts of intermediate difficulty. PCL adapts and
extends ideas from curriculum and active learning to the specific constraints of large-scale, on-policy
RLVR-style LLM post-training.

7 DISCUSSIONS & CONCLUSION

PCL accelerates RL post-training by targeting two findings from our study: (1) there exists an optimal
total batch size at the transition between sublinear and linear generation-time scaling, and (2) prompts
of intermediate difficulty (p(x) ≈ 0.5) yield the highest gradient signal and sample efficiency. It
trains a value model online to identify such prompts, avoiding the wasted rollouts of generation-based
filtering (DS, SPEED) and the off-policyness of dictionary-based methods (GRESO). PCL either
achieves the highest performance or requires significantly less training time to reach comparable
performance. We include a discussion on limitations in Appendix J.

While our experiments focus on binary correctness rewards, PCL naturally extends to non-binary
scalar rewards. Since the value model V (x) estimates Ey∼π(⋅∣x)[r(x, y)], non-binary r(x, y) only
changes its range and the meaning of the target threshold τ . In addition, we note that PCL alternates
updates between the policy and the value model, meaning that V πt is always one step behind the
current policy πt+1. In practice, this lag does not hinder performance, as the per-step policy updates
are small with πt ≈ πt+1. Theoretically, Wang et al. (2025b) provably shows that the ranking of
prompt difficulties is stable under small perturbations between πt and πt+1. We also experimented
with using importance sampling to correct for this lag by reweighting based on πt+1(y ∣ x)/πt(y ∣ x),
but it does not improve the accuracy of the value model and computing πt+1(y ∣ x) is computationally
expensive as y is thousands of tokens long.

We additionally experimented with stochastic batch selection (Kirsch et al., 2023) in place of greedy
selection around the threshold τ . The results are reported in Appendix H. This variant does not
improve and even degrades performance when the distribution is too wide. We therefore adopt
greedy top-m selection, which is simple, robust to implement in large-scale RL pipelines, and already
delivers strong performance.

We highlight that prompt filtering methods rely on an implicit assumption of prompt-level generaliza-
tion: training on a selected subset of prompts will improve performance on the filtered-out ones. For
example, PCL assumes that training on intermediate-difficulty prompts leads to improvements on
both easier and harder prompts, while DS and SPEED assume that gradually solving not-too-hard
prompts enables the model to eventually handle harder ones. While this assumption holds in domains
like math where problems often share structural similarities, it may not generalize to other domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms, 2024. URL https://arxiv.org/abs/2402.14740.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for
scaling reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polaris.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds, 2020. URL https://arxiv.
org/abs/1906.03671.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp.
41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/1553374.1553380.

Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, and Xuezhou
Zhang. Accelerating rl for llm reasoning with optimal advantage regression, 2025. URL https:
//arxiv.org/abs/2505.20686.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An empirical
study on eliciting and improving r1-like reasoning models, 2025. URL https://arxiv.org/
abs/2503.04548.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023. URL https://arxiv.org/abs/
1706.03741.

Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Active preference
optimization for sample efficient rlhf, 2025. URL https://arxiv.org/abs/2402.10500.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment, 2023. URL https://arxiv.org/abs/2304.06767.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
reinforcement learning system for language reasoning, 2025. URL https://arxiv.org/
abs/2505.24298.

Zhaolin Gao, Jonathan Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley, Thorsten
Joachims, Drew Bagnell, Jason D Lee, and Wen Sun. Rebel: Reinforcement learning via regressing
relative rewards. Advances in Neural Information Processing Systems, 37:52354–52400, 2024.

Zhaolin Gao, Wenhao Zhan, Jonathan D. Chang, Gokul Swamy, Kianté Brantley, Jason D. Lee, and
Wen Sun. Regressing the relative future: Efficient policy optimization for multi-turn rlhf, 2025.
URL https://arxiv.org/abs/2410.04612.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
scientific problems, 2024. URL https://arxiv.org/abs/2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

11

https://arxiv.org/abs/2402.14740
https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
https://arxiv.org/abs/1906.03671
https://arxiv.org/abs/1906.03671
https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2402.10500
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2410.04612
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
robustness to both prompt and reward models, 2025. URL https://arxiv.org/abs/2501.
03262.

Hugging Face. Math-verify. https://github.com/huggingface/Math-Verify, 2024.

Kaixuan Ji, Guanlin Liu, Ning Dai, Qingping Yang, Renjie Zheng, Zheng Wu, Chen Dun, Quanquan
Gu, and Lin Yan. Enhancing multi-step reasoning abilities of language models through direct
q-function optimization. arXiv preprint arXiv:2410.09302, 2024.

Kenji Kawaguchi and Haihao Lu. Ordered sgd: A new stochastic optimization framework for
empirical risk minimization, 2020. URL https://arxiv.org/abs/1907.04371.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Refining credit assignment in rl training of llms,
2025. URL https://arxiv.org/abs/2410.01679.

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frederic Branchaud-
Charron, and Yarin Gal. Stochastic batch acquisition: A simple baseline for deep active learning,
2023. URL https://arxiv.org/abs/2106.12059.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for
free! In DeepRLStructPred@ICLR, 2019. URL https://api.semanticscholar.org/
CorpusID:198489118.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/
abs/2411.15124.

Bruce W. Lee, Hyunsoo Cho, and Kang Min Yoo. Instruction tuning with human curriculum, 2024.
URL https://arxiv.org/abs/2310.09518.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models, 2022. URL https://arxiv.org/abs/2206.14858.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. CPPO: Accelerating the training of group
relative policy optimization-based reasoning models, 2025. URL https://arxiv.org/abs/
2503.22342.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https:
//arxiv.org/abs/2503.20783.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

Sören Mindermann, Jan Brauner, Muhammed Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N. Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin Gal.
Prioritized training on points that are learnable, worth learning, and not yet learnt, 2022. URL
https://arxiv.org/abs/2206.07137.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

12

https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2501.03262
https://github.com/huggingface/Math-Verify
https://arxiv.org/abs/1907.04371
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2106.12059
https://api.semanticscholar.org/CorpusID:198489118
https://api.semanticscholar.org/CorpusID:198489118
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2310.09518
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2503.22342
https://arxiv.org/abs/2503.22342
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2206.07137
https://arxiv.org/abs/2501.19393

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active preference learning for
large language models, 2024. URL https://arxiv.org/abs/2402.08114.

OpenAI. GPT-4 technical report, 2024a. URL https://arxiv.org/abs/2303.08774.

OpenAI. Learning to reason with llms. OpenAI Blog Post, 2024b.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 17473–17498. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/parker-holder22a.html.

Yun Qu, Qi Wang, Yixiu Mao, Vincent Tao Hu, Björn Ommer, and Xiangyang Ji. Can prompt
difficulty be online predicted for accelerating rl finetuning of reasoning models?, 2025. URL
https://arxiv.org/abs/2507.04632.

Qwen. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco Ruiz, and Omer Deniz Akyildiz. Vargrad:
a low-variance gradient estimator for variational inference. Advances in Neural Information
Processing Systems, 33:13481–13492, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceed-
ings of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297.
ACM, March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/
3689031.3696075.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
via adaptive curriculum learning, 2025. URL https://arxiv.org/abs/2504.05520.

Yifan Sun, Jingyan Shen, Yibin Wang, Tianyu Chen, Zhendong Wang, Mingyuan Zhou, and Huan
Zhang. Improving data efficiency for llm reinforcement fine-tuning through difficulty-targeted on-
line data selection and rollout replay, 2025. URL https://arxiv.org/abs/2506.05316.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025a. URL https://arxiv.
org/abs/2501.12599.

Kimi Team. Kimi k2: Open agentic intelligence, 2025b. URL https://arxiv.org/abs/
2507.20534.

Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang, Yilin Bao, Ziran Yang, and Yi Wu. Offline
reinforcement learning for llm multi-step reasoning. arXiv preprint arXiv:2412.16145, 2024.

13

https://arxiv.org/abs/2402.08114
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://proceedings.mlr.press/v162/parker-holder22a.html
https://arxiv.org/abs/2507.04632
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2305.18290
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2506.05316
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Liangyu Wang, Huanyi Xie, Xinhai Wang, Tianjin Huang, Mengdi Li, and Di Wang. Infinite
sampling: Efficient and stable grouped rl training for large language models, 2025a. URL
https://arxiv.org/abs/2506.22950.

Qi Wang, Zehao Xiao, Yixiu Mao, Yun Qu, Jiayi Shen, Yiqin Lv, and Xiangyang Ji. Model predictive
task sampling for efficient and robust adaptation, 2025b. URL https://arxiv.org/abs/
2501.11039.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example,
2025c. URL https://arxiv.org/abs/2504.20571.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.
Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond, 2025. URL https:
//arxiv.org/abs/2503.10460.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3–4):229–256, may 1992. ISSN 0885-6125. doi: 10.1007/BF00992696.
URL https://doi.org/10.1007/BF00992696.

Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu, Tushar Gowda,
Zhengxing Chen, Chen Zhu, Xiaocheng Tang, Yundi Qian, Beibei Zhu, and Rui Hou. Llamarl: A
distributed asynchronous reinforcement learning framework for efficient large-scale llm training,
2025. URL https://arxiv.org/abs/2505.24034.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning, 2024. URL https://arxiv.org/
abs/2402.04333.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to llm reasoning: from rejection
sampling to reinforce, 2025. URL https://arxiv.org/abs/2504.11343.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-
sampling rollouts in llm reinforcement learning, 2025. URL https://arxiv.org/abs/
2504.13818.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025a. URL https://arxiv.org/abs/2502.03387.

Ziyu Ye, Rishabh Agarwal, Tianqi Liu, Rishabh Joshi, Sarmishta Velury, Quoc V. Le, Qijun Tan, and
Yuan Liu. Scalable reinforcement post-training beyond static human prompts: Evolving alignment
via asymmetric self-play, 2025b. URL https://arxiv.org/abs/2411.00062.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
open-source llm reinforcement learning system at scale, 2025. URL https://arxiv.org/
abs/2503.14476.

14

https://arxiv.org/abs/2506.22950
https://arxiv.org/abs/2501.11039
https://arxiv.org/abs/2501.11039
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2503.10460
https://arxiv.org/abs/2503.10460
https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/2505.24034
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2504.11343
https://arxiv.org/abs/2504.13818
https://arxiv.org/abs/2504.13818
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2411.00062
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu,
Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and reliable
reinforcement learning for advanced reasoning tasks, 2025. URL https://arxiv.org/abs/
2504.05118.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Ruiqi Zhang, Daman Arora, Song Mei, and Andrea Zanette. Speed-rl: Faster training of reason-
ing models via online curriculum learning, 2025. URL https://arxiv.org/abs/2506.
09016.

Haizhong Zheng, Yang Zhou, Brian R. Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts, 2025. URL https://arxiv.org/abs/2506.02177.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

15

https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2506.09016
https://arxiv.org/abs/2506.09016
https://arxiv.org/abs/2506.02177

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix
CONTENTS

A Problem Setup Details 17

B Preliminary Investigation Details 18

B.1 Dataset Details . 18

B.2 Model Details . 18

B.3 Reward Details . 18

B.4 Evaluation Details . 18

B.5 Complete List of Experiments . 19

C Preliminary Investigation Complete Results 22

C.1 Complete Results for Section 3.1 . 22

C.1.1 Results with varying m . 22

C.1.2 Results with varying m and n . 24

C.1.3 Results with a different context length . 26

C.1.4 Results with a different hardware configuration 27

C.1.5 Results with a different inference engine . 28

C.2 Complete Results for Section 3.2 . 29

D Connection between p(x) and Gradient Magnitude 32

E Experiment Details 33

E.1 Baselines Algorithms . 33

E.2 Dataset, Model, Reward, Evaluation Details . 35

E.3 Hyperparameters . 35

F Complete Experiment Results 36

G Value Model Size Ablation 37

H Stochastic Batch Selection 38

I Training Time Breakdown 38

J Limitations 39

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A PROBLEM SETUP DETAILS

Let x denote a prompt (e.g., a math question), and let y denote a sampled solution of length ∣y∣
generated autoregressively from a policy π, i.e., y ∼ π(⋅ ∣ x). We assume a binary reward function
r(x, y) ∈ {0,1}, where r(x, y) = 1 if the final answer in y is correct and 0 otherwise. Our goal is to
learn a parameterized policy πθ that maximizes the expected reward over a dataset D of prompts:

J(θ) = Ex∼D, y∼πθ(⋅∣x)[r(x, y)]. (4)

Following the standard REINFORCE derivation (Williams, 1992), the gradient of this objective can
be written as ∇θJ(θ) = Ex,y [r(x, y)∇θ logπθ(y ∣ x)].

To reduce the variance of this estimator, it is common to subtract a baseline function that depends
only on the prompt x, which does not change the optimum of the policy gradient (Kool et al.,
2019; Richter et al., 2020; Zhu et al., 2023; Shao et al., 2024). In this work, we use the expected
reward under the current policy, Ey′∼πθ(⋅∣x)[r(x, y

′)], as the baseline, which is standard in LLM
post-training (Shao et al., 2024; DeepSeek-AI, 2025; Yu et al., 2025; Liu et al., 2025). Since the
reward is binary, we define pπθ

(x) ∶= Ey∼πθ(⋅∣x)[r(x, y)] as the probability of generating a correct
answer, and A(x, y) ∶= r(x, y) − pπθ

(x) as the advantage. The policy gradient can be expressed as
∇θJ(θ) = Ex∼D, y∼πθ(⋅∣x) [A(x, y)∇θ logπθ(y ∣ x)].

In practice, LLMs are trained with multiple updates on generations produced by some old policy
πθold and the training is often stabilized using techniques such as PPO-style clipping (Schulman et al.,
2017; Shao et al., 2024; Xiong et al., 2025). However, we focus on a purely on-policy setting, where
each gradient step is followed by the collection of fresh rollouts. Specifically, at each iteration t, we
perform a single gradient step to maximize:

J(θ) = Ex∼D, y∼πθ(⋅∣x)[A(x, y) logπθ(y ∣ x)]. (5)

Note that the above objective has the same gradient as:

J(θ) = Ex∼D, y∼πθt(⋅∣x)[A(x, y)
πθ(y ∣ x)

πθt(y ∣ x)
], (6)

since we are purely on-policy and πθt is the policy before the update and also serves as the sampling
distribution.

Given the autoregressive nature of LLMs, we further decompose the objective into a token-level form,
treating each token as an individual action:

J(θ) = Ex∼D, y∼πθ(⋅∣x)

⎡
⎢
⎢
⎢
⎢
⎣

A(x, y) log
⎛

⎝

∣y∣

∏
l=1

πθ(yl ∣ x, y<l)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(7)

= Ex∼D, y∼πθ(⋅∣x)

⎡
⎢
⎢
⎢
⎢
⎣

A(x, y)
∣y∣

∑
l=1

logπθ(yl ∣ x, y<l)

⎤
⎥
⎥
⎥
⎥
⎦

, (8)

where yl denotes the l-th token in the generated sequence. Similarly, the above objective has the same
gradient as:

J(θ) = Ex∼D, y∼πθt(⋅∣x)

⎡
⎢
⎢
⎢
⎢
⎣

A(x, y)
∣y∣

∑
l=1

πθ(yl ∣ x, y<l)

πθt(yl ∣ x, y<l)

⎤
⎥
⎥
⎥
⎥
⎦

. (9)

Normalize by the length of y, we arrive at

J(θ) = Ex∼D, y∼πθt(⋅∣x)

⎡
⎢
⎢
⎢
⎢
⎣

1

∣y∣
A(x, y)

∣y∣

∑
l=1

πθ(yl ∣ x, y<l)

πθt(yl ∣ x, y<l)

⎤
⎥
⎥
⎥
⎥
⎦

. (10)

This objective corresponds to a purely on-policy variant of GRPO (Shao et al., 2024; DeepSeek-AI,
2025), without KL regularization to a fixed reference policy πref (Yu et al., 2025) and without standard
deviation-based advantage regularization (Liu et al., 2025). We adopt this formulation to eliminate
the off-policyness during updates, clipping heuristics, and additional hyperparameters. This results in
a clean experimental setup that is directly derived from the original RL objective in Eq. 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PRELIMINARY INVESTIGATION DETAILS

B.1 DATASET DETAILS

Table 2: Dataset split, maximum prompt length, and maximum generation length
Dataset Huggingface Dataset Card Train - Val Prompt Length Generation Length

MATH DigitalLearningGmbH/MATH-lighteval 7.5k - 5k 1,024 4,096
DeepScaleR agentica-org/DeepScaleR-Preview-Dataset 40.3k - / 1,024 4,096

Table 3: Model prompt format
Model Family Prompt Format

Qwen (Base) {prompt} Let’s think step by step and output the final answer within \boxed{}.
Llama (Instruct) <|begin of text|><|start header id|>system<|end header id|>Cutting Knowledge Date: December

2023 Today Date: 26 Jul 2024<|eot id |><|start header id |>user <|end header id |>{prompt}
Let’s think step by step and output the final answer within \boxed{}. <|eot id |><|start header id
|>assistant <|end header id |>

B.2 MODEL DETAILS

We perform full parameter training on 8 A100 GPUs using Qwen3-1.7B-Base (model card:
Qwen/Qwen3-1.7B-Base), Qwen3-4B-Base (model card: Qwen/Qwen3-4B-Base), Qwen3-8B-Base
(model card: Qwen/Qwen3-8B-Base), and Llama3.2-3B-it (model card: meta-llama/Llama-3.2-3B-
Instruct).

B.3 REWARD DETAILS

We use a rule-based reward function based on the correctness of the response with math-verify,
assigning +1 for correct answers and 0 for incorrect ones or generations that exceed the context
length. Recent studies (Chen et al., 2025) have proposed incorporating format-based rules into reward
calculations to encourage models to follow specific output formats. However, in our experiments,
we observed no significant difference in performance with or without such format-based rewards.
Therefore, for simplicity, we exclude them from our implementation.

B.4 EVALUATION DETAILS

Following prior work (Zeng et al., 2025), we evaluate model performance on a suite of stan-
dard mathematical reasoning benchmarks, including MATH500 (Hendrycks et al., 2021), Minerva
Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024), as well as competition-level
benchmarks such as AMC 2023, AIME 2024, and AIME 2025.

For smaller-scale datasets, we report results using the average reward across multiple generations.
Specifically, for Minerva Math, we report Avg@4; for AMC 2023, AIME 2024, and AIME 2025, we
report Avg@32.

For MATH experiments, we use decoding parameters top k = 20, temperature = 0.6, and
top p = 0.95. For DeepScaleR experiments, we use top k = −1 (i.e., disabled), temperature =
0.6, and top p = 0.95.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 COMPLETE LIST OF EXPERIMENTS

The learning rate for each batch size is tuned on a logarithmic scale using the Qwen3-8B-Base model.
For all other models, we adopt the corresponding optimal learning rate found for Qwen3-8B-Base.
The complete list of all the experiments is provided below with the chosen learning rate highlighted
in bold.

Table 4: Complete List of Experiments for Math
Model #Prompts (m) #Generations (n) Context Length Num Workers Engine Batch Size (b) LR

Qwen3-8B-base

64 16 4096 8 VLLM 1024 1E-6/2E-6
128 16 4096 8 VLLM 2048 1E-6/2E-6/5E-6/1E-5
256 16 4096 8 VLLM 4096 2E-6/4E-6/8E-6
512 16 4096 8 VLLM 8192 4E-6/8E-6/1.6E-5

1024 16 4096 8 VLLM 16384 4E-6/8E-6/1.6E-5
2048 16 4096 8 VLLM 32768 4E-6/8E-6/1.6E-5/3.2E-5
4096 16 4096 8 VLLM 65536 8E-6/1.6E-5/3.2E-5/6.4E-5

Qwen3-4B-base

64 16 4096 8 VLLM 1024 2.00E-06
128 16 4096 8 VLLM 2048 2.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 16 4096 8 VLLM 8192 8.00E-06

1024 16 4096 8 VLLM 16384 8.00E-06
2048 16 4096 8 VLLM 32768 1.60E-05
4096 16 4096 8 VLLM 65536 3.20E-05

Qwen3-1.7B-base

64 16 4096 8 VLLM 1024 2.00E-06
128 16 4096 8 VLLM 2048 2.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 16 4096 8 VLLM 8192 8.00E-06
1024 16 4096 8 VLLM 16384 8.00E-06
2048 16 4096 8 VLLM 32768 1.60E-05
4096 16 4096 8 VLLM 65536 3.20E-05

Llama3.2-3B-it

64 16 4096 8 VLLM 1024 2.00E-06
128 16 4096 8 VLLM 2048 2.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 16 4096 8 VLLM 8192 8.00E-06
1024 16 4096 8 VLLM 16384 8.00E-06
2048 16 4096 8 VLLM 32768 8.00E-06
4096 16 4096 8 VLLM 65536 1.20E-05

Qwen3-4B-base

32 32 4096 8 VLLM 1024 2.00E-06
256 32 4096 8 VLLM 8192 8.00E-06

2048 32 4096 8 VLLM 65536 3.20E-05
16 64 4096 8 VLLM 1024 2.00E-06

128 64 4096 8 VLLM 8192 8.00E-06
1024 64 4096 8 VLLM 65536 3.20E-05

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Complete List of Experiments for DeepScaleR
Model #Prompts (m) #Generations (n) Context Length Num Workers Engine Batch Size LR

Qwen3-8B-base

64 16 4096 8 VLLM 1024 1E-6/2E-6
128 16 4096 8 VLLM 2048 1E-6/2E-6/5E-6/1E-5/2E-5
256 16 4096 8 VLLM 4096 2E-6/4E-6/8E-6
512 16 4096 8 VLLM 8192 2E-6/4E-6/6E-6

1024 16 4096 8 VLLM 16384 4E-6/8E-6/1.2E-5/1.6E-5
2048 16 4096 8 VLLM 32768 8E-6/1.2E-5/1.6E-5
4096 16 4096 8 VLLM 65536 8E-6/1.2E-5/1.6E-5

Qwen3-4B-base

64 16 4096 8 VLLM 1024 2.00E-06
128 16 4096 8 VLLM 2048 2.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 16 4096 8 VLLM 8192 4.00E-06

1024 16 4096 8 VLLM 16384 8.00E-06
2048 16 4096 8 VLLM 32768 1.20E-05
4096 16 4096 8 VLLM 65536 1.20E-05

Qwen3-1.7B-base

64 16 4096 8 VLLM 1024 2.00E-06
128 16 4096 8 VLLM 2048 2.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 16 4096 8 VLLM 8192 4.00E-06
1024 16 4096 8 VLLM 16384 8.00E-06
2048 16 4096 8 VLLM 32768 1.20E-05
4096 16 4096 8 VLLM 65536 1.20E-05

Llama3.2-3B-it

64 16 4096 8 VLLM 1024 2.00E-06
128 16 4096 8 VLLM 2048 2.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 16 4096 8 VLLM 8192 4.00E-06
1024 16 4096 8 VLLM 16384 8.00E-06
2048 16 4096 8 VLLM 32768 8.00E-06
4096 16 4096 8 VLLM 65536 1.20E-05

Qwen3-4B-base

32 32 4096 8 VLLM 1024 2.00E-06
256 32 4096 8 VLLM 8192 4.00E-06

2048 32 4096 8 VLLM 65536 1.20E-05
16 64 4096 8 VLLM 1024 2.00E-06

128 64 4096 8 VLLM 8192 4.00E-06
1024 64 4096 8 VLLM 65536 1.20E-05

Qwen3-4B-base

64 16 8192 8 VLLM 1024 2.00E-06
128 16 8192 8 VLLM 2048 2.00E-06
256 16 8192 8 VLLM 4096 4.00E-06
512 16 8192 8 VLLM 8192 4.00E-06

1024 16 8192 8 VLLM 16384 8.00E-06
2048 16 8192 8 VLLM 32768 1.20E-05
4096 16 8192 8 VLLM 65536 1.20E-05

Qwen3-4B-base

16 16 4096 1 VLLM 256 1.00E-06
32 16 4096 1 VLLM 512 1.00E-06
64 16 4096 1 VLLM 1024 2.00E-06

128 16 4096 1 VLLM 2048 2.00E-06
256 16 4096 1 VLLM 4096 4.00E-06
512 16 4096 1 VLLM 8192 4.00E-06

1024 16 4096 1 VLLM 16384 8.00E-06

Qwen3-4B-base

16 16 4096 8 SGLang 256 1.00E-06
32 16 4096 8 SGLang 512 1.00E-06
64 16 4096 8 SGLang 1024 2.00E-06

128 16 4096 8 SGLang 2048 2.00E-06
256 16 4096 8 SGLang 4096 4.00E-06
512 16 4096 8 SGLang 8192 4.00E-06

1024 16 4096 8 SGLang 16384 8.00E-06
2048 16 4096 8 SGLang 32768 1.20E-05
4096 16 4096 8 SGLang 65536 1.20E-05

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Complete List of Experiments for DeepScaleR (cont.)
Model #Prompts (m) #Generations (n) Context Length Num Workers Engine Batch Size LR

Qwen3-4B-Base & p(x) = 0

32 128 4096 8 VLLM 4096 4.00E-06
64 64 4096 8 VLLM 4096 4.00E-06

128 32 4096 8 VLLM 4096 4.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 8 4096 8 VLLM 4096 4.00E-06

1024 4 4096 8 VLLM 4096 4.00E-06
2048 2 4096 8 VLLM 4096 4.00E-06

Qwen3-4B-Base & p(x) = 0.25

32 128 4096 8 VLLM 4096 4.00E-06
64 64 4096 8 VLLM 4096 4.00E-06

128 32 4096 8 VLLM 4096 4.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 8 4096 8 VLLM 4096 4.00E-06

1024 4 4096 8 VLLM 4096 4.00E-06
2048 2 4096 8 VLLM 4096 4.00E-06

Qwen3-4B-Base & p(x) = 0.5

32 128 4096 8 VLLM 4096 4.00E-06
64 64 4096 8 VLLM 4096 4.00E-06

128 32 4096 8 VLLM 4096 4.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 8 4096 8 VLLM 4096 4.00E-06

1024 4 4096 8 VLLM 4096 4.00E-06
2048 2 4096 8 VLLM 4096 4.00E-06

Qwen3-4B-Base & p(x) = 0.75

32 128 4096 8 VLLM 4096 4.00E-06
64 64 4096 8 VLLM 4096 4.00E-06

128 32 4096 8 VLLM 4096 4.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 8 4096 8 VLLM 4096 4.00E-06

1024 4 4096 8 VLLM 4096 4.00E-06
2048 2 4096 8 VLLM 4096 4.00E-06

Qwen3-4B-Base & p(x) = 1

32 128 4096 8 VLLM 4096 4.00E-06
64 64 4096 8 VLLM 4096 4.00E-06

128 32 4096 8 VLLM 4096 4.00E-06
256 16 4096 8 VLLM 4096 4.00E-06
512 8 4096 8 VLLM 4096 4.00E-06

1024 4 4096 8 VLLM 4096 4.00E-06
2048 2 4096 8 VLLM 4096 4.00E-06

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C PRELIMINARY INVESTIGATION COMPLETE RESULTS

C.1 COMPLETE RESULTS FOR SECTION 3.1

C.1.1 RESULTS WITH VARYING m

Qwen3-8B-Base & MATH

Qwen3-4B-Base & MATH

Qwen3-1.7B-Base & MATH

Llama3.2-3B-it & MATH

Figure 10: Results for all four models on MATH with n = 16. (Left / Middle) Training reward as
a function of training steps and wall-clock time. The legend indicates the batch configuration in
terms of (number of prompts m, generations per prompt n). (Right) Generation time per step and test
accuracy across different batch sizes. The dashed line represents the linear increase that intercepts
the origin and the generation time for the largest batch size. Both axes are in log scale.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Qwen3-8B-Base & DeepScaleR

Qwen3-4B-Base & DeepScaleR

Qwen3-1.7B-Base & DeepScaleR

Llama3.2-3B-it & DeepScaleR

Figure 11: Results for all four models on DeepScaleR with n = 16. (Left / Middle) Training reward
as a function of training steps and wall-clock time. The legend indicates the batch configuration in
terms of (number of prompts m, generations per prompt n). (Right) Generation time per step and test
accuracy across different batch sizes. The dashed line represents the linear increase that intercepts
the origin and the generation time for the largest batch size. Both axes are in log scale.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Detailed Results for Fig. 11.

Model m MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg.Avg@4 Avg@32 Avg@32 Avg@32

Qwen3-8B-Base

πref 70.2 34.3 29.8 49.1 15.8 8.8 34.7
4096 85.8 52.2 43.0 70.9 21.5 21.1 49.1
2048 85.2 53.4 43.9 66.6 26.4 21.5 49.5
1024 85.6 54.9 45.9 70.5 22.8 19.3 49.8
512 87.2 55.8 44.1 71.8 26.1 21.1 51.0
256 85.0 57.4 40.4 66.3 24.9 22.9 49.5
128 85.6 53.9 42.0 67.8 22.3 19.9 48.6
64 85.2 54.7 42.1 70.6 21.4 17.3 48.6

Qwen3-4B-Base

πref 65.8 34.4 26.9 47.3 10.9 7.1 32.1
4096 80.6 45.8 39.7 59.8 16.4 15.8 43.0
2048 83.2 48.4 39.2 57.0 16.0 15.9 43.3
1024 81.6 46.1 40.2 59.3 18.1 16.1 43.6
512 84.0 49.7 38.8 62.9 17.1 17.9 45.1
256 82.8 48.1 40.3 66.3 17.8 18.1 45.6
128 83.8 46.0 42.6 59.5 18.2 15.6 44.3
64 83.2 48.2 39.7 64.1 17.6 16.8 44.9

Qwen3-1.7B-Base

πref 57.0 23.9 21.8 29.0 3.8 1.1 22.8
4096 69.8 35.2 29.0 40.7 9.1 8.0 32.0
2048 70.2 34.3 31.2 42.0 12.2 6.2 32.7
1024 72.2 36.2 29.7 41.8 12.4 7.0 33.2
512 71.8 37.1 30.1 44.2 12.7 6.1 33.7
256 72.6 35.6 31.5 46.9 10.1 7.2 34.0
128 68.4 35.2 30.0 43.3 10.9 6.7 32.4
64 70.2 36.5 30.0 40.8 11.2 7.5 32.7

Llama3.2-3B-it

πref 42.8 12.3 13.8 19.7 4.6 0.4 15.6
4096 55.2 20.0 21.1 31.6 11.9 0.6 23.4
2048 55.8 19.3 21.2 30.9 13.8 0.9 23.6
1024 57.8 22.8 21.2 34.8 12.1 1.2 25.0
512 58.0 22.3 22.7 30.0 15.8 1.6 25.1
256 57.6 21.8 22.6 32.0 14.5 0.4 24.8
128 55.6 22.7 22.2 34.8 13.9 0.1 24.9
64 56.8 20.9 25.5 31.8 10.2 0.2 24.2

C.1.2 RESULTS WITH VARYING m AND n

Table 8: Detailed DeepScaleR Results for Fig. 12.

Model m n MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg.Avg@4 Avg@32 Avg@32 Avg@32

Qwen3-4B-Base

πref 65.8 34.4 26.9 47.3 10.9 7.1 32.1
32 32 80.4 47.5 37.4 57.4 17.5 14.4 42.4

256 32 83.2 49.1 38.6 63.4 17.3 16.0 44.6
2048 32 81.4 46.3 39.8 57.6 17.6 15.5 43.0

16 64 81.6 47.8 39.2 58.4 15.7 14.3 42.8
128 64 83.4 44.4 41.5 60.0 17.0 13.1 43.2

1024 64 80.8 48.7 39.2 57.0 16.4 13.8 42.6

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Qwen3-4B & MATH

Qwen3-4B & DeepScaleR

Figure 12: Results for Qwen3-4B on MATH and DeepScaleR with n = 32 and 64. (Left / Middle)
Training reward as a function of training steps and wall-clock time. The legend indicates the batch
configuration in terms of (number of prompts m, generations per prompt n). (Right) Generation time
per step and test accuracy across different batch sizes. The dashed line represents the linear increase
that intercepts the origin and the generation time for the largest batch size. Both axes are in log scale.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.1.3 RESULTS WITH A DIFFERENT CONTEXT LENGTH

Qwen3-4B & DeepScaleR

Figure 13: Results for Qwen3-4B on DeepScaleR with context length 8192 (other results are using
4096 context length). (Left / Middle) Training reward as a function of training steps and wall-clock
time. The legend indicates the batch configuration in terms of (number of prompts m, generations
per prompt n). (Right) Generation time per step and test accuracy across different batch sizes. The
dashed line represents the linear increase that intercepts the origin and the generation time for the
largest batch size. Both axes are in log scale.

Table 9: Detailed DeepScaleR Results for Fig. 13.

Model m Context Len. MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg.Avg@4 Avg@32 Avg@32 Avg@32

Qwen3-4B-Base

πref 65.8 34.4 26.9 47.3 10.9 7.1 32.1
64 8K 80.4 47.9 39.2 60.7 15.9 15.1 43.2

128 8K 83.0 50.6 38.4 62.3 14.2 16.4 44.1
256 8K 82.8 50.4 42.2 62.0 19.3 18.0 45.8
512 8K 81.2 49.6 41.0 65.3 17.0 12.5 44.4

1024 8K 80.8 46.6 39.7 63.7 16.6 18.9 44.4
2048 8K 77.6 44.4 37.5 54.5 14.2 14.6 40.5
4096 8K 79.8 45.3 38.9 58.4 14.7 13.8 41.8

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.1.4 RESULTS WITH A DIFFERENT HARDWARE CONFIGURATION

Qwen3-4B & DeepScaleR

Figure 14: Results for Qwen3-4B on DeepScaleR with only 1 rollout worker with 8 GPUs (other
results are using 8 rollout workers, 1 per GPU). (Left / Middle) Training reward as a function of
training steps and wall-clock time. The legend indicates the batch configuration in terms of (number
of prompts m, generations per prompt n). (Right) Generation time per step and test accuracy across
different batch sizes. The dashed line represents the linear increase that intercepts the origin and the
generation time for the largest batch size. Both axes are in log scale.

Table 10: Detailed DeepScaleR Results for Fig. 14.

Model m Num. Worker MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg.Avg@4 Avg@32 Avg@32 Avg@32

Qwen3-4B-Base

πref 65.8 34.4 26.9 47.3 10.9 7.1 32.1
16 1 78.4 47.2 39.2 58.0 15.3 12.4 41.7
32 1 81.8 47.0 39.0 61.3 17.1 14.9 43.5
64 1 83.6 49.4 40.6 58.7 15.9 16.4 44.1

128 1 82.4 48.7 39.2 62.7 17.2 15.7 44.3
256 1 82.8 49.6 38.6 62.6 18.9 17.5 45.0
512 1 81.6 47.6 40.7 62.1 17.7 15.5 44.2

1024 1 80.4 47.8 40.4 60.1 18.9 16.9 44.1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.1.5 RESULTS WITH A DIFFERENT INFERENCE ENGINE

Qwen3-4B & DeepScaleR

Figure 15: Results for Qwen3-4B on DeepScaleR with SGLang (other results are using VLLM). (Left
/ Middle) Training reward as a function of training steps and wall-clock time. The legend indicates the
batch configuration in terms of (number of prompts m, generations per prompt n). (Right) Generation
time per step and test accuracy across different batch sizes. The dashed line represents the linear
increase that intercepts the origin and the generation time for the largest batch size. Both axes are in
log scale.

Table 11: Detailed DeepScaleR Results for Fig. 15.

Model m Inference Eng. MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg.Avg@4 Avg@32 Avg@32 Avg@32

Qwen3-4B-Base

πref 65.8 34.4 26.9 47.3 10.9 7.1 32.1
16 SGLang 81.8 48.5 37.3 58.0 17.1 17.4 43.4
32 SGLang 81.2 49.9 40.0 60.9 17.0 14.9 44.0
64 SGLang 81.6 50.9 39.8 60.2 15.3 15.4 43.9

128 SGLang 84.0 48.8 39.7 62.9 15.2 17.1 44.6
256 SGLang 81.8 49.4 40.0 60.4 16.6 17.7 44.3
512 SGLang 82.2 50.3 40.9 63.2 17.0 15.2 44.8

1024 SGLang 81.2 51.3 41.0 62.9 16.8 16.1 44.9
2048 SGLang 81.2 46.0 40.6 61.0 17.3 14.4 43.4
4096 SGLang 82.0 47.8 39.8 61.9 16.2 13.8 43.6

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C.2 COMPLETE RESULTS FOR SECTION 3.2

0 25 50 75
0.3

0.4

0.5

0.6
Tr

ai
ni

ng
 R

ew
ar

d
(b

ef
or

e)

0 25 50 75
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
) m = 2048, n = 2

0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 25 50 75
0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 25 50 75
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
) m = 1024, n = 4

0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 50 100
0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
) m = 512, n = 8

0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 50 100
0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
) m = 256, n = 16

0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 50 100
0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
) m = 128, n = 32

0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 50 100
0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
) m = 64, n = 64

0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 50 100
Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 50 100
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
) m = 32, n = 128

0.0 0.25 0.5 0.75 1.0
Threshold (p(x))

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0.00

0.02

0.04

0.06

Av
g.

 G
ra

d
N

or
m

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.00

0.02

0.04

0.06

Av
g.

 G
ra

d
N

or
m

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.00

0.02

0.04

0.06

Av
g.

 G
ra

d
N

or
m

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.00

0.02

0.04

0.06

Av
g.

 G
ra

d
N

or
m

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.00

0.02

0.04

0.06

Av
g.

 G
ra

d
N

or
m

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.00

0.02

0.04

0.06

Av
g.

 G
ra

d
N

or
m

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.00

0.02

0.04

0.06

Av
g.

 G
ra

d
N

or
m

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

p(x) = 0.00 p(x) = 0.25 p(x) = 0.50 p(x) = 0.75 p(x) = 1.00

Figure 16: Results for Qwen3-4B on DeepScaleR with different p(x) under different decompositions,
grouped by number of prompts m and generations per prompt n. (Left) Training reward before
downsampling in terms of step. (Middle) Training reward after downsampling. (Right) Average
effective ratio, gradient norm, and test accuracy across different thresholds.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 20 40 60 80

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
)

p(x) = 0.00

21 22 23 24 25 26 270.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 20 40 60 80

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 R

ew
ar

d
(a

ft
er

)
p(x) = 0.25

21 22 23 24 25 26 270.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 20 40 60 80

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
)

p(x) = 0.50

21 22 23 24 25 26 270.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 20 40 60 80

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
)

p(x) = 0.75

21 22 23 24 25 26 270.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0 25 50 75 100
Steps

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 R
ew

ar
d

(b
ef

or
e)

0 25 50 75 100
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d

(a
ft

er
)

p(x) = 1.00

21 22 23 24 25 26 27

Number of Generations (n)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 E
ff

ec
tiv

e
R

at
io

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

0.40

0.42

0.44

0.46

Av
g.

 T
es

t A
cc

ur
ac

y

(2048, 2) (1024, 4) (512, 8) (256, 16) (128, 32) (64, 64) (32, 128)

Figure 17: Results for Qwen3-4B on DeepScaleR with different p(x) under different decompositions
(number of prompts m, generations per prompt n), grouped by p(x). (Left) Training reward before
downsampling in terms of step. (Middle) Training reward after downsampling. (Right) Average
effective ratio, gradient norm, and test accuracy across different thresholds.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 12: Detailed DeepScaleR Results for Fig. 16 and 17.

p(x) m n MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg.Avg@4 Avg@32 Avg@32 Avg@32

/ πref 65.8 34.4 26.9 47.3 10.9 7.1 32.1

0

2048 2 82.8 44.8 39.4 54.3 15.3 13.4 41.7
1024 4 81.8 44.7 38.4 54.8 17.1 14.5 41.9
512 8 82.6 48.1 40.0 57.5 14.7 14.4 42.9
256 16 83.4 46.6 39.4 58.0 16.7 14.9 43.2
128 32 79.8 45.1 38.1 59.4 18.2 16.9 42.9
64 64 83.4 47.3 40.7 59.3 15.4 13.6 43.3
32 128 81.0 49.1 38.5 54.8 17.7 16.2 42.9

0.25

2048 2 80.6 46.9 39.4 58.3 15.5 11.1 42.0
1024 4 84.2 48.2 39.9 61.6 16.6 16.5 44.5
512 8 81.8 49.3 40.1 61.2 20.7 15.5 44.8
256 16 82.8 47.0 38.5 63.2 19.6 19.3 45.1
128 32 81.0 50.1 40.1 63.0 21.6 14.4 45.0
64 64 83.4 49.1 41.6 58.8 19.1 17.8 45.0
32 128 84.0 49.1 40.0 61.9 19.5 19.0 45.6

0.5

2048 2 83.2 50.7 40.0 60.9 19.2 19.7 45.6
1024 4 81.4 53.7 40.5 63.7 17.2 17.3 45.6
512 8 84.2 50.1 40.3 64.6 21.5 16.1 46.1
256 16 82.8 49.7 41.5 62.4 19.5 19.3 45.9
128 32 84.4 51.8 39.8 64.4 20.1 15.7 46.0
64 64 83.6 48.8 39.4 61.9 19.9 16.8 45.1
32 128 81.6 45.7 40.8 62.0 20.1 16.9 44.5

0.75

2048 2 81.0 48.7 39.0 56.6 17.5 14.6 42.9
1024 4 82.0 49.7 38.6 58.3 16.5 14.5 43.3
512 8 81.6 47.6 40.6 60.9 16.6 18.2 44.3
256 16 81.4 46.1 39.1 64.0 17.2 14.2 43.7
128 32 81.6 50.0 40.3 63.6 15.0 15.9 44.4
64 64 81.0 50.0 41.1 61.9 15.1 17.6 44.4
32 128 82.0 49.3 40.6 62.0 17.7 17.1 44.8

1

2048 2 78.6 46.6 41.6 55.8 14.3 10.6 41.3
1024 4 80.8 48.8 38.3 60.2 16.7 14.0 43.1
512 8 82.4 45.7 39.9 59.0 18.8 16.7 43.7
256 16 82.0 46.7 40.6 58.8 18.4 15.5 43.7
128 32 81.4 48.2 39.3 57.6 17.0 15.2 43.1
64 64 81.2 46.9 40.7 56.8 18.8 14.1 43.1
32 128 82.4 45.5 39.7 62.9 16.6 18.6 44.3

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D CONNECTION BETWEEN p(x) AND GRADIENT MAGNITUDE

We now analyze the squared norm of the gradient in Eq. (6):

∣∣∇θJx(θ)∣∣2 = ∣∣Ey∼πθ(⋅∣x)[A(x, y)∇θ logπθ(y∣x)]∣∣2. (11)

Using Jensen inequality, we have:

∣∣Ey∼πθ(⋅∣x)[A(x, y)∇θ logπθ(y∣x)]∣∣2 ≤ Ey∼πθ(⋅∣x)[∣∣A(x, y)∇θ logπθ(y∣x)∣∣2] (12)

= Ey∼πθ(⋅∣x)[∣A(x, y)∣ ∣∣∇θ logπθ(y∣x)∣∣2]. (13)

Apply Cauchy-Schwarz:

Ey∼πθ(⋅∣x)[∣A(x, y)∣ ∣∣∇θ logπθ(y∣x)∣∣2] ≤
√

Ey∼πθ(⋅∣x)[A(x, y)
2]

√

Ey∼πθ(⋅∣x)[∣∣∇θ logπθ(y∣x)∣∣22].

(14)

Now let’s derive for Ey∼πθ(⋅∣x)[A(x, y)
2]:

Ey∼πθ(⋅∣x)[A(x, y)
2
] = Ey∼πθ(⋅∣x)[(r(x, y) − pπθ

(x))2] (15)

= pπθ
(x)(1 − pπθ

(x))2 + (1 − pπθ
(x))(0 − pπθ

(x))2 (16)
= pπθ

(x)(1 − pπθ
(x)) (17)

which is maximized at pπθ
(x) = 1

2
. Therefore, intermediate-level prompts yield the largest expected

magnitude of advantage and upper bound on gradient updates. These observations motivate a prompt
curriculum strategy that prioritizes prompts with intermediate difficulty (pπθ

(x) = 1
2

) to enhance
training efficiency.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

E.1 BASELINES ALGORITHMS

We list the pseudo-code for GRPO, Pre-filter, DS, and SPEED. For the pseudo-code of GRESO,
please refer to Zheng et al. (2025).

Algorithm 2 GRPO
Require: Number of prompts m, generations per prompt n

1: Initialize policy π0

2: for t = 0 to T − 1 do
3: Sample a batch with m prompts: Dm = {x

i}mi=1 ⊂ D.
4: Generate n responses: Dm = {(x

i,{yi,j}nj=1)}
m

i=1 where yi,j
iid
∼ πt(⋅ ∣ x

i).
5: Update to πt+1 with GRPO objective using Dm.
6: end for

Algorithm 3 Pre-filter
Require: Number of prompts m, generations per prompt n, pre-filter generations npre, thresholds

plow and phigh
1: Initialize policy π0

2: Generate npre responses for each prompt in the dataset: {yj}npre

j=1 ∼ π0(⋅∣x) for each x ∈ D
3: Filter to keep prompts with accuracy between plow and phigh:

D ← {x ∈ D ∣ plow <
1

npre

npre

∑
j=1

r(x, yj) < phigh}

4: for t = 0 to T − 1 do
5: Sample a batch with m prompts: Dm = {x

i}mi=1 ⊂ D.
6: Generate n responses: Dm = {(x

i,{yi,j}nj=1)}
m

i=1 where yi,j
iid
∼ πt(⋅ ∣ x

i).
7: Update to πt+1 with GRPO objective using Dm.
8: end for

Algorithm 4 Dynamic-sampling (DS)
Require: Number of prompts m, generations per prompt n, sampling parameter k

1: Initialize policy π0, Dbuffer ← ∅

2: for t = 0 to T − 1 do
3: while ∣Dbuffer∣ <m do
4: Sample a batch with km prompts: Dkm = {x

i}kmi=1 ⊂ D.

5: Generate n responses: Dkm = {(x
i,{yi,j}nj=1)}

km

i=1 where yi,j
iid
∼ πt(⋅ ∣ x

i)

6: Select prompts with mean reward between 0 and 1:

Dbuffer ← Dbuffer ∪ {(x,{y
j
}
n
j=1) ∈ Dkm ∣ 0 <

1

n

n

∑
j=1

r(x, yj) < 1}

7: end while
8: Sample a batch with m prompts: Dm = {(x

i,{yi,j}nj=1)}
m

i=1 ⊂ Dbuffer.
9: Dbuffer ← ∅

10: Update to πt+1 with GRPO objective using Dm.
11: end for

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 5 SPEED
Require: Number of prompts m, generations per prompt n, sampling parameter k, screening number

of responses ninit (n ≥ ninit)
1: Initialize policy π0, Dbuffer ← ∅, Daccepted ← ∅

2: for t = 0 to T − 1 do
3: while ∣Dbuffer∣ <m do
4: Sample a batch with km prompts: Dkm = {x

i}kmi=1 ⊂ D.
5: Generate ninit times for Dkm and n − ninit times for Daccepted:

Dkm = {(x
i,{yi,j}ninit

j=1)}
km

i=1 where yi,j
iid
∼ πt(⋅ ∣ x

i)

Daccepted ← Daccepted ∪ {(x
i,{yi,j}n−ninit

j=1)}
∣Daccepted∣
i=1 where yi,j

iid
∼ πt(⋅ ∣ x

i).
6: Add Daccepted to Dbuffer: Dbuffer ← Dbuffer ∪Daccepted
7: Select prompts with mean reward between 0 and 1 and add to Daccepted:

Daccepted ← {(x,{y
j
}
ninit

j=1) ∈ Dkm ∣ 0 <
1

ninit

ninit

∑
j=1

r(x, yj) < 1}

8: end while
9: Sample a batch with m prompts: Dm = {(x

i,{yi,j}nj=1)}
m

i=1 ⊂ Dbuffer.
10: Dbuffer ← Dbuffer ∖Dm

11: Update to πt+1 with GRPO objective using Dm.
12: end for

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E.2 DATASET, MODEL, REWARD, EVALUATION DETAILS

We adopt the exact same setting in our preliminary investigation. Refer to Appendix B for details on
datasets, models, rewards, and evaluations.

E.3 HYPERPARAMETERS

We list the hyperparameters for each method below. We tune the sample batch size / sampling
parameter for DS, SPEED, GRESO, and PCL with the bolded one as the best one. For PCL, we
always use the same-sized model as the value model for the main results. The learning rate of the
value model in PCL is tuned within {1e − 6,3e − 6,1e − 5}. All learning rates make the value
model converge to the same performance but larger learning rates are more unstable than the smaller
one. Therefore, we pick 1e-6 as the learning rate for the value model. We also tune the sampling
parameter k from {2,4,8} and observe that it has a minor effect on the accuracy of the value model.
Larger values of k lead to higher effective ratios, as the filtering becomes more aggressive. However,
increasing k beyond 4 yields only marginal improvements in the effective ratio. Therefore, we set
k = 4 for all experiments on PCL. An ablation on the value model size is included in Appendix G.

Dataset Method Parameters
MATH GRPO m = 512 n = 16

lr = 8e − 6

DeepScaleR GRPO m = 512 n = 16
lr = 4e − 6

MATH Pre-filter m = 512 n = 16
lr = 8e − 6 npre = 16
plow = 0 phigh = 1

DeepScaleR Pre-filter m = 512 n = 16
lr = 4e − 6 npre = 16
plow = 0 phigh = 1

MATH DS m = 512 n = 16
lr = 8e − 6 k = 1/2/4

DeepScaleR DS m = 512 n = 16
lr = 4e − 6 k = 1/2/4

MATH SPEED m = 512 n = 16
lr = 8e − 6 k = 1/2/4
ninit = 4/8

DeepScaleR SPEED m = 512 n = 16
lr = 4e − 6 k = 1/2/4
ninit = 4/8

MATH GRESO m = 512 n = 16
lr = 8e − 6 Bdefault

r = 768/1024
peasy = 0.5 phard = 0.5
αeasy = 0.083 αhard = 0.167
∆p = 0.01

DeepScaleR GRESO m = 512 n = 16
lr = 4e − 6 Bdefault

r = 768/1024
peasy = 0.5 phard = 0.5
αeasy = 0.083 αhard = 0.167
∆p = 0.01

MATH PCL m = 512 n = 16
lr = 8e − 6 lrcritic = 1e-6/3e-6/1e-5
τ = 0.5 k = 2/4/8

DeepScaleR PCL m = 512 n = 16
lr = 4e − 6 lrcritic = 1e-6/3e-6/1e-5
τ = 0.5 k = 2/4/8

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F COMPLETE EXPERIMENT RESULTS

Table 13 shows the full results on DeepScaleR. PCL consistently achieves either the highest final
accuracy or substantially reduced wall-clock time at comparable accuracy. We summarizes the results
on DeepScaleR below, comparing PCL with the best or the second best method for each model in
terms of test accuracy:

• Qwen3-8B-Base: PCL is the top-performing method and converges in 41.8 hours, compared
to 69.5 hours for DS, which also achieves lower average accuracy. PCL converges 39.8%
faster.

• Qwen3-4B-Base: PCL achieves 45.7 test accuracy and converges in 32.8 hours, compared
to 45.8 accuracy and 40.1 hours for DS. PCL therefore converges 18.2% faster while
maintaining similar performance.

• Qwen3-1.7B-Base: PCL is again the best-performing method and converges in 23.3 hours,
whereas Pre-filter requires 44.2 hours and yields lower average accuracy. PCL converges
47.3% faster.

• Llama3.2-3B-it: PCL reaches 26.5 accuracy in 28.7 hours, compared to 26.7 accuracy in
40.6 hours for DS, achieving similar accuracy with 29.3% faster convergence.

The consistent 1.3 to 2× reductions in convergence time are practically impactful in real RL pipelines
where rollouts are the dominant cost.

Table 13: Full Results on DeepScaleR. For each metric, the best-performing method is highlighted
in bold, and the second-best is underlined. Time is the sum of training and generation time of the
checkpoint that achieves the best average performance (excluding validation / checkpointing) in
hours.

DeepScaleR Method MATH500 Olymp. Minerva AMC23 AIME24 AIME25 Avg. TimeAvg@4 Avg@32 Avg@32 Avg@32

Qwen3-8B-Base

πref 70.2 34.3 29.8 49.1 15.8 8.8 34.7 /
GRPO 87.2 57.9 45.3 70.1 25.3 22.7 51.4 43.0

Pre-filter 86.4 54.6 44.2 69.8 26.9 22.6 50.7 67.4
DS 87.2 55.3 45.7 71.5 24.9 24.2 51.5 69.5

SPEED 82.4 46.4 40.3 66.6 21.1 15.7 45.5 19.3
PCL 88.4 56.2 46.8 71.2 25.2 23.9 52.0 41.8

Qwen3-4B-Base

πref 65.8 34.4 26.9 47.3 10.9 7.1 32.1 /
GRPO 83.4 51.0 40.1 60.7 16.1 20.7 45.3 45.5

Pre-filter 83.4 47.8 40.0 60.2 18.8 16.2 44.4 39.0
DS 83.2 51.6 41.2 62.4 18.5 18.0 45.8 40.1

SPEED 79.4 45.4 38.3 60.3 15.7 14.5 42.3 10.7
PCL 83.0 50.6 40.9 60.8 19.4 19.4 45.7 32.8

Qwen3-1.7B-Base

πref 57.0 23.9 21.8 29.0 3.8 1.1 22.8 /
GRPO 72.4 37.7 31.2 44.9 11.2 6.7 34.0 46.2

Pre-filter 74.0 36.5 32.6 45.6 11.7 7.8 34.7 44.2
DS 73.2 36.9 31.9 42.7 10.8 7.7 33.9 41.7

SPEED 73.0 34.4 30.2 37.2 9.2 7.1 31.8 22.7
PCL 74.4 35.6 31.5 46.3 12.5 9.2 34.9 23.3

Llama3.2-3B-it

πref 42.8 12.3 13.8 19.7 4.6 0.4 15.6 /
GRPO 55.2 23.1 22.6 40.0 13.3 0.0 25.7 47.5

Pre-filter 56.8 24.5 23.3 35.5 16.5 0.7 26.2 44.8
DS 57.2 23.3 24.1 37.1 17.5 1.0 26.7 40.6

SPEED 51.4 20.2 20.1 32.0 10.6 0.8 22.5 3.86
PCL 58.8 23.9 24.0 35.2 15.0 2.1 26.5 28.7

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

G VALUE MODEL SIZE ABLATION

We ablate the value model used in PCL across three different model sizes, with results on explained
variance of the value prediction shown in Figure 18. Similar to Section 5, we use the average reward
of 16 generations for each prompt as the ground-truth p(x). Overall, larger value models exhibit
faster convergence compared to smaller ones. On the MATH dataset, all three value models eventually
converge to similar performance levels. However, on the larger DeepScaleR dataset, we observe a
substantial gap after 100 training steps: the smaller value model significantly underperforms relative
to its larger counterparts.

We hypothesize that the smaller value model may require more training steps to reach comparable
accuracy and that, given sufficient time, all models could eventually converge to a similar point.
Nonetheless, this result highlights the benefit of larger value models in the early stages of training,
especially on large-scale datasets. In addition, 4B value model performs similarly to a 8B model.
This suggests that the size of the value model does not need to scale proportionally with the policy.
While we have not tested larger policies due to resource constraints, we expect diminishing returns
from larger value models.

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
 V

ar
ia

nc
e

- M
AT

H

: Qwen3-1.7B-Base

V: Qwen3-1.7B-Base
V: Qwen3-4B-Base
V: Qwen3-8B-Base

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0
: Qwen3-4B-Base

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0
: Qwen3-8B-Base

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

la
in

ed
 V

ar
ia

nc
e

- D
ee

pS
ca

le
R

: Qwen3-1.7B-Base

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0
: Qwen3-4B-Base

0 25 50 75 100
Step

0.2

0.0

0.2

0.4

0.6

0.8

1.0
: Qwen3-8B-Base

Figure 18: Explained variance on MATH and DeepScaleR with different combinations of Qwen3
base models (1.7B / 4B / 8B) for policy (π) and the value model (V).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

H STOCHASTIC BATCH SELECTION

In this section, we provide an ablation on using stochastic batch selection instead of greedy selection
around threhold τ . Since the reward is binary, we sample from a Beta distribution whose support
naturally lies in [0,1]. We set α = β for the Beta distribution and ablate α and β from 2 to 10, higher
values indicate more focus on 0.5 difficulty prompts. From our experiments, greedy sampling and
sampling based on Beta distribution perform similarly when α and β are large. However, using
smaller values of α and β, which spread the probability mass more broadly, actually degrades
convergence, likely because it focuses less on 0.5 difficulty prompts. The results are detailed below
for Llama3.2-3B-it on MATH dataset.

Table 14: Results on MATH with Llama3.2-3B-it under different (α,β) settings. Time is the sum of
training and generation time of the checkpoint that achieves the best average performance (excluding
validation/checkpointing) in hours.

α β MATH500 Time

2 2 56.4 10.8
5 5 56.2 15.9

10 10 57.2 15.6
greedy 57.8 14.3

We therefore adopt greedy top-m selection based on threshold τ , which is simple without additional
hyperparameters, and already delivers strong performance.

I TRAINING TIME BREAKDOWN

Table 15: Breakdown of per-step policy and value training/inference time in seconds, averaged over
the full training run, when training Qwen3-8B-Base on MATH with three different sized value models
(Qwen3-8B-Base, Qwen3-4B-Base, Qwen3-1.7B-Base).

Value Model Generation Value Computation Policy Update Value Update

Qwen3-8B-Base 573 2.99 769 20.5
Qwen3-4B-Base 567 2.11 763 12.4
Qwen3-1.7B-Base 582 1.16 760 8.03

For reasoning tasks, the prompt is typically much shorter than the response, which significantly
reduces value model compute and memory compared to policy updates. We include a detailed
breakdown of the time per step when training Qwen3-8B-Base on MATH with three different sized
value models (Qwen3-8B-Base, Qwen3-4B-Base, Qwen3-1.7B-Base). The results are shown in
Table 15. Value computation time takes less than 1% of the generation time, and value model update
time takes less than 3% of the time to update the policy.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

J LIMITATIONS

While PCL demonstrates strong empirical performance across a range of models and datasets, our
study has several limitations that open avenues for future work.

Purely on-policy setting. Our experiments are conducted entirely in a purely on-policy RL setting,
where new generations are sampled after each policy update. While this simplifies the analysis and
avoids additional hyperparameters (e.g., clipping), it may reduce the generalization to more complex
training pipelines that leverage off-policy data or replay buffers.

Focus on synchronous setting. Our preliminary investigation and PCL are evaluated in a syn-
chronous training setup where data generation and policy updates are alternated step-by-step. How-
ever, many large-scale RL pipelines for LLMs adopt asynchronous architectures for better through-
put (Wu et al., 2025; Fu et al., 2025). Extending our analysis and PCL to asynchronous settings may
require more sophisticated value model training and prompt selection strategies to handle stale or
partially updated policies.

Relatively short context lengths. We limit our experiments to a maximum context length of 4,096
tokens due to compute constraints. While this setting is sufficient for the datasets used (e.g., MATH,
DeepScaleR), real-world LLM deployments often involve much longer contexts. From our analysis,
for longer context length, the batch size that transitions from sub-linear to linear generation time is
larger. Future work could explore the interplay between prompt difficulty, batch decomposition, and
context length in long-context regimes.

Limited training horizon. Our experiments are constrained to relatively short training runs (e.g., 2–3
days), which may not fully capture long-term convergence behavior, especially for larger models and
datasets. Although we observe strong early-stage performance, it remains an open question whether
our analysis in Section 3 would generalize to much longer training runs.

Limited task diversity. Our current evaluation is restricted to mathematical reasoning benchmarks,
which provide a clean and controlled environment for studying curriculum mechanisms but do not
capture the full breadth of real-world LLM applications. In particular, extending PCL to domains
such as code generation would require compiling and executing test cases during reward computation,
substantially increasing runtime and compute cost. Due to limited computational resources, we were
unable to include such experiments. We view applying PCL to a broader set of tasks, including
coding, multi-step tool use, and open-ended dialogue, as an important direction for future work that
would further validate and potentially refine the proposed curriculum framework.

39

	Introduction
	Problem Setup
	Preliminary Investigations
	Optimal Batch Size
	Optimal Number of Prompts and Generations per Prompt

	PCL: Prompt Curriculum Learning
	Experiments
	Convergence Comparison
	Analysis & Ablation

	Related Work
	Discussions & Conclusion
	Appendix
	Problem Setup Details
	Preliminary Investigation Details
	Dataset Details
	Model Details
	Reward Details
	Evaluation Details
	Complete List of Experiments

	Preliminary Investigation Complete Results
	Complete Results for Section 3.1
	Results with varying m
	Results with varying m and n
	Results with a different context length
	Results with a different hardware configuration
	Results with a different inference engine

	Complete Results for Section 3.2

	Connection between p theta(x) and Gradient Magnitude
	Experiment Details
	Baselines Algorithms
	Dataset, Model, Reward, Evaluation Details
	Hyperparameters

	Complete Experiment Results
	Value Model Size Ablation
	Stochastic Batch Selection
	Training Time Breakdown
	Limitations

