
Shared Adversarial Unlearning: Backdoor Mitigation
by Unlearning Shared Adversarial Examples

Shaokui Wei1 Mingda Zhang1 Hongyuan Zha1,2 Baoyuan Wu1∗
1School of Data Science,

The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), China
2Shenzhen Institute of Artificial Intelligence and Robotics for Society, China

Abstract

Backdoor attacks are serious security threats to machine learning models where an
adversary can inject poisoned samples into the training set, causing a backdoored
model which predicts poisoned samples with particular triggers to particular target
classes, while behaving normally on benign samples. In this paper, we explore the
task of purifying a backdoored model using a small clean dataset. By establishing
the connection between backdoor risk and adversarial risk, we derive a novel
upper bound for backdoor risk, which mainly captures the risk on the shared
adversarial examples (SAEs) between the backdoored model and the purified
model. This upper bound further suggests a novel bi-level optimization problem for
mitigating backdoor using adversarial training techniques. To solve it, we propose
Shared Adversarial Unlearning (SAU). Specifically, SAU first generates SAEs, and
then, unlearns the generated SAEs such that they are either correctly classified by
the purified model and/or differently classified by the two models, such that the
backdoor effect in the backdoored model will be mitigated in the purified model.
Experiments on various benchmark datasets and network architectures show that
our proposed method achieves state-of-the-art performance for backdoor defense.
The code is available at https://github.com/SCLBD/BackdoorBench (PyTorch) and
https://github.com/shawkui/MindTrojan (MindSpore).

1 Introduction

Recent decades have witnessed a growing application of deep neural network (DNN) techniques
in various domains, such as face recognition, autonomous driving, and medical image processing
[1, 17, 32, 44]. However, DNNs are known to be vulnerable to malicious attacks that can compromise
their security and reliability. One of the emerging threats is the backdoor attack, where an attacker
attempts to inject stealthy backdoor into a DNN model by manipulating a small portion of the training
data such that the poisoned model will behave normally for clean inputs while misclassifying any
input with the trigger pattern to a target label. Since the poisoned models can have real-world
consequences, such as allowing an attacker to gain unauthorized access to a system or to cause
physical harm, it is crucial to develop effective methods for backdoor defense in developing and
deploying DNNs.

Adversarial training (AT) is one of the most effective methods for improving the robustness of DNNs
[33]. AT is typically formulated as a min-max optimization problem, where the inner maximization
aims to find adversarial perturbations that fool the model, while the outer minimization is to reduce
the adversarial risk. Recently, several works have explored the use of AT for defending against
backdoor attacks. However, these works face some limitations and challenges. Weng et al. [52] and

∗Corresponds to Baoyuan Wu (wubaoyuan@cuhk.edu.cn).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/SCLBD/BackdoorBench
https://github.com/shawkui/MindTrojan
mailto:wubaoyuan@cuhk.edu.cn

Gao et al. [13] found that AT can only be effective for mitigating backdoor attacks with certain trigger
patterns and may even increase the vulnerability to backdoor attacks when training from scratch on
poisoned datasets. Zeng et al. [59] proposed to unlearn the universal adversarial perturbation (UAP)
to remove backdoors from poisoned models. Since directly unlearning UAP leads to highly unstable
performance for mitigating backdoors, they employ implicit hyper gradient to solve the min-max
problem and achieve remarkable performance. However, their method assumes that the same trigger
can activate the backdoor regardless of the samples it is planted on, and therefore lacks a guarantee
against more advanced attacks that use sample-specific and/or non-additive triggers.

In this paper, we consider the problem of purifying a poisoned model. After investigating the
relationship between adversarial examples and poisoned samples, a new upper bound for backdoor
risk to the fine-tuned model is proposed. Specifically, by categorizing adversarial examples into
three types, we show that the backdoor risk mainly depends on the shared adversarial examples that
mislead both the fine-tuned model and the poisoned model to the same class. Shared adversarial
examples suggest a novel upper bound for backdoor risk, which combines the shared adversarial risk
and vanilla adversarial risk. Besides, the proposed bound can be extended with minor modifications
to universal adversarial perturbation and targeted adversarial perturbation. Based on the new bound,
we propose a bi-level formulation to fine-tune the poisoned model and mitigate the backdoor. To
solve the bi-level problem, we proposed Shared Adversarial Unlearning (SAU). SAU first identifies
the adversarial examples shared by the poisoned model and the fine-tuned model. Then, to break
the connection between poisoned samples and the target label, the shared adversarial examples
are unlearned such that they are either classified correctly by the fine-tuned model or differently
by the two models. Moreover, our method can be naturally extended to defend against backdoor
attacks with multiple triggers and/or multiple targets. To evaluate our method, we compare it with
six state-of-the-art (SOTA) defense methods on seven SOTA backdoor attacks with different model
structures and datasets. Experimental results show that our method achieves comparable and even
superior performance to all the baselines.

Our contributions are three folds: 1) We analyze the relationship between adversarial examples and
poisoned samples, and derive a novel upper bound for the backdoor risk that can be generalized
to various adversarial training-based methods for backdoor defense; 2) We formulate a bi-level
optimization problem for mitigating backdoor attacks in poisoned models based on the derived bound,
and propose an efficient method to solve it; 3) We conduct extensive experiments to evaluate the
effectiveness of our method, and compare it with six state-of-the-art defense methods on seven
challenging backdoor attacks with different model structures and datasets.

2 Related work

Backdoor attack. Backdoor attack is one of the major challenges to the security of DNNs. The
poisoned model behaves normally on clean inputs but produces the target output when the trigger
pattern is present. Based on the types of triggers, backdoor attacks can be classified into two
types: fixed-pattern backdoor attacks and sample-specific backdoor attacks. BadNets [15] is the first
backdoor attack that uses fixed corner white blocks as triggers. To improve the stealth of the triggers,
Blended [7] is proposed to blend the trigger with the image in a weighted way. Since fixed-pattern
triggers can be recognized easily, sample-specific backdoor attacks have been proposed. SSBA [30],
WaNet [38], LF [58], IRBA [12], VSSC [49] and TAT [8] use different techniques to inject unique
triggers for different samples from different angles. Sleeper-agent [42] and Lira [9] optimize the
target output to obtain more subtle triggers. Recently, Zhu et al. [67] proposed a learnable poisoning
sample selection strategy to further boost the effect of backdoor attacks. To keep the label of the
backdoor image matching the image content, LC [40] and SIG [2] use counterfactual and other
methods to modify the image to deploy clean label attacks.

Backdoor defense. Backdoor defense aims to reduce the impact of backdoor attacks on deep neural
networks (DNNs) through training and other means. There are three types of backdoor defense:
pre-processing, in-processing, and post-processing. Pre-processing backdoor defense aims to identify
the poisoned samples in the training dataset. For instance, AC [5] filters out the poisoned samples by
the abnormal activation clustering phenomenon in the target class; Confusion Training [39] identifies
the poisoned samples by training a poisoned model that only fits the poisoned samples; VDC [68]
incorporates multimodal large language models to detect the poisoned samples. In-processing

2

backdoor defense reduces the effect of the backdoor during training. For instance, ABL [27] exploits
the fact that the learning speed of backdoor samples is faster than that of the clean sample, and splits
some poisoned samples to eliminate the backdoor by forgetting these poisoned samples; DBD [19]
divides the backdoor training process and directly inhibits the backdoor learning process; D-ST [6]
splits the backdoor samples and uses semi-supervised learning by observing that the clean samples are
more robust to image transformation than the backdoor samples. Post-processing backdoor defense
mitigates the effect of backdoors for a poisoned model by pruning or fine-tuning. For example, FP
[31] prunes some potential backdoor neurons and fine-tunes the model to eliminate the backdoor
effect; ANP [55] finds the backdoor neurons by adversarial perturbation to model weights; EP [64]
and CLP [63] distinguish the characteristics of the backdoor neurons from the clean neurons; NAD
[28] uses a mild poisoned model to guide the training of the poisoned model to obtain a cleaner
model; I-BAU [59] finds possible backdoor triggers by the universal adversarial attack and unlearn
these triggers to purify the model; FT-SAM [65] boosts the performance of fine-tuning for backdoor
mitigation by incorporating sharpness-aware minimization; NPD [66] learns a lightweight linear
transformation layer by solving a well designed bi-level optimization problem to defend against
backdoor attack.

Adversarial training. In adversarial training, models are imposed to learn the adversarial examples
in the training stage and therefore, resistant to adversarial attacks in the inference stage. In one of
the earliest works [14], the adversarial examples are generated using Fast Gradient Sign Method. In
[33], PGD-AT is proposed, which generates adversarial examples by running FGSM multiple steps
with projection and has become the most widely used baseline for adversarial training. Some further
improvements of PGD-AT include initialization improvement [21, 23], attack strategy improvement
[22], and efficiency improvement [53, 62].

3 Methodology

In Section 3.1, we first introduce notations, threat model, and defense goal to formulate the problem.
By investigating the relationship between adversarial risk and backdoor risk, a new upper bound of
backdoor risk is derived in Section 3.2, from which a bi-level formulation is proposed in Section 3.3.

3.1 Preliminary

Notations. We consider a K-class (K ≥ 2) classification problem that aims to predict the label
y ∈ Y of a given sample x ∈ X , where Y = [1, · · · ,K] is the set of labels and X is the space of
samples. Let hθ : X → Y be a DNN classifier with model parameter θ. We use D to denote the set
of data (x, y). For simplicity, we use x ∈ D as a abbreviation for (x, y) ∈ D. Then, for a sample
x ∈ D, its predicted label is

hθ(x) = argmax
k=1,··· ,K

pk(x;θ), (1)

where pk(x;θ) is the (softmax) probability of x belonging to class k.

Threat model. Let V be the set of triggers and define g : X × V → X as the generating function
for poisoned samples. Then, given a trigger ∆ ∈ V and a sample x ∈ X , one can generate a poisoned
sample g(x; ∆). For simplicity, we only consider all to one case, i.e., there is only one trigger ∆ and
one target label ŷ. The all to all case and multi-trigger case are left in Appendix A. We assume that
the attacker has access to manipulate the dataset and/or control the training process such that the
trained model classifies the samples with pre-defined trigger ∆ to the target labels ŷ while classifying
clean samples normally. In addition, we define the poisoning ratio as the proportion of poisoned
samples in the training dataset.

Defense goal. We consider a scenario where a defender is given a poisoned model with parameter
θbd and a small set of clean data Dcl = {(xi, yi)}Ni=1. Since we are mainly interested in samples
whose labels are not the target label, we further define the set of non-target samples as D−ŷ =
{(x, y)|(x, y) ∈ Dcl, y ̸= ŷ}. Note that the size of Dcl is small and the defender cannot train a new
model from scratch using only Dcl. The defender’s goal is to purify the model so that the clean
performance is maintained and the backdoor effect is removed or mitigated. We assume that the
defender cannot access the trigger ∆ or the target label ŷ.

3

Problem formulation. Using the 0-1 loss [50, 60], the classification risk Rcl and the backdoor
risk Rbd with respect to classifier hθ on Dcl can be defined as:

Rcl(hθ) =
1

N

N∑
i=1

I(hθ(xi) ̸= yi), Rbd(hθ) =

∑N
i=1 I(hθ(g(xi,∆)) = ŷ,xi ∈ D−ŷ)

|D−ŷ|
(2)

where I is the indicator function and | · | denotes the cardinality of a set.

In (2), the classification risk concerns whether a clean sample is correctly classified, while the
backdoor risk measures the risk of classifying a poisoned sample from D−ŷ to target class ŷ.

In this paper, we consider the following problem for purifying a poisoned model:

min
θ

Rcl(hθ) + λRbd(hθ), (3)

where λ is a hyper-parameter to control the tradeoff between classification risk and backdoor risk.

However, directly solving (3) is impractical due to the lack of the trigger ∆ and target label ŷ.
Therefore, a natural choice is to replace Rbd with a surrogate risk irrelevant to ∆ and ŷ.

3.2 Connection between backdoor risk and adversarial risk

To tackle the above problem, we propose a novel upper bound of backdoor risk which can be relaxed
to a surrogate of Rbd that is independent of ∆ and ŷ. Before that, we first decompose the adversarial
risk and review the connection between backdoor risk and adversarial risk.

Adversarial risk. Given a sample x and an adversarial perturbation ϵ ∈ S , an adversarial example
x̃ϵ can be generated by x̃ϵ = x+ϵ, where S is the set of perturbations. We define the set of adversarial
example-label pair to hθ generated by perturbation ϵ and dataset Dcl by Aϵ,θ = {(x̃ϵ, y)|hθ(x̃ϵ) ̸=
y, (x, y) ∈ Dcl} and abbreviate (x̃ϵ, y) ∈ Aϵ,θ by x̃ϵ ∈ Aϵ,θ. Then, the vanilla adversarial risk for
hθ on D−ŷ can be defined as

Radv(hθ) =

∑N
i=1 maxϵi∈S I(x̃i,ϵi ∈ Aϵi,θ,xi ∈ D−ŷ)

|D−ŷ|
. (4)

To bridge the adversarial examples and poison samples, we provide the following assumption:
Assumption 1. Assume that g(x; ∆)− x ∈ S for ∀x ∈ Dcl.

Assumption 1 ensures that there exists ϵ ∈ S such that x+ ϵ = g(x; ∆). Note that the analysis and
the proposed method are independent of any specific types of perturbation. More discussions
about the choice of S and its influence on the proposed method are discussed in Appendix B.4.

Then, we reach the first upper bound of backdoor risk:
Proposition 1. Under Assumption 1, Radv serves as an upper bound of Rbd, i.e., Rbd ≤ Radv .

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Pe
rc

en
ta

ge Risk Gap:96.41%

Accuracy
Backdoor Risk
Adversarial Risk

Figure 1: Example of purifying poisoned model
using adversarial training on Tiny ImageNet [26].
The curves for Accuracy, Backdoor Risk, and Ad-
versarial Risk are indicated by Green, Orange, and
Purple, respectively.

Remark. Although Radv seems to be a
promising surrogate for Rbd, it neglects some
essential connections between adversarial exam-
ples and poisoned samples, resulting in a signif-
icant gap between adversarial risk and backdoor
risk, as shown in Figure 1. Such a gap also
leads to a fluctuating learning curve for back-
door risk and a significant drop in accuracy in
the backdoor mitigation process by adversar-
ial training. Therefore, we seek to construct a
tighter upper bound for Rbd. A key insight is
that not all adversarial examples contribute to
backdoor mitigation.

To further identify AEs important for mitigating
backdoors, we leverage the information from
the poisoned model to categorize the adversarial examples to hθ into three types, as shown in Table 1.

4

Table 1: Different types of adversarial examples to hθ.

Type Description Definition

I Mislead hθ and hθbd
to the same class hθbd

(x̃ϵ) = hθ(x̃ϵ) ̸= y
II Mislead hθ, but not mislead hθbd

hθbd
(x̃ϵ) ̸= hθ(x̃ϵ), hθbd

(x̃ϵ) = y
III Mislead hθ and hθbd

to different classes hθbd
(x̃ϵ) ̸= hθ(x̃ϵ), hθbd

(x̃ϵ) ̸= y, hθ(x̃ϵ) ̸= y

Figure 2: A schematic of the relationship between adversarial examples, shared adversarial examples
(SAEs, Type I) and poisoned samples. The adversarial examples for hθbd

and hθ are shown in the
blue and green solid ellipses, respectively. The poisoned samples are in the black dashed circle.
Assume that hθbd

and hθ have 100% backdoor attack success rates in the left, such that all poisoned
samples are contained in SAEs. Thus, by reducing the shared adversarial examples between hθbd

and
hθ (from left to right), the backdoor risk can be mitigated in hθ.

Furthermore, we refer adversarial examples of Type I as the shared adversarial examples between hθ

and hθbd
, as defined below:

Definition 1 (Shared Adversarial Example). Given two classifiers hθ1
and hθ2

, an adversarial
example x̃ϵ is shared between hθ1

and hθ2
if and only if hθ1

(x̃ϵ) = hθ2
(x̃ϵ) ̸= y.

Table 2: Table of notations.
Notation Description/Definition

hθbd
Poisoned model

hθ Purified model
∆ Trigger
ŷ Target label
g(x,∆) Poisoned sample generated from x
S Set of perturbations
ϵ Perturbation
x̃ϵ Adversarial example, x+ ϵ
Dcl {(xi, yi)}Ni=1
D−ŷ {(x, y)|(x, y) ∈ Dcl, y ̸= ŷ}
Ds {(x, y)|hθbd

(g(x; ∆)) = ŷ,x ∈ D−ŷ}
Aϵ,θ {(x̃ϵ, y)|hθ(x̃ϵ) ̸= y, (x, y) ∈ Dcl}

Let Ds be the subset of samples in D−ŷ on
which planting a trigger can successfully ac-
tivate the backdoor in hθbd

, as summarized
in Table 2. As illustrated in Figure 2, the
following proposition reveals a deeper con-
nection between adversarial examples and
poisoned samples.
Proposition 2. For ∀(x, y) ∈ Ds, the poi-
soned sample g(x; ∆) can attack hθ if and
only if hθ(g(x; ∆)) = hθbd

(g(x; ∆)) ̸= y.
Furthermore, under Assumption 1, the poi-
soned sample g(x; ∆) is a shared adversar-
ial example between hθ and hθbd

, if it can
attack hθ.

Then, the adversarial risk Radv can be decomposed to three components as below:

Radv(hθ) =
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Ds)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)︸ ︷︷ ︸
Type I adversarial examples on Ds

+ I(xi ∈ Ds)I(hθ(x̃i,ϵi) ̸= hθbd
(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)︸ ︷︷ ︸

Type II or III adversarial examples on Ds

+ I(xi ∈ D−ŷ \ Ds, x̃i,ϵi ∈ Aϵi,θ)︸ ︷︷ ︸
vanilla adversarial examples on D−ŷ\Ds

}
.

(5)

Proposition 2 implies that the first component in (5) is essential for backdoor mitigation, as it captures
the risk of shared adversarial examples between the poisoned model hθbd

and the fine-tuned model
hθ, and the poisoned samples effective for hθ belong to SAEs. The second component is irrelevant

5

for backdoor mitigation, since adversarial examples of Type II and III are either not poisoned samples
or ineffective to backdoor attack against hθ. The third component protects the samples that are
originally resistant to triggers from being backdoor attacked in the mitigation process.

Thus, by removing the second component in (5), we propose the following sub-adversarial risk

Rsub(hθ) =
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Ds)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)

+ I(xi ∈ D−ŷ \ Ds, x̃i,ϵi ∈ Aϵi,θ)
}
.

(6)

Compared to vanilla adversarial risk Radv, the proposed sub-adversarial risk Rsub focuses on the
shared adversarial examples for samples in Ds while considering vanilla adversarial examples for
samples in D−ŷ \ Ds. When Ds = D−ŷ , i.e., hθbd

has backdoor risk 100%, the sub-adversarial risk
measures the shared adversarial risk on D−ŷ .

Then, we provide the following proposition to establish the relation between backdoor risk and (sub)
adversarial risk:

Proposition 3. Under Assumption 1, for a classifier hθ, the following inequalities hold

Rbd(hθ) ≤ Rsub(hθ) ≤ Radv(hθ).

Therefore, Rsub is a tighter upper bound for Rbd compared with Radv. After replacing Rbd with
Rsub in (3), we reach the following optimization problem:

min
θ

Rcl(hθ) + λRsub(hθ). (7)

Due to the space limit, the proofs of the above propositions, as well as some detailed discussions and
extensions will be provided in Appendix A.

3.3 Proposed method

Since the target label ŷ is unavailable and 0-1 loss is non-differentiable, we first discuss the relaxation
of Rsub and then replace 0-1 loss with suitable surrogate loss functions in this section.

Relaxation. One limitation of Rsub is the inaccessibility of Ds, i.e., the subset of samples in D−ŷ

on which planting a trigger can successfully activate the backdoor in hθbd
. Since a poisoned model

usually has a high attack success rate (ASR), the first relaxation is replacing Ds with D−ŷ , i.e.,

Rsub(hθ) ≈
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ D−ŷ)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)
}
.

Since ŷ is unavailable, we also replace D−ŷ by Dcl in the sub-adversarial risk. As g(x; ∆) is not
malicious for classification if the ground truth label of x is ŷ, this relaxation has negligible negative
influence for mitigating backdoor risk. After the above two relaxations, we reach the following shared
adversarial risk on Dcl:

Rshare(hθ) =
1

N

N∑
i=1

max
ϵi∈S

{
I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)
}
.

Due to the space limit, we postpone the detailed discussion of the above two relaxations (e.g., the
relaxation gaps) in Appendix A.7.

By replacing Rsub with Rshare in (7), we reach the following problem:

min
θ

Rcl(hθ) + λRshare(hθ). (8)

By solving (8), we seek hθ that either classifies the adversarial examples correctly (i.e., hθ(x̃ϵ) = y),
or differently with hθbd

(i.e., hθ(x̃ϵ) ̸= hθbd
(x̃ϵ)), while maintaining a high accuracy on Dcl.

6

Approximation. We firstly need to approximate two indicators in (8), including: 1) I(hθ(x) ̸= y);
2) I(x̃ϵ ∈ Aϵ,θ, hθ(x̃ϵ) = hθbd

(x̃ϵ)). The former indicator is for the clean accuracy, so we use the
widely used cross-entropy (CE) loss as the surrogate loss, i.e., Lcl(x, y;θ) = CE(p(x;θ), y). In
terms of the latter indicator that measures the shared adversarial risk, different surrogate losses could
be employed for different usages:

• To generate shared adversarial examples, we first decompose the second indicator as below:

I(x̃ϵ ∈ Aϵ,θ ∩ Aϵ,θbd
)I(hθ(x̃ϵ) = hθbd

(x̃ϵ)), (9)

which covers two components standing for fooling hθbd
and hθ simultaneously, and keeping the

same predicted label for hθbd
and hθ, respectively.

For the first component, we use CE on both hθ and hθbd
as a surrogate loss, i.e.,

Ladv(x̃ϵ, y;θ) =
1

2
(CE(p(x̃ϵ;θ), y) + CE(p(x̃ϵ;θbd), y)) . (10)

For the second component, we measure the distance between p(x̃i,ϵi ;θ) and p(x̃ϵ;θbd) by Jensen-
Shannon divergence [11] and adopt the following surrogate loss:

Lshare(x̃ϵ, y;θ) = −JS(p(x̃ϵ;θ),p(x̃ϵ;θbd)). (11)

• To unlearn the shared adversarial examples, we adopt the following surrogate loss

Lsar(x̃ϵ, y;θ) = −I (ỹ ̸= y) log (1− pỹ(x̃ϵ;θ)) , (12)

where ỹ = hθbd
(x̃ϵ). By reducing Lsar, the prediction of x̃ϵ by hθ , i.e., hθ(x̃ϵ) is forced to differ

from hθbd
(x̃ϵ) if hθbd

(x̃ϵ) ̸= y, therefore, reducing the shared adversarial risk (SAR).

Overall objective. By combining all the above surrogate losses with the linear weighted summation
mode, we propose the following bi-level objective:

min
θ

1

N

N∑
i=1

{
λ1Lcl(xi, yi;θ) + λ2Lsar(x̃i,ϵ∗i

, yi;θ)
}

s.t. ϵ∗i = argmax
ϵi∈S

λ3Ladv(x̃i,ϵi , yi;θ) + λ4Lshare(x̃i,ϵi , yi;θ), i = 1, . . . , N,

(13)

where λ1, λ2, λ3, λ4 ≥ 0 indicate trade-off weights.

Optimization algorithm. We propose an optimization algorithm called Shared Adversarial
Unlearning (SAU, Algorithm 1), which solves (13) by alternatively updating θ, and ϵ∗. Specifically,
the model parameter θ is updated using stochastic gradient descent [3], and the perturbation ϵ∗ is
generated by projected gradient descent [33].

Algorithm 1 Shared Adversarial Unlearning
Input: Training set Dcl, poisoned model hθbd

, PGD step size η > 0, number of PGD steps Tadv,
perturbation set S, max iteration number T .
Initialize hθ = hθbd

.
for t = 0, ..., T − 1 do

for Each mini-batch in Dcl do
Initialize perturbation ϵ.
for tadv = 0, ..., Tadv − 1 do

Compute gradient g of ϵ w.r.t. the inner maximization objective in (13).
Update ϵ =

∏
S(ϵ+ η sign(g)) where

∏
is the projection operation.

end for
Update θ w.r.t. the outer minimization objective in (13).

end for
end for

7

4 Experiment

4.1 Experiment settings

Backdoor attack. We compare SAU with 7 popular state-of-the-art (SOTA) backdoor attacks,
including BadNets [15], Blended backdoor attack (Blended) [7], input-aware dynamic backdoor
attack (Input-Aware)[37], low frequency attack (LF) [58], sinusoidal signal backdoor attack (SIG)
[2], sample-specific backdoor attack (SSBA) [30], and warping-based poisoned networks (WaNet)
[38]. To make a fair and trustworthy comparison, we use the implementation and configuration from
BackdoorBench [54], a comprehensive benchmark for backdoor evaluation. By default, the poisoning
ratio is set to 10% in all attacks, and the 0th label is set to be the target label. We evaluate all the
attacks on 3 benchmark datasets, CIFAR-10 [24], Tiny ImageNet [26], and GTSRB [43] using two
networks: PreAct-ResNet18 [18] and VGG19 [41]. Due to space constraints, the results for GTSRB
and VGG19 are postponed to Appendix D. Note that for clean label attack SIG, the 10% poisoning
ratio can only be implemented for CIFAR-10. More attack details are left in Appendix C.

Backdoor defense. We compare our method with 6 SOTA backdoor defense methods: ANP [55],
Fine-pruning (FP) [31], NAD [28], NC [47], EP [64] and i-BAU [59]. By default, all the defense
methods can access 5% benign training data. We follow the recommended configurations for SOTA
defenses as in BackdoorBench [54]. For our method, we choose to generate the shared adversarial
example with Projected Gradient Descent (PGD) [33] with L∞ norm. For all experiments, we run
PGD 5 steps with norm bound 0.2 and we set λ1 = λ2 = λ4 = 1 and λ3 = 0.01. More details about
defense settings and additional experiments can be found in Appendix C and D.

Evaluation metric. We use four metrics to evaluate the performance of each defense method:
Accuracy on benign data (ACC), Attack Success Rate (ASR), Robust Accuracy (R-ACC) and
Defense Effectiveness Rating (DER). R-ACC measures the proportion of the poisoned samples
classified to their true label, and ASR measures the proportion of poisoned samples misclassified to
the target label. Larger R-ACC and lower ASR indicate that the backdoor is effectively mitigated.
Note that the samples for the target class are excluded when computing the ASR and R-ACC as done
in BackdoorBench. DER ∈ [0, 1] was proposed in [65] to evaluate the cost of ACC for reducing ASR.
It is defined as follows:

DER = [max(0,∆ASR)−max(0,∆ACC) + 1]/2, (14)
where ∆ASR denotes the drop in ASR after applying defense, and ∆ACC represents the drop in
ACC after applying defense.

Note: Higher ACC, lower ASR, higher R-ACC and higher DER represent better defense performance.
We use boldface and underline to indicate the best and the second-best results among all defense
methods, respectively, in later experimental results.

4.2 Main results

Effectiveness of SAU. To verify the effectiveness of SAU, we first summarize the experimental
results on CIFAR-10 and Tiny ImageNet in Tables 3 and 4, respectively. As shown in Tables 3-4,
SAU can mitigate backdoor for almost all attacks with a significantly lower average ASR. For the
experiments on CIFAR-10, SAU achieves the top-2 lowest ASR in 4 of 7 attacks and very low ASR
for the other 3 attacks. Similarly, SAU performs the lowest ASR in 3 attacks for Tiny ImageNet and
negligible ASR in two of the other attacks. Notably, SAU fails to mitigate WaNet in Tiny ImageNet,
although it can defend against WaNet on CIFAR-10. As a transformation-based attack that applies
image transforms to construct poisoned samples, WaNet can generate triggers with a large L∞ norm.
Specifically, WaNet has average L∞ trigger norm 0.348 on TinyImageNet and 0.172 on CIFAR-10.
Note that for all experiments, we generate adversarial perturbation with L∞ norm less than 0.2.
The large trigger norm of WaNet on Tiny ImageNet poses a challenge for AT-based methods such
as i-BAU and the proposed one, which reveals an important weakness of such methods, i.e., their
performance may be degraded if the trigger is beyond the perturbation set. A promising approach
for this challenge is to consider adversarial examples for the union of multiple perturbation types
[34, 45] and we postpone more discussion to Appendix B.

As maintaining clean accuracy is also important for an effective backdoor defense method, we also
compare SAU with other baselines in terms of ACC, R-ACC and DER in Table 3 and 4. As SAU

8

Table 3: Results on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 10%.

Defense No Defense ANP [55] FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 91.32 95.03 4.67 N/A 90.88 4.88 87.22 94.86 91.31 57.13 41.62 68.95 89.05 1.27 89.16 95.75
Blended [7] 93.47 99.92 0.08 N/A 92.97 84.88 13.36 57.27 93.17 99.26 0.73 50.18 93.47 99.92 0.08 50.00

Input-Aware [37] 90.67 98.26 1.66 N/A 91.04 1.32 86.71 98.47 91.74 0.04 44.54 99.11 92.61 0.76 90.87 98.75
LF [58] 93.19 99.28 0.71 N/A 92.64 39.99 55.03 79.37 92.90 98.97 1.02 50.01 91.62 1.41 87.48 98.15
SIG [2] 84.48 98.27 1.72 N/A 83.36 36.42 43.67 80.36 89.10 26.20 20.61 86.03 84.48 98.27 1.72 50.00

SSBA [30] 92.88 97.86 1.99 N/A 92.62 60.17 36.69 68.71 92.54 83.50 15.36 57.01 90.99 0.58 87.04 97.69
WaNet [38] 91.25 89.73 9.76 N/A 91.33 2.22 88.54 93.76 91.46 1.09 69.73 94.32 91.80 7.53 85.09 91.10

Average 91.04 96.91 2.94 N/A 90.69 32.84 58.75 81.83 91.75 52.31 27.66 72.23 90.57 29.96 63.06 83.06

Defense NAD [28] EP [64] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 89.87 2.14 88.71 95.72 89.66 1.88 89.51 95.75 89.15 1.21 88.88 95.83 89.31 1.53 88.81 95.74
Blended [7] 92.17 97.69 2.14 50.47 92.43 52.13 37.52 73.37 88.66 13.99 53.23 90.56 90.96 6.14 64.89 95.63

Input-Aware [37] 93.18 1.68 91.12 98.29 89.86 2.23 85.20 97.61 90.29 63.36 32.70 67.26 91.59 1.27 88.54 98.49
LF [58] 92.37 47.83 47.49 75.31 91.82 85.98 12.77 55.97 89.09 21.83 64.37 86.67 90.32 4.18 81.54 96.12
SIG [2] 90.02 10.66 64.20 93.81 83.1 0.26 56.68 98.32 85.85 1.28 55.19 98.49 88.56 1.67 57.96 98.30

SSBA [30] 91.91 77.4 20.86 59.74 92.33 10.67 78.60 93.32 88.15 2.17 77.28 95.48 90.84 1.79 85.83 97.01
WaNet [38] 93.17 22.98 72.69 83.38 90.09 86.64 12.54 50.96 90.91 3.37 89.10 93.01 91.26 1.02 90.28 94.36

Average 91.81 37.2 55.32 79.53 89.9 34.26 53.26 80.76 88.87 15.32 65.82 89.61 90.41 2.51 79.69 96.52

Table 4: Results on Tiny ImageNet with PreAct-ResNet18 and poisoning ratio 10%.

Defense No Defense ANP [55] FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 56.23 100.0 0.0 N/A 43.45 0.00 43.13 93.61 51.73 99.99 0.01 47.76 51.52 0.10 50.82 97.59
Blended [7] 56.03 99.71 0.22 N/A 43.93 6.11 17.28 90.75 51.89 95.94 2.1 49.81 52.55 93.21 3.96 51.51

Input-Aware [37] 57.45 98.85 1.06 N/A 35.39 0.00 11.82 88.40 55.28 62.92 24.7 66.88 56.20 0.09 52.19 98.76
LF [58] 55.97 98.57 0.97 N/A 45.69 62.30 14.49 63.00 51.44 95.25 2.42 49.4 52.99 85.56 8.07 55.02

SSBA [30] 55.22 97.71 1.68 N/A 43.36 56.53 17.24 64.66 50.47 88.87 6.26 52.04 52.47 53.47 23.17 70.75
WaNet [38] 56.78 99.49 0.36 N/A 36.16 0.07 31.97 89.40 53.84 3.94 2.38 96.3 53.33 0.23 51.63 97.90

Average 56.28 99.06 0.72 N/A 41.33 20.83 22.66 77.12 52.44 74.48 6.31 58.88 53.18 38.78 31.64 74.50

Defense NAD [28] EP [64] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 46.37 0.27 45.61 94.93 52.30 0.03 52.05 98.02 52.67 98.31 1.59 49.06 51.52 0.53 51.15 97.38
Blended [7] 46.89 94.99 2.63 47.79 51.86 56.03 12.31 69.75 52.73 92.96 4.15 51.72 50.30 0.06 25.27 96.96

Input-Aware [37] 47.91 1.86 43.13 93.73 57.23 0.24 24.74 99.20 50.63 56.12 24.86 67.96 54.11 0.33 42.29 97.59
LF [58] 45.45 50.49 20.21 68.78 53.33 75.41 13.06 60.26 52.77 88.04 6.82 53.67 52.65 0.97 35.87 97.14

SSBA [30] 45.32 57.32 19.44 65.25 48.13 44.07 21.98 73.27 52.52 74.77 14.31 60.12 51.85 0.11 36.36 97.11
WaNet [38] 46.98 0.43 43.99 94.63 56.21 0.23 55.13 99.34 54.40 94.86 3.92 51.12 54.65 85.75 10.35 55.80

Average 46.49 34.23 29.17 73.59 53.18 29.33 29.88 78.55 52.62 84.18 9.28 54.81 52.51 14.62 33.55 84.57

adopts adversarial examples to mitigate backdoors, it has negative effects on clean accuracy, resulting
in a slightly lower clean accuracy compared to the best one. However, SAU achieves the best average
R-ACC, which demonstrates its effectiveness in recovering the prediction of poisoned samples,
i.e., classifying the poisoned samples correctly. Besides, the best average DER indicates that SAU
achieves a significantly better tradeoff between clean accuracy and backdoor risk.

Influence of poisoning ratio. To study the influence of the poisoning ratio on the effectiveness of
SAU, we test SAU with varying poisoning ratios from 10% to 50%. As shown in Table 5, SAU is
still able to achieve remarkable performance even if half of the data is poisoned.

Table 5: Results on CIFAR-10 with PreAct-ResNet18 and different poisoning ratios.

Poisoning Ratio 10% 20% 30% 40% 50%

Attack Metric No Defence Ours No Defence Ours No Defence Ours No Defence Ours No Defence Ours

BadNets [15] ACC 91.82 89.05 90.17 89.27 88.32 88.49 86.16 87.30 83.61 86.93
ASR 93.79 1.53 96.12 1.17 97.33 1.72 97.78 1.72 98.39 2.31

Blended [7] ACC 93.69 90.96 93.00 91.02 92.78 89.49 91.64 89.64 91.26 88.92
ASR 99.76 6.14 99.92 7.99 99.98 11.58 99.96 5.36 100.00 4.63

LF [58] ACC 93.01 90.32 92.60 91.33 92.01 89.65 92.03 89.09 90.91 89.02
ASR 99.06 4.18 99.54 1.90 99.76 2.02 99.84 1.94 99.89 1.77

9

4.3 Ablation Study

In this section, we conduct ablation study to investigate each component of SAU. Specifically, SAU
is composed of two parts: generating shared adversarial examples according to the maximization
objective in (13) denoted by A, and reducing shared adversarial risk according to the minimization
objective in (13), denote by B. To study the effect of these parts, we replace them with the correspond-
ing part in vanilla adversarial training, denoted by C and D, respectively. Then, we run each variant
20 epochs on Tiny ImageNet with PreAct-ResNet18 and a poisoning ratio 10%. Each experiment is
repeated five times, and the error bar is only shown in Figure 3 for simplicity.

Table 6: Results on Tiny ImageNet with differ-
ent variants of SAU and Vanilla AT.

Attack BadNets Blended LF

Defense ACC ASR ACC ASR ACC ASR

A+B (Ours) 50.60 0.27 51.47 1.02 51.31 0.72

A+D 37.21 0.30 38.35 1.77 36.68 0.17

C+B 53.05 28.57 53.16 69.22 52.57 68.65

C+D (Vanilla AT) 46.66 2.48 46.39 38.03 46.69 13.68

As shown in Table 6, the maximization objective
for generating shared adversarial examples (compo-
nent A) is the key to reducing ASR, and component
B can help to alleviate the hurt to clean accuracy.
When replacing the component B with the mini-
mization step in vanilla AT (D), it suffers from a
drop of clean accuracy, although it can also work
for mitigating backdoor effectively. Compared to
vanilla AT, SAU achieves significantly lower ASR
and higher ACC, with a much more stable learning
curve, as shown in Figure 3. We remark that the decrease of clean accuracy for A+D and vanilla AT
demonstrates that imposing a model to learn overwhelming adversarial examples may severely hurt
the clean accuracy, a phenomenon widely studied in the area of adversarial training [46, 60].

0 2 4 6 8 10 12 14 16 18 20
Epochs

0

20

40

60

80

100

Pe
rc

en
ta

ge

BadNets

Defense A+B (Ours) A+D C+B C+D (Vanilla AT) Metric ACC ASR

0 2 4 6 8 10 12 14 16 18 20
Epochs

0

20

40

60

80

100
Blended

0 2 4 6 8 10 12 14 16 18 20
Epochs

0

20

40

60

80

100
LF

Figure 3: Learn curves for SAU, Vanilla AT and their variants, averaged over five runs.

5 Conclusion

In conclusion, this paper proposes Shared Adversarial Unlearning, a method to defend against
backdoor attacks in deep neural networks through adversarial training techniques. By developing
a better understanding of the connection between adversarial examples and poisoned samples, we
propose a novel upper bound for backdoor risk and a bi-level formulation for mitigating backdoor
attacks in poisoned models. Our approach identifies shared adversarial examples and unlearns
them to break the connection between the poisoned sample and the target label. We demonstrate
the effectiveness of our proposed method through extensive experiments, showing that it achieves
comparable to, and even superior, performance than six different state-of-the-art defense methods
on seven SOTA backdoor attacks with different model structures and datasets. Our work provides
a valuable contribution to the field of backdoor defense in deep neural networks, with potential
applications in various domains.

Limitation and future work. One important direction for future work, and a current challenge, is
the accessibility of clean samples. A valuable approach to this challenge is to consider the samples
from other domains and the generated samples.

Structure of Appendix. The detailed proof, analysis, and extension of propositions are given
in Appendix A. Some important discussions such as the computation cost, the scalability, and
the generalization ability of the proposed method are provided in Appendix B. The details of the
experiments are provided in Appendix C. Additional experiments on different settings such as model
structures, poisoning ratios, and sizes of clean datasets are given in Appendix D.

10

Acknowledgments and Disclosure of Funding

This work is supported by the National Natural Science Foundation of China under grant No.
62076213, Shenzhen Science and Technology Program under grant No. RCYX20210609103057050,
No. GXWD20201231105722002-20200901175001001, and No. ZDSYS20211021111415025, and
No. JCYJ20210324120011032 and the CAAI-Huawei MindSpore Open Fund, and the Guangdong
Provincial Key Laboratory of Big Data Computing, the Chinese University of Hong Kong, Shenzhen.

11

References
[1] Insaf Adjabi, Abdeldjalil Ouahabi, Amir Benzaoui, and Abdelmalik Taleb-Ahmed. Past, present,

and future of face recognition: A review. Electronics, 9(8):1188, 2020. 1

[2] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training
set corruption without label poisoning. In ICIP 2019, pages 101–105. IEEE, 2019. 2, 8, 9, 26,
27, 28, 30, 31, 32, 33, 34

[3] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In NeurIPS 2007,
volume 20, 2007. 7

[4] Shuwen Chai and Jinghui Chen. One-shot neural backdoor erasing via adversarial weight
masking. In NeurIPS 2022, 2022. 17

[5] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. In Workshop on Artificial Intelligence Safety. CEUR-WS, 2019. 2

[6] Weixin Chen, Baoyuan Wu, and Haoqian Wang. Effective backdoor defense by exploiting
sensitivity of poisoned samples. In NeurIPS 2022, volume 35, pages 9727–9737, 2022. 3

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv e-prints, pages arXiv–1712, 2017. 2, 8, 9,
26, 28, 29, 30, 31, 32, 33

[8] Ziyi Cheng, Baoyuan Wu, Zhenya Zhang, and Jianjun Zhao. Tat: Targeted backdoor attacks
against visual object tracking. Pattern Recognition, 142:109629, 2023. 2

[9] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In ICCV 2021, pages 11946–11956, 2021. 2

[10] Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao Xiao, Hang Su, and Jun Zhu.
Black-box detection of backdoor attacks with limited information and data. In ICCV 2021,
pages 16482–16491, 2021. 17

[11] Bent Fuglede and Flemming Topsoe. Jensen-shannon divergence and hilbert space embedding.
In ISIT 2004, page 31. IEEE, 2004. 7

[12] Kuofeng Gao, Jiawang Bai, Baoyuan Wu, Mengxi Ya, and Shu-Tao Xia. Imperceptible and
robust backdoor attack in 3d point cloud. arXiv preprint arXiv:2208.08052, 2022. 2

[13] Yinghua Gao, Dongxian Wu, Jingfeng Zhang, Guanhao Gan, Shu-Tao Xia, Gang Niu, and
Masashi Sugiyama. On the effectiveness of adversarial training against backdoor attacks. IEEE
Transactions on Neural Networks and Learning Systems, 2023. 2, 22, 23, 24, 27

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In ICLR 2015, 2015. 3

[15] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating
backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019. 2, 8, 9, 23,
24, 26, 28, 29, 30, 31, 32, 33, 34

[16] Junfeng Guo, Ang Li, and Cong Liu. AEVA: Black-box backdoor detection using adversarial
extreme value analysis. In ICLR 2022, 2022. 17

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR 2016, pages 770–778, 2016. 1

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV 2016, pages 630–645. Springer, 2016. 8

[19] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via
decoupling the training process. In ICLR 2022. OpenReview.net, 2022. 3

12

[20] Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest
neighbors against data poisoning and backdoor attacks. In AAAI 2022, volume 36, pages
9575–9583, 2022. 22

[21] Xiaojun Jia, Yong Zhang, Xingxing Wei, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun
Cao. Prior-guided adversarial initialization for fast adversarial training. In ECCV 2022, pages
567–584, 2022. 3

[22] Xiaojun Jia, Yong Zhang, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao. LAS-AT:
adversarial training with learnable attack strategy. In CVPR 2022, pages 13388–13398, 2022. 3

[23] Xiaojun Jia, Yong Zhang, Baoyuan Wu, Jue Wang, and Xiaochun Cao. Boosting fast adversarial
training with learnable adversarial initialization. IEEE Transactions on Image Processing, 31:
4417–4430, 2022. 3

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 8

[25] Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense
against unseen threat models. In ICLR 2021, 2021. 23

[26] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015. 4, 8

[27] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor
learning: Training clean models on poisoned data. In NeurIPS 2021, pages 14900–14912, 2021.
3

[28] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural at-
tention distillation: Erasing backdoor triggers from deep neural networks. In ICLR 2021.
OpenReview.net, 2021. 3, 8, 9, 21, 25, 26, 27, 28, 29, 30, 31, 33

[29] Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang.
Reconstructive neuron pruning for backdoor defense. In ICML 2023, 2023. 32, 33, 34

[30] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In ICCV 2021, pages 16463–16472, 2021. 2, 8, 9, 23, 24,
27, 28, 29, 30, 31, 32, 33

[31] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In RAID 2018, pages 273–294. Springer, 2018.
3, 8, 9, 21, 25, 27, 28, 29, 30, 31, 33

[32] Liangkai Liu, Sidi Lu, Ren Zhong, Baofu Wu, Yongtao Yao, Qingyang Zhang, and Weisong
Shi. Computing systems for autonomous driving: State of the art and challenges. IEEE Internet
of Things Journal, 8(8):6469–6486, 2020. 1

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR 2018, 2018. 1, 3, 7, 8, 27

[34] Pratyush Maini, Xinyun Chen, Bo Li, and Dawn Song. Perturbation type categorization for
multiple adversarial perturbation robustness. In UAI 2022, pages 1317–1327. PMLR, 2022. 8

[35] Bingxu Mu, Zhenxing Niu, Le Wang, Xue Wang, Qiguang Miao, Rong Jin, and Gang Hua.
Progressive backdoor erasing via connecting backdoor and adversarial attacks. In CVPR 2023,
pages 20495–20503, 2023. 22, 27

[36] Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework:
Good online learners are good offline generalizers. In ICLR 2021, 2021. 25

[37] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. In NeurIPS 2020,
2020. 8, 9, 26, 28, 29, 30, 31

[38] Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack.
In ICLR 2021. OpenReview.net, 2021. 2, 8, 9, 23, 24, 27, 28, 29, 30, 31, 32, 33

13

[39] Xiangyu Qi, Tinghao Xie, Jiachen T Wang, Tong Wu, Saeed Mahloujifar, and Prateek Mittal.
Towards a proactive {ML} approach for detecting backdoor poison samples. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 1685–1702, 2023. 2

[40] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Du-
mitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks. In NeurIPS 2018, volume 31, 2018. 2

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR 2015, 2015. 8, 28

[42] Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper
agent: Scalable hidden trigger backdoors for neural networks trained from scratch. In NeurIPS
2022, volume 35, pages 19165–19178, 2022. 2

[43] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic
sign recognition benchmark: a multi-class classification competition. In IJCNN 2011, pages
1453–1460. IEEE, 2011. 8

[44] J-Donald Tournier, Robert Smith, David Raffelt, Rami Tabbara, Thijs Dhollander, Maximilian
Pietsch, Daan Christiaens, Ben Jeurissen, Chun-Hung Yeh, and Alan Connelly. Mrtrix3: A
fast, flexible and open software framework for medical image processing and visualisation.
Neuroimage, 202:116137, 2019. 1

[45] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations.
In NeurIPS 2019, volume 32, pages 5858–5868, 2019. 8

[46] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In ICLR 2019, 2019. 10

[47] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In 2019 IEEE Symposium on Security and Privacy, pages 707–723. IEEE, 2019. 8, 9, 21, 25,
27, 28, 29, 30, 31, 33

[48] Haotao Wang, Aston Zhang, Shuai Zheng, Xingjian Shi, Mu Li, and Zhangyang Wang. Re-
moving batch normalization boosts adversarial training. In ICML 2022, pages 23433–23445.
PMLR, 2022. 28

[49] Ruotong Wang, Hongrui Chen, Zihao Zhu, Li Liu, Yong Zhang, Yanbo Fan, and Baoyuan Wu.
Robust backdoor attack with visible, semantic, sample-specific, and compatible triggers. arXiv
preprint arXiv:2306.00816, 2023. 2

[50] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In ICLR 2020, 2020. 4

[51] Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. Rab: Provable robustness
against backdoor attacks. In 2023 IEEE Symposium on Security and Privacy (SP), pages
1311–1328. IEEE, 2023. 21

[52] Cheng-Hsin Weng, Yan-Ting Lee, and Shan-Hung Brandon Wu. On the trade-off between
adversarial and backdoor robustness. In NeurIPS 2020, volume 33, pages 11973–11983, 2020.
1, 22

[53] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial
training. In ICLR 2020, 2020. 3

[54] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao
Shen. Backdoorbench: A comprehensive benchmark of backdoor learning. In NeurIPS Datasets
and Benchmarks Track 2022, 2022. 8, 26

[55] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
In NeurIPS 2021, pages 16913–16925, 2021. 3, 8, 9, 21, 24, 25, 26, 27, 29, 30, 31, 32, 33

14

[56] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially
transformed adversarial examples. In ICLR 2018, 2018. 23, 24

[57] Cihang Xie and Alan L. Yuille. Intriguing properties of adversarial training at scale. In ICLR
2020, 2020. 28

[58] Yi Zeng, Won Park, Z. Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks’ triggers:
A frequency perspective. In ICCV 2021, pages 16453–16461. IEEE, 2021. 2, 8, 9, 26, 28, 29,
30, 31, 32, 33

[59] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning
of backdoors via implicit hypergradient. In ICLR 2022. OpenReview.net, 2022. 2, 3, 8, 9, 17,
21, 22, 25, 27, 28, 29, 30, 31, 33

[60] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In ICML 2019, pages
7472–7482. PMLR, 2019. 4, 10

[61] Yuhao Zhang, Aws Albarghouthi, and Loris D’Antoni. Bagflip: A certified defense against data
poisoning. In NeurIPS 2022, volume 35, pages 31474–31483, 2022. 21

[62] Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient adver-
sarial training with transferable adversarial examples. In CVPR 2020, pages 1178–1187, 2020.
3

[63] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on
channel lipschitzness. In European Conference on Computer Vision, pages 175–191. Springer,
2022. 3

[64] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Pre-activation distributions expose
backdoor neurons. In NeurIPS 2022, 2022. 3, 8, 9, 21, 27, 29, 30, 31, 33

[65] Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based
backdoor defense with sharpness-aware minimization. In ICCV 2023, pages 4466–4477, 2023.
3, 8

[66] Mingli Zhu, Shaokui Wei, Hongyuan Zha, and Baoyuan Wu. Neural polarizer: A lightweight and
effective backdoor defense via purifying poisoned features. arXiv preprint arXiv:2306.16697,
2023. 3

[67] Zihao Zhu, Mingda Zhang, Shaokui Wei, Li Shen, Yanbo Fan Fan, and Baoyuan Wu. Boost-
ing backdoor attack with a learnable poisoning sample selection strategy. arXiv preprint
arXiv:2307.07328, 2023. 2

[68] Zihao Zhu, Mingda Zhang, Shaokui Wei, Bingzhe Wu, and Baoyuan Wu. Vdc: Versatile
data cleanser for detecting dirty samples via visual-linguistic inconsistency. arXiv preprint
arXiv:2309.16211, 2023. 2

15

A Proofs and extension

In this section, we provide detailed proof and analysis of the propositions, methods, and extensions.

A.1 Proof of Proposition 1

Proof. Under Assumption 1, for any sample x ∈ D−ŷ , we have

I(hθ(g(x; ∆)) = ŷ) ≤ I(g(x; ∆) ∈ Ag(x;∆)−x,θ) ≤ max
ϵ∈S

I(x̃ϵ ∈ Aϵ,θ),

since g(x; ∆)− x ∈ S.

Therefore, we have
Rbd(hθ) ≤ Radv(hθ).

A.2 Proof of Proposition 2

Proof. By the definition of backdoor attack, a poisoned sample g(x; ∆) is said to attack hθ success-
fully if and only if hθ(g(x; ∆)) = ŷ.

As hθbd
(g(x; ∆)) = ŷ for all x ∈ Ds (definition of Ds), we have hθ(g(x; ∆)) = hθbd

(g(x; ∆)) ̸= y
if and only if g(x; ∆) can attack hθ successfully, for all x ∈ Ds.

Furthermore, under Assumption 1, g(x; ∆) is an shared adversarial example of hθ and hθbd
if

hθ(g(x; ∆)) = hθbd
(g(x; ∆)) ̸= y by the Definition 1.

A.3 Proof of Proposition 3

Proof. By Proposition 1 and the decomposition of Radv in Section 3.2, we have

Rbd(hθ) ≤ Radv(hθ),

Rsub(hθ) ≤ Radv(hθ).

Therefore, we discuss the relation between Rbd(hθ) and Rsub(hθ) now.

Recall that

Rsub(hθ) =
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Ds)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)

+ I(xi ∈ D−ŷ \ Ds, x̃i,ϵi ∈ Aϵi,θ)
}
.

(15)

Then, under Assumption 1, we have

• For x ∈ Ds, Proposition 2 yields that

I(hθ(g(x; ∆)) = ŷ) = I(hθ(g(x; ∆)) = hθbd
(g(x; ∆)))

≤ max
ϵ∈S

I(hθ(x̃ϵ) = hθbd
(x̃ϵ), x̃ϵ ∈ Aϵ,θ).

(16)

• For x ∈ D−ŷ \ Ds, similar as Proposition 1, we have

I(hθ(g(x; ∆)) = ŷ) ≤ I(g(x; ∆) ∈ Ag(x;∆)−x,θ) ≤ max
ϵ∈S

I(x̃ϵ ∈ Aϵ,θ).

Therefore, we have
Rbd(hθ) ≤ Rsub(hθ).

So, under Assumption 1, the following inequalities holds:

Rbd(hθ) ≤ Rsub(hθ) ≤ Radv(hθ).

16

A.4 Extension to Universal Adversarial Perturbation

Universal Adversarial Perturbation (UAP) has achieved remarkable performance in previous studies
[59, 4], especially for defending against backdoor attacks with fixed additive triggers. Now, we
extend Rsub to UAP and show that shared adversarial examples also benefit adversarial training with
UAP.

We denote the Universal Adversarial Risk by

Ruadv(hθ) =
maxϵ∈S

∑N
i=1 I(x̃i,ϵ ∈ Aϵ,θ,xi ∈ D−ŷ)

|D−ŷ|
.

To bridge UAP and backdoor trigger, we first provide the following assumption:

Assumption 2. Assume that the g(x,∆) = x+∆ for all x ∈ Dcl.

Assumption 2 says that the poisoned samples are planted with a fixed additive trigger.

Then, under Assumption 2 and Assumption 1, we have

Rbd(hθ) ≤ Ruadv ≤ Radv.

by the fact that ∆ ∈ S.

For clarity, we replace x̃ϵ ∈ Aϵ,θ by hθ(x+ ϵ) ̸= y and x̃ϵ by x+ ϵ which makes the rest derivation
easier to follow.

Then, similar as Rsub, we define the universal sub-adversarial risk Rusub as below:

Rusub(hθ) =
1

|D−ŷ|
max
ϵ∈S

N∑
i=1

{
I(hθ(x+ ϵ) = hθbd

(x+ ϵ) ̸= y,x ∈ Ds)+

I(hθ(x+ ϵ) ̸= y,x ∈ D−ŷ \ Ds)
}
,

which considers shared universal adversarial risk on Ds and vanilla universal adversarial risk on
D−ŷ \ Ds.

By the definition of Rusub, we can easily find Rusub ≤ Ruadv .

Furthermore, we have

Rbd(hθ) =

∑N
i=1 I(hθ(x+∆) = ŷ,x ∈ D−ŷ)

|D−ŷ|

=

∑N
i=1 {I(hθ(x+∆) = hθbd

(x+∆),x ∈ Ds) + I(hθ(x+∆) = ŷ,x ∈ D−ŷ \ Ds)}
|D−ŷ|

≤
maxϵ∈S

∑N
i=1 {I(hθ(x+ ϵ) = hθbd

(x+ ϵ),x ∈ Ds) + I(hθ(x+ ϵ) ̸= y,x ∈ D−ŷ \ Ds)}
|D−ŷ|

= Rusub(hθ).

Therefore, we reach the following proposition

Proposition 4. Under Assumption 2 and Assumption 1, for a classifier hθ , the following inequalities
hold

Rbd(hθ) ≤ Rusub(hθ) ≤ Ruadv(hθ) ≤ Radv(hθ).

Therefore, the shared adversarial examples also benefit adversarial training with UAP.

A.5 Extension to Targeted Adversarial Training

In the previous sections, we assume that the defender has no access to either the trigger or the target
label. Since there are already some works for backdoor trigger detection Guo et al. [16], Dong et al.
[10], we discuss the case where the defender can estimate the target label ŷ and show that shared
adversarial examples can also be beneficial for adversarial training with target label.

17

Given a target label ŷ, we define the Targeted Adversarial Risk as

Rtadv(hθ) =

∑N
i=1 maxϵi∈S I(hθ(x̃i,ϵi) = ŷ,xi ∈ D−ŷ)

|D−ŷ|
. (17)

By the definition of ŷ, we have Rbd(hθ) ≤ Rtadv(hθ) under Assumption 1.

Then, we have

Rtadv(hθ) =
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Ds)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi) = ŷ)

+ I(xi ∈ Ds)I(hθ(x̃i,ϵi) = ŷ, hθbd
(x̃i,ϵi) ̸= ŷ) + I(xi ∈ D−ŷ \ Ds, hθ(x̃i,ϵi) = ŷ)

}
.

(18)

Then, similar as Rsub, we define the targeted sub-adversarial risk Rtsub by removing the second
component in Rtadv(hθ):

Rtsub(hθ) =
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Ds)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi) = ŷ)

+ I(xi ∈ D−ŷ \ Ds, hθ(x̃i,ϵi) = ŷ)
}
.

which considers shared targeted adversarial risk on Ds and vanilla targeted adversarial risk on
D−ŷ \ Ds.

Since the removed component is irrelevant to backdoor risk, we have Rbd ≤ Rtsub under Assump-
tion 1.

Therefore, we reach the following proposition

Proof. Under Assumption 2 and Assumption 1, for a classifier hθ, the following inequalities hold

Rbd(hθ) ≤ Rtsub(hθ) ≤ Rtadv(hθ) ≤ Radv(hθ).

Therefore, the shared adversarial examples also benefit adversarial training with target label.

Moreover, since Rtsub(hθ) only consider shared adversarial example with target label ŷ, the following
proposition holds,

Proof. Under Assumption 2 and Assumption 1, for a classifier hθ, the following inequalities hold

Rbd(hθ) ≤ Rtsub(hθ) ≤ Rsub(hθ) ≤ Radv(hθ).

The above proposition shows that Rtsub(hθ) is a tighter bound of Rbd(hθ) than Rsub(hθ).

A.6 Extension to Multi-target/Multi-trigger

In previous sections, we assume that there is only one trigger and one target for all samples. Now,
we consider to a more general case where a set of triggers V and a set of target labels Ŷ are given.
This is a more challenging case since there may be multiple triggers and/or multiple targets for one
sample.

We define T to be a mapping from the sample to the corresponding set of feasible trigger-target
pairs. Therefore, given a sample x, the set of all feasible trigger-target pairs is given by T (x). Then,
Assumption 1 is extended to all triggers accordingly, i.e., g(x,∆)− x ∈ S,∀(∆, ŷ) ∈ T (x).

18

In this setting, we define that a classifier hθ is said to be attacked by a poisoned sample generated by
x if there exists (∆, ŷ) ∈ T (x) such that hθ(g(x,∆)) = ŷ ̸= y.

Then, the (maximum) backdoor risk on Dcl is defined to be

Rbd(hθ) =

∑N
i=1 max(∆i,ŷi)∈T (xi)) I(hθ(g(xi,∆i)) = ŷi ̸= y)

|Dcl|
. (19)

Similarly, the adversarial risk on Dcl is defined as

Radv =
1

|Dcl|

N∑
i=1

max
ϵi∈S

{
I(hθ(g(xi, ϵi)) ̸= y)

}
.

We define Ds = {x ∈ Dcl : hθbd
(g(x,∆)) = ŷ ̸= y,∀(∆, ŷ) ∈ T (x)} to be the set of samples on

which planting any feasible trigger can activate the corresponding backdoor. Then, the corresponding
sub-adversarial risk is defined as

Rsub =
1

|Dcl|

N∑
i=1

max
ϵi∈S

{
I(hθ(g(xi, ϵi)) = hθbd

(g(xi, ϵi)) ̸= y,xi ∈ Ds)

+ I(hθ(g(xi, ϵi)) ̸= y,xi ∈ Dcl \ Ds)
}
.

which considers shared adversarial risk on Ds and vanilla targeted adversarial risk on Dcl \ Ds.

By definition, we have Rsub ≤ Radv

Moreover, we have

Rbd(hθ) =

∑N
i=1 max(∆i,ŷi)∈T (xi)) I(hθ(g(xi,∆i)) = ŷi ̸= y)

|Dcl|

=
1

|Dcl|

N∑
i=1

max
(∆i,ŷi)∈T (xi))

{
I(hθ(g(xi,∆i)) = hθbd

(g(xi,∆i)), hθbd
(g(xi,∆i)) = ŷi ̸= y)

+ I(hθ(g(xi,∆i)) ̸= y, hθbd
(g(xi,∆i)) ̸= ŷi)

}
≤ 1

|Dcl|

N∑
i=1

max
(∆i,ŷi)∈T (xi))

{
I(hθ(g(xi,∆i)) = hθbd

(g(xi,∆i)) ̸= y,xi ∈ Ds)

+ I(hθ(g(xi,∆i)) ̸= y,xi ∈ Dcl \ Ds)
}

≤ 1

|Dcl|

N∑
i=1

max
ϵi∈S

{
I(hθ(g(xi, ϵi)) = hθbd

(g(xi, ϵi)) ̸= y,xi ∈ Ds)

+ I(hθ(g(xi, ϵi)) ̸= y,xi ∈ Dcl \ Ds)
}

= Rsub.

Therefore, for a backdoor attack with multiple targets and/or multiple triggers, the proposed sub-
adversarial risk Rsub is still a tighter upper bound of Rbd compared to Radv .

A.7 Relaxation gap

To build a practical objective for defending against a backdoor attack, two relaxations are applied to
Rsub. Here, we discuss the relaxation gap in the relaxing process:

• Replace Ds by D−ŷ .
Since Ds is not accessible, the first relaxation is to replace Ds by D−ŷ and consider shared
adversarial examples on all samples in D−ŷ . Denote R1(hθ) to be the relaxed risk after replacing

19

Ds by D−ŷ . Since Rsub can be decomposed as follows:

Rsub(hθ) =
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Ds)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)

+ I(xi ∈ D−ŷ \ Ds, x̃i,ϵi ∈ Aϵi,θ)
}

=
1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ D−ŷ)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)

+ I(xi ∈ D−ŷ \ Ds)I(hθ(x̃i,ϵi) ̸= hθbd
(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)

}
.

We can find that the relaxation gap is

Rsub −R1 ≤ 1

|D−ŷ|

N∑
i=1

max
ϵi∈S

I(xi ∈ D−ŷ \ Ds)I(hθ(x̃i,ϵi) ̸= hθbd
(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)

≤ 1

|D−ŷ|

N∑
i=1

I(xi ∈ D−ŷ \ Ds)

= 1−Rbd(hθbd
).

And the relaxation gap GAP1 is bounded by 1−Rbd(hθbd
). Since a poisoned model hθbd

usually
has a high ASR for the backdoor attack, the gap GAP1 is usually negligible.

Remark: We remark that the experiment results show that our method also works well for the
poisoned models with low ASR. See Section D for more details.

• Replace D−ŷ by Dcl.

The second relaxation is to replace D−ŷ by Dcl when ŷ is not accessible. Let Dŷ = Dcl \ D−ŷ.
Then, the risk after the second relaxation is:

Rshare(hθ) =
1

N

N∑
i=1

max
ϵi∈S

{
I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)
}

=
|D−ŷ|
N

1

|D−ŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ D−ŷ)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)
}

+
|Dŷ|
N

1

|Dŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Dŷ)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)
}
.

where the first component is R1 scaled by |D−ŷ|
N and the second component is the vanilla adversarial

risk on Dŷ , scaled by |Dŷ|
N . So, the relaxation gap for the second relaxation is

R1 −Rshare =
|Dŷ|
N

R1

− |Dŷ|
N

1

|Dŷ|

N∑
i=1

max
ϵi∈S

{
I(xi ∈ Dŷ)I(hθ(x̃i,ϵi) = hθbd

(x̃i,ϵi), x̃i,ϵi ∈ Aϵi,θ)
}
.

We can find that the generalization gap is related to the |Dŷ|
N , i.e., the portion of samples whose

labels are target labels, and negligible when |Dŷ|
N is small.

Remark. For using Rshare(hθ) to mitigate the backdoor, the influence of |D−ŷ|
N can be eliminated

by altering the trade-off parameter in Problem (8). Also, adding triggers to samples labeled ŷ
is harmless during the testing/deployment phase. So, the vanilla adversarial risk on Dŷ has a
negligible negative impact on defending the backdoor. Therefore, replacing D−ŷ with Dcl has little
negative impact on mitigating the backdoor.

20

B Discussion

In this section, we provide a comprehensive discussion of the proposed method, including its
efficiency, comparison to other methods, choice of perturbation, generalization ability to attack
with excessive-magnitude triggers, performance on the generated dataset, and resistance to defense-
aware/adaptive attacks.

B.1 Efficiency and Computational Cost

Here, we would like to emphasize that SAU is an efficient and effective defense method that can
mitigate backdoor attacks with acceptable overhead for the following reasons:

• SAU is a post-processing method that fine-tunes the backdoor model on a clean dataset with
a small size. For instance, we can use only 500 samples from CIFAR-10 to fine-tune the
model by SAU (see Appendix D.6 for more details), which takes 1.52 seconds/epoch to
fine-tune PreAct-ResNet18 with RTX 4090. Therefore, it can be executed efficiently without
requiring a large amount of data or computation resources.

• SAU only takes a few epochs to take effect, which further reduces the computational cost of
executing it in practice. As shown in Appendix D.4, SAU can achieve a low Attack Success
Rate and a high Accuracy in a few epochs.

To further demonstrate the efficiency of SAU, we compare its average runtime with other state-
of-the-art defense methods against attacks. We use the same experimental setting as in Section 4,
where the poisoning ratio is 10% and the backbone model is PreAct-ResNet18. All experiments
are conducted on a server with GPU RTX 4090 and CPU AMD EPYC 7543 32-Core Processor.
As different methods adopt different learning paradigms for backdoor mitigation, we measure the
average runtime for each defense method to take effect on CIFAR-10 and Tiny ImageNet (ASR < 5%
and ACC > 85% on CIFAR-10, or ASR < 5%, ACC > 45% on Tiny ImageNet). Note that if a
defend method cannot reach the criteria for "Take effect", the maximum runtime is reported. The
results are summarized in the following table.

Table 7: Time to take effect for different methods, averaged over different attacks

Dataset ANP [55] FP [31] NC [47] NAD [28] EP [64] i-BAU [59] SAU (Ours)

CIFAR-10 289.86s 266.57s 825.86s 75.14s 65.71s 47.00s 43.86s
Tiny ImageNet 1086.50s 318.30s 27359.70s 227.01s 141.67s 621.33s 262.60s

From Table 7, SAU is faster than most of the existing methods, except for NAD and EP, which shows
that SAU is an efficient and effective defense method.

B.2 Comparison with Certified Robustness methods

In backdoor defense, methods can be categorized into two classes: empirical methods which aim to
develop effective and efficient methods for backdoor defense, and certified methods which aim to
build a provable framework for backdoor robustness. As our method is an empirical method, we
would like to point out that our method is different from the existing works on certified robustness in
several aspects, which makes them incomparable or impractical to apply to our setting. Specifically:

• Efficiency and scalability. Certified methods usually have very high computation costs and
are infeasible to apply to large-scale deep neural networks, while our method is efficient
and scalable. For example, the representative methods RAB [51] and BagFlip [61] rely on
voting over 1000 smoothed models for prediction and are only feasible for some simple
neural networks and simple classification problems. To apply these methods to our setting,
we would need to train 1000 PreAct-ResNet models on CIFAR-10 from scratch, which
would take over 600 hours (25 days) and 620GB of space for a single attack on a server with
one RTX 3090.

• Applicability to model architecture. Many certified methods are restricted to some simple or
classical models, while our method is general and applicable to any deep neural network

21

architecture. For example, the method in [20] is designed for only k-Nearest Neighbors
(kNN) and radius Nearest Neighbors (rNN) models with some feature extractor and cannot
be applied to modern deep neural networks.

• Difference in the threat model. Most certified methods focus on the threat model where the
training dataset is accessible to defenders while our method focuses on the threat model
where only a poisoned model and a few clean samples are given.

Therefore, we believe that our method is more practical and effective for defending against backdoor
attacks in deep neural networks than the existing works on certified robustness from the perspective
of efficiency, scalability, and model structures.

B.3 Comparison with other AT based methods

Here, we compare the proposed method SAU with other representative Adversarial Training based
methods from the following aspects:

• Threat Model: whether the training dataset is accessible and whether the extra clean dataset
is accessible.

• Types of Perturbation: whether universal adversarial perturbation is supported.

• Types of Adversarial Attack: whether Targeted Adversarial Attack is supported.

The answer "Yes" and "No" are indicated by
√

and ×, respectively. The "Optional" means the
method supports but is not limited to a specific answer. We summarize the result in Table 8.

Table 8: Comparison between SAU with other AT based methods

Method Training Dataset Extra Clean Dataset UAP Targeted Attack

AT from Scratch [52]
√

× × ×
Composite AT [13]

√
× × ×

i-BAU [59] ×
√ √

×
PBE [35]

√
× × ×

AFT [35] ×
√

× ×
SAU (Ours) ×

√
Optional Optional

We remark that two methods, i.e., PBE and AFT are proposed in Mu et al. [35] for different threat
models, where PBE is designed to filter a clean dataset from a training dataset, and AFT is to perform
AT on the given clean dataset. Therefore, AFT is equivalent to the Vanilla AT in the Figure 1 and
Section 4.3.

As summarized in Table 8, the current AT-based methods can be roughly categorized into two types
based on their threat model: in-training (given training dataset) and post-training (given poisoned
model and extra clean dataset), and the difference in threat model make methods from different
categories incomparable.

1. Comparison with In-training AT-based methods. Although SAU is not comparable with the
in-training AT-based method due to the underlying assumption of the threat model, we would like to
adopt different threat models for different methods to highlight the advantages of SAU compared to
the in-training AT-based methods. Therefore, we compare SAU with the latest SOTA in-processing
AT-based method, i.e., Composite AT (CAT) [13].

We first highlight the following differences between CAT and SAU:

• SAU is theoretically motivated by the relationship between adversarial robustness and back-
door risk, while CAT is empirically driven by some experimental observations. Therefore,
our method has a theoretical guarantee for the performance against various backdoor attacks,
while CAT does not.

• SAU fine-tunes a backdoored model with a small clean dataset, while CAT trains a backdoor-
free model from scratch on a poisoned dataset. Therefore, SAU is more efficient than
CAT.

22

Then, we conduct experiments on defending against backdoor attacks and summarize the results in
Table 9 and 10.

Table 9: Experiments Results with poisoning ratio 1%

Method No Defense No Defense No Defense CAT [13] CAT [13] CAT [13] SAU (Ours) SAU (Ours) SAU (Ours)

Attack Acc ASR R-ACC Acc ASR R-ACC Acc ASR R-ACC

BadNets [15] 93.14 74.73 24.24 75.52 2.50 74.73 91.25 0.94 91.16
Input-Aware 91.74 79.18 19.89 75.24 72.48 23.97 92.20 3.63 84.06
SSBA [30] 93.43 73.44 24.89 74.94 3.07 71.40 91.34 0.79 88.46
WaNet [38] 90.65 12.63 79.94 75.21 2.68 74.46 91.84 1.23 89.89

Average 92.24 60.00 37.24 75.23 20.18 61.14 91.66 1.65 88.39

Table 10: Experiments Results with poisoning ratio 10%

Method No Defense No Defense No Defense CAT [13] CAT [13] CAT [13] SAU (Ours) SAU (Ours) SAU (Ours)

Attack Acc ASR R-ACC Acc ASR R-ACC Acc ASR R-ACC

BadNets [15] 91.32 95.03 4.67 74.42 92.49 6.21 89.31 1.53 88.81
Input-Aware 90.67 98.26 1.66 74.21 96.81 2.88 91.59 1.27 88.54
SSBA [30] 92.88 97.8 1.99 74.29 28.29 57.49 90.84 1.79 85.83
WaNet [38] 91.25 89.73 9.76 74.62 4.87 73.07 90.41 2.51 79.69

Average 91.53 95.21 4.52 74.39 55.61 34.91 92.54 1.78 85.72

The experimental results show that our method is superior to CAT, as evidenced by the following
aspects:

• SAU achieves significantly higher accuracy (ACC) and lower attack success rate (ASR) than
CAT on both poisoning ratios.

• SAU is more robust to different poisoning ratios than CAT. In contrast, CAT fails on a high
poisoning ratio (10%) (also observed in Table XI of Gao et al. [13]).

2. Comparison with Post-training AT-based methods. The most related methods to SAU are
the post-processing AT-based method including I-BAU and AFT, and we highlight the following
differences between them:

• I-BAU is proposed under the assumption that the same trigger are used for all poisoned
samples which may not be true for more advanced attacks, while SAU is shown to be effective
for attacks with multi-trigger and sample-specific trigger theoretically and empirically.

• AFT, which is to perform AT on clean dataset, is motivated by some empirical observation,
while SAU is motivated by a novel analysis on the relation between adversarial examples
and poisoned samples.

Besides, the experimental comparison between SAU and I-BAU in Section 4.2 and the experimental
between SAU and AFT (Vanilla AT on Clean Dataset) in Section 4.3 show that SAU outperforms
I-BAU and AFT by a large margin.

B.4 Choice of perturbation and generalization ability of SAU

In this section, we discuss the choice of perturbation set and show that the proposed method, i.e.,
SAU, can generalize to attacks with excessive-magnitude triggers.

1. Type of adversarial perturbation (AP) and perturbation set. The theoretical analysis and the
proposed method SAU is independent of the AP type and AP set (not only Lp ball). For sample space
X , define the set G = {g(x,∆)− x|x ∈ X} and the general perturbation set S = {T (x, ϵ)− x|x ∈
X} for adversarial attack T with learnable parameter ϵ ∈ Ω such that an adversarial example can
be generated by x̃ϵ = T (x, ϵ). Then, the theoretical analysis and proposed method can be applied
if G ⊆ S, where the AP can be any type, such as additive AP, Spatially Transformed AP [56], or
Perceptual AP [25], etc.

23

2. Effect of perturbation set S. The key of SAU is to consider Shared Adversarial Example (SAE)
as surrogates for poisoned samples. Given models, the set of SAE is determined by S: larger S
leads to larger set of SAE, and vice versa Therefore, the perturbation set S plays an important role
in the effectiveness of SAU. Specifically, adopting a larger S can cover unknown triggers but also
increases the chance of picking SAE which is irrelevant to poisoned samples, and may weaken the
defense performance. Meanwhile, some poisoned samples may be beyond the scope of SAE if a
smaller S is adopted.

3. Generalization to excessive-magnitude trigger. In practice, we find that the proposed method
SAU is effective for various attacks, even if Assumption 1 does not hold. For example, SAU with L∞
norm bound 0.2 can still effectively mitigate SSBA attack whose average L∞ trigger norm is much
larger than 0.2, revealing the generalization of SAU to attacks with excessive-magnitude trigger.

Table 11: SAU for SSBA Attack

Dataset L1 L2 L∞ ACC ASR R-ACC
CIFAR-10 108.33 3.29 0.33 90.99 0.58 87.04

Tiny 581.65 8.26 0.43 51.85 0.11 36.36

To investigate the SAU’s generalization ability, we conduct experiments on BadNets with various
strengths. Specifically, for BadNets with a 3x3 patched trigger, we alter the pixel value of the trigger
from 0.2 to 1.0.

Table 12: Defend against BadNets [15] Attack with Various Pixel Value

No Defense No Defense ANP [55] ANP [55] SAU (Ours) SAU (Ours)

Pixel L∞ ACC ASR ACC ASR ACC ASR

0.2 0.42 91.69 95.60 91.30 2.64 90.01 1.38
0.4 0.31 91.61 97.79 91.44 1.00 88.43 1.59
0.6 0.35 91.94 96.43 91.72 7.81 90.49 1.30
0.8 0.48 91.72 93.20 91.06 2.37 89.23 1.36
1.0 0.67 91.32 95.03 90.88 4.88 89.31 1.53

Table 12 shows the results for defending various BadNets attacks by SAU following the setting
in Section 4.2, from which we can find that SAU can consistently mitigate the backdoor even
when the trigger is beyond the perturbation set. One reasonable explanation is that although the
poisoned samples are not included in SAEs, there exists SAE that has a similar effect as poisoned
samples as shown in Figure 4, resulting in strong generalization ability of SAU.

4. Effect of perturbation type. To explore the effect of perturbation types, we extend SAU to
incorporate two other perturbation types and denote the resulting methods by Spatial SAU and
Ensemble SAU, respectively. Specifically, for spatial SAU, we employ spatial adversarial attack [56]
to generate spatial SAEs by spatial transformation, following the same setting as [13]. For Ensemble
SAU, the perturbation set S is composed of a collection of subsets, including L1 ball (bound 500),
L2 ball (bound 10), L∞ ball (bound 0.2), and the spatial AP set. Then, for each batch, Ensemble
SAU randomly chooses one subset of perturbation to generate the SAEs. We compare SAU, Spatial
SAU and Ensemble SAU, following the setting in Section 4.

Table 13: Defend against BadNets [15] Attack with Various Pixel Value

No Defense No Defense SAU SAU Spatial SAU Spatial SAU Ensemble SAU Ensemble SAU

Dataset Attack ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10 BadNets [15] 91.32 95.03 89.31 1.53 88.27 0.97 88.16 0.67
CIFAR-10 SSBA [30] 92.88 97.86 90.84 1.79 89.65 4.43 89.92 0.81
CIFAR-10 WaNet [38] 91.25 89.73 91.26 1.02 90.21 4.34 89.61 0.66

Tiny ImageNet BadNets [15] 56.23 100 51.52 0.53 50.68 99.81 49.32 0.49
Tiny ImageNet SSBA [30] 55.22 97.71 51.85 0.11 49.79 79.72 49.73 0.05
Tiny ImageNet WaNet [38] 56.78 54.65 54.65 85.75 50.12 0.7 51.14 0.15

24

Poisoned Sample Shared Adversarial Example Non-Shared Adversarial Example

38.75

80.55

Figure 1: Visualization of Features of Poisoned Sample, Shared Adversarial Example and Non-shared Adversarial Example
in latent space for BadNets Attack with PreAct-ResNet18. Both Shared Adversarial Example and Adversarial Example are
generated by PGD-5 with L_inf norm 0.2. The L2 distance between features of Poisoned sample and Shared
Adversarial Example is 38.75, while L2 distance between features of Poisoned sample and Non-shared Adversarial
Example is 80.55, showing that Shared Adversarial Example can still be close to Poisoned Sample in latent space even if
the trigger is beyond perturbation set.

Figure 4: Visualization of Features of Poisoned Sample, Shared Adversarial Example and Non-
shared Adversarial Example in latent space for BadNets Attack with PreAct-ResNet18. Both Shared
Adversarial Example and Adversarial Example are generated by PGD-5 with L∞ norm 0.2. The
L2 distance between the features of the Poisoned sample and Shared Adversarial Example is 38.75,
while the L2 distance between the features of the Poisoned sample and the Non-shared Adversarial
Example is 80.55, showing that the Shared Adversarial Example can still be close to the Poisoned
Sample in latent space even if the trigger is beyond perturbation set.

From Table 13, we compare SAU, Spatial SAU and Ensemble SAU, following the setting in Section
4. From the table, we find that Spatial SAU works well on CIFAR-10 dataset but fails to defend
BadNets and SSBA attacks on Tiny ImageNet. For WaNet, spatial SAU can effectively defend it on
both datasets. We remark that the Ensemble SAU achieves the lowest ASR in all experiments.
However, as Ensemble SAU has larger perturbation set, its accuracy is lower than SAU by 1 2%.

In summary, our theoretical analysis and the proposed method SAU are flexible to the perturbation
set, and SAU can be generalized to attack with excessive trigger norms. Moreover, the Ensemble
SAU serves as a stronger variant of SAU and can be effective for various attacks.

B.5 SAU with generated datasets

Like most other post-processing methods [31, 55, 47, 28, 59], SAU assumes that a small clean dataset
is available for conducting defense, which can be obtained by ways such as buying from a trustworthy
data supplier, using modern generative models, collecting from the internet, or applying some data
cleansing techniques.

In this section, we explore a more practical case for defense, i.e., using the generated dataset, to
evaluate our method. Specifically, we conduct experiments on synthetic datasets and compare SAU
with NAD. We test both methods with a synthetic dataset CIFAR-5m [36] which provides generated
CIFAR-10-like images whose distribution is close but not identical to CIFAR-10, and can be regarded
as OOD data. We build mixed datasets by randomly picking samples from CIFAR-10 and CIFAR-5m
with a mixed ratio, and evaluate both methods on the mixed datasets. A larger mixed ratio indicates
more synthetic data in the mixed dataset. The experiment results are summarized in the following
tables.

From Table 14, we can find that all methods can work on the mixed dataset but as the mixed
ratio increase, the accuracy (ACC) may decrease due to the distribution difference between
the two datasets. It’s notable that the model distillation-based method NAD is influenced by the
quality of the dataset most, with a reduction of 4.91% in ACC, while SAU is quite robust to the data
quality. Another interesting phenomenon is that the ASR of ANP decreases when more synthetic data
is used, which shows that the distribution of data may influence the performance of backdoor defense.

25

Table 14: Results on Generated Dataset

ANP [55] ANP [55] NAD [28] NAD [28] SAU (Ours) SAU (Ours)

Mixed Ratio ACC ASR ACC ASR ACC ASR

0.0 90.88 4.88 89.87 2.14 89.31 1.53
0.2 90.68 2.10 87.96 1.88 89.83 1.63
0.4 90.21 1.11 87.69 1.88 89.36 1.60
0.6 90.31 1.51 86.69 2.19 88.44 1.66
0.8 89.37 0.56 85.90 1.86 88.13 1.79
1.0 88.74 0.40 84.96 2.48 88.32 1.01

All those observations motivate us to conduct research on the relationship between data quality and
backdoor defense in the future.

B.6 Resistance to defense-aware/adaptive Attacks

When the attacker is aware of the defender’s adversarial training strategy, the attacker can train the
backdoored model using Adversarial Training (AT) on the poisoned dataset, such that the model can
be resistant to adversarial attack, hindering the generation of shared adversarial examples.

To evaluate the performance of SAU against such defense-aware backdoor attacks, we conduct
experiments on the CIFAR-10 dataset following the settings in Section 4.2. For AT on the training
dataset, we use PGD-10 attack with L∞ norm 8/255, which is commonly used in adversarial training
literature.

Table 15: Experiments Results for Defense-aware Attack

No Defense No Defense SAU (Ours) SAU (Ours)

Attack ACC ASR ACC ASR

BadNets [15] 79.89 93.46 79.83 2.39
Input-Aware 79.87 96.60 78.64 4.84

SIG [2] 73.50 99.50 76.41 0.10
Average 77.75 96.52 78.30 2.44

From Table 15, we can find that SAU can achieve an average ACC of 78.3% and ASR of 2.44%,
showing its resistance to such adaptive attacks.

C Experiment details

In this section, we provide the experiment details. In our experiments, all baselines and settings are
adapted from BackdoorBench [54], and we present the experiment details in this section.

C.1 Attack details

• BadNets [15] is one of the earliest works for backdoor learning, which inserts a small
patch of fixed pattern to replace some pixels in the image. We use the default setting in
BackdoorBench.

• Blended backdoor attack (Blended) [7] uses an alpha-blending strategy to fuse images with
fixed patterns. We set α = 0.2 as the default in BackdoorBench. We remark that since such
a large α produces visual-perceptible change to clean samples, the Blended Attack in
this setting is very challenging for all defense methods.

• Input-aware dynamic backdoor attack (Input-Aware)[37] is a training-controllable attack
that learns a trigger generator to produce the sample-specific trigger in the training process
of the model. We use the default setting in BackdoorBench.

• Low-frequency attack (LF) [58] uses smoothed trigger by filtering high-frequency artifacts
from a UAP. We use the default setting in BackdoorBench.

26

https://github.com/SCLBD/BackdoorBench

• Sinusoidal signal backdoor attack (SIG) [2] is a clean-label attack that uses a sinusoidal
signal as the trigger to perturb the clean images in the target label. We use the default setting
in BackdoorBench.

• Sample-specific backdoor attack (SSBA) [30] uses an auto-encoder to fuse a trigger into
clean samples and generate poisoned samples. We use the default setting in BackdoorBench.

• Warping-based poisoned networks (WaNet) [38] is also a training-controllable attack that
uses a warping function to perturb the clean samples to construct the poisoned samples. We
use the default setting in BackdoorBench.

C.2 Defense details

The details for each defense used in our experiment/discussion are summarized below:

• ANP [55] is a pruning-based method that prunes neurons sensitive to weight perturbation.
Note that in BackdoorBench, ANP can select its pruning threshold by grid searching on the
test dataset (default way in BackdoorBench) or a given constant threshold. To produce a fair
comparison with other baselines, we use a constant threshold for ANP and set the pruning
threshold to 0.4, which is found to produce better results than the recommended constant
threshold of 0.2 in BackdoorBench. All other settings are the same as the default setting in
BackdoorBench.

• FP [31] is a pruning-based method that prunes neurons according to their activations and then
fine-tunes the model to keep clean accuracy. We use the default setting in BackdoorBench.

• NAD [28] uses Attention Distillation to mitigate backdoors. We use the default setting in
BackdoorBench.

• NC [47] first optimizes a possible trigger to detect whether the model is backdoored. Then,
if the model is detected as a backdoored model, it mitigates the backdoor by unlearning
the optimized trigger. We use the default setting in BackdoorBench. We remark that if the
model is detected as a clean model, NC just returns the model without any changes.

• EP [64] uses the distribution of activation to detect the backdoor neurons and prunes them
to mitigate the backdoor. We use the default setting in BackdoorBench.

• i-BAU [59] uses adversarial training with UAP and hyper-gradient to mitigate the backdoor.
We use the default setting in BackdoorBench.

• SAU (Ours) uses PGD to generate shared adversarial examples and unlearns them to mitigate
the backdoor. For all experiments, we set λ1 = λ2 = λ4 = 1 and λ3 = 0.01 in (13). Then,
we run PGD 5 steps with L∞ norm bound 0.2 and a large step size 0.2 to accelerate the
inner maximization in (8). For unlearning step (fine-tuning on Dcl and SAEs), we use the
same setting as i-BAU and fine-tuning (FT) in BackdoorBench. We run SAU 100 epochs in
CIFAR-10 and GTSRB. In Tiny ImageNet, we run SAU 20 epochsNote that the number of
epochs used in our experiment largely exceeds the necessary epochs for SAU to take effect
and can be further reduced to save computational costs.

• Vanilla Adversarial Training (vanilla AT) [33] use PGD to generate vanilla adversarial
examples and unlearn them to mitigate the backdoor. In all experiments, vanilla AT uses
the same setting as SAU, including the step size, norm bound, optimizer, and learning rate,
except for the experiment in Figure 1, where we train vanilla AT 100 epochs on Blended
Attack with PreAct-ResNet18 and Tiny ImageNet to show its long-term performance.

• Adversarial Fine-tuning (AFT) [35] performs adversarial training on clean dataset, which is
equivalent to vanilla AT.

• Composite Adversarial Training (Composite AT, CAT) [13] use perturbation from different
types to defend against backdoor attacks. We request the official implementation of CAT
from the authors and use the recommended setting in the original paper.

• Progressive Backdoor Erasing (PBE) [35] uses the adversarial attack to progressively filter
the clean dataset from the training dataset and remove the backdoor. Since the code haven’t
been released yet and the details of some critical parameters such as the configuration
of adversarial attacks, the data filtering ratio in each step, and the learning rates are
not covered in the paper, we failed to produce satisfactory results. Besides, the threat

27

model of PBE is different from ours which makes it incomparable to SAU, and therefore,
we do not include it in the experiment section.

Adaptation to batch normalization. Batch normalization (BN) has been widely used in modern
deep neural networks due to improved convergence. However, recent works show that it is difficult
for BN to estimate the correct normalization statistics of a mixture of distributions of adversarial
examples and clean examples [57, 48]. Such a problem is magnified when we adversarially fine-tune
a model with a small set of samples and may destroy the generalization ability of the model due to
biased BN statistics. To address this problem, we propose the fixed BN strategy in the adversarial
unlearning/training process. Note that in all experiments, the fixed BN strategy is applied to i-BAU,
SAU, and vanilla AT when BN is used in the model architecture like PreAct-ResNet18.

Experiments on VGG19. For VGG19 [41], BN is not used. Therefore, the fixed BN strategy is not
applied. Moreover, some methods that depend on BN, such as ANP and EP, are not applicable to
VGG19.

D Additional experiments

In this section, we provide additional experiments.

D.1 Main experiments on VGG19

Table 16: Results on CIFAR-10 with VGG19 and poisoning ratio 10%.

Defense No Defense FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 89.36 95.93 3.81 N/A 89.23 92.61 6.82 51.6 87.86 1.00 88.01 96.72
Blended [7] 90.17 99.12 0.82 N/A 90.07 99.11 0.82 49.96 85.92 1.79 74.13 96.54

Input-Aware [37] 77.69 94.59 4.79 N/A 78.62 86.77 11.79 53.91 77.67 94.58 4.79 50.00
LF [58] 88.94 93.93 5.62 N/A 88.98 91.8 7.46 51.07 85.35 9.99 72.79 90.18
SIG [2] 81.69 99.8 0.12 N/A 84.52 99.93 0.07 50.0 81.69 99.80 0.12 50.00

SSBA [30] 89.48 91.86 7.29 N/A 89.40 89.66 9.22 51.06 89.48 91.86 7.29 50.00
WaNet [38] 88.43 88.9 10.3 N/A 89.61 73.39 24.57 57.76 88.43 88.89 10.30 50.01

Average 86.54 94.88 4.68 N/A 87.20 90.47 8.68 52.19 85.20 55.42 36.78 69.06

Defense NAD [28] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 87.51 38.17 58.30 77.96 87.82 25.72 63.24 84.34 86.71 0.08 32.77 96.60
Blended [7] 88.35 93.08 6.33 52.11 88.61 59.86 32.31 68.85 87.01 1.32 23.74 97.32

Input-Aware [37] 75.70 23.36 54.71 84.62 72.15 26.22 42.51 81.41 75.11 12.49 46.19 89.76
LF [58] 87.85 59.38 35.01 66.73 87.97 79.10 18.04 56.93 86.65 6.43 72.51 92.60
SIG [2] 86.01 99.18 0.77 50.31 85.06 90.89 5.27 54.46 84.87 0.11 10.82 99.84

SSBA [30] 87.65 37.54 54.58 76.24 88.08 3.74 76.98 93.36 87.3 1.66 78.70 94.01
WaNet [38] 90.82 44.93 51.18 71.98 90.31 25.83 67.87 81.53 87.07 5.32 83.37 91.11

Average 86.27 56.52 37.27 68.56 85.71 44.48 43.75 74.41 84.96 3.92 49.73 94.46

This section provides additional experiment results on VGG19 with CIFAR-10 (Table 16) and Tiny
ImageNet (Table 17) to supplement Section 4. Table 16 shows that SAU outperforms all baselines
on CIFAR-10 and VGG19, with a 40.56% decrease of ASR compared to the second lowest ASR.
Moreover, SAU achieves the highest DER in 6 of 7 attacks, demonstrating a significantly better
tradeoff between accuracy and ASR. It also achieves the top-2 R-ACC in 5 of 7 attacks and the best
average R-ACC, indicating its good ability to recover the prediction of poisoned samples. Table 17
shows that SAU achieves the best DER in 5 of 6 attacks and the top-2 lowest ASR in 5 of 6 attacks.
Although SAU only achieves the second-best average ASR in Table 17, it has significantly higher
accuracy than NC, which achieves the best average ASR.

D.2 Main experiments on GTSRB

This section provides additional experiment results on GTSRB with PreAct-ResNet18 (Table 18) and
VGG19 (Table 19) to supplement Section 4. In both tables, SAU achieves the top-2 lowest ASR in 4
of 6 attacks and the lowest ASR on average. Furthermore, SAU achieves the top-2 highest DER in 4
of 6 attacks for PreAct-ResNet18 (Table 18) and 5 of 6 attacks for VGG19 (Table 19).

28

Table 17: Results on Tiny ImageNet with VGG19 and poisoning ratio 10%.

Defense No Defense FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 42.26 99.99 0.0 N/A 40.70 99.63 0.20 49.4 26.47 0.53 25.93 91.83
Blended [7] 43.5 99.32 0.32 N/A 41.82 98.67 0.71 49.48 35.93 0.03 18.87 95.86

Input-Aware [37] 46.36 99.48 0.38 N/A 45.95 99.02 0.69 50.03 38.51 0.45 36.00 95.59
LF [58] 43.14 95.41 2.3 N/A 41.63 85.22 5.82 54.34 10.55 0.77 5.37 81.02

SSBA [30] 41.67 96.57 1.71 N/A 40.04 69.27 9.10 62.84 28.23 0.21 22.86 91.46
WaNet [38] 43.6 99.85 0.09 N/A 42.85 99.31 0.46 49.9 8.14 1.17 7.13 81.61

Average 43.42 98.44 0.8 N/A 42.16 91.85 2.83 52.28 24.64 0.53 19.36 83.91

Defense NAD [28] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 37.68 96.40 2.02 49.5 40.10 100.0 0.0 48.92 38.25 0.06 14.32 97.96
Blended [7] 38.59 95.98 1.64 49.21 40.11 98.88 0.47 48.52 38.24 0.01 6.10 97.02

Input-Aware [37] 36.14 2.79 31.87 93.23 44.49 58.66 18.85 69.47 42.87 6.94 35.15 94.52
LF [58] 38.06 81.10 7.40 54.62 40.23 86.89 6.05 52.8 39.15 15.46 20.31 87.98

SSBA [30] 36.27 84.86 5.78 53.15 38.93 87.81 4.96 53.01 36.31 0.32 8.98 95.45
WaNet [38] 34.89 63.91 13.98 63.61 39.82 98.69 0.62 48.69 37.04 2.52 20.02 95.38

Average 36.94 70.84 10.45 59.05 40.61 88.49 5.16 53.06 38.64 4.22 17.48 88.33

Table 18: Results on GTSRB with PreAct-ResNet18 and poisoning ratio 10%.

Defense No Defense ANP [55] FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 97.24 59.25 4.42 N/A 96.89 0.06 96.79 79.42 98.21 0.09 70.93 79.58 97.48 0.01 97.45 79.62
Blended [7] 98.58 99.99 0.0 N/A 98.75 99.82 0.18 50.09 98.38 100.0 0.0 49.9 97.76 8.03 59.74 95.57

Input-Aware [37] 97.26 92.74 7.23 N/A 99.14 0.00 96.09 96.37 98.08 2.32 88.91 95.21 98.55 0.01 96.71 96.36
LF [58] 97.93 99.57 0.42 N/A 97.80 81.38 16.45 59.03 97.59 99.7 0.27 49.83 97.97 1.34 77.37 99.11

SSBA [30] 97.98 99.56 0.49 N/A 97.86 98.73 1.13 50.36 97.75 99.46 0.45 49.94 97.72 0.29 87.30 99.50
WaNet [38] 97.74 94.25 5.59 N/A 98.00 0.00 97.08 97.12 97.62 88.07 8.71 53.03 98.25 0.00 98.03 97.12

Average 97.79 90.89 3.02 N/A 98.07 46.66 51.29 68.91 97.94 64.94 28.21 61.07 97.96 1.61 86.10 88.18

Defense NAD [28] EP [64] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 98.69 0.63 98.00 79.31 97.69 10.94 88.22 74.16 96.03 0.02 96.07 79.01 98.0 0.01 97.92 79.62
Blended [7] 98.61 100.0 0.00 50.0 97.9 100.0 0.0 49.66 95.65 86.45 6.52 55.31 96.73 3.41 34.42 97.36

Input-Aware [37] 98.27 40.65 58.68 76.04 98.5 49.49 49.5 71.62 97.93 1.94 93.58 95.4 98.09 0.01 93.02 96.36
LF [58] 98.14 51.83 40.02 73.87 97.59 99.2 0.72 50.02 95.59 17.3 32.16 89.97 96.08 0.37 16.89 98.68

SSBA [30] 97.95 99.39 0.59 50.07 97.66 98.66 1.13 50.29 96.13 1.27 58.10 98.22 96.94 0.45 40.33 99.04
WaNet [38] 98.61 0.56 97.63 96.84 96.96 8.97 82.93 92.25 96.92 0.11 96.25 96.66 97.86 0.02 97.42 97.11

Average 98.38 48.84 49.15 68.02 97.72 61.21 37.08 62.57 96.38 17.85 63.78 80.65 97.28 0.71 63.33 88.31

D.3 Experiments with 5% poisoning ratio

This section reports the experiment results for comparing SAU with baselines with a poisoning ratio
of 5% on CIFAR-10 and Tiny-ImageNet. As with the results for a poisoning ratio of 10%, SAU
achieves the top-2 lowest ASR in most of the attacks. Tables 20 and 21 show that SAU achieves the
lowest average ASR. In summary, SAU still outperforms other baselines for a poisoning ratio of 5%.

D.4 Learning curves for Shared Adversarial Risk

This section presents a plot of the learning curves for shared adversarial risk to illustrate the rela-
tionship between the backdoor risk (measured by ASR) and the shared adversarial risk. For each
plot, we run SAU on CIFAR-10 with PreAct-ResNet18 and a poisoning ratio of 10% for 10 epochs.
The SAR is computed on the test dataset by computing the shared adversarial example using the
inner maximization step in (8). Figure 5 demonstrates that SAU can effectively reduce the shared
adversarial risk, and thus, mitigate the backdoor risk. We note that in order to satisfy Assumption 1,
the perturbation set adopted by SAU is much larger than the perturbation budget in the adversarial
robustness area, resulting in a high adversarial risk in Figure 5.

D.5 Experiments on different PGD configurations

In this section, we test SAU using different PGD configurations to generate the shared adversarial
examples. Specifically, we consider the following configurations for PGD:

• Config 1: PGD with L∞ norm bound 0.2, step size 0.2, and 5 steps.

29

Table 19: Results on GTSRB with VGG19 and poisoning ratio 10%.

Defense No Defense FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 96.25 57.11 4.88 N/A 97.02 2.89 18.64 77.11 96.86 0.00 96.64 78.56
Blended [7] 95.98 99.86 0.04 N/A 96.48 99.79 0.08 50.03 95.32 20.80 38.37 89.20

Input-Aware [37] 96.03 76.69 22.35 N/A 97.08 24.09 73.09 76.3 96.71 0.02 94.22 88.33
LF [58] 95.05 98.79 0.99 N/A 95.28 98.13 1.48 50.33 93.25 0.60 67.61 98.19

SSBA [30] 96.43 99.31 0.43 N/A 96.45 99.0 0.64 50.16 96.56 1.03 79.49 99.14
WaNet [38] 95.27 92.09 7.35 N/A 96.90 68.48 29.00 61.81 96.84 1.11 94.67 95.49

Average 95.84 87.31 6.01 N/A 96.54 65.4 20.49 59.39 95.92 3.93 78.50 85.56

Defense NAD [28] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 96.78 73.52 25.73 50.0 95.81 0.01 94.70 78.33 96.21 0.02 79.69 78.53
Blended [7] 96.60 98.27 0.55 50.79 95.11 0.79 16.55 99.10 95.45 1.79 12.61 98.77

Input-Aware [37] 97.77 53.03 45.94 61.83 96.92 10.06 72.08 83.31 96.48 0.01 11.34 88.34
LF [58] 94.69 97.07 2.43 50.68 95.51 0.83 22.43 98.98 95.17 0.02 15.83 99.38

SSBA [30] 96.38 98.38 0.95 50.44 94.57 2.55 61.79 97.45 95.92 7.44 31.49 95.68
WaNet [38] 97.47 39.34 57.96 76.38 96.86 6.28 81.71 92.90 97.04 5.89 88.15 93.10

Average 96.62 76.6 22.26 55.73 95.80 3.42 58.21 85.72 96.04 2.53 39.85 86.26

Table 20: Results on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 5%.

Defense No Defense ANP [55] FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 92.64 88.74 10.78 N/A 92.38 3.10 90.13 92.69 92.47 17.47 77.9 85.55 89.89 1.17 89.70 92.41
Blended [7] 93.67 99.61 0.39 N/A 93.32 98.00 1.92 50.63 93.46 98.87 1.11 50.27 93.66 99.61 0.39 50.00

Input-Aware [37] 91.52 90.2 8.91 N/A 91.64 1.08 87.01 94.56 91.89 52.74 44.49 68.73 91.51 90.20 8.91 50.00
LF [58] 93.35 98.03 1.86 N/A 92.60 96.98 2.87 50.15 93.14 98.37 1.53 49.9 93.35 98.03 1.86 50.00
SIG [2] 93.64 97.09 2.9 N/A 93.09 92.38 7.39 52.08 93.27 99.79 0.2 49.81 93.65 97.09 2.90 50.00

SSBA [30] 93.27 94.91 4.82 N/A 93.13 52.66 43.68 71.06 93.05 87.14 12.09 53.77 91.04 0.80 87.93 95.94
WaNet [38] 91.76 85.5 13.49 N/A 90.67 2.31 88.31 91.05 92.14 26.1 63.5 79.7 91.76 85.50 13.49 50.00

Average 92.84 93.44 6.16 N/A 92.40 49.50 45.90 71.75 92.77 68.64 28.69 62.53 92.12 67.49 29.31 62.62

Defense NAD [28] EP [64] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 91.03 4.73 87.93 91.2 91.04 0.98 91.26 93.08 88.8 2.51 87.82 91.20 90.54 1.36 90.32 92.64
Blended [7] 93.10 99.06 0.93 49.99 92.07 98.88 1.01 49.57 88.39 35.89 43.28 79.22 91.25 5.64 67.56 95.77

Input-Aware [37] 93.07 97.12 2.68 50.0 90.59 1.51 85.09 93.88 91.34 7.63 80.10 91.19 91.12 2.03 82.11 93.88
LF [58] 92.98 94.23 5.3 51.72 91.65 83.71 15.22 56.31 87.25 34.61 41.31 78.66 91.31 2.59 78.93 96.70
SIG [2] 92.49 96.98 2.93 49.48 92.4 1.86 60.29 97.00 86.44 5.73 48.86 92.08 90.87 0.97 54.98 96.68

SSBA [30] 92.49 88.63 10.58 52.75 92.29 12.14 78.70 90.89 87.15 3.86 78.57 92.47 91.15 1.43 85.87 95.68
WaNet [38] 93.31 50.4 46.46 67.55 91.36 31.98 62.87 76.56 89.71 4.24 83.68 89.60 91.69 3.58 88.33 90.93

Average 92.64 75.88 22.4 58.96 91.63 33.01 56.35 79.61 88.44 13.50 66.23 87.77 91.13 2.51 78.30 94.61

• Config 2: PGD with L∞ norm bound 0.1, step size 0.1, and 5 steps.

• Config 3: PGD with L∞ norm bound 0.2, step size 0.1, and 5 steps.

• Config 4: PGD with L2 norm bound 5, step size 0.2, and 5 steps.

• Config 5: PGD with L1 norm bound 300, step size 0.2, and 5 steps.

The experiments are conducted for CIFAR-10 with PreAct-ResNet18 and poisoning ratio 10%. We
summarize the experiment results in Table 22, from which we can find the SAU can effectively
mitigate backdoors under various configurations of PGD.

30

Table 21: Results on Tiny ImageNet with PreAct-ResNet18 and poisoning ratio 5%.

Defense No Defense ANP [55] FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 56.36 99.86 0.13 N/A 44.54 0.02 43.80 94.01 53.00 96.83 2.86 49.83 52.97 65.94 25.45 65.26
Blended [7] 56.69 98.75 0.94 N/A 45.19 92.89 3.67 47.18 52.96 94.47 3.21 50.28 53.63 96.52 2.21 49.59

Input-Aware [37] 57.87 98.25 1.51 N/A 49.38 0.17 48.84 94.80 56.27 89.87 6.52 53.39 56.48 0.49 53.17 98.18
LF [58] 56.67 95.99 2.75 N/A 41.26 38.48 17.21 71.05 53.11 86.8 6.47 52.81 51.49 67.51 16.57 61.65

SSBA [30] 56.86 95.69 3.05 N/A 44.93 50.44 20.23 66.66 53.26 79.97 10.63 56.06 54.04 0.04 38.80 96.41
WaNet [38] 56.83 98.36 1.21 N/A 29.42 0.03 27.29 85.46 54.18 93.36 2.09 51.18 53.02 0.27 50.56 97.14

Average 56.88 97.82 1.6 N/A 42.45 30.34 26.84 72.74 53.80 90.22 5.3 51.94 53.60 38.46 31.13 74.03

Defense NAD [28] EP [64] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 45.51 34.63 34.01 77.19 51.58 0.10 51.06 97.49 53.60 96.58 3.17 50.26 51.94 0.78 50.78 97.33
Blended [7] 46.72 88.89 4.96 49.94 53.13 82.26 8.58 56.47 52.76 92.01 4.7 51.41 52.47 3.40 24.90 95.57

Input-Aware [37] 48.72 1.04 45.83 94.03 57.09 0.92 51.27 98.27 56.13 36.99 40.9 79.76 53.92 0.11 50.89 97.10
LF [58] 46.93 63.9 14.66 61.18 54.04 83.80 10.06 54.78 52.45 90.81 5.77 50.48 52.57 44.27 23.78 73.81

SSBA [30] 46.65 42.45 24.65 71.51 53.87 52.07 23.44 70.31 52.65 90.72 5.95 50.38 53.57 0.02 39.77 96.19
WaNet [38] 46.81 2.44 39.54 92.95 53.98 0.12 52.62 97.70 52.99 93.43 4.93 50.55 50.15 81.75 12.37 54.97

Average 46.89 38.89 27.27 70.97 53.95 36.54 32.84 75.00 53.43 83.42 10.9 54.69 52.44 21.72 33.75 80.71

1 2 3 4 5 6 7 8 9 10
Epochs

0

20

40

60

80

Pe
rc

en
ta

ge

BadNets

Accuracy
Backdoor Risk
Adversarial Risk
Shared Adversarial Risk

1 2 3 4 5 6 7 8 9 10
Epochs

0

20

40

60

80

LF

Accuracy
Backdoor Risk
Adversarial Risk
Shared Adversarial Risk

1 2 3 4 5 6 7 8 9 10
Epochs

0

20

40

60

80

SSBA

Accuracy
Backdoor Risk
Adversarial Risk
Shared Adversarial Risk

Figure 5: Learn curves for Accuracy, Backdoor Risk, Adversarial Risk, and Shared Adversarial Risk.

Table 22: Results for SAU with different PGD configurations

Defense No Defense Config 1 (Default) Config 2

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 91.32 95.03 4.67 N/A 89.31 1.53 88.81 95.74 89.56 0.80 89.60 96.24
Blended [7] 93.47 99.92 0.08 N/A 90.96 6.14 64.89 95.63 91.05 6.06 61.11 95.72
Input-Aware 90.67 98.26 1.66 N/A 91.59 1.27 88.54 98.49 90.93 1.56 84.76 98.35

LF [58] 93.19 99.28 0.71 N/A 90.32 4.18 81.54 96.12 90.83 3.76 77.93 96.58
SIG [2] 84.48 98.27 1.72 N/A 88.56 1.67 57.96 98.30 88.29 0.94 49.41 98.66

SSBA [30] 92.88 97.86 1.99 N/A 90.84 1.79 85.83 97.01 89.81 1.63 80.29 96.58
WaNet [38] 91.25 89.73 9.76 N/A 91.26 1.02 90.28 94.36 86.22 3.12 86.89 90.79

Average 91.04 96.91 2.94 N/A 90.41 2.51 79.69 96.52 89.53 2.55 75.71 96.13

Defense Config 3 Config 4 Config 5

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 89.69 2.21 89.19 95.60 89.78 1.11 89.38 96.19 89.04 1.29 88.63 95.73
Blended [7] 90.98 6.12 61.64 95.65 91.58 8.31 59.09 94.86 91.49 5.83 63.04 96.05
Input-Aware 90.75 1.86 86.21 98.20 91.30 0.94 84.24 98.66 91.21 1.20 86.60 98.53

LF [58] 91.05 3.00 81.23 97.07 87.06 1.94 73.72 95.60 91.29 5.12 80.26 96.13
SIG [2] 87.18 1.32 55.12 98.47 88.20 0.78 49.09 98.74 86.69 2.08 55.64 98.09

SSBA [30] 90.39 2.68 82.04 96.34 90.65 2.59 84.40 96.52 90.48 1.62 84.19 96.92
WaNet [38] 91.14 1.60 87.96 94.01 90.79 1.13 89.70 94.07 90.55 1.82 89.11 93.61

Average 90.17 2.68 77.63 96.48 89.91 2.40 75.66 96.38 90.11 2.71 78.21 96.44

D.6 Experiments on different numbers of clean samples

This section examines the influence of clean sample size for SAU by evaluating SAU with different
numbers of clean samples. The experiment is conducted on CIFAR-10 with PreAct-ResNet18 and
the results are summarized in Table 23. Table 23 shows that SAU can consistently mitigate backdoors
with sample sizes ranging from 2500 (5%) to 500 (1%) with high accuracy. When the sample size
decreases to 50 (0.1%, 5 samples per class) or 10 (0.02%, 1 sample per class), SAU can still reduce

31

the backdoor to a low ASR. However, clean accuracy is difficult to guarantee with such limited clean
samples.

Table 23: Results for SAU with different numbers of clean samples

Defense No Defense SAU -2500 SAU -1000 SAU -500 SAU -50 SAU -10

Attack ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets [15] 91.32 95.03 89.31 1.53 89.24 1.31 83.04 2.17 67.86 1.41 51.43 14.38

Blended [7] 93.47 99.92 90.96 6.14 88.82 2.53 87.71 5.41 73.95 11.62 43.54 0.00

LF [58] 93.19 99.28 90.32 4.18 88.00 6.79 88.69 2.84 66.69 0.30 54.95 12.62

D.7 Experiments on Multi-trigger Attacks

In this section, we evaluate our method for the multi-trigger/multi-target cases. Specifically, we use
two different attacks (denoted by Attack-1 and Attack-2) with different target labels. Following
Section 4.2, we test our method (SAU) against a strong baseline ANP on the CIFAR-10 dataset with
a poisoning ratio of 10% and backbone PreAct-ResNet18. The experiment results are summarized
in the following table, where we use ASR-1 and ASR-2 to represent the Attack Success Rate for
Attack-1 and Attack-2, respectively. From Table 24, we can find that SAU achieves much higher
accuracy (5.64% higher) and a much lower ASR for Attack-1 (26.46% lower) compared to ANP,
although the average ASR for Attack-2 of ANP is slightly lower than that of SAU (only 0.13%
lower). These results show that SAU outperforms the baseline in most cases, which demonstrates the
effectiveness and robustness of our method in this challenging scenario.

Table 24: Results for defending against Multi-trigger Attacks

No Defense No Defense No Defense ANP [55] ANP [55] ANP [55] SAU (Ours) SAU (Ours) SAU (Ours)

Attack-1 Attack-2 ACC ASR-1 ASR-2 ACC ASR-1 ASR-2 ACC ASR-1 ASR-2

Blended [7] BadNets [15] 90.22 99.27 95.03 85.55 37.07 0.01 88.93 2.21 0.54
InputAware BadNets [15] 89.71 78.62 94.77 82.21 4.48 0.01 88.88 4.14 0.70

LF [58] BadNets [15] 90.16 98.08 95.15 84.21 79.11 2.30 88.45 2.93 0.34
SIG [2] BadNets [15] 82.12 98.48 95.03 76.43 26.92 0.14 85.82 0.60 0.67

SSBA [30] BadNets [15] 89.69 95.13 95.11 83.25 20.03 0.14 87.60 1.38 0.52
WaNet [38] BadNets [15] 89.44 90.21 95.40 82.21 5.53 0.01 88.02 3.12 0.67

Average 88.56 93.30 95.08 82.31 28.86 0.44 87.95 2.40 0.57

D.8 Experiments on ALL to ALL attack

In this section, we compare SAU with other baselines on ALL to ALL attacks on CIFAR-10 with
PreAct-ResNet18 and poisoning ratio 10%. Specifically, the target labels for the sample with original
labels y are set to yt = (y + 1) mod K where mod is short for "modulus". The experiment
results are summarized in Table 25. From Table 25, we can find that SAU achieves the best defending
performance in 5 of 7 attacks and the lowest average ASR. At the same time, SAU also achieves the
best average R-ACC and average DER, which further demonstrates its effectiveness in defending
against backdoor attacks with multiple targets.

Note that the ASR for the poisoned model is significantly lower than the ASR in the single-target
case. Thus, Table 25 also shows that SAU can still effectively mitigate backdoor even the ASR of the
poisoned model is much lower than 100%.

D.9 Comparison to Reconstructive Neuron Pruning (RNP)

In this section, we compare SAU with RNP [29] to further improve our submission. We adopted the
official implementation of RNP (https://github.com/bboylyg/RNP) into the framework of Backdoor-
Bench for fair comparison and the specific experimental settings are:

• Dataset and model architecture: we compare our SAU with RNP on CIFAR-10 dataset
with ResNet18 and PreAct-ResNet18.

• Clean data size and poisoning ratio: We adopt clean datasets: 1% and 5%, and poisoning
ratios: 0.5%, and 10% to compare their effectiveness for large and small poisoning ratios.

32

https://github.com/bboylyg/RNP

Table 25: Results for defending against ALL to ALL attacks

Defense No Defense ANP [55] FP [31] NC [47]

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 91.89 74.42 18.66 N/A 92.33 2.56 90.12 85.93 83.91 1.72 83.71 82.36 91.88 74.41 18.67 50.0
Blended [7] 93.67 86.69 2.0 N/A 93.25 51.35 36.39 67.46 84.43 3.53 69.05 86.96 93.67 86.69 2.0 50.0
Input-Aware 91.92 83.69 7.23 N/A 91.04 0.85 88.34 90.98 85.69 2.01 81.09 87.72 91.20 81.49 8.75 50.74

LF [58] 93.84 89.96 2.44 N/A 93.10 2.58 90.31 93.32 84.54 1.77 80.8 89.44 93.84 89.96 2.44 50.0
SIG [2] 93.4 90.61 1.09 N/A 92.83 86.56 2.69 51.74 85.01 6.09 59.7 88.06 93.40 90.61 1.09 50.0

SSBA [30] 93.46 87.84 3.7 N/A 93.29 7.10 84.36 90.29 82.97 2.48 80.26 87.44 93.46 87.84 3.7 50.0
WaNet [38] 89.91 78.58 10.62 N/A 90.27 1.00 88.91 88.79 86.62 1.65 84.55 86.82 89.91 78.58 10.61 50.0

Average 92.58 84.54 6.53 N/A 92.30 21.71 68.73 81.22 84.74 2.75 77.02 86.97 92.48 84.23 6.75 50.11

Defense NAD [28] EP [64] i-BAU [59] SAU (Ours)

Attack ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER ACC ASR R-ACC DER

BadNets [15] 80.49 2.51 80.54 80.25 88.72 3.00 87.94 84.12 89.39 1.29 89.90 85.32 90.69 1.02 90.61 86.10
Blended [7] 76.85 5.63 58.85 82.12 91.69 82.62 3.66 51.05 90.46 8.83 72.20 87.32 91.47 2.17 82.08 91.16
Input-Aware 82.54 1.75 76.86 86.28 90.2 1.13 87.69 90.42 89.40 6.03 81.10 87.57 91.74 1.87 89.12 90.82

LF [58] 73.58 2.83 74.55 83.43 91.88 84.64 5.97 51.68 89.38 7.88 64.68 88.81 91.67 1.11 85.84 93.34
SIG [2] 79.99 5.78 55.48 85.71 90.91 86.10 2.44 51.01 90.74 1.57 86.31 93.19 91.13 1.48 85.14 93.43

SSBA [30] 74.12 3.58 69.61 82.46 90.33 41.83 46.59 71.44 88.56 6.49 78.49 88.22 91.35 1.84 85.53 91.94
WaNet [38] 85.26 1.99 82.59 85.97 86.66 74.74 11.13 50.3 91.71 1.63 90.98 88.48 91.73 1.43 89.34 88.58

Average 78.98 3.44 71.21 83.75 90.06 53.44 35.06 64.29 89.95 4.82 80.52 88.42 91.40 1.56 86.81 90.77

• Hyper-parameters of RNP: We notice that the hyper-parameters of RNP are sensitive
to model architecture. After carefully inspecting the pruning process of RNP, we set the
pruning threshold to 0.75 for ResNet18 and 0.05 for PreAct-ResNet18 which can achieve a
good overall performance across various attacks.

The experimental results are shown in Table 26,27,28. According to the results and methodologies,
we briefly summarize a few important differences between them:

• Sensitivity to the size of the clean dataset. SAU is effective across various sizes of clean
data, while RNP achieves good performance for clean data size 0.5% 1%, as shown in Table
26 and discussed in Section 4 of [29]. Therefore, SAU can be applied to various sizes of
clean datasets, especially when the defenders do not know the exact size of the training
dataset.

• Sensitivity to poisoning ratio. SAU is effective across various poisoning ratios, while RNP
faces challenges when defending against low poisoning ratio attacks, as shown in Table 28
and discussed in Section 5 of [29].

• Sensitivity to model architecture. SAU is effective and stable across various model
architectures, while the parameters of RNP are sensitive to the model structure, as we
observe that the pruning threshold for RNP varies significantly for various models.

• Motivation. SAU is theoretically motivated by the relationship between adversarial robust-
ness and backdoor risk, while RNP is empirically driven by some experimental observations.

Table 26: Result on ResNet-18 with Poisoning Ratio 10%

Attack Clean Ratio No Defense No Defense RNP [29] RNP [29] SAU (Ours) SAU (Ours)

ACC ASR ACC ASR ACC ASR

BadNets [15] 1% 91.46 95.31 88.94 2.14 83.62 2.04
Input-Aware 1% 90.31 98.86 89.47 6.60 87.16 4.79

SIG [2] 1% 84.64 99.69 80.88 0.03 84.08 0.37

BadNets [15] 5% 91.46 95.31 10.65 0.00 89.25 1.33
Input-Aware 5% 90.31 98.86 10.09 0.00 88.20 0.60

SIG [2] 5% 84.64 99.69 10.00 0.00 89.07 3.99

33

Table 27: Result on PreAct-ResNet-18 with Poisoning Ratio 10%

Attack Clean Ratio No Defense No Defense RNP [29] RNP [29] SAU (Ours) SAU (Ours)

ACC ASR ACC ASR ACC ASR

BadNets [15] 1% 91.32 95.03 66.86 0.00 85.12 2.52
Input-Aware 1% 90.67 98.26 79.88 0.00 88.56 2.79

SIG [2] 1% 84.48 98.27 74.47 0.04 84.64 0.64

BadNets [15] 5% 91.32 95.03 10.00 0.00 89.31 1.53
Input-Aware 5% 90.67 98.26 10.00 0.00 91.59 1.27

SIG [2] 5% 84.48 98.27 11.56 0.00 88.56 1.67

Table 28: Result on ResNet-18 with Poisoning Ratio 0.5%

No Defense No Defense RNP [29] RNP [29] SAU (Ours) SAU (Ours)

Attack ACC ASR ACC ASR ACC ASR

BadNets [15] 93.73 67.06 91.46 11.54 82.63 2.46
Input-Aware 90.78 97.68 87.28 67.74 87.77 4.60

SIG [2] 93.68 85.02 79.91 14.76 87.71 0.14

34

