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ABSTRACT

In this work, we present a benchmark that consists of Jupyter notebooks develop-
ment trajectories and allows measuring how large language models (LLMs) can
leverage runtime information for predicting code output and code generation. We
demonstrate that the current generation of LLMs performs poorly on these tasks
and argue that there exists a significantly understudied domain in the development
of code-based models, which involves incorporating the runtime context.

1 INTRODUCTION

Recent developments in code completion and generation have been significant. Over the past several
years, the field has progressed from generating relatively simple programs (Chen et al., 2021) to
solving real-world issues within software repositories (Jimenez et al., 2023). However, most studies
in this area are based on static snapshots of code (Jiang et al., 2024), with only a small body of
research exploring the potential of leveraging dynamic code properties, such as runtime information
and memory state, for code generation (Chen et al., 2024). A key reason for this limitation is
that common programming environments rarely allow code generation during execution, which is
when runtime information can be gathered. Jupyter notebooks offer a unique opportunity in this
regard—they enable code generation while providing access to runtime information and the current
state of the environment.

In this paper, we present a benchmark designed to measure how models can utilize runtime and
environment information, using development trajectories of Jupyter notebooks. A development tra-
jectory is a sequence of Jupyter notebook cell executions in the order performed by a human devel-
oper. Each operation includes the cell’s content and the runtime state after execution. We propose
evaluating a model’s ability to predict the code of the next cell to be executed and the output of a
given executed cell.

We believe that by providing these benchmark and baseline results, we can advance the field of
incorporating this type of information into code language models. We also make benchmark data
available on Zenodo.1

2 BENCHMARK

The benchmark consists of a set of Jupyter notebook development trajectories. Each development
trajectory consists of all prior cell executions with the given cell’s execution context (e.g., cell con-
tent or runtime snapshot). The order of executions was recorded by the authors of the original dataset
(see Section 2.2 below) from the notebook development process and is preserved in our benchmark.
Optionally, for each trajectory one can append the description of the initial task that the notebook
was developed for. Using the given trajectory, we evaluate the model’s ability to predict the next
piece of code to be executed and the output that will be produced by the cell.

2.1 TASKS AND METRICS

For the benchmark, we have selected two tasks.

1Benchmark data available here: https://zenodo.org/records/14861889
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Next cell prediction. In this task, we ask the model to predict the code of the next cell to be executed
in our trajectory. This task offers an interesting perspective on code generation, as it requires a
significant understanding of the given trajectory to determine what needs to be done next.

Cell output prediction. In this task, we ask the model to predict the output text for the cells with
such output type. This task can be challenging for language models in a default snapshot setup, as
it requires a strong understanding of the code and effective modeling of the runtime behavior (Gu
et al., 2024). We hypothesize that providing runtime information should improve scores across the
entire set of test trajectories. We suggest that this task demonstrates both the model’s capabilities in
code modeling and its ability to leverage runtime context.

To measure performance on this task, we use the exact match, ROUGE-L (Lin, 2004), and
ChrF (Popović, 2015) metrics in line with recommendations from Evtikhiev et al. (2023).

2.2 DATA

To acquire the trajectories, we used the JuNE dataset from the paper by Titov et al. (2025), where
the authors tracked the notebook development process for over 8 hours with a small number of
participants. They collected more than 14,000 user events, including more than 9,000 cell executions
during these experiments across 29 notebooks for two original tasks. While there are datasets with
more notebooks available, such as those from Kaggle (Quaranta et al., 2021), we believe that the
JuNE dataset provides more information about the development process. It includes not only the
environment and final version of the notebook but also intermediate and debugging steps within the
notebook setting, which are the most crucial stages where models should support developers.

To develop our benchmark, we replicated the environment and re-executed four notebooks from the
dataset, resulting in a total of 1,453 code executions. Moreover, we collected additional information,
such as memory load and execution time of the cell. We also collected and serialized the state of
the environment for each step to incorporate it into trajectories. A full list of available context
features is given in Table 1. At the end of this process, we obtained the complete trajectory of prior
development for each cell execution in the dataset. The example slice of the trajectory content is
shown in Figure 1 and in Appendix A.4.

Feature Description
kernel id Unique identifier for the execution kernel
code Code executed in the cell
output Output produced by the executed code
execution time Time taken to execute the code in seconds
memory bytes Memory usage during execution in bytes
runtime variables Dictionary of runtime variables in the execution environ-

ment. We store each runtime variable’s name, size in
bytes, and its repr representation.

hash index Unique hash representing the execution state

Table 1: Descriptions of trajectory step features

The next step involved selecting the cells and outputs to predict. First, we selected all cells with at
least five actions in their trajectories. For each task, we filtered out empty examples and extremely
long examples, specifically those beyond the 0.99 quantile of the cell length or output length distri-
bution, respectively.

To ensure a diverse set of examples in the benchmark, we selected 200 examples using the following
sampling method. First, we randomly chose 180 instances from the second and third quartiles of the
output length distribution. Then, we added ten long instances from the fourth quartile and ten short
instances from the first quartile. Additionally, we ensured that no sample in the benchmark to be
predicted contains an exception, since the foundational models struggle with stack traces (Gehring
et al., 2024). For more information on the statistics of the trajectories and the diversity of examples,
please refer to Appendix A.1.
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Cell to predict

Output to predict

Figure 1: A sample of code-output trajectory pairs for the output prediction task (on the left side)
and next cell prediction task (on the right side). The gray and white rows represent the content of
the trajectory, including the cell content and the cell output, while the green indicates the entity we
aim to predict.

2.3 BASELINES

To provide an initial baseline for the benchmark, we selected a set of popular language models:
GPT-4o (Hurst et al., 2024), GPT-4o-mini (Hurst et al., 2024), Claude 3.5 Sonnet (Anthropic, 2024),
Gemini 1.5 Pro (Team et al., 2024), and DeepSeek-V3 (Liu et al., 2024). We report the benchmark
in two settings: using runtime information during inference and without using it. Additionally, we
carried out further post-processing of the model outputs: we removed cell language identifiers and
trimmed all redundant spaces and tabulations. Also, we report benchmark results without additional
post-processing of model outputs in Appendix A.3. Table 3 presents the results for the two tasks
of our benchmark, and in Appendix A.2, you can find details about the inference setup for these
models.

Model Output Prediction Next Cell Prediction
Exact Match RougeL ChrF Exact Match RougeL ChrF

N
o

R
un

tim
e GPT-4o 0.16 0.32 0.47 0.10 0.28 0.39

GPT-4o-mini 0.16 0.31 0.43 0.06 0.25 0.38
Claude-3.5 0.18 0.38 0.50 0.12 0.30 0.42
Gemini Pro 0.17 0.35 0.54 0.12 0.34 0.43
DeepSeek-V3 0.18 0.35 0.49 0.13 0.34 0.46

R
un

tim
e GPT-4o 0.16 0.34 0.46 0.10 0.26 0.37

GPT-4o-mini 0.15 0.30 0.43 0.07 0.27 0.36
Claude-3.5 0.09 0.34 0.48 0.11 0.30 0.42
Gemini Pro 0.16 0.35 0.55 0.13 0.33 0.42
DeepSeek-V3 0.19 0.33 0.48 0.14 0.35 0.47

Table 2: Performance comparison of different foundation models on Output Prediction and Next Cell
Prediction tasks. The metrics shown are Exact Match (higher is better), RougeL F1 score (higher is
better), and ChrF score (higher is better).

All tested models were able to produce a significant number of exact matches for the output pre-
diction task without leveraging the runtime information. The best results were given by Claude-3.5,
with 18% of cases achieving an exact match. All other models achieved very similar results, even
though the set of correctly predicted examples differs from model to model. This indicates that the
task is equally challenging for different models. The models scored higher on Rouge-L and ChrF,
suggesting that even in non-exact matches, the models can still produce outputs close to the origi-
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nal. In the setup with runtime information, the scores for the models remained very similar to those
without runtime information, except for Claude-3.5, which saw its score drop by half. This indicates
that the models are not yet able to effectively leverage the runtime context for this task, highlighting
significant potential for further post-training improvements.

The results for next cell prediction show poor overall performance across different types of models,
particularly from the perspective of exact match. The best results are produced by DeepSeek-V3,
achieving an exact match in 13% of cases. Similarly to output prediction, these results are compen-
sated by higher scores on ROUGE-L and ChrF, indicating that the models at least produce outputs
relevant to the next cell prediction. Despite these numbers, we still consider the results signifi-
cant—we tasked the models with predicting code for an extremely open-ended task and measured
their ability to guess very specific data points, and in some cases, they were able to correctly predict
next user actions.

After runtime inclusion experiments for code predictions, we found that the performance cannot be
improved by simply adding all available information in the context and needs to be carefully curated.
Although this information is surely valuable for accurate prediction and understanding of the current
program state, the actual implementation is an interesting question for the research community.

3 RELATED WORK

In recent years, there have been multiple attempts to leverage runtime information in the training
process (Ding et al., 2024; Liu et al., 2023a; Ni et al., 2023). Many approaches mainly focus on using
the outputs of programs, as seen in recent work by Gehring et al. (2024); Dou et al. (2024); Liu et al.
(2023b), where they demonstrated that models poorly respond to compiler feedback and suggested a
reinforcement learning approach to improve code generation results in a multi-shot setup. However,
other works, such as TRACED (Ding et al., 2024), show that the addition of runtime information
can improve the behavior of the model to predict execution states or locate bugs.

There are two notable benchmarks that assess a model’s ability to simulate code execution: CruxE-
val (Gu et al., 2024) and REval (Chen et al., 2024). CruxEval proposes triplets of code, input, and
output, asking models to predict the input or output given the other two. They demonstrate that a
chain of thought setup is more efficient, highlighting that reasoning plays a key role in modeling the
execution process. REval builds on CruxEval by adding runtime data to the test set and introduces
novel tasks like program state prediction and execution path prediction, in addition to output pre-
diction. They show that reasoning capabilities vary significantly among models. For example, in
execution path prediction, even the strongest tested model, GPT-4-Turbo, only achieves an accuracy
of 57.7%.

4 THREAT TO VALIDITY AND CONCLUSION

We believe that our benchmark can provide strong momentum toward the utilization of runtime
information in code-based models. We hope that the unique environment of Jupyter notebooks can
leverage newly fine-tuned models, making the notebook development process more pleasant and
productive. However, the current version of the benchmark has several significant issues.

The main problem is low variability. The original data was collected from only two tasks and 20
participants, and we used only a subsample of this data. This leads to a severely underrepresented
space of notebook trajectories. This limitation makes it difficult to draw conclusions about the
generalizability of approaches that work with runtime context. Given the community’s interest in
the benchmark, one may use the tooling provided in the original JuNE dataset to gather more data
for additional tasks.

With this benchmark, we introduce a new dynamic modality for code generation and program anal-
ysis, moving beyond static code base snapshots to incorporate complete development trajectories.
This approach makes runtime information and development progress available to models, poten-
tially allowing them to better align with developers’ workflows and expectations. Our findings
demonstrate that this is a challenging problem that remains difficult even for advanced foundation
models, opening new horizons for future research in areas such as runtime-aware code completion,
dynamic context understanding, and interactive development assistance.
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A APPENDIX

A.1 DIVERSITY OF THE SAMPLES IN BENCHMARK
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Figure 2: Diversity metrics comparison between output and code.

A.2 INFERENCE SETUP

Output Prediction
You are a Python REPL interpreter. Given a sequence of executed Python code cells and their outputs,
predict the output of the next executed code cell. Provide only the output, exactly as it would appear
in a Python interpreter. YOU MUST NOT include any additional tags (```python, ```, etc).
Previous code cells and their outputs:

Code: {{code}}
Output: {{output}}
...
Code: {{code}}
Output: {{output}}

Predict the output for this code: {{code_to_predict}}
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Next Cell Prediction
You are an expert Python programmer. Given a sequence of executed Python code cells and their outputs,
predict what the next code cell will be. Provide only the code, exactly as it would be written in a
Jupyter notebook. YOU MUST NOT include any additional tags (```python, ```, etc).
Previous code cells and their outputs:

Code: {{code}}
Output: {{output}}
...
Code: {{code}}
Output: {{output}}

Predict the next code cell that would logically follow:

A.3 BASELINES WITHOUT OUTPUT PROCESSING

Model Output Prediction Next Cell Prediction
Exact Match RougeL ChrF Exact Match RougeL ChrF

GPT-4oRuntime 0.10 0.53 0.52 0 0.17 0.26
GPT-4o-miniRuntime 0.08 0.37 0.41 0 0.16 0.23

GPT-4o 0.10 0.54 0.55 0 0.23 0.31
GPT-4o-mini 0.09 0.51 0.51 0 0.21 0.31
Claude-3.5 0.06 0.50 0.52 0.01 0.10 0.21
Gemini 1.5 Pro 0.05 0.55 0.57 0.02 0.27 0.32
DeepSeek-V3 0.08 0.53 0.56 0.07 0.34 0.40

Table 3: Performance comparison of different foundation models on Output Prediction and Next
Cell Prediction tasks without additional output processing. The metrics shown are Exact Match
(higher is better), RougeL F1 score (higher is better), and ChrF score (higher is better).

A.4 EXAMPLE OF TRAJECTORY

Step 70

Code:
df

Runtime Variables:
action: {'size': 80, 'type': 'str', 'value': 'Action_7 (27/06...)'}
...
action_time: {'size': 68, 'type': 'str', 'value': '27/06/20 | 17:3...'}
df: {'size': 79714318, 'type': 'DataFrame', 'value': ' user_id ...'}

Output:

user_id info
0 User92 Action_3 (15/10/19 | 18:08:02) -> Action_1 (15...
1 User140 Action_3 (15/05/20 | 15:37:04) -> Action_8 (15...
2 User105 Action_4 (25/04/20 | 01:08:29) -> Action_7 (25...
...
[87192 rows x 2 columns]

Execution Time: 0.01 seconds
Memory Usage: 10250.90 MB
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Step 71 (to predict)

Code:
df = df.assign(actions=df['info'].str.split('-> ')).explode('actions')
df

Runtime Variables:
action: {'size': 80, 'type': 'str', 'value': 'Action_7 (27/06...)'}
...
action_time: {'size': 68, 'type': 'str', 'value': '27/06/20 | 17:3...'}
df: {'size': 75310105, 'type': 'DataFrame', 'value': ' user_id ...'}

Ground Truth Output:

user_id ... actions
0 User92 ... Action_3 (15/10/19 | 18:08:02)
0 User92 ... Action_1 (15/10/19 | 18:54:49)
0 User92 ... Action_10 (15/10/19 | 20:02:54)
...
[2053521 rows x 3 columns]
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